
CREATING REACTIVE NON PLAYER CHARACTER
ARTIFICIAL INTELLIGENCE IN MODERN VIDEO GAMES

Leif Gruenwoldt, Michael Katchabaw Stephen Danton
Department of Computer Science Horseplay Studios

The University of Western Ontario Seattle, Washington, USA
London, Ontario, Canada E-mail: stephen_m_danton@hotmail.com

E-mail: lwgruenw@gaul.csd.uwo.ca, katchab@csd.uwo.ca

KEYWORDS

 Reactive artificial intelligence, relationship modeling in
video games, reputation systems

ABSTRACT

 Realistic and reactive non player characters that respond
appropriately to activity in their game world would be
welcomed by game developers and players alike.
Unfortunately, despite significant progress made by in this
area of research, this goal has still yet to be fully achieved.

 In this paper, we present a new Realistic Reaction
System, based on our previous work in this area, which
provides reactive artificial intelligence through the use of
an underlying relationship system that binds together
players, non player characters, and objects in the game
world. Through proper maintenance, manipulation, and
querying of the relationship system, we can effectively and
efficiently augment the decision processes used in artificial
intelligence controllers in games to provide a richer and
more immersive experience to players.

INTRODUCTION

 Game developers have long sought to have meaningful
and logical interactions between human players and non
player characters driven by their games’ artificial
intelligence. Unfortunately, except for restricted
circumstances, typically violent confrontations, this has not
materialized successfully, leaving the players feeling
isolated or disconnected from the world in which they are
playing (Laramée 2002).

 A key element to overcoming this problem is the
development of artificial intelligence capable of
dynamically reacting to players and player actions in
reasonable and realistic fashions. Doing so would require a
sense of relationship or social network binding the
characters and objects in the game world to one another, a
sentiment expressed in (Lawson 2003) and elsewhere.
Without this, developers have to rely upon static or scripted
methods of implementing behaviours and events to mimic
realistic character reactions, which is ultimately quite
limiting.

 Work in developing reputation systems for games has
drawn some attention recently in an attempt to address this

problem. For instance, the games Ultima Online (Grond
and Hanson 1998) and Neverwinter Nights (Brockington
2003) provide reputation systems, but do so with some
restrictions and drawbacks; for example, in Ultima Online,
reputation changes have unrealistic immediate global
effects, regardless of who witnessed the actions
precipitating the changes. The work in (Alt and King 2002)
shows promise, but requires more flexibility and generality;
for example, it supports only a limited relationship set, does
not track relationships between non player characters, and
has not been applied to game world objects and complex
group situations.

 In (Gruenwoldt 2005), we introduced a Realistic Reaction
System (RRS) for modern video games to overcome these
issues. This system models and maintains the relationships
between players, non player characters, and objects in the
game world over time dynamically, and provides methods
by which characters can query the relationship network to
formulate appropriate reactions in behaviour, dialogue, and
so on. While this served as an important first step in
providing reactive characters in games, more work was
needed to fully address the problem at hand.

 Our current work builds upon this previous work from
(Gruenwoldt 2005) to provide a complete and integrated
solution to the above problems. In particular, in this paper,
we focus on the logic and mechanisms required to link the
relationship system from our previous work with artificial
intelligence controllers to create reactive non player
characters. Doing so effectively poses significant
challenges, as a well populated world with a rich collection
of relationship types can produce a relationship network
large enough to overwhelm both artificial intelligence
programmers and scarce game resources at runtime. This
was learned first hand in integrating our previous work into
the action/adventure/role-playing game Neomancer
(Danton 2004; Katchabaw 2005) that we are currently co-
developing. Consequently, mechanisms must be in place to
help manage, filter, and aggregate relationship information
appropriately according to the needs of the game in
question.

 This paper presents a new extended architecture for RRS
for creating reactive non player character artificial
intelligence, and discusses our work in implementing and
using it to date. We begin with a brief overview of
relationships and augmenting artificial intelligence
controllers with this information. Following this, we

provide architectural details of our new approach, and
outline its implementation using Epic’s Unreal Engine
(Epic Games 2004). We then discuss our experiences with
using this new system both in the context of an Unreal
game mod (Castaneda 2005), and our Neomancer project
(Danton 2004; Katchabaw 2005), currently under
development. We finally conclude the paper with a
summary, and a discussion of directions for future work in
this area.

RELATIONSHIP MODELING AND USE IN GAME
ARTIFICIAL INTELLIGENCE

 Before examining the details of the newly extended RRS,
we first provide background on modeling and manipulating
relationship data for use in games, and how we can
augment artificial intelligence controllers using this
information.

Relationships for Games

 A relationship network models all of the relationships
between all of the characters, groups of characters, and
objects of interest in the game world. One can envision this
network as a graph-like structure, with the characters,
groups, and objects as nodes in the graph, and the various
relationships that exist between them as edges (directed or
undirected, depending on the relationship). An example of
this kind of relationship network from the Neomancer game
project (Danton 2004; Katchabaw 2005) is presented in
Figure 1.

 There are numerous possible types of relationships that
exist between entities in the relationship network. Each of
these types can have subtypes, and so on, resulting in a
hierarchical tree of relationship types. For example, main
types of relationships can include: emotional, familial,
business, leadership, ownership, membership, and so on. If

we were to expand the membership branch, for example,
there exist relationships to denote belonging to groups in
the game, such as ethnicity, social caste, profession,
community residence, and so on. This hierarchy can be
easily expanded with additional types and sub-types as
necessary.

 Furthermore, each relationship has several attributes.
These attributes include origin, history, regularity, strength,
polarity, and validity. Relationship-specific attributes can
also be assigned where appropriate.

 Relationships can be affected in numerous ways. The
most direct method is by filtered and processed game
events. In other words, when one entity in the game world
observes the actions of another, those actions can directly
impact the relationships between those two entities, and the
appropriate relationships must be added, updated, or
removed. Relationships are also affected by game events
indirectly, by their propagation through the relationship
network. Depending on the nature of the event and how it
affects entities in the network directly, the event can be felt
by other related entities. Time also affects relationships.
Given enough time, relationships drift towards a neutral
state, in the absence of events or interactions that would
otherwise act to strengthen them.

Augmenting Artificial Intelligence Controllers with
Relationship Data

 We now examine how to examine how to augment
artificial intelligence controller using relationship data from
a relationship network. Since scripting, state machines, and
rule-based systems are the most widely used techniques in
implementing game artificial intelligence (Champandard
2004), and scripting tends to be too static to be truly
reactive, we will focus our attention on these last two
techniques in this paper.

Figure 1: Example Relationship Network from Neomancer

 Generally, an artificial intelligence controller can be
augmented to use relationship data in its decision process
by querying the relationship network and using this data as
additional game state to regulate state transitions or rule
firings. In a state machine, this will require additional
specialized transitions and/or specialized states; in a rule-
based system, this will require additional rules with
specialized firing conditions.

 Care must be taken in using this relationship data,
however. Using raw relationship information will result in
an explosive increase in the size and complexity of state
machines or rule systems using it, because the number of
possible relationships and relationship attribute values
could be quite large. This would make programming
artificial intelligence for games quite difficult and tedious.
If relationship information, however, was filtered and
aggregated, much of this complexity can be removed,
resulting in state machines and rule systems that are more
manageable and easy to use.

Augmenting State Machines with Relationship Data

 Consider, for example, the fragment of a state machine
shown in Figure 2 for a guard in the guards group depicted
in the relationship network in Figure 1.

Figure 2: State Machine Fragment without Relationship

Data

 When the player is observed, this event causes the guard
to switch to an attacking state to attack the player,
regardless of the player’s prior activities or relationship to
the guard in question. While this reaction might appear
realistic if the player’s behaviour warranted an attack, it
would appear oddly out of place if not. Such out of place

behaviour can break the player out of immersion, and have
a detrimental effect on the player’s enjoyment of the game
(Bates 2004; Rouse 2004).

 Now consider the state machine fragment that is shown in
Figure 3, based on the previous state machine. In this case,
the relationship data between the player and guard in
question has been distilled and aggregated for simplicity
into one of three possibilities, negative, positive, and
neutral, resulting in three possible transitions from a new
state in the machine. (This new state can be avoided if an
extended state machine is used that can have transitions
triggered by multiple events or pieces of state information.)
This allows player behaviour to influence the relationship
with the guard, and the guard’s reaction to the player as a
result.

 Suppose that guards in the guards group that was shown
in Figure 1 are friends with the waitress that is the focal
point of that relationship network. If the player hurts the
waitress, the guards would have a negative view of the
player and react with hostility towards the player. If the
player, on the other hand, was helpful to the waitress, the
guards would have a positive view of the player and help
the player in return. With no prior contact with the
waitress, the guards would have a neutral view of the
player, and act accordingly.

 Consequently, using relationship data, we can now have
artificial intelligence that reacts in a realistic fashion
determined by player behaviour. This results in a better
overall experience to the player, as the player is left with
the impression that his or her actions actually have an
impact on the game world and its inhabitants (Bates 2004;
Rouse 2004).

Augmenting Rule-Based Systems with
Relationship Data

 In this section, we examine augmenting rule-based
systems with relationship data, much like state machines
were in the previous section. Using the situation calculus
notation of (Russell and Norvig 2003), we can express the
original state machine fragment given in Figure 2 using a

Figure 3: State Machine Fragment with Relationship Data Considered

rule system quite easily. Note that for simplicity, we are
omitting effect axioms from the rule systems given in this
paper. In the end, we are left with the rule system
presented in Figure 4.

Figure 4. Rule System Fragment without Relationship Data

 The rule system in Figure 4 consists of one very simple
rule. In essence, this rule states that if the guard is standing
guard in a given situation and sees the player, then it
becomes possible for the guard to attack the player from
that situation. This is a fairly direct translation of the state
machine from Figure 2.

 Adding distilled and aggregated relationship data to the
rule system in Figure 4 is quite straightforward. Following
the example in the previous section, we augment this rule
system with negative, positive, and neutral relationship
data, resulting in a system with more specialized rules, as
shown below in Figure 5.

Figure 5: Rule System Fragment with Relationship Data

Considered

 With three possible aggregated relationship states, the
rule system in Figure 5 now must have three rules, each
with a specialized firing condition corresponding to one of
the possible states. Rule 1 is fired from a situation in which
the guard is standing guard, sees the player, and has a
negative relationship with the player. In this case, it is now
possible for the guard to attack the player. Rule 2 is fired
from similar circumstances, except that the guard has a
neutral relationship with the player. In this case, the player
is only given a warning. Lastly, Rule 3 is fired when the
guard has a positive relationship with the player, and lets
the player pass as a result. With these three rules in place,
the artificial intelligence can be more reactive to player

behaviour and produce results that are more in line with
player expectations.

More Advanced Use of Relationship Data

 As can be seen from the examples in previous sections,
augmenting state machines and rule-based systems with
relationship data is not difficult when aggregated
relationship data is used. If raw data were to be used
instead, however, both techniques could become
significantly more complex, as discussed earlier.

 That said, the use of raw relationship data can result in
more advanced artificial intelligence controllers for non
player characters that are able to fine tune their response to
particular situations using more specific relationship data.
This would result in even more realistic reactions and a
better overall player experience.

 Continuing the previous examples, if the player has a
lucrative financial arrangement with the guard in question,
the guard may still let the player pass, even if the guard has
an overall negative or neutral opinion of the player. If we
were to add this logic to the rule system from Figure 5, we
can do so by adding the new specialized rules in Figure 6.
(Other specialized rules may need to be added or used to
replace existing rules for completeness, but the rules
provided in Figure 6 suitably illustrate what would be
required.)

Figure 6: New Rule System Fragment with More Advanced

Relationship-Based Decisions

 Naturally, similar extensions can be made to state
machines, such as the one shown in Figure 3, to capture
such behaviour as well. This will again result in additional
states and/or transitions, but would result in a more
sophisticated and realistic controller.

 In the end, we have the ability to construct both simple
and specialized artificial intelligence controllers using
relationship data as shown in the examples given above.
This allows us to trade off complexity for expressiveness
when required to suit the needs of the game in question.

StandingGuard(Guard,s) ∧
SeesEntity(Guard,Player) ∧
RelationshipAggregate(Guard,Player,Negative) ∧
RelationshipExists(Guard,Player,Financial) ∧
FinancialRelationshipValue(Guard,Player,High)
 ⇒ Poss(LetsPass(Guard,Player),s) (4)

StandingGuard(Guard,s) ∧
SeesEntity(Guard,Player) ∧
RelationshipAggregate(Guard,Player,Neutral) ∧
RelationshipExists(Guard,Player,Financial) ∧
FinancialRelationshipValue(Guard,Player,High)
 ⇒ Poss(LetsPass(Guard,Player),s) (5)

StandingGuard(Guard,s) ∧
SeesEntity(Guard,Player) ∧
RelationshipAggregate(Guard,Player,Negative)
 ⇒ Poss(Attacks(Guard,Player),s) (1)

StandingGuard(Guard,s) ∧
SeesEntity(Guard,Player) ∧
RelationshipAggregate(Guard,Player,Neutral)
 ⇒ Poss(Warns(Guard,Player),s) (2)

StandingGuard(Guard,s) ∧
SeesEntity(Guard,Player) ∧
RelationshipAggregate(Guard,Player,Positive)
 ⇒ Poss(LetsPass(Guard,Player),s) (3)

StandingGuard(Guard,s) ∧
SeesEntity(Guard,Player)
 ⇒ Poss(Attacks(Guard,Player),s) (1)

ARCHITECTING REACTIVE ARTIFICIAL
INTELLIGENCE

 To create reactive non player character artificial
intelligence, we have developed the new architecture for
RRS shown in Figure 7. The various elements of this
architecture will be discussed in detail in the subsections
below.

Relationship System

 The relationship system is used to maintain and provide
access to the relationship network constructed in the game.
It provides raw access to this relationship data to the
relationship manager, which can then provide a more
specialized interface to simplify data access. For details on
the internal design of the relationship system and its
relationships and relationship network, the reader is urged
to consult (Gruenwoldt 2005) for more information.

Relationship Manager

 A relationship manager provides an interface to
relationship data from the relationship system to one or
more non player characters in a game. Typically, a
relationship manager provides filtered or aggregated access

to this data to simplify accessing and dealing with
relationships in the artificial intelligence controllers of the
corresponding characters. For example, the augmented
artificial intelligence controller logic that was presented
earlier in this paper made use of relationship data
aggregated into three possible values: positive, neutral, and
negative. If the controllers had to make use of raw
relationship data, they would be orders of magnitude more
complex to deal with the large number of possible
relationships and relationship attributes as was discussed.
This was learned first hand in directly using relationship
data from the first prototype of RRS from our previous
work (Gruenwoldt 2005) in constructing new artificial
intelligence controllers; as the relationship system grew
more robust and more expressive, the controllers grew in
complexity quickly to the point where they became
exceedingly difficult to program.

 Depending on the needs of the game and its non player
characters, relationship managers can aggregate data in a
number of ways. A manager can provide a single
relationship measure, or multiple relationship measures,
and these measures can of a variety of types. For example,
instead of providing positive, neutral, or negative values to
the controllers presented earlier in this paper, a relationship
manager could provide a numeric hostility score with

Figure 7: Reactive Artificial Intelligence Architecture

different values resulting in different transitions or rule
firings. While providing a filtered or aggregated view of
relationship data, a relationship manager must also still
provide access to raw relationship data to allow the
construction of more robust artificial intelligence
controllers able to respond to more specific situations, as
discussed in the previous section.

 No constraints are imposed on how filtering and
aggregating are to take place in this architecture; the
selection of algorithms and heuristics is up to the
implementer, as this process can be game specific.
Filtering and aggregating in a relationship manager can
occur when relationship changes are submitted to the
relationship system, to have this data pre-computed for
when queries are made, or in an on demand basis, when
queries for data are actually received. Which of these
approaches performs better likely depends on the game in
question and the mix of relationship changes versus
queries; fortunately, since this process is encapsulated
within each relationship manager, a relationship manager
can tune its own behaviour at run-time to provide the best
overall results and performance without affecting the rest of
the system.

 In the end, we take an object-oriented approach to
relationship managers, providing a base framework from
which game-specific managers can be derived. In fact,
game-specific managers can be further derived to allow
variations from one class of non player characters to
another, or even to the point of having specific managers
for specific characters within the game, if required. This
allows for a great deal of flexibility in filtering and
aggregating data for use in a game.

Artificial Intelligence Controller

 The artificial intelligence controller provides the core
decision making functionality for a particular non player
character in the game, accepting input events and
formulating appropriate actions in return. As discussed
earlier in this paper, in a gaming environment, this module
will likely be driven by a state machine or rule-based
system of some kind. For more details on controller design
and implementation, (Champandard 2004) serves as a good
reference.

Personality and Mood Filters

 Personality and mood filters are used to provide further
customization and specialization to artificial intelligence
controllers to allow for more varied non player characters.
These filters work by modifying the way input events are
processed into relationship changes or by modifying results
from relationship queries before they are processed by the
controllers. This lets different characters record and
retrieve relationship data differently, allowing different
behaviours even when the characters are driven by
fundamentally the same controller. This also allows
character behaviour to be tuned over time as their
personality develops throughout the game, or as their
moods shift. As necessary, however, these filters can also
be bypassed by the artificial intelligence controller, to

provide direct contact with the relationship manager for the
character.

 Different personality traits can be parameterized and used
in these filters, such as intelligence, aggressiveness,
attentiveness, disposition, prejudices, and so on. For
example, a character that is generally pessimistic could
have its relationship changes adjusted more negatively than
a character would have otherwise. Different moods and
emotional states can also be used in filters for similar
effects. For example, a character that is in an exceptionally
good mood at a given time could have results of its
relationship queries modified in a positive fashion, causing
it to act better towards other characters it might not have
otherwise.

IMPLEMENTATION AND EXPERIENCE

 A prototype of the new RRS architecture from the
previous section has been developed for Epic’s Unreal
Engine (Epic Games 2004) in UnrealScript. UnrealScript
has many of the features of a traditional object-oriented
language, providing excellent support for extensibility for
the future. Games built on the Unreal Engine can take
advantage of this system by either extending a new game
type and new pawn and controller classes, or by embedding
the appropriate hooks into existing game code. In addition,
our earlier work with the Unreal Engine provided additional
console commands to support manipulation of relationships
manually from within the game (Gruenwoldt 2005). This
allows game developers and designers to add relationship
information during production from within the game itself,
allowing easy debugging and initialization of content.

 Artificial intelligence controllers in the Unreal Engine are
in essence state machines, allowing them to be augmented
with relationship data as described earlier in this paper.
Using the existing relationship system, relationships, and
relationship network from (Gruenwoldt 2005) as a
foundation, a new relationship manager was derived from
its base class to aggregate this relationship data together
using a collection of simple heuristics. A small number of
personality and mood filters were also developed to provide
more varied tuning of relationship changes and query
responses. As simple examples, optimistic and pessimistic
filters were implemented to adjust the positivity and
negativity of relationship changes respectively when
required within a game.

 After development, initial validation of the new RRS took
the form of individual test cases. More extensive validation
took the form of modifying the existing LawDogs game
modification to Unreal Tournament 2003/2004 (Castaneda
2005). LawDogs was chosen primarily because its setting
included a bar scene, which follows in line closely to the
relationship network example presented in Figure 1, and
introduced originally in (Danton 2004). LawDogs also had
reasonably simple gameplay with straightforward and
traditional artificial intelligence, making it a suitable first
deployment for our work. Our experience with LawDogs
demonstrated that the non player characters in the game
were able to react according to player interactions quite
well.

 Based on this success, we are currently augmenting the
artificial intelligence developed for the Neomancer project
(Danton 2004; Katchabaw 2005), an action/adventure/role-
playing game being co-developed by the University of
Western Ontario and Seneca College. It features richer
characters and gameplay than LawDogs, and is better suited
towards larger scale deployment and testing of our current
work.

 We have encountered similar success with test non player
characters in Neomancer using the new RRS, and are
currently expanding use of the system as the artificial
intelligence controllers and characters in the game continue
to be developed, refined, and enhanced. (The Neomancer
project is expected to take up to three years to complete,
and we have only completed the initial year of the project.)
A screenshot of a test character in the Neomancer world is
shown in Figure 8.

CONCLUDING REMARKS

 By capturing game relationships and facilitating more
appropriate character responses through linking relationship
data to artificial intelligence controllers for non player
characters, our new Realistic Reaction System can provide
more immersive and compelling gameplay in modern video
games efficiently and effectively. In the end, non player
characters will be able to react to player behaviour in a
more realistic fashion, leading to a better overall gameplay
experience for the player.

 Experimentation with an Unreal-based implementation of
this system to date has proven successful, both in small and
mid-size deployments of the system. Larger scale
deployment in a commercial-grade game is currently
underway and progress to date has been excellent. This
new Realistic Reaction System demonstrates great promise
for future development efforts.

 In the future, there are many possible directions for
research to take. This includes the following:

• We plan to complete our current development and
deployments efforts with Neomancer and port the new
RRS to other games and platforms for further research
and development.

• To meet stringent performance constraints we further

plan to investigate techniques to optimize RRS and
minimize run-time overhead in manipulating and
querying relationships in the system. While we have
found that proper filtering and aggregation in relation
managers can greatly improve performance, additional
performance improvements would always be quite
beneficial.

• Finally, we also intend to extend our library of

relationships, relationship managers, and personality
and mood filters to allow RRS to support a wider
variety of artificial intelligence behaviours in games
by default.

Figure 8: Screenshot from Neomancer with Test Character

REFERENCES

G. Alt and K. King. “A Dynamic Reputation System Based on

Event Knowledge”. Appeared in AI Game Programming
Wisdom. Charles River Media. 2002.

B. Bates. Game Design. Second Edition. Thomson Course
Technology. 2004.

M. Brockington. “Building a Reputation System: Hatred,
Forgiveness and Surrender in Neverwinter Nights.” Appeared
in Massively Multiplayer Game Development. Charles River
Media. 2003.

G. Castaneda, et al. LawDogs UT2003-UT2004 Modification.
Available from project home page online at
http://www.planetunreal.com/lawdogs. February 2005.

A. Champandard. AI Game Development. New Riders
Publishing. 2004.

S. Danton. Neomancer Game Design Document. Horseplay
Studios Technical Report. November 2004.

Epic Games. Unreal Engine 2, Patch-level 3339. November
2004.

G. Grond and B. Hanson. “Ultima Online Reputation System
FAQ”. Origin Systems Technical Document (available at
http://www.uo.com/repfaq). 1998.

L. Gruenwoldt, M. Katchabaw, and S. Danton. “A Realistic
Reaction System for Modern Video Games”. In the
Proceedings of the DiGRA 2005 Conference: Changing Views
– Worlds in Play. Vancouver, Canada, June 2005.

M. Katchabaw, D. Elliott, and S. Danton. “Neomancer: An
Exercise in Interdisciplinary Academic Game Development”.
In the Proceedings of the DiGRA 2005 Conference: Changing
Views – Worlds in Play. Vancouver, Canada, June 2005.

F. Laramée. “Nine Trade-Offs of Game Design”. Appeared in
Game Design Perspectives. Charles River Media. 2002.

G. Lawson. “Stop Relying on Cognitive Science In Game Design
- Use Social Science”. In Gamasutra Letter to the Editor
(available online at http://www.gamasutra.com/php-
bin/letter_display.php?letter_id=647). December 2003.

R. Rouse III. Game Design: Theory and Practice. Second
Edition. Wordware Publishing, Inc. 2004.

S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Second Edition. Prentice Hall. 2003.

