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ABSTRACT 
 
   Realistic and reactive non player characters that respond 
appropriately to activity in their game world would be 
welcomed by game developers and players alike.  
Unfortunately, despite significant progress made by in this 
area of research, this goal has still yet to be fully achieved.   
 
   In this paper, we present a new Realistic Reaction 
System, based on our previous work in this area, which 
provides reactive artificial intelligence through the use of 
an underlying relationship system that binds together 
players, non player characters, and objects in the game 
world.  Through proper maintenance, manipulation, and 
querying of the relationship system, we can effectively and 
efficiently augment the decision processes used in artificial 
intelligence controllers in games to provide a richer and 
more immersive experience to players. 
 
INTRODUCTION 
 
   Game developers have long sought to have meaningful 
and logical interactions between human players and non 
player characters driven by their games’ artificial 
intelligence.  Unfortunately, except for restricted 
circumstances, typically violent confrontations, this has not 
materialized successfully, leaving the players feeling 
isolated or disconnected from the world in which they are 
playing (Laramée 2002).   
 
   A key element to overcoming this problem is the 
development of artificial intelligence capable of 
dynamically reacting to players and player actions in 
reasonable and realistic fashions.  Doing so would require a 
sense of relationship or social network binding the 
characters and objects in the game world to one another, a 
sentiment expressed in (Lawson 2003) and elsewhere.  
Without this, developers have to rely upon static or scripted 
methods of implementing behaviours and events to mimic 
realistic character reactions, which is ultimately quite 
limiting.   
 
   Work in developing reputation systems for games has 
drawn some attention recently in an attempt to address this 

problem.  For instance, the games Ultima Online (Grond 
and Hanson 1998) and Neverwinter Nights (Brockington 
2003) provide reputation systems, but do so with some 
restrictions and drawbacks; for example, in Ultima Online, 
reputation changes have unrealistic immediate global 
effects, regardless of who witnessed the actions 
precipitating the changes.  The work in (Alt and King 2002) 
shows promise, but requires more flexibility and generality; 
for example, it supports only a limited relationship set, does 
not track relationships between non player characters, and 
has not been applied to game world objects and complex 
group situations. 
 
   In (Gruenwoldt 2005), we introduced a Realistic Reaction 
System (RRS) for modern video games to overcome these 
issues.  This system models and maintains the relationships 
between players, non player characters, and objects in the 
game world over time dynamically, and provides methods 
by which characters can query the relationship network to 
formulate appropriate reactions in behaviour, dialogue, and 
so on.  While this served as an important first step in 
providing reactive characters in games, more work was 
needed to fully address the problem at hand. 
 
   Our current work builds upon this previous work from 
(Gruenwoldt 2005) to provide a complete and integrated 
solution to the above problems.  In particular, in this paper, 
we focus on the logic and mechanisms required to link the 
relationship system from our previous work with artificial 
intelligence controllers to create reactive non player 
characters.  Doing so effectively poses significant 
challenges, as a well populated world with a rich collection 
of relationship types can produce a relationship network 
large enough to overwhelm both artificial intelligence 
programmers and scarce game resources at runtime.  This 
was learned first hand in integrating our previous work into 
the action/adventure/role-playing game Neomancer 
(Danton 2004; Katchabaw 2005) that we are currently co-
developing.  Consequently, mechanisms must be in place to 
help manage, filter, and aggregate relationship information 
appropriately according to the needs of the game in 
question. 
 
   This paper presents a new extended architecture for RRS 
for creating reactive non player character artificial 
intelligence, and discusses our work in implementing and 
using it to date.  We begin with a brief overview of 
relationships and augmenting artificial intelligence 
controllers with this information.  Following this, we 



provide architectural details of our new approach, and 
outline its implementation using Epic’s Unreal Engine 
(Epic Games 2004).  We then discuss our experiences with 
using this new system both in the context of an Unreal 
game mod (Castaneda 2005), and our Neomancer project 
(Danton 2004; Katchabaw 2005), currently under 
development.  We finally conclude the paper with a 
summary, and a discussion of directions for future work in 
this area. 
 
RELATIONSHIP MODELING AND USE IN GAME 
ARTIFICIAL INTELLIGENCE 
 
   Before examining the details of the newly extended RRS, 
we first provide background on modeling and manipulating 
relationship data for use in games, and how we can 
augment artificial intelligence controllers using this 
information.  
 
Relationships for Games 
 
   A relationship network models all of the relationships 
between all of the characters, groups of characters, and 
objects of interest in the game world.  One can envision this 
network as a graph-like structure, with the characters, 
groups, and objects as nodes in the graph, and the various 
relationships that exist between them as edges (directed or 
undirected, depending on the relationship).  An example of 
this kind of relationship network from the Neomancer game 
project (Danton 2004; Katchabaw 2005) is presented in 
Figure 1. 
 
   There are numerous possible types of relationships that 
exist between entities in the relationship network.  Each of 
these types can have subtypes, and so on, resulting in a 
hierarchical tree of relationship types.  For example, main 
types of relationships can include:  emotional, familial, 
business, leadership, ownership, membership, and so on.  If 

we were to expand the membership branch, for example, 
there exist relationships to denote belonging to groups in 
the game, such as ethnicity, social caste, profession, 
community residence, and so on.  This hierarchy can be 
easily expanded with additional types and sub-types as 
necessary. 
 
   Furthermore, each relationship has several attributes.  
These attributes include origin, history, regularity, strength, 
polarity, and validity.  Relationship-specific attributes can 
also be assigned where appropriate. 
 
   Relationships can be affected in numerous ways.  The 
most direct method is by filtered and processed game 
events.  In other words, when one entity in the game world 
observes the actions of another, those actions can directly 
impact the relationships between those two entities, and the 
appropriate relationships must be added, updated, or 
removed.  Relationships are also affected by game events 
indirectly, by their propagation through the relationship 
network.  Depending on the nature of the event and how it 
affects entities in the network directly, the event can be felt 
by other related entities.  Time also affects relationships.  
Given enough time, relationships drift towards a neutral 
state, in the absence of events or interactions that would 
otherwise act to strengthen them.   
 
Augmenting Artificial Intelligence Controllers with  
Relationship Data 
 
   We now examine how to examine how to augment 
artificial intelligence controller using relationship data from 
a relationship network.  Since scripting, state machines, and 
rule-based systems are the most widely used techniques in 
implementing game artificial intelligence (Champandard 
2004), and scripting tends to be too static to be truly 
reactive, we will focus our attention on these last two 
techniques in this paper.   

Figure 1: Example Relationship Network from Neomancer 
 



   Generally, an artificial intelligence controller can be 
augmented to use relationship data in its decision process 
by querying the relationship network and using this data as 
additional game state to regulate state transitions or rule 
firings.   In a state machine, this will require additional 
specialized transitions and/or specialized states; in a rule-
based system, this will require additional rules with 
specialized firing conditions. 
 
   Care must be taken in using this relationship data, 
however.  Using raw relationship information will result in 
an explosive increase in the size and complexity of state 
machines or rule systems using it, because the number of 
possible relationships and relationship attribute values 
could be quite large.  This would make programming 
artificial intelligence for games quite difficult and tedious.  
If relationship information, however, was filtered and 
aggregated, much of this complexity can be removed, 
resulting in state machines and rule systems that are more 
manageable and easy to use. 
 
Augmenting State Machines with Relationship Data 
 
   Consider, for example, the fragment of a state machine 
shown in Figure 2 for a guard in the guards group depicted 
in the relationship network in Figure 1.   

 

 
Figure 2: State Machine Fragment without Relationship 

Data 
 
   When the player is observed, this event causes the guard 
to switch to an attacking state to attack the player, 
regardless of the player’s prior activities or relationship to 
the guard in question.  While this reaction might appear 
realistic if the player’s behaviour warranted an attack, it 
would appear oddly out of place if not.  Such out of place 

behaviour can break the player out of immersion, and have 
a detrimental effect on the player’s enjoyment of the game 
(Bates 2004; Rouse 2004). 
 
   Now consider the state machine fragment that is shown in 
Figure 3, based on the previous state machine.  In this case, 
the relationship data between the player and guard in 
question has been distilled and aggregated for simplicity 
into one of three possibilities, negative, positive, and 
neutral, resulting in three possible transitions from a new 
state in the machine.  (This new state can be avoided if an 
extended state machine is used that can have transitions 
triggered by multiple events or pieces of state information.)  
This allows player behaviour to influence the relationship 
with the guard, and the guard’s reaction to the player as a 
result.   
 
   Suppose that guards in the guards group that was shown 
in Figure 1 are friends with the waitress that is the focal 
point of that relationship network.  If the player hurts the 
waitress, the guards would have a negative view of the 
player and react with hostility towards the player.  If the 
player, on the other hand, was helpful to the waitress, the 
guards would have a positive view of the player and help 
the player in return.  With no prior contact with the 
waitress, the guards would have a neutral view of the 
player, and act accordingly.   
 
   Consequently, using relationship data, we can now have 
artificial intelligence that reacts in a realistic fashion 
determined by player behaviour.  This results in a better 
overall experience to the player, as the player is left with 
the impression that his or her actions actually have an 
impact on the game world and its inhabitants (Bates 2004; 
Rouse 2004). 
 
Augmenting Rule-Based Systems with  
Relationship Data 
 
   In this section, we examine augmenting rule-based 
systems with relationship data, much like state machines 
were in the previous section.  Using the situation calculus 
notation of (Russell and Norvig 2003), we can express the 
original state machine fragment given in Figure 2 using a 

Figure 3: State Machine Fragment with Relationship Data Considered 



rule system quite easily.  Note that for simplicity, we are 
omitting effect axioms from the rule systems given in this 
paper.  In the end, we are left with the rule system 
presented in Figure 4. 
 

 
 

Figure 4. Rule System Fragment without Relationship Data 
 
   The rule system in Figure 4 consists of one very simple 
rule.  In essence, this rule states that if the guard is standing 
guard in a given situation and sees the player, then it 
becomes possible for the guard to attack the player from 
that situation.  This is a fairly direct translation of the state 
machine from Figure 2. 
 
   Adding distilled and aggregated relationship data to the 
rule system in Figure 4 is quite straightforward.  Following 
the example in the previous section, we augment this rule 
system with negative, positive, and neutral relationship 
data, resulting in a system with more specialized rules, as 
shown below in Figure 5. 

 

 
Figure 5: Rule System Fragment with Relationship Data 

Considered 
 
   With three possible aggregated relationship states, the 
rule system in Figure 5 now must have three rules, each 
with a specialized firing condition corresponding to one of 
the possible states.  Rule 1 is fired from a situation in which 
the guard is standing guard, sees the player, and has a 
negative relationship with the player.  In this case, it is now 
possible for the guard to attack the player.  Rule 2 is fired 
from similar circumstances, except that the guard has a 
neutral relationship with the player.  In this case, the player 
is only given a warning.  Lastly, Rule 3 is fired when the 
guard has a positive relationship with the player, and lets 
the player pass as a result.  With these three rules in place, 
the artificial intelligence can be more reactive to player 

behaviour and produce results that are more in line with 
player expectations. 
 
More Advanced Use of Relationship Data 
 
   As can be seen from the examples in previous sections, 
augmenting state machines and rule-based systems with 
relationship data is not difficult when aggregated 
relationship data is used.  If raw data were to be used 
instead, however, both techniques could become 
significantly more complex, as discussed earlier. 
 
   That said, the use of raw relationship data can result in 
more advanced artificial intelligence controllers for non 
player characters that are able to fine tune their response to 
particular situations using more specific relationship data.  
This would result in even more realistic reactions and a 
better overall player experience. 
 
   Continuing the previous examples, if the player has a 
lucrative financial arrangement with the guard in question, 
the guard may still let the player pass, even if the guard has 
an overall negative or neutral opinion of the player.  If we 
were to add this logic to the rule system from Figure 5, we 
can do so by adding the new specialized rules in Figure 6.  
(Other specialized rules may need to be added or used to 
replace existing rules for completeness, but the rules 
provided in Figure 6 suitably illustrate what would be 
required.)   

 

 
Figure 6: New Rule System Fragment with More Advanced 

Relationship-Based Decisions 
 
   Naturally, similar extensions can be made to state 
machines, such as the one shown in Figure 3, to capture 
such behaviour as well.  This will again result in additional 
states and/or transitions, but would result in a more 
sophisticated and realistic controller. 
    
   In the end, we have the ability to construct both simple 
and specialized artificial intelligence controllers using 
relationship data as shown in the examples given above.  
This allows us to trade off complexity for expressiveness 
when required to suit the needs of the game in question. 

 
StandingGuard(Guard,s) ∧  
SeesEntity(Guard,Player) ∧  
RelationshipAggregate(Guard,Player,Negative) ∧  
RelationshipExists(Guard,Player,Financial) ∧  
FinancialRelationshipValue(Guard,Player,High) 
     ⇒ Poss(LetsPass(Guard,Player),s)      (4) 
 
StandingGuard(Guard,s) ∧  
SeesEntity(Guard,Player) ∧  
RelationshipAggregate(Guard,Player,Neutral) ∧  
RelationshipExists(Guard,Player,Financial) ∧  
FinancialRelationshipValue(Guard,Player,High) 
     ⇒ Poss(LetsPass(Guard,Player),s)       (5) 
 

 

 
StandingGuard(Guard,s) ∧  
SeesEntity(Guard,Player) ∧  
RelationshipAggregate(Guard,Player,Negative) 
     ⇒ Poss(Attacks(Guard,Player),s)      (1) 
 
StandingGuard(Guard,s) ∧  
SeesEntity(Guard,Player) ∧  
RelationshipAggregate(Guard,Player,Neutral) 
     ⇒ Poss(Warns(Guard,Player),s)       (2) 
 
StandingGuard(Guard,s) ∧  
SeesEntity(Guard,Player) ∧  
RelationshipAggregate(Guard,Player,Positive) 
     ⇒ Poss(LetsPass(Guard,Player),s)    (3) 
 

 
StandingGuard(Guard,s) ∧  
SeesEntity(Guard,Player)  
   ⇒ Poss(Attacks(Guard,Player),s)     (1) 

 



ARCHITECTING REACTIVE ARTIFICIAL 
INTELLIGENCE 
 
   To create reactive non player character artificial 
intelligence, we have developed the new architecture for 
RRS shown in Figure 7.  The various elements of this 
architecture will be discussed in detail in the subsections 
below. 
 
Relationship System 
 
   The relationship system is used to maintain and provide 
access to the relationship network constructed in the game.  
It provides raw access to this relationship data to the 
relationship manager, which can then provide a more 
specialized interface to simplify data access.  For details on 
the internal design of the relationship system and its 
relationships and relationship network, the reader is urged 
to consult (Gruenwoldt 2005) for more information. 
 
Relationship Manager 
 
   A relationship manager provides an interface to 
relationship data from the relationship system to one or 
more non player characters in a game.  Typically, a 
relationship manager provides filtered or aggregated access 

to this data to simplify accessing and dealing with 
relationships in the artificial intelligence controllers of the 
corresponding characters.  For example, the augmented 
artificial intelligence controller logic that was presented 
earlier in this paper made use of relationship data 
aggregated into three possible values:  positive, neutral, and 
negative.  If the controllers had to make use of raw 
relationship data, they would be orders of magnitude more 
complex to deal with the large number of possible 
relationships and relationship attributes as was discussed.  
This was learned first hand in directly using relationship 
data from the first prototype of RRS from our previous 
work (Gruenwoldt 2005) in constructing new artificial 
intelligence controllers; as the relationship system grew 
more robust and more expressive, the controllers grew in 
complexity quickly to the point where they became 
exceedingly difficult to program. 
 
   Depending on the needs of the game and its non player 
characters, relationship managers can aggregate data in a 
number of ways.  A manager can provide a single 
relationship measure, or multiple relationship measures, 
and these measures can of a variety of types.  For example, 
instead of providing positive, neutral, or negative values to 
the controllers presented earlier in this paper, a relationship 
manager could provide a numeric hostility score with 

Figure 7:  Reactive Artificial Intelligence Architecture 
 



different values resulting in different transitions or rule 
firings.  While providing a filtered or aggregated view of 
relationship data, a relationship manager must also still 
provide access to raw relationship data to allow the 
construction of more robust artificial intelligence 
controllers able to respond to more specific situations, as 
discussed in the previous section. 
 
   No constraints are imposed on how filtering and 
aggregating are to take place in this architecture; the 
selection of algorithms and heuristics is up to the 
implementer, as this process can be game specific.  
Filtering and aggregating in a relationship manager can 
occur when relationship changes are submitted to the 
relationship system, to have this data pre-computed for 
when queries are made, or in an on demand basis, when 
queries for data are actually received.  Which of these 
approaches performs better likely depends on the game in 
question and the mix of relationship changes versus 
queries; fortunately, since this process is encapsulated 
within each relationship manager, a relationship manager 
can tune its own behaviour at run-time to provide the best 
overall results and performance without affecting the rest of 
the system. 
 
   In the end, we take an object-oriented approach to 
relationship managers, providing a base framework from 
which game-specific managers can be derived.  In fact, 
game-specific managers can be further derived to allow 
variations from one class of non player characters to 
another, or even to the point of having specific managers 
for specific characters within the game, if required.  This 
allows for a great deal of flexibility in filtering and 
aggregating data for use in a game. 
 
Artificial Intelligence Controller 
 
   The artificial intelligence controller provides the core 
decision making functionality for a particular non player 
character in the game, accepting input events and 
formulating appropriate actions in return.  As discussed 
earlier in this paper, in a gaming environment, this module 
will likely be driven by a state machine or rule-based 
system of some kind.  For more details on controller design 
and implementation, (Champandard 2004) serves as a good 
reference. 
 
Personality and Mood Filters 
 
   Personality and mood filters are used to provide further 
customization and specialization to artificial intelligence 
controllers to allow for more varied non player characters.  
These filters work by modifying the way input events are 
processed into relationship changes or by modifying results 
from relationship queries before they are processed by the 
controllers.  This lets different characters record and 
retrieve relationship data differently, allowing different 
behaviours even when the characters are driven by 
fundamentally the same controller.  This also allows 
character behaviour to be tuned over time as their 
personality develops throughout the game, or as their 
moods shift.  As necessary, however, these filters can also 
be bypassed by the artificial intelligence controller, to 

provide direct contact with the relationship manager for the 
character. 
 
   Different personality traits can be parameterized and used 
in these filters, such as intelligence, aggressiveness, 
attentiveness, disposition, prejudices, and so on.  For 
example, a character that is generally pessimistic could 
have its relationship changes adjusted more negatively than 
a character would have otherwise.  Different moods and 
emotional states can also be used in filters for similar 
effects.  For example, a character that is in an exceptionally 
good mood at a given time could have results of its 
relationship queries modified in a positive fashion, causing 
it to act better towards other characters it might not have 
otherwise. 
 
IMPLEMENTATION AND EXPERIENCE  
 
   A prototype of the new RRS architecture from the 
previous section has been developed for Epic’s Unreal 
Engine (Epic Games 2004) in UnrealScript.  UnrealScript 
has many of the features of a traditional object-oriented 
language, providing excellent support for extensibility for 
the future.  Games built on the Unreal Engine can take 
advantage of this system by either extending a new game 
type and new pawn and controller classes, or by embedding 
the appropriate hooks into existing game code.  In addition, 
our earlier work with the Unreal Engine provided additional 
console commands to support manipulation of relationships 
manually from within the game (Gruenwoldt 2005).  This 
allows game developers and designers to add relationship 
information during production from within the game itself, 
allowing easy debugging and initialization of content. 
 
   Artificial intelligence controllers in the Unreal Engine are 
in essence state machines, allowing them to be augmented 
with relationship data as described earlier in this paper.  
Using the existing relationship system, relationships, and 
relationship network from (Gruenwoldt 2005) as a 
foundation, a new relationship manager was derived from 
its base class to aggregate this relationship data together 
using a collection of simple heuristics.  A small number of 
personality and mood filters were also developed to provide 
more varied tuning of relationship changes and query 
responses.  As simple examples, optimistic and pessimistic 
filters were implemented to adjust the positivity and 
negativity of relationship changes respectively when 
required within a game. 
 
   After development, initial validation of the new RRS took 
the form of individual test cases.  More extensive validation 
took the form of modifying the existing LawDogs game 
modification to Unreal Tournament 2003/2004 (Castaneda 
2005).   LawDogs was chosen primarily because its setting 
included a bar scene, which follows in line closely to the 
relationship network example presented in Figure 1, and 
introduced originally in (Danton 2004).  LawDogs also had 
reasonably simple gameplay with straightforward and 
traditional artificial intelligence, making it a suitable first 
deployment for our work.  Our experience with LawDogs 
demonstrated that the non player characters in the game 
were able to react according to player interactions quite 
well. 



   Based on this success, we are currently augmenting the 
artificial intelligence developed for the Neomancer project 
(Danton 2004; Katchabaw 2005), an action/adventure/role-
playing game being co-developed by the University of 
Western Ontario and Seneca College.  It features richer 
characters and gameplay than LawDogs, and is better suited 
towards larger scale deployment and testing of our current 
work.   
 
   We have encountered similar success with test non player 
characters in Neomancer using the new RRS, and are 
currently expanding use of the system as the artificial 
intelligence controllers and characters in the game continue 
to be developed, refined, and enhanced.  (The Neomancer 
project is expected to take up to three years to complete, 
and we have only completed the initial year of the project.)  
A screenshot of a test character in the Neomancer world is 
shown in Figure 8. 
 
CONCLUDING REMARKS 
 
   By capturing game relationships and facilitating more 
appropriate character responses through linking relationship 
data to artificial intelligence controllers for non player 
characters, our new Realistic Reaction System can provide 
more immersive and compelling gameplay in modern video 
games efficiently and effectively.  In the end, non player 
characters will be able to react to player behaviour in a 
more realistic fashion, leading to a better overall gameplay 
experience for the player. 
 

   Experimentation with an Unreal-based implementation of 
this system to date has proven successful, both in small and 
mid-size deployments of the system.  Larger scale 
deployment in a commercial-grade game is currently 
underway and progress to date has been excellent.  This 
new Realistic Reaction System demonstrates great promise 
for future development efforts. 
 
   In the future, there are many possible directions for 
research to take.  This includes the following: 
 

•  We plan to complete our current development and 
deployments efforts with Neomancer and port the new 
RRS to other games and platforms for further research 
and development.   

 
•  To meet stringent performance constraints we further 

plan to investigate techniques to optimize RRS and 
minimize run-time overhead in manipulating and 
querying relationships in the system.  While we have 
found that proper filtering and aggregation in relation 
managers can greatly improve performance, additional 
performance improvements would always be quite 
beneficial.   

 
•  Finally, we also intend to extend our library of 

relationships, relationship managers, and personality 
and mood filters to allow RRS to support a wider 
variety of artificial intelligence behaviours in games 
by default.   

Figure 8: Screenshot from Neomancer with Test Character 
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