

Music Information Retrieval:
A Survey of Issues and Approaches

Ryan J. Demopoulos and Michael J. Katchabaw
Department of Computer Science
The University of Western Ontario

London, Ontario, Canada
N6A 5B7

E-Mail: ryan@demopoulos.org, katchab@csd.uwo.ca

Technical Report #677
Department of Computer Science
The University of Western Ontario

January 2007

1

~ TABLE OF CONTENTS ~

1.0 Introduction ... 3
1.1 Aspects and Challenges .. 4
1.2 Real-World Applications ... 7

2.0 Musical Representation ... 8
2.1 Comprehensive Representations ... 8

2.1.1 Sampled Audio Representation .. 8
2.1.2 Musical Instrument Digital Interface (MIDI).. 9
2.1.3 Digital Score ...10

2.2 Reduced Representations...11
2.2.1 String-based Representations...11
2.2.2 Multidimensional Representations ...12

2.3 Pitch Representation Alternatives ..13
2.3.1 Absolute Pitch...13
2.3.2 Pitch Intervals...14
2.3.3 Reduced Pitch Contour ..15

2.4 Rhythm Representation Alternatives ...17
2.4.1 Absolute Duration...17
2.4.2 Duration Ratios..18
2.4.3 Interonset Ratios..20
2.4.4 Reduced Rhythmic Contour ...22

3.0 Musical Transcription.. 23
3.1 Transcription from Sampled Audio..23
3.2 Transcription from MIDI...25

3.2.1 Pitch Spelling..25
3.2.2 Polyphonic Division ...27
3.2.3 Beat Induction...29
3.2.4 Key Signature Identification and Harmonic Analysis31

4.0 Query Capture and Representation .. 32
4.1 Query by Humming ..34
4.2 Query By Instrument/MIDI ..35
4.3 Query By Note Placement/Score Notation...36
4.4 Query By Rhythmic Gesture ..36

5.0 Pattern Matching and Induction... 38
5.1 What is a Theme? ..38
5.2 What is a Musical Pattern? ...39

5.2.1 A Word on Maximal Repeating Patterns (MRPs)..................................40
5.3 Pattern Matching Approaches..41

5.3.1 {δ,γ}–Approximation ..42

2

5.3.2 Matching with Don’t Cares ..43
5.3.3 Searching with Gaps..44
5.3.4 Levenshtein (Edit) Distance...45
5.3.5 Smooth Pitch Contours...47
5.3.6 Comparison of Histograms...48

5.4 Pattern Induction Approaches ...49
5.4.1 Use of Trees/Tries/Lattices...50
5.4.2 Use of n-grams ..51
5.4.3 Bit Parallelism...52
5.4.4 Application of Heuristics ..53
5.4.5 Dynamic Programming ...54
5.4.6 Multidimensional Projection ..54
5.4.7 String Joins ..56
5.4.8 Use of Graphs ...57
5.4.9 Construction of Automata...59
5.4.10 Correlative Matrices ..59
5.4.11 A Word on Melodic Segmentation...60

6.0 Summary and Discussion.. 61

7.0 References... 64

3

1.0 Introduction

Music information retrieval, herein referred to as MIR, covers a broad range of

topics not unlike those involved with the retrieval of text. The ultimate goal of MIR is
to identify various words and properties contained within musical selections, storing
these data within a musical database, and providing a query mechanism to specify
searches over the database to retrieve the musical documents represented therein.
Past research concerning textual databases has led to very accurate and efficient
retrieval mechanisms; unfortunately, much work remains to be done in order for the
retrieval of music to rival the characteristics of its textual counterparts.

Using computers for the purpose of retrieving musical information has been

pondered since 1967, when Lincoln outlined criteria for a retrieval system that could
index musical themes [Lin67]. From that time until the mid 1990’s, casual research
had been done to further refine the idea of eliminating the human component of
audio transcription and searching; the bulk of this work actually targeted the speech
transcription domain, with some potential findings applicable to topics in MIR [Foo99,
KNKT95]. Recently over the last 10 years the scientific community has experienced
an explosion of interest in the subject. Several factors have contributed to this.
First, the emergence of better MIDI standards has led many to re-consider the use of
the MIDI file format as a basis for music information sharing. MIDI is a clearly-defined
mathematically-based musical file format, and thus simplifies musical analysis and
categorization for database storage in a number of ways. Other factors, such as the
increase of freely and publicly available repositories of downloadable music via the
internet, have increased the potential utility of musical databases by making the
information available for searching. Additionally, compression formats such as
Ogg Vorbis, and more significantly MP3, have reduced musical file sizes to the point
where a large number of songs can be reasonably stored within a single database;
furthermore, this is becoming more and more feasible as the per-byte cost of data
storage media continues to improve1. Finally, the recent interest in music
information retrieval was partially sparked by a widely-cited and ground-breaking
paper by Ghias et al. [GLCS95], outlined a framework for an online music information
retrieval system with appropriate query mechanisms. The insight provided by this
paper gave reason to believe that music databases would not only be useful to have,
but clearly possible to achieve.

 While MIR research encompasses a number of different approaches, the most

common of these tends to borrow from common practices in string matching. There
exists many application domains that already make use of string matching, most
notably molecular biology and topics in evolutionary tracking [CIMR+02]. However,
string matching within a music information retrieval context is arguably more complex
than matching for molecular biology; the latter is normally concerned with pattern
matching within strands of DNA, which is derived from a significantly-reduced

1 http://www.littletechshoppe.com/ns1625/winchest.html

4

alphabet and is easily extracted from real-world samples. Conversely, musical
domains suffer from problems not common to biological domains; multiple kinds of
information must be coordinated (such as rhythm, pitch), and this information is quite
difficult to extract from musical waveforms and even more clearly-defined
representations of music, such as MIDI.

 This literature survey paper is organized as follows. The remainder of Section
1 provides background information on MIR topics, and attempts to identify the
potential usefulness of the field. Section 2 discusses the various ways to form and
store musical data, with discussion on the utility of each approach. Section 3
describes the complex area of transcription, exploring how data can be
algorithmically transformed from common musical source forms to a more malleable
format, such as one of those listed in Section 2. Section 4 gives insight into the
various ways that musical information can be captured from a user to be formed as a
query for MIR systems. Section 5 covers many topics relating to the identification and
searching of musical patterns, and provides some detailed examples of how existing
algorithms operate on musical data. Finally, Section 6 offers a summary of topics
covered, and discussion regarding future areas of work.

1.1 Aspects and Challenges

The process of music information retrieval can be broken down into a number

of finite and relatively disjoint sub-problems, which is beneficial from a research
perspective, as individuals can tackle the entire domain using a modular or
incremental approach. While each MIR system has it own approach, Figure 1 outlines
the general flow of tasks required in order to achieve a fully-functional MIR system.

5

Sampled Audio
Files

MIDI-like
Representation
of Music Files

Stored Feature
Data of Music

Set

MIDI-like
Representation

of Query

Features of
Query Set

Ranked List of
Matches

Transcription

Feature Extraction Feature Extraction

RAW Query

Transcription

Feature Matching
(Similarity Assessment)

Output to User

Processed Offline

Processed at Search
Time

Figure 1
General flow of MIR system tasks, adapted from [Par05]

The steps outlined in Figure 1 cover several important aspects common to all

MIR systems:

• Transcription – Normally, musical pieces or queries originate from forms that
are not suited for standard matching algorithms. For example, suppose that a
user sings into a microphone in order to find the piece that resembles their
query. Their voice data will normally be captured as sampled audio, comprised
of a waveform plotted against time. While this data format is excellent for
providing an accurate reproduction of the user’s voice, it is not appropriate for
use in matching algorithms targeting a concrete musical representation such as
MIDI. Thus, a reduction or transcription must take place, that will attempt to
convert the user’s query into a discrete sequence of pitch/rhythm values that
are easily comparable to a target feature set. Section 3.0 covers the
transcription process in depth.

• Feature Extraction – A musical feature can be defined as some aspect of a
musical piece, phrase, or note such as pitch, rhythm, or an augmentation
[DO06]. How can the pertinent features of music be efficiently and accurately
identified? The approach taken often closely relates to the query method to be

6

used within the system. For example, if searching will take place by tapping a
rhythm, then data will be categorized according to the rhythmic features of
the various pieces contained with the database, and algorithms will be
developed that attempt to accomplish this quickly. The ultimate goal of
feature extraction is to reduce the data required to represent a piece or query,
in order to identify matches across a very large database more efficient. By
far, the most common features extracted take the form of patterns or
repetitions in music, which are further investigated in Section 5.0.

• Similarity Assessment – This stage attempts to match a user’s query to a
subset (or feature) of a song within the database. The purpose of matching
features rather than entire musical sequences (such as a whole query against
all the musical information of each song in the database) is to decrease the
workload of the matching algorithm. Consider that one piece of sampled music
contains thousands of musical points to be matched, and thus can benefit
greatly from a surface reduction. A variety of approaches exist that attempt to
increase the accuracy and efficiency of feature matching, many of which are
explored in Section 5.3.

• Output to User – How will results be ranked, and how can users quickly identify
these results to ensure that they have achieved a correct match? While users
could verify results by listening to the playback of an entire piece, it may take
considerable time to evaluate a large result set. Thus, how can this process be
streamlined for quick piece identification/verification?

Aside from the general tasks to be carried out as defined in Figure 1, there are

other considerations that should be addressed by an MIR system. Two of these are:

• Data Storage – Two approaches exist in regard to data storage of musical
information within a database. The naïve approach (not represented in
Figure 1) is to store only the entire musical piece in the database, and each
subsequent query over the data will re-analyze the various musical features of
each piece in turn. This approach leads to significant inefficiency, as each
piece is re-analyzed during each query. Alternatively, as demonstrated in
Figure 1, music can be paired with additional feature information, extracted
offline, that describes the piece itself. Queries thus will target these features,
rather than the entire piece structure, to achieve faster response times.

• Query Mechanism – How will users specify a query? Most users of a music
retrieval system will not have the skill required to specify a query using
standard musical (score) notation, unlike textual searching where users are
expected to understand how to form a query in a manner that closely
resembles how the target data will be stored within the database. These and
other considerations are explored in Section 4.0.

7

1.2 Real-World Applications

The realization of an efficient, fully-featured and fully-functional MIR system

could dramatically impact the daily lives of many people. The music industry is
driven by a large and diverse consortium of artists, producing countless songs and
records; from a simple perspective, being able to search music could be a key
component of leisurely activities and products such as karaoke machines, interactive
MIR systems at record stores, or a resurgence of the jukebox with searchable titles.
One can imagine the addition of musical searching to today’s common home theatre
systems or portable audio devices, such as iPods2 and cellular phones.

Many individuals whose lifestyles and/or careers rely upon music would be

significantly impacted by the availability of MIR systems over the internet. For
example, librarians would be able to assist students in finding musical pieces
available for loan, and vocal instructors could find sheet music of songs for their
students. Also, live DJs and musical choreographers could make use of such a system
to locate tracks that meet requests for a particular style of music [DR01]. In addition
to these, MIR systems could be useful for the composition of new music; for example,
songs with a certain sound could be identified and fed into learning algorithms of an
automatic music generation engine, and real human composers could search with
their own newly-composed pieces as queries to ensure that their work does not
infringe on another composer’s copyright. The potential for real-world use is ever-
increasing as newer technologies surrounding the music industry continue to emerge,
and this in part provides encouragement for researchers attempting to solve MIR-
related problems in the various areas explored by this paper.

2 http://www.apple.com/itunes/

8

2.0 Musical Representation

Most approaches to the searching component of MIR require that musical data
be organized in a clear and simple manner that specifically targets some algorithm to
maximize efficiency. Consider the example of searching for a number in an ordered
list of integers. Carrying out such a search will require O(n) time complexity if the
integers are stored in a linked-list data structure, and yet this time can be reduced if
the integers are ordered within an array. Likewise, if an MIR system attempts to
match musical records based on sequences of pitch and sequences of rhythm, then it
is optimal to first consider how that data can be organized to be efficiently handled
by a searching algorithm.

Many of the algorithms explored in this paper attempt to format data before

performing operations on it; thus, two clear families of musical representation can be
defined. Comprehensive representations are those that present music in its “natural”
form, or in a manner which largely captures and describes the data of the music as it
was originally played and recorded. Reduced representations are almost always the
result of some reduction carried out on a comprehensive representation, usually for
the purpose of searching a particular feature of the music for data retrieval. Within a
musical database, the process of extracting a feature (feature extraction) from a full
musical surface for storage within the database can be referred to as document
indexing, or sometimes pattern extraction as well. Further information on this topic
can be seen in the sections immediately following, as well as Sections 3.0 and 5.0.

2.1 Comprehensive Representations

The following sections outline different ways that music can be

stored/specified while covering many musical features, typically in order to allow the
music to be reproduced accurately.

2.1.1 Sampled Audio Representation

The most common representation of music available on the internet is sampled

audio3, 4, 5. This data is achieved by taking thousands of samples of sound every
second, and then storing the resulting information in a potentially large file resulting
in huge quantities of data on the musical piece. Because each sample carries a
frequency and amplitude of sound, a smooth waveform is generated that can very
accurately reproduce the music as it was originally played.

3 http://en.wikipedia.org/wiki/Wav#Popularity
4 http://en.wikipedia.org/wiki/Mp3#Internet
5 http://findarticles.com/p/articles/mi_m0FOX/is_4_4/ai_54299259

9

From an MIR perspective, sampled audio is the most expensive method of
storing information. Vast amounts of data exist for each piece, which leads to several
difficulties when searching for query matches. For instance, if matching were done
on the amplitude feature of a common musical piece recorded for 180 seconds at CD-
quality, nearly 8 million data points will require investigation if the full, unreduced
surface is used. Furthermore, searching accuracy may decrease with sampled music.
Consider a query that is sung in a similar fashion to a recorded song; if background
noise occurs in either of the recordings, mismatches may occur despite the correct
performance of the user performing the query, due to the sensitivity of sound
sampling at high frequencies. While sensitivity can be adjusted in theory, less
research has been conducted that attempts to realize an MIR system which operates
on sampled audio; instead, sampled audio is normally converted to a reduced form
and searched thereafter. This trend is slowly reversing as of late, however.

2.1.2 Musical Instrument Digital Interface (MIDI)

Also widely available, MIDI is a numerical representation of music events,

rather than a sampled recording like WAV or MP3. Specifically, MIDI tracks the
beginning and ending of musical notes, divided into tracks where one track normally
represents one instrument or voice within the musical performance. Each note in a
MIDI note sequence is associated with a volume (velocity), a pitch, and a duration,
and can also be modified by global track parameters such as tempo and pitch
bending.

The key advantage of MIDI is that it relies on re-creating the musical

performance, rather than actually recording how it sounds. Since the format is
independent of samples, much less space is required to re-create the music. For
example, consider a recording of a single note held for 2 seconds, say the note middle
C. As a sampled recording, about 100,000 data points (samples) would be recorded;
contrasting this with MIDI, which would require a Noteon event and a Noteoff
totalling 8 data points or less, one can easily see that MIDI greatly reduces the amount
of information required to reproduce music. While MIDI cannot exactly reproduce
music as it sounded originally (due to a lack of timbre information), its intention is to
provide a musical representation more similar to a digital score, rather than a
sampled reproduction.

While most algorithms can search a song much faster in MIDI form rather than a

sampled form, unprocessed MIDI itself is not commonly used in MIR systems. This is
because MIDI also includes data that is normally discarded when searching amongst
musical information, such as the tempo of a piece. Thus, many MIR systems convert
MIDI/musical information to a representation that is MIDI-like; specifically, the notion
of pitch and/or duration is copied, however extra information such as tempo or
instrumental changes is often discarded.

10

2.1.3 Digital Score

Digital score approaches to musical representation attempt to closely mimic

the oldest and most common musical form: the paper score. Digital scores try to
encompass how music “should be played”, instead of capturing how music was
“actually played” as does MIDI and sampled formats. While there is a clear distinction
in this regard, digital score formats actually function in a manner similar to a superset
of MIDI; digital scores can record all of the musical expression available in standard
MIDI, and also much more; most notably note division, time signatures, and note
accidentals.

Theoretically, digital scores provide excellent candidate input for general MIR

searching algorithms, as they successfully describe the fullness of musical expression
in a very minimal way, thus being a very efficient format that can be easily and
quickly searched. Despite this, very little music has been transcribed to digital score
formats, with the main reason being that currently this process must be done by
hand. MIDI would suffer from this problem also, except that it was designed to be
more easily recorded through musical instruments that support the MIDI interface for
fast and efficient input. Furthermore, while some sampled audio can be
automatically transcribed into the MIDI format, there currently exists no flawless
algorithm to capture sampled music into a fully-featured digital score; partial
algorithms exist, but normally are error-prone. This is because MIDI considers much
less information than a digital score, and information gathering from a sampled audio
source has proven to be very difficult (see Section 3.0).

Figure 2
GUIDO Notation for a musical passage [Ren02]

One real-world example of a digital score format is the GUIDO Music Notation

format6 [HHRK98]. The format combines plain English keywords and tag-like
structures to describe musical scores in a pseudo-graphical approach. The notation is
normally read using a GUIDO parser, and although support has grown for the format in
areas such as transcribed musical repositories and conversion tools, there are still far
more freely available music files recorded in the MIDI file format. Still, MIDI can be
converted to GUIDO notation and used with algorithms targeting GUIDO specifically.
Despite this, very few researchers consider GUIDO due to a lack of industry
standardization, and more importantly because vocally-specified user queries can
prove difficult to translate to GUIDO; in general, transcribing voice to any format

6 http://www.informatik.tu-darmstadt.de/AFS/GUIDO/docu/spec1.htm

11

from a comprehensive sampled format has its challenges, some of which are explored
in Section 4.0.

2.2 Reduced Representations

Reduced representations attempt to target specific features of a musical

composition or performance, in order to organize data in a manner that can be
efficiently manipulated. One example of this would be the extraction of a pitch
contour for a song; rhythmic information, tempo, instruments used, timbre, and all
other information that does not describe the plot of pitch against time would be
discarded, allowing an algorithm that relies solely on pitch data to perform directly
on the representation.

While many ad-hoc representations exist that serve to highlight the strengths

of particular algorithms put forth in MIR literature, most authors use one of the two
reduced representations listed below. It is worth noting that when dealing with pitch
and/or rhythm, many reduced representations use one of the representation
alternatives outlined in Sections 2.3 and/or 2.4. Also, for an excellent tabular
account of researchers that target the approaches in the subsections listed below,
refer to the appendix in [CCI01].

2.2.1 String-based Representations

The string-based representation of musical features, normally pitch and/or

rhythm, is by far the most common approach within MIR systems. Strings have a
number of advantages:

• Reduces musical set to a very small amount of data
• Conceptual correlation between a single musical line and a single string
• Closely resembles the MIDI file format, which essentially is a set of

numerically-based strings (when rhythm is discarded)
• Allows existing, mature string-searching knowledge to be adapted for

use in music information retrieval; classic algorithms can be used such as
the Knuth-Morris-Pratt (KMP) or Boyer-Moore (BM) algorithms [BM77,
KMP77], as well as variations on these. This tends to lead to fast search
times.

A wide range of authors make use of string-based representation(s) in their

work, notably [CCIM+99, CILP+02, CIR98, CIMR+02, HCL01, NR98]. Typically, musical
pieces (or excerpts of the original) are reduced to a string form and stored within a
large database. Subsequent searches explore the string form rather than the original
piece, which can normally be carried out online (at search time) within a short time
frame.

12

Despite being the de facto standard approach for representing musical

information in MIR systems, string-based representations do have limitations. First,
while research into effective algorithms based on string-represented music is
extensive, accuracy of results still remains a potential issue. This is normally a
problem with the quantization process of either the original piece or the user query,
due to the reduced alphabet size from which the string draws its symbols.
Additionally, string-based representations are not particularly suited for polyphonic
music. To represent multiple instruments operating simultaneously, several strings
are needed, since one string can only track a single melodic line in a one-dimensional
fashion. Thus, users that attempt to hum a musical theme are often in fact humming
two different instruments operating in tandem, and matching algorithms that consider
string-crossing greatly increase in time complexity. Should a string attempt to store
several instruments together at one (as can be done using MIDI channels), this
problem can be alleviated, though at the cost of introducing new problems such as
string pollution (e.g. drums interrupting the melodic line). As a result of these
limitations, recent research has targeted new approaches or modifications to string-
based representations, to increase accuracy in the polyphonic domain.

2.2.2 Multidimensional Representations

A unique and effective approach identified by [MLW02] attempts to overcome

the limitations of string-based representations by allowing for an n-dimensional space
against which musical features are plotted, where n represents the number of distinct
musical features that searching will attempt to resolve. Consider a searching
mechanism that plots pitch and rhythm over time; these attributes create a 3-
dimmentional space where all the notes of the piece would be plotted. Each set of
plotted notes would then be stored in the database, one set for each song. The
authors further develop this principle by designing an efficient algorithm for searching
the n-space, while keeping their approach scalable to larger values of n, which is
investigated in Section 5.4.6.

The main attractiveness of this approach lies in the inherent support for

polyphonic music. Most feature-reduced representations, such as string-based ones,
attempt to track one element of music such as pitch. While it is easier to match a
query to a single feature, polyphonic music automatically adds an additional
dimension upon which that feature relies. Consider a duet; pitch information is
entirely dependent on which of the two parts that pitch is coming from, and in fact
each registered pitch cannot be sensibly detached from this second dimension. Thus,
polyphonic music is by nature a multidimensional entity, where the extraction of a
single feature that is part-specific (like pitch, rhythm, etc..) is not possible without
significant data loss.

The greatest challenge of multidimensional representations is not the storage

of data, but more importantly the searching of that data. String-based

13

representations allow for very fast search response even in large databases, and
multidimensional representations must attempt to match this speed, while at the
same time strive for greater search accuracy.

2.3 Pitch Representation Alternatives

Pitch is undoubtedly the most-considered feature of music used by humans to

identify a particular piece of music [Hof01]. Thus, it is worth outlining the various
ways in which pitch can be represented, as well as a summary of the advantages of
each alternative.

2.3.1 Absolute Pitch

Early crude MIR frameworks and systems adopted the idea of using absolute

pitch to represent melodic lines of a piece. Storing the absolute pitch contour of a
piece means taking the actual notes of a musical piece and assigning them a value
based on their frequency. For example, consider the musical piece Frère Jacques:

Figure 3
Score of Frère Jacques – First bar notated by absolute pitch using MIDI numbers

Most absolute pitch systems that label pitches with numerical values use the

MIDI numbering system for musical pitch7. Thus, the first bar of this piece (Figure 3)
contains an absolute pitch sequence of 53,55,57,55 in MIDI pitch format. These
values can easily be stored as an absolute pitch string associated with a song in a
database; thus, users can input a similar string of absolute pitches and attempt to
find a match.

The problem with this approach is that it is insensitive to musical transposition.

As an example, consider a user that sings the first bar accurately, but starts on an F
note that is exactly an octave higher. Thus, the user’s input query will be translated
to the following pitch sequence: 65,67,69,65. While most would agree that the user
is indeed singing the beginning of Frère Jacques, a mismatch would occur when
65,67,69,65 is compared to 53,55,57,55. Since very few users are capable of singing a
query in exactly the key required (see Section 4.1), an MIR system using absolute
numerical pitch values will often fail when searches are performed. This problem can

7 http://www.harmony-central.com/MIDI/Doc/table2.html

14

be solved by checking that the distance between the query values and the target
values are equidistant, however installing such checks would be computationally
expensive in a largely-scaled database.

Another solution to this particular octave problem is to reduce the pitch

alphabet to the 12 values representing the set of possible chromatic notes in common
Western music {C,C#,D,D#,E,F,F#,G,G#,A,A#,B}; indeed, this is natural as most people
already refer to music notes in their alphabetic form rather than numerical MIDI pitch
notation. In this case, the first bar of Frère Jacques becomes F,G,A,F instead of
53,55,57,55, and the users’ query also becomes F,G,A,F, leading to a match. Still,
reducing the alphabet only works when transposition-matching is exactly n octaves
apart; a transposition by any other value (such as a user starting a major third higher
when singing) will not lead to a match. Thus, translating to letter values will only fix
a small portion of all queries that do not have matching absolute pitches. For this
reason, most MIR systems take an intervallic approach to pitch representation.

2.3.2 Pitch Intervals

There are many MIR systems that attempt to track the pitch feature of a

musical piece through the use of pitch intervals rather than absolute pitches. Pitch
intervals measure the distance between two subsequent pitches, often as a measure
of semi-tonal steps between the two values. Positive values usually indicate a
movement upward in pitch, whereas negative values indicate a movement downward.

Figure 4
Score of Frère Jacques – First bar notated by pitch intervals

ZZZ PITCHPITCHINTERVAL −= +1

Equation 1

Consider Figure 4. The first bar of Frère Jacques has a pitch interval sequence

of 2,2,-2 which reads “increase in 2 semitones, increase in 2 semitones, decrease by 2
semitones”. These values can be obtained using Equation 1, where z represents an
index position in a sequence of absolute pitch values and PITCHZ denotes the absolute
pitch value at position z. This approach, unlike absolute value approaches, is much
more robust in regard to musical transposition. For instance, if the Frère Jacques is

15

transposed upward by a major third, the first two bars of the piece will resemble
those pictured in Figure 5.

Figure 5
Score of Frère Jacques – Transposed up by a major third (4 semitones)

Thus, even if a user sings a rendition of Frère Jacques that is transpositionally

equivalent to the stored version in an MIR database, a match will occur because the
intervals between the notes will remain the same. While this illustrates the flexibility
of using pitch intervals over absolute pitch, more advanced transpositions can still
cause problems when using intervals, most notably scalar (or diatonic) transpositions
from major to minor keys, which affect not only absolute pitch, but can change the
intervals between pitches as well. Despite this, many researchers agree that
changing a piece from major to minor (or, in general, changing the intervals between
notes) is actually an alteration to the piece itself, or in essence changing the piece
into a new piece, which would be perceived as somewhat different by human
listeners. Thus, mismatches in this case are not only accepted, but expected. It is
also interesting to note that pitch interval sequences can be manipulated (marginally)
faster than absolute pitch sequences, since by definition they contain n-1 values
where n = #pitches in the musical phrase.

2.3.3 Reduced Pitch Contour

A reduced contour is a quantization of pitch interval values over time to a

small alphabet that represents the direction of the contour. This form of
representation is very common in MIR literature, since it is easy to understand, fast to
search (due to the reduced alphabet size), and shown to be somewhat effective
(depending on the exact alphabet used) in differentiating melodic uniqueness. This
can also be done in the rhythm domain, although it is not nearly as common an
occurrence. While a potentially infinite number of reduced contours can exist, two
well-known systems have been proposed, the latter of which has been used
throughout MIR literature, and both are listed in subsections below. A variety of
variations exist on the systems as well, to accomplish different types of matching; for
example, see Section 5.3.2.

2.3.3.1 U,D,S Contour

One of the original papers that proposed using a reduced contour for MIR

systems was authored by Ghias et al [GLCS95]. In this paper, pitch information was
reduced to an alphabet size of 3:

16

• U – Indicates a rise in pitch during the note interval
• D – Indicates a drop in pitch during the note interval
• S – Indicates no change in pitch during the note interval

This approach is desirable from a workload perspective, as less effort is

required to design complicated string matching algorithms that take into account
larger alphabets. Furthermore, little work is required to convert a user query to the
contour, since very simple transcription algorithms can be applied to determine the
relative changes in recorded pitch with fuzzy granularity. The main drawback to this
approach, however, is the lack of resolution that a 3-letter alphabet provides for the
purpose of unique identification of musical passages. This is further explained in the
conclusion of the authors’ paper, which suggests that a larger alphabet is desirable.

2.3.3.2 Step-Leap Contour

The step-leap contour is the most used reduced contour in MIR literature,

requiring an alphabet of 5 distinct values to describe a pitch interval contour. It
strikes a balance of increased resolution and loss of efficiency, when compared to the
original U,D,S approach by Ghias et al. A typical step-leap alphabet consists of the
following values:

• -S – Indicates a small drop in pitch during the note interval
• -L – Indicates a large drop in pitch during the note interval
• R – Indicates no change in pitch during the note interval
• S – Indicates a small rise in pitch during the note interval
• L – Indicates a large rise in pitch during the note interval

Figure 6
A step-leap contour representation of a musical passage [CT04]

Cambouropoulos and Tsougras make use of this representation for their melodic

segmentation algorithm PAT [CT04]. Figure 6, adapted from their paper, shows a
musical passage annotated by step-leap values. In this figure, a step is defined as a
change of pitch with a magnitude of either 1 or 2 semitones, whereas a leap is any
change in pitch great than this. No notes are repeated in this segment, and so no
letter representing zero pitch change is used (no R’s appear). The increase in
resolution from 3 to 5 letters allows for greater matching potential for the
identification and differentiation between varying musical passages, and yet string
matching algorithms can remain simple and efficient overall. The step-leap contour

17

approach can also be further extended, to allow for multiple classes of steps and
leaps, with overlapping categories as well [CT04].

2.4 Rhythm Representation Alternatives

Like pitch, rhythm is a common musical feature used for data retrieval within

most MIR systems, though to a lesser extent. There are three common approaches
used by MIR systems and researchers, each of which are outlined in the sections
below.

2.4.1 Absolute Duration

Similar to absolute pitch (2.3.1), absolute duration measures the exact lengths

of notes that occur within a piece.

Figure 7
Score of Frère Jacques – Fifth bar notated by absolute duration (eighth note = 1)

The numerical sequence representing the rhythmic feature of the fifth bar of

Figure 7 assumes that eighth notes have a numerical weight of 1; that is, durations
which take twice as long (quarter notes) have double the weight, whereas durations
which take half the time (sixteenth notes) have half the duration. In practice, this
scheme usually works well. Unlike absolute pitch, absolute rhythmic sequences do
not suffer from the pitch transposition problem; as long as a user sings at a steady
pace, rhythm can be successfully matched regardless of the piece’s tessitura. Despite
being a more useful absolute measure than its pitch counterpart, absolute rhythm
does run into problems when a piece is time-stretched.

18

Figure 8
Two scores of Frère Jacques – Fifth and sixth bars (fifth with absolute duration values)

Figure 8 shows the fifth and sixth bars of Frère Jacques. The first passage uses
exactly half the weighted duration that the second passage contains; that is, the
second passage is time-stretched by doubling the values of each individual note.
Audio playback of either of these passages will sound familiar to humans, and both
would be correctly identified as a part of Frère Jacques. Despite this, a mismatch
may occur if a user sings this passage as a query, even if sung tonally correct. This is
because it is difficult to ascertain note division from recorded audio input alone. In
fact, when played using the same tempo (say, from a metronome), there would be no
audible difference between these two passages. Thus, when a musical query is input
there may be several ways to encode the rhythmic sequence, all of which would be
correct, and will ultimately lead to mismatching. It is quite possible that the second
passage shown was a user-given query attempting to match the first passage, and
since 1.5,0.5,1,1,2,2 will does not match 3,1,2,2,4,4, an MIR system using absolute
rhythm would fail. To overcome this problem without resorting to mathematical re-
calculations on entire musical segments, duration ratios are often a better choice to
represent rhythmic features.

2.4.2 Duration Ratios

Duration ratios attempt to rectify the problem of time stretching suffered by

the use of absolute duration values. Though there is no standard way of calculating
these ratios, Equation 2 shows one possible way to achieve duration ratios, where z is
an index position in a sequence of absolute duration values and NUMBEATSZ denotes
the number of beats that the absolute duration of the z-th note occupies within a bar:

Z

Z
Z NUMBEATS

NUMBEATS
DURRATIO 1+=

Equation 2

19

Figure 9
Two separate scores of Frère Jacques – Fifth and sixth bars (fifth with duration ratios)

Figure 9 shows that the effects of stretching time have no bearing on the

ability for matches to occur; beat time can be expanded or compacted in either the
numerator or denominator of the piece’s time signature, with no effect to the
resulting duration ratios. Although duration ratios are more useful than absolute
duration values for the purpose of an MIR system, both of these schemes still suffer
from real-world problems; in particular, the problem of ambiguous duration
transcription from recorded music. Consider an MIR system where querying is done by
use of captured MIDI from a piano/keyboard. Say that we have stored the song “Hot
Cross Buns” (along with duration ratios according to Equation 2) in our database as
seen in Figure 10.

Figure 10
Score of Hot Cross Buns – First and second bars annotated with duration ratios

Figure 11
Score of user query – First and second bars annotated with duration ratios

Furthermore, let Figure 11 represent a user’s query (played on a keyboard) who

is attempting to find the score for Hot Cross Buns. In this example, the user has
played the piece in a seemingly correct fashion; the only minor error made was that
their half-notes (notes 3 and 6) were not held for the full required duration called for

20

by the original score of Hot Cross Buns, a common mistake made by all musical
performers. Still, since MIDI is sensitive to such anomalies, the users’ query will be
recorded exactly as played; it would make little sense to apply a heuristic here, since
making assumptions about note durations is nonsensical given that music is infinitely
divisible, and sometimes divides into fine granularity (64th notes) in practice.

Very quickly we see that a mismatch is going to occur, since the duration ratio

sequences of the two passages are clearly different. A partial match will occur if the
third and fourth bars are considered, however for a full record match to be declared,
the MIR system will have to allow tolerance for individual mismatches; more
accurately, two mismatches for every note duration misplayed during the query. As a
result, many MIR systems opt for an alternative approach that uses Interonset Ratios,
rather than duration ratios.

2.4.3 Interonset Ratios

Interonset ratios (IORs) are an excellent way to represent rhythmic information

while bypassing the drawbacks listed in Sections 2.4.1 and 2.4.2. Most recent
research utilizes interonset ratios when tracking rhythmic features within an MIR
system. It is first useful to define an interonset interval, and to show the advantage
of using these to create interonset ratios.

ZZZ ONSETTIMEONSETTIMEIOI −= +1

Equation 3

Figure 12
Score of Hot Cross Buns – First and second bars annotated with IOIs

An IOI totally ignores a note’s length, and instead tracks the time between the

beginning points of two successive notes. Equation 3 shows the construction of IOIs,
where the ONSETTIMEZ of a note is a measure of how many beats have passed since
some point of reference (such as the beginning of a piece or bar). The sequence of
IOIs in Figure 12 is 1,1,2,1,1,2 for the first two bars of the piece; this corresponds to a
difference of “1 beat between the starting times of the first two notes, 1 beat
between notes 2 and 3, 2 beats between the notes 3 and 4, etc..”.

21

Tracking rhythm in this manner leads to a both positive and negative effects
within an MIR system. On the positive side, the user query problems discussed in
Section 2.4.2 (in reference to Figure 11) no longer cause mismatches within the
system; if a note is held a little longer or shorter than the same corresponding note in
the database, IOIs will not be sensitive to it. However, this can also be seen as a
negative side effect; if a user were to search for a song containing specific note
durations, say staccato notes, IOIs would not be appropriate. While this could present
a problem for some systems, most authors agree that trading off duration sensitivity
in an effort to relax query requirements of rhythmic perfection (see also Section 4.4)
is acceptable. A second problem exists with using IOIs, and also exists with the use of
absolute durations as well, where the values are not sensitive to time stretches. For
this reason, calculated IOIs can be converted to interonset ratios, or IORs, which are
sensitive to both time stretching and also imperfect user query note durations.

Z

Z
Z IOI

IOI
IOR 1+=

Equation 4

Figure 13
Score of Hot Cross Buns – First and second bars annotated with IORs

Figure 14
Score of user query – First and second bars annotated with IORs

Using the formula denoted in Equation 4, Figure 13 shows the rhythmic

component of Hot Cross Buns stored as a sequence of IORs 1,2,0.5,1,2. This can be

22

read as “the first interonset interval and the second interonset interval are different
by a factor of 1, the second and third by a factor of 2, etc..”. Lartillot notes that
IORs are far less intuitive a measure than the representations described in previous
sections [Lar05]. Despite this, they still accomplish the goals of being sensitive to
duration variance and time stretching. For example, the IOR sequence of a sample
user query in Figure 14 will find a match even if the durations vary slightly and/or
time is stretched (in this example time is not stretched, however).

2.4.4 Reduced Rhythmic Contour

A reduced rhythmic contour is rarely used in the academic MIR literature. This

is mainly due to the general lack of concentration on rhythmic features when
compared to pitch features, for the purpose of pattern induction and searching. Still,
reducing the rhythmic quantization alphabet to a very small size can have advantages
over larger alphabets with more precision, and this approach could be particularly
suited for bit parallelism (see Section 5.4.3), though this literature survey found no
papers with such a solution. In an effort to avoid repeating the key points of reduced
contours, please refer to the discussion in Section 2.3.3.

23

3.0 Musical Transcription

This paper defines musical transcription as the process of converting music

from one form into another, specifically limited to the domain of computer-based
representations. Musical data can be expressed in a variety of formats, many of
which have gained widespread usage on the internet. Thus, MIR systems often have
to deal with the problem of transcription to achieve a common form for music to be
represented. The main difficulty in any transcription process is the interpretation of
music from the source form, before converting to the target form. The two most
common forms of transcription relate to the conversion of music from a MIDI source
format or a sampled audio format, both of which are described in Sections 2.1.1 and
2.1.2.

Music can be challenging to transcribe for a variety of reasons inherent to

musical performance itself. First, a great deal of musical knowledge is needed to
properly recognize all of the features that can (or need to) be extracted. Most
computer scientists or mathematicians designing transcription algorithms must
therefore consult experts in musical theory, further complicating the process [MB01],
unless they are fortunate enough to possess this musical knowledge themselves.
Additionally, music contains a large amount of invisible data that is passively implied
rather than explicitly stated in source form. For example, subtle key changes can be
implied through the use of note accidentals, and a piece’s chordal progression is
merely implied by the relationship of notes to a tonic value. Finally, musical
transcription is greatly complicated in the case of polyphonic interplay, where
distinguishing between several instruments playing concurrently can prove to be very
challenging.

3.1 Transcription from Sampled Audio

Transcription of music from a sampled audio format can be very complex

depending on what musical information needs to be extracted and converted. As a
result, this paper merely brushes upon tactics used for transcription from sampled
music; entire surveys exist on these topics alone, and many of the details are omitted
in this section as a result. Early attempts at transcription (~1970) commonly targeted
the speech domain, rather than music, as there was great interest in being able to
speak into a microphone and have a computer “type for you”, or vice-versa where the
roles of speaker and writer were reversed. Hess’s algorithm for speech transcription
was one of the first attempts to apply a transcription algorithm to the musical
domain, with very limited success[GKM03]. Before that, Piszczalski and Galler
developed one of the first systems that attempted to convert an audio signal into
musical score [PG77]. Later in the early and mid 1990’s, a growing set of approaches
specifically targeted for music began to emerge.

24

Most algorithms focus on the extraction of time-domain specific fundamental
frequencies found within the musical waveform. A fundamental frequency, or simply
fundamental, is defined as the lowest frequency value in a related harmonic
sequence of frequencies, where each value in the series is a multiple of the
fundamental. By extracting this value, analysis can be performed to provide a pitch
spelling, which is an ordered (time-specific) listing of the various pitches that occur
throughout the piece. Two fairly common approaches attempt to identify a periodic
signal’s fundamental frequency, and lend to additional musical information:

• Autocorrelation (ACR) – This method is the most common approach at the
identification of periodic fundamental frequency [Kla00]. Given a sequence of
frequencies sampled from an audio signal x(k) of length K, an autocorrelation
function ACR(n) is defined as:

∑
−−

=

+⋅=
1

0
)()(1)(

nK

K
nkxkx

K
nACR

Equation 5

This function will produce an ACR contour, where the peak value of the

 result represents the fundamental frequency of the original sequence.
 Variations on this function also exist, and these tend to increase or
 decrease the sensitivity of results, making autocorrelation an effective
 tool for pitch spelling.

 Another property of an ACR contour is that frequency punctuations can

be followed over time, which is useful for beat tracking. Still, while
beat divisions can be somewhat implied, further analysis is needed to
determine exactly where bar lines can be drawn. For example, if a
large number of polyphonic frequencies fall within a close period of
time, and they do so at regular intervals (revealed by the ACR

 contour), then a possible bar division may be extracted.
• Envelope Periodicity (EP) – This method capitalizes on the observation that

musical signals with multiple frequencies occurring simultaneously in the time-
domain often cause fluctuations in the corresponding amplitude envelope,
where the frequency of each fluctuation is a measure of the difference
between the observed frequencies occurring simultaneously [GKM03]. Since
the fundamental frequency will tend to affect the amplitude envelope the
strongest, it can be identified, as well as potential information about the
rhythmic beat of the music.

Aside from these and many other approaches, there are additional

considerations when transcribing musical data that go beyond pitch and rhythm
factors. For example, the identification of time and key signatures can be challenging
even given a perfect transcription of pitch and rhythm, as often musical passages can

25

be broken down in a variety of equally-correct ways. Some of these additional
considerations are further explained in the following section (3.2).

3.2 Transcription from MIDI

When compared to transcription from sampled audio, MIDI tends to be a much

nicer format to work with. Essentially, MIDI resembles a form that most of the
algorithms in Section 3.1 attempt to achieve; a quantized mathematical decision on
each and every note in a musical phrase. Still, MIDI can be difficult to process further
in cases where higher-level musical information (such as key, bar segmentation, etc)
is required. Some of this difficult depends on the quality of the MIDI file. For
example, were separate channels used for the various instruments involved, or were
all of the notes crammed into one channel? Does the file follow general MIDI
standards, such as the use of channel 10 for drums? If a MIDI file is not properly
designed, the task of transcribing the music to a more detailed format (such as a
digital score) becomes harder. The following sections outline some of the challenges
of transcribing MIDI music into alternate, more detailed forms.

3.2.1 Pitch Spelling

Generally, pitch spelling from MIDI is a simple task, since all notes in a MIDI file

have clearly-defined pitch values ranging from 0-128 with chromatic semi-tonal
granularity. There are some considerations that can complicate the process,
however. First, consider a 3-note phrase of increasing MIDI pitch numbers
corresponding to 69,70,71. Using a simple MIDI pitch lookup table8, one would
translate these values into the notes A, A#, B (Figure 15).

Figure 15

A pitch spelling of MIDI values 69,70,71

Figure 16
An alternate pitch spelling of MIDI values 69,70,71

8 http://www.harmony-central.com/MIDI/Doc/table2.html

26

However, Figure 16 shows an alternate pitch spelling which is equally valid,

using a flat-augmented B instead of a sharp-augmented A, both of which are
enharmonic notes. In fact, there are other potentially correct spellings of 69,70,71,
that use notationally parsimonistic values, such as double-sharps or double-flats. The
problem lies in the interpretation of these intervals as “chromatic” intervals as
opposed to “diatonic” intervals. Chromatic intervals measure the number of
semitones between two values, and in the case of Figure 15 and Figure 16, the
chromatic intervals are identical. Diatonic intervals measure distances between note
values that fit nicely into common major or minor scales, and so certain intervals
carry heavier weight than others when pitch spelling occurs. Most authors design
their algorithms to avoid double-accidentals, as they occur infrequently in real-world
musical scores.

Figure 17
The “line of fifths”, adapted from [Cam01].

Two similar algorithms presented by Temperley and Longuet-Higgins attempt to

exploit a linear representation of the “circle of fifths”9, termed the “line of fifths”10
(see Figure 17) [Lon87, Tem97]. In both algorithms, the spelling of two subsequent
pitches minimizes the interval distance between the note values as they occur on the
line of fifths. This gives a natural pitch spelling where oddly-occurring intervals are
avoided, and while both algorithms apply further analysis, they achieve similar (and
effective) end results. Additional authors have since taken the approaches defined by
Temperley and Longuet-Higgins and attempted to improve them, such as the ps13
algorithm by Meredith [Mer04].

Class A

4P 2m 2M 3m 3M 2a 3d 4d 4a 1d 3a 2d
5P 7M 7m 6M 6m 7d 6a 5a 5d 1a 6d 7aIntervals

B C D

Figure 18
Cambouropoulos’ Pitch Classes

(P=perfect; M=major; m=minor; a=augmented; d=diminished)

Other pitch spelling algorithms exist that attempt to achieve a proper pitch

spelling where chromatic ambiguity occurs. For instance, Cambouropoulos suggests
the use of diatonic intervals to achieve accurate pitch spelling [Cam01]. His approach
is based upon the classification of standard and non-standard diatonic intervals that
can occur in music, and he identifies four pitch classes A-D, where each interval is
assigned a class, and higher alphabetically-ordered classes carry greater precedence
(Figure 18). The algorithm then spells out all possible note spellings for each bar (or
window) of music between 9 and 15 notes, and assigns pitch classes to the resulting

9 http://en.wikipedia.org/wiki/Circle_of_fifths
10 http://www.music.sc.edu/fs/bain/atmi02/lof/index.html

27

possibilities. The spelling that maximizes the alphabetic ordering (generates the
highest classes) is then selected as the proper spelling for that particular window of
music. While a great deal of processing is required (up to 5000 spellings per bar of
music), accuracy is quite high and leads to spellings that conform to many of the best
human practices of musical score construction.

3.2.2 Polyphonic Division

Like pitch spelling, polyphonic division is normally a simpler process with MIDI

data than with sampled audio. The standard MIDI file format accounts for the division
of music into channels; conceptually, a channel (usually) corresponds to one
instrument (sometimes able to play several simultaneous notes, such as a piano),
making a channel synonymous with a musical “part”. Thus, polyphonic division is
natural; the final score adds a staff for each channel presented in the MIDI file, and
transcription begins with algorithms such as those identified in Section 3.2.1, many of
which are capable of handling polyphonic transcription themselves. However, some
MIDI files are not structured in this manner, and instead opt to merge several parts
into one channel. These malformed files still contain all of the information to
recreate the sound of a musical piece, yet they are difficult to parse for the purpose
of accurate polyphonic transcription. Consider a 2D orthogonal projection of a MIDI
channel, where (x, y) denotes the occurrence of pitch x at time y within the piece.

{ (50,1), (52,1), (52,2), (53,2), (53,3), (55, 3) }

Figure 19
A set of 6 MIDI notes found in a single MIDI channel in (pitch, time) format

The set defined in Figure 19 outlines 6 differently-ordered notes that could

occur in a MIDI file with only 1 channel. It is difficult to determine how to interpret
these values. All six notes may be part of a single piano part (Figure 20), or the notes
could be divided into two different piano parts operating together in multi-voiced
polyphony (Figure 21).

Figure 20
Single-voiced pitch spelling based on note values of Figure 19

28

Figure 21
Multi-voiced pitch spelling based on note values of Figure 19

In cases such as these, it is difficult to know when notes should be separated

and when they should not; for the purpose of pattern matching (see Section 6.0), it is
critical that notes not be separated outside of their polyphonic context [Meu03]. The
simplest solution is to assume that MIDI files are correctly formed, and thus side with
the monodic translation. While this is probably the most correct approach, it leads to
transcription errors for some MIDI files, and the application of heuristics in this area is
still relatively unused, with the exception that additional piece information (such as
genre, composer, etc.) is available.

An attempt at polyphonic division by Cambouropoulos applies a streaming

algorithm to polyphonic music [Cam00b], so that each vocal part within the
polyphonic phrase is broken down into a single steam, or voice, normally for the
purpose of creating a set of note strings to which matching algorithms can be applied.
The algorithm used breaks down musical passages into n streams of notes, where n is
the number of notes within the largest chord that occurs during the piece. Despite
some success, this approach is naïve from a musical standpoint; no crossing of streams
is allowed, which is a phenomenon that occurs frequently in real-world music. Thus,
mismatches can occur as illustrated in Figure 22, though enhancements made to the
algorithm can improve accuracy.

29

Figure 22
(Top) Two musical voices as seen by a musician playing music

(Bottom) Incorrect streaming of voices by Cambouropoulos’ algorithm [Cam00a]

3.2.3 Beat Induction

Human beings have an inherent understanding of the natural division within a

musical piece that tends to divide notes into even periods of time, or bars [Cam00b].
To translate this innate ability to a computer system, many MIR systems attempt to
analyze music into sections or windows, where the beat is identified as the “best-fit”
time division of some or all of the notes contained within the window. This can be
determined by collecting all of the interonset intervals (IOIs) between subsequent
notes, and then grouping the intervals into common categories, akin to an IOI
histogram [DC00, MM04]. Once all of the intervals have been grouped, the most
common category (containing the most IOIs) is identified as the beat interval, and
thus induces the overall beat of the musical piece. While this approach is regularly
used, other variations and adaptations exist such as Large and Kolen’s model utilizing
interonset values to form nonlinear beat oscillators [LK94].

30

In this process, called beat induction, it is important to determine how musical
beat is identified in relationship to the notes participating in the induction algorithm.
Two approaches are often used, each of which tends to achieve reasonably successful
results when applied to most forms of music.

• Simple Note Division – In this approach, any and all notes within the time
window are considered equally important in identifying the presence of musical
beat [Ros92, Row93]. Thus, each IOI carries equal weight, and as mentioned
above, contributes to the weight of an IOI category in an equal manner. This
tends to work reasonably well for sufficiently large musical windows, as note
onsets tend to define beat over time even when strange rhythmic values are
encountered. For example, consider a fermata note augmentation; the
corresponding IOIs associated with the notes before and after the fermata will
likely outline an odd and lengthier interonset interval, thus falling into an
uncommon category that will not dramatically affect the beat induction
process.

• Accentuated Note Division – This model attempts to distinguish between
certain notes that should contribute with greater weight to the induction of
musical beat. Many authors identify notes based on their accentuation value,
or salience [Kla03, LJ83, Par94, PE85, Sch98, Sep01].

Figure 23
Visual description of note accentuation according to Povel and Essens11

Figure 23 shows an example accentuated and non-accentuated notes in a
musical window. In this particular example, the following rules define which notes
should be accented:

 Isolated Tones
 Latter tone in a two-tone group
 First and last tone in a 3+ tone group

By associating higher weights to accented notes, it is possible to avoid

inappropriate induction on runs of notes that operate outside of the regular beat. For
example, consider the case of musical arpeggios (Figure 24). Using the rules above,
the disruption of an intended arpeggiated chord played as a series of four distinct

11 http://www-classes.usc.edu/engr/ise/599muscog/2003/week12/Chen-TempPatterns.ppt

31

notes is reduced, since heavier rhythmic weights are tied to the first and last notes in
the run, rather than treating all of the notes equally when inducing beat.

Figure 24
An arpeggiated chord and its corresponding real-world MIDI notes (adapted from [Cam00b])

3.2.4 Key Signature Identification and Harmonic Analysis

)(
)()|()|(

mP
kPkmPmkP =

Equation 6

Two potentially important areas of musical transcription have been relatively

ignored within MIR literature, probably due to the constant focus on transcribing pitch
and rhythm based on their prominence in MIR systems. The induction of key
signatures from music has the potential to assist pitch spelling algorithms in the
correct identification of diatonic note values, and when combined with harmonic
(chordal) information, can form an excellent basis for a transposition-invariant
algorithmic music generation algorithm. Klapuri outlines a simple model for the
determination of key signature at any given point in music based on a single note
value, using the standard Bayesian formula shown in Equation 6, where m represents
the note element and k represents the key element [Kla03]. Based on findings by
other authors, Klapuri also models how a key can be probabilistically determined by
several notes occurring in polyphony.

In the same paper, Klapuri also outlines a model for determining the harmonic

progression of a musical passage, based on a nearly identical Bayesian model as that
used to identify key signature. Additional input to this model can be a key signature
itself, adding to the probable weight of each possible chord to be considered during
the chordal spelling. While the paper provides a fresh look at the problem of
transcribing key signature and harmonic progression information from musical
passages, there is plenty of add additional room for research within the academic
community on these topics.

32

4.0 Query Capture and Representation

A key component of any MIR system is its ability to convert a user’s search

intentions into a usable form for the purpose of record matching. This is a very
difficult task, since music itself is complex and difficult for many (if not most) users
to express. Furthermore, it is nearly impossible to identify a single query method
that works for all types of musical searching, as any one mechanism would likely fail
to consider the wide range of musical features inherent in each piece. Thus the
selection of a query mechanism can greatly affect what an MIR system can actually
accomplish, and there exists a balance to be struck between the undesired
complexity and desired flexibility of using multiple methods for query capture.

An even greater challenge for MIR systems is their ability to compensate for

lack of user skill [WR03]. While text-based systems are sometimes intolerant of
mistakes (spelling, grammar), they are accepted as so because users are expected to
be able to spell correctly, or at least very close. Conversely, it is not reasonable to
expect a user to express music in a correct fashion, as mistakes are far more
abundant in the music domain due to the complex nature of the medium.
Furthermore, the automatic correction of these mistakes is an important yet
challenging task, as a pre-defined dictionary of possible input does not exist in the
music domain as does in the textual domain. Some of the common challenges that
must be met by query input components of MIR systems are:

• Vocal Pitch Drift – In any query system that requires the use of human vocal
chords, pitch drift can often become a problem, particularly as a query grows
in length. Even skilled musicians often have difficulty expressing musical
queries in a flawless fashion for sustained periods of time [UZ98]. Thus, while
a user may start a query on key, that key may slowly change (normally
upward), to the point where a particular note at the beginning is sung at a
much different frequency than the same note at the end of the query. This
often encourages MIR systems to limit query length, in an effort to reduce the
effect.

• Personal Tonic – Some musical instruments, while tuned correctly in regard to
themselves, are not tuned according to the standard frequencies stated for
common Western music 12-tone scales [Ada04]. Furthermore, it is rare that a
singer begins a query with perfect pitch, where their own tonic matches a
standard note frequency12. Consider a query of three notes, with frequencies
430Hz, 513.25Hz, 577.33Hz. While the intervals between these notes match
the intervals between the musical sequence A4-C5-D5, the frequencies do not
match the correct values stated for these notes. Thus, the input device has its
own personal tonic, and the problem essentially becomes a quantization issue.
While a simple pitch shift of the entire query could be conducted, the intervals
between the notes themselves could occur in such a manner that ambiguity

12 http://www.phy.mtu.edu/~suits/notefreqs.html

33

exists as to how and when the pitch shift could occur, further complicating the
process.

• User Skill (Incorrect Values) – This problem applies to any form of query input,
from simple tapping to complex notational input; problems such as pitch drift
are also a factor of user skill, but differ in that the query is essentially correct,
but modified in a uniform way that can be potentially detected and corrected.
Because it is difficult to correct wrongly-stated notes in queries, many MIR
systems opt to design tolerant matching algorithms, some of which are covered
in Section 6.0. One such approach explored by Dowling found that users are
often more apt to remember the melodic contour of a piece, rather than actual
note intervals [Dow78]. Thus, an MIR system using a Step-Leap representation
(Section 2.3.3) may be more tolerant to poor user skill and still be useful for
matching purposes.

• Pitch Repetition – This problem affects the domain of human vocal input.
Users often prefer to repeat a pitch for sequences of notes that actually should
differ. This normally occurs when a user does not fully know how the melody
goes (some fuzziness in memory), and so they hum or sing the same value until
a part is reached where memory kicks in and greater intervals begin to occur.
In this case, it can be difficult for an MIR system to determine the point at
which a user is “lost”, given that they may be intentionally repeating values.

• Monophonic Input – This problem can be illustrated by imagining a user
attempting to find his or her favourite choral piece. The user specifies a
query, but can only sing one part (a limitation of the human voice); in choral
music, there may be many vocal parts stored as a polyphonic aggregation
within the MIR database. Thus, the user’s query is limited because they can
only produce one note at a time. This problem can affect vocally-based
queries, as well as many instruments (such as the flute) that can only play one
note simultaneously. Rather than allowing the user to input several lines as
part of a multi-step query that can target polyphony, most systems wisely
attempt to match the single query line to the most significant portion of the
polyphonic target to obtain a match.

• Tempo Creep/Stutter – Users specifying queries with a rhythmic component
often speed up, sometimes dramatically, while they produce music. This is
often a result of poor internal beat, where the use of a visual metronome can
sometimes provide assistance during the query process. Additionally, tempo
stuttering sometimes occurs when a user makes an error or forgets the next
notes in a musical query; the end result is a temporary loss of sustained tempo,
and MIR systems can meet this problem using relaxed rhythmic matching or
correlation techniques.

• Articulation Issues – Notes within a vocal query (possible for some instrumental
queries as well) can be inappropriately merged or separated by a query capture
mechanism due to issues in articulation. Sometimes a user may produce notes
with an “oooo-ing” noise, making the distinction between when a note ends
another begins difficult to detect; this is especially evident when two
subsequent notes have the same pitch. Furthermore, the opposite effect can
occur when users sing a query that contains lyrics; the two syllables of the

34

word “never” may cause the query capture mechanism to think that the user is
specifying two separate notes, when in fact words like “never” are often
associated with a single note in popular music. Adams suggests that if the user
articulates passages with a nonsense word, such as “da” or “ta”, a query
capture system can better determine note division [Ada04].

• Artistic Impression – Users may be compelled to add their own flair to their
queries, in the form of note embellishments, tempo throttling, or even (though
less likely) newly-improvised passages. This can add considerable difficulty to
any query processing mechanism [WR03], and may result in unusable input.

• User Perception of Music – In work by Krumhansl and Shepard, it was found
that the musical experience or skill level of a user can affect their actual
perception of music, such as whether or not they are capable of discerning
note intervals [KS79]. This and other perception issues are further explored by
Uitdenbogerd and Zobel, who consider query difficulty from a human
psychoacoustic perspective, and identify problems that can begin before a
query is even stated, such as a user’s inability to determine how many parts
are operating simultaneously in fast-moving musical phrases [UZ98]. The net
effect of poor musical perception is that users will not be able to reproduce
music correctly, given that their psychoacoustic model of the musical passage
is broken.

The sections listed below outline some of the aspects and challenges associated

with various forms for querying. For information on how queries can be used and
compared to entries within an MIR database, see Section 5.3.

4.1 Query by Humming

The collection of various input methods requiring use of the human voice is

typically referred to as “query by humming”. A very large portion of MIR research has
focused on this paradigm; an interesting selection, considering that hummed queries
can suffer from the articulation problems identified above, and also that vocal
transcription has proven difficult in the music domain [Par05]. Use of human voice
has several advantages over other query paradigms, despite the previously-listed
drawbacks. First, the human voice is the only instrument usable by any and all human
beings at any time, reducing the requirement that an MIR system be accompanied
with some separate input instrument. Second, the human voice is the most widely
used instrument, maximizing the potential number of users due to the universal
experience that humans have in wielding their own voice. Finally, by developing
robust algorithms to handle vocal signals, a system can be easily adapted to use other
forms of instrumental input, since the human voice presents many challenges that
form a general superset of the drawbacks of most other instruments, at least in the
monophonic domain.

Query by humming was popularized by Ghias et al. in 1995 when they proposed

a novel MIR system using a simple hummed melody as input into an musical database,

35

where the query signal would be converted into a sequence of directional characters
outlining a pitch contour [GLCS95]; the same approach defined in Section 2.3.3 using
the alphabet {U,D,S} where U means higher or “upward” pitch, D means lower or
“downward” pitch, and S represents an interval with zero pitch difference. Figure 25
shows the process as envisioned by the authors, from microphone to end-result.

Figure 25
Proposed MIR System Diagram by Ghias et al.

Many systems have focused on the use of vocal input as a query mechanism.

One such system by Rolland et al. incorporates the idea of hummed queries into their
Melodiscov system, and suggests referring to query by humming with the acronym
WYHIWYG, or “What You Hum is What You Get” [Rol00]. Also, the PROMS/MiDiLiB
project is suited for vocal input due to its error handling for poorly-formed queries,
and can even support polyphonic queries specified using multiple voice overlays
[CEMS00, CKE01].

4.2 Query By Instrument/MIDI

In a similar fashion to query by humming, instruments can be used as a means

of query input for MIR systems. The instrument used is normally a MIDI-enabled
device, although the usage of any musical instrument is possible given that
transcription of the audio recording is also possible [DR01]. The advantage of using
MIDI as an input form, either from an instrument or a pre-recorded MIDI file, is that
the query transcription process is simplified. One system that partially targets MIDI
input is the recently proposed Muugle13 system by Bosma et al. [BVW06]. Muugle is
capable of using input from four different sources, three of which are MIDI-based:
query by humming (non-MIDI), a MIDI file, a MIDI-enabled keyboard (or other device),

13 http://pierement.zoo.cs.uu.nl/muugle/

36

or an online software keyboard which functions in the same manner as a real-world
MIDI device. Additionally, the prototypical MIR system proposed by Takasu et al. uses
a MIDI instrument as the primary method of capturing a user query, although they
acknowledge the use of the “query by humming” paradigm as an equally viable
alternative given a sufficient solution to the transcription of vocal recordings into a
MIDI-based representation [TY99]. The main drawback of instrument-based
approaches is that they require the user to be familiar with the musical instrument
used for querying; additionally, users prefer searching to be fast, and playing back an
instrument often takes slightly more time than casually singing or humming a tune.

4.3 Query By Note Placement/Score Notation

The ideal input paradigm for musical queries would be a fully featured musical

query specified in a digital score format (see Section 2.1.3). This would allow a
feature reduction algorithm to be applied to the data without the need for complex
audio transcription, and would most certainly lead to improved search results.
Despite these advantages, using musical score as a query interface is universally
viewed as inappropriate for MIR systems, at least by default. The composition of
musical phrases through score notation is considered complex, even to those who are
familiar with many aspects of music, and the potential for errors in the query
specification is also quite high. Furthermore, it is highly likely that users would
become frustrated with the amount of time needed to fully specify a query. Still,
some systems do allow queries to be manipulated using note placement, such as the
Muugle system’s software keyboard mode [BVW06].

4.4 Query By Rhythmic Gesture

Rhythm is normally incorporated as an aspect (feature) of music to be

considered in any of the input paradigms outlined in Sections 4.1-4.3, rather than a
separate and distinct paradigm itself. Still, research has been conducted to explore
the possibility of queries formed using rhythmic data alone, which is usually captured
by having users tap a rhythm. Chen and Chen outline a full MIR system framework
based on musical matching using rhythmic features exclusively; they leave the
mechanism of querying unspecified, however their model supports query by tapping as
well as other input forms, such as MIDI files for rhythmic analysis [CC98].

In recent work by Kapur et al., a new and unique rhythmically-based query

paradigm is introduced, query by beat-boxing, which allows a user (such as a DJ) to
gutturally mimic the rhythmic texture of a musical phrase [KBT04]. Interestingly, this
also unlocks the polyphonic dimension for the human voice in a way that makes sense;
beat-boxing normally attempts to reproduce the percussive instruments of several
musical parts at once, a task which is extremely difficult (if not impossible) to do
reliably when providing pitch information vocally. Although test results are not given

37

in the paper, the potential for greater matching using multiple rhythmic tracks shows
promise for the beat-boxing paradigm, and a possible reinvigoration of rhythmically-
based MIR research.

38

5.0 Pattern Matching and Induction

Musical pattern induction involves the identification and extraction of patterns

within musical pieces; it is widely considered by various authors that musical themes
can found amongst musical patterns, and that users perceive music based on a
thematic model of perception. This has led to several works attempting to identify
musical themes by hand, perhaps the most notable of these by Barlow and
Morgenstern14 [BM48]. Musical patterns can be discrete, involving only parts of music,
or they can be comprehensive and fully featured repetitions within a musical phrase.
The advantage of identifying these patterns and storing them within a musical
database is that an MIR system can search (match) amongst only the patterns that are
thematically relevant, rather than the entire musical passages that contain them.
This will to minimize the workload of searching algorithms while at the same time
decreasing the likelihood of useless false matches when attempting to identify a
musical theme. For reference, pattern matching, the process of gauging the
similarity of two musical passages, is sometimes referred to as pattern recognition
[CCI01, Rol01b].

5.1 What is a Theme?

Figure 26
The main theme of Bach’s “The Art of the Fugue”, identified by hand14

A musical theme is a specific set of notes or features within a musical piece

that carries an identifying property, where users recognize the set as representative
of the piece as a whole. This dilution is itself a characteristic feature of a piece of
music, though more difficult to identify than mere pitch or rhythmic features; themes
are actually an aggregation of information from these domains. Informally, a theme
is the “tune that is whistled” when a person attempts to remember and/or summarize
the character of a piece, and there may be several themes within a single work,
depending on how the piece is composed. Meek and Birmingham state that themes
can occur anywhere within a piece; not just at the beginning, and that themes can
occur in any voice, not just the upper voice of polyphonic music [MB01].
Furthermore, themes often interweave throughout a piece, repeating several times
within a melody to serve as an anchor within a musical passage. For this reason,
many researchers feel that a theme can be automatically extracted through the

14 http://www.multimedialibrary.com/barlow/index.asp

39

identification of maximal repeating patterns within music; work by these authors’
efforts are examined in the sections below.

Despite the widespread use of themes as a primary mechanism for identifying

musical pieces, a practice dating back at least a thousand years [Bro80] and still
prevalent today, some authors feel that offering full-text search over all of the notes
within a musical database is preferable [DN00]. The debate as to the best approach is
one of opinion; should non-thematic musical excerpts be searchable? If yes, then it is
possible that a theme of one piece will occur as a passive and trivial phrase of
another piece, thus potentially leading to mismatches. If no, then some searching
power is lost within the MIR system. Of course, a system offering both options is
likely to take advantage of the strengths of each approach to increase robustness.

5.2 What is a Musical Pattern?

As is common with most terms used by the MIR research community, the exact

definition of a musical pattern is not entirely agreed upon [RG02]; the definition
adopted by various authors usually supports their own work, and this serves as a
domain-specific term rather than a general one. Rolland defines a sequence as a
naturally-ordered set of data, and refers to musical patterns as sequences of music
[Rol01a]. This definition is vague and tends to de-emphasize patterns such as
rhythmic histograms that occur in musical phrases. Meudic defines a musical pattern
as a “perceptible repetition in a musical piece” [Meu03], which focuses on the
repetition of music within a self-contained piece. Meudic then, with co-author
St. James, realizes that additional questions can be raised if one were to adopt his
own definition; for instance, if a single or multiple part(s) of a polyphonic phrase
repeat, does that constitute a musical pattern? Should the entire polyphonic context
repeat in order for a pattern to be identified? [MS03]. In general, there are two ways
to consider a pattern; one considers a pattern as something that repeats, whereas the
other considers a pattern as some footprint of a musical passage that does not
necessarily imply repetition at all. In practice, most prominent MIR researchers tend
to define musical patterns as entities that identify repetition [Kru90, Lar03, LHC99,
NO04], and thus further references in this document will regard patterns as recurring
features of music.

It is important to distinguish musical patterns according to their perceptual

significance [LJ83]. For example, the single note A4 (440Hz) may occur multiple times
within a single piece, yet very few MIR systems would identify this as a pattern,
because singular notes are simply not significant or noteworthy repetitions to the
average user. A common automatic method of judging which patterns are
perceptually relevant is to assign weights to each pattern, where longer patterns are
weighted more significantly amidst many potential criteria. This approach is not
unlike individual note weights for determining accentuated note division (see
Section3.2.3). After weights have been assigned, the heaviest patterns may be
selected with some threshold, thus eliminating trivially short patterns that can occur

40

by chance [NO04]. The notion of perceptual significance also raises questions about
what constitutes repetition, at least from a human perspective. Strict repetition
within a piece can occur sparsely, and quite often a composer will change slightly the
motifs used to make the piece sound more interesting; thus some room for pattern
mismatch or flexibility should be taken into account [CCI01]. There are many possible
augmentations that may still be identified as a pattern to the listener, such as musical
diminution, ornamentation, note substitution, and even the backward playing of some
passages [MLW02]. Thus, pattern induction algorithms should be designed with some
leniency when comparing the repetition of differing passages within a piece, while at
the same time ensuring that the results make sense from a human point of view.

5.2.1 A Word on Maximal Repeating Patterns (MRPs)

One of the common features sought out when searching for useful repetitions

within a musical piece is the maximal repeating pattern (MRP). Koh and Yu define
MRPs in the following (condensed) manner [KY01]:

• A sequence of notes (X) is a set of notes that occur one after another within
some musical bounds. A musical piece (M) is an ordered sequence of n notes
where n represents the number of notes within the piece.

• A repeating pattern is a sequence of notes (X) within a musical piece (M) such
that X is a subsequence of M and occurs at least y times within M (overlapping
allowed), where y is some minimum threshold.

• A maximal repeating pattern (X) in M satisfies the following:
 X is a repeating pattern within M
 There does not exist any repeating pattern X’ in M where X is a

subsequence of X’ and X’ occurs the same number of times in M as X
does

A similar definition for MRPs is given in [LHC99], though the term used for

maximal repeating pattern is “non-trivial”. To view this plainly, the set of maximal
repeating patterns within a musical piece will contain the longest patterns that meet
a minimum threshold of repetition within a musical piece. The usefulness of
identifying and storing MRPs within a database relates to the identification of themes;
since themes tend to be the longest repeating sections of music, identifying all of the
maximal repeating patterns within a passage of music should result in a set that
contains a musical theme, or at least a significant part of one. Thus, by reducing the
set of information to specific, choice patterns that are perceptible and relevant to
themes, misleading and useless information is discarded, making the search process
more focused and potentially more relevant [MB01].

41

5.3 Pattern Matching Approaches

The difficulty of comparing two musical patterns against each other depends

greatly on the precision of matching similarity; that is, how close must the patterns
be to each other? There are two general responses to this question:

• Exact Matching – In exact matching, two musical patterns must be identical in
all aspects of the pattern, regardless of how the pattern is formed (multiple
sequences, histogrammatical, etc.). Few existing MIR systems rely on exact
matching between patterns, especially when matching a query to a database
record, since human beings often perceive slightly-different patterns as a
match.

• Partial Matching – By far the most commonly used paradigm, partial matching
allows patterns to match each other as long as a certain amount of similarity
exists between the two. This is widely considered to be a better approach,
since most composers tend to use variations and augmentations on a main
theme when constructing a piece as a whole. Thus, being sensitive to the
small variance that can occur between patterns can increase matching
accuracy greatly according to the human perception of music. Figure 27 shows
an example of two passages that match partially since one is derived from the
other, even though visually and mathematically the match might not be
obvious. Thus, designing algorithms to induce and recognize these patterns can
be difficult.

Figure 27
Pattern B is an embellishment of pattern A [MLW02]

In order to gauge similarity between two musical patterns, one must ask the

question “how can we identify pattern similarity?”. The similarity models below
outline some of the approaches used when comparing music to itself.

42

5.3.1 {δ,γ}–Approximation

When dealing with string-based representations, δ-approximate and γ-

approximate matching are ways to judge the similarity of two musical string patterns
of equal length, both of which (δ,γ), can be determined separately or together.
Consider three pitch interval strings:

• String A = 4, 3, 2, 4
• String B = 5, 3, 1, 5
• String C = 4, 3, 0, 4

The value δ in δ-approximate matching determines the maximum difference

between two specific symbols in a musical string; that is, for each individual
comparison in two strings of equal length, the values at any particular position must
not be more different than δ. For example, with δ=1 for δ-approximation, strings A
and B are considered similar, since the difference between their corresponding
symbols is 1, 0, 1, 1 respectively. Since no pairing has more than 1 difference, a
successful match is made. Conversely, while strings A and C seem similar visually,
they are not δ-approximate for δ=1, since the third symbols of the strings have a
difference of 2.

The value γ in γ-approximate matching determines the maximum total

difference between two musical strings of equal length; that is, when calculating the
individual comparisons in two strings, the sum of the resulting differences will not
exceed γ. For example, with γ=2, strings A and B are NOT γ-approximate, since the
differences between their corresponding symbols are 1, 0, 1, 1 which means a total
difference of 3. Conversely, strings A and C are γ-approximate with γ=2, since their
corresponding differences are 0, 0, 2, 0 which gives a total difference of 2, within
tolerance.

{δ,γ}-approximate matching is the union of the rules of δ-approximation and γ-

approximation; that is, the criteria for both must be met for values of δ and γ. For
example, with δ = 2 and γ = 2, strings A and B are not {δ,γ}-approximate; while both
strings meet the δ criteria, they are too different totally to meet the criteria for γ.
Conversely, strings B and C are {δ,γ}-approximate; their differences are 1, 0, 1, 0,
which means they are within both tolerances for δ and γ.

δ-approximate and γ-approximate matching offers advantages for gauging

perceptual similarity; musical patterns are often slightly-modified versions of each
other, and thus δ-approximate matching allows for slight variation and ornamentation
that does not deviate too far from some original pattern string. On the other hand, γ-
approximate matching allows a total maximum deviation to be set, so that too much
ornamentation or augmentation from the original pattern can be identified as a
unique pattern itself. These approaches are used in a variety of papers and by a
variety of authors; some classic examples can be found in [CIMR+02, ILMP00, CCIM+99].

43

5.3.2 Matching with Don’t Cares

Matching with binary don’t cares, or simply “don’t cares”, is a tolerant string-

matching method that allows some symbols to be matched to multiple targets, rather
than follow the usual 1:1 mapping of symbol similarity. For example, consider the
following step-leap contour strings (see Section 2.3.3.2):

• String A = +S, R, –S, –L, +L
• String B = +S, R, +S, –S, +L

When comparing these two strings, one would normally use a 1:1 binary

comparison scheme, such that +S=+S, R=R, –S=–S, +L=+L, and –L=–L. However, don’t
care symbols can match multiple targets; two commonly-used don’t care symbols are
* and #, which add the following matching relationships: *=+S, *=+L, #=-S, #=-L. In
other words, the * don’t care specifies no preference between being matched to an
upward step or leap, with the # stating the same for a downward pitch interval. The
reasons for allowing this are numerous. For example, a query mechanism might
determine that softly sung notes from a human user may indicate poor knowledge of a
portion of a musical theme; thus, those notes can be replaced by don’t cares which
allow fuzzier and more tolerant matching for parts that a user is not entire certain of.
Matching strings with don’t cares is therefore an example of exact matching rather
than partial matching; this is counter-intuitive because using don’t cares seems to
imply that only a part of a musical passage will be accurately matched. A better
description, however, would be that the entire string is accurately and exactly
matched due to a broader matching mechanism.

Figure 28
Passage consisting of two similar passages making a “repetition with a hole” [CCIM+05]

The use of don’t cares is normally used with, though not limited to, step-leap

contour representations. An example of this can be seen in Cambouropoulos et al.,
who uses the aforementioned don’t care symbols * and # [CCIM+05]. Their approach
finds all maximal repeating patterns, and uses don’t cares to discover an additional
entity called a “repetition with a hole”. This is defined as follows: If two repeating
patterns a and b are separated by exactly one interval, then that interval is given an
appropriate don’t care symbol (# or *). We define the entire concatenated string w =
a Μ {#,*} Μ b where Μ represents string concatenation. If w matches another
sequence within the musical passage, then it is considered a repeating pattern “with
a hole”, and added to the list of repeating patterns (it is likely an MRP, but not
always). Figure 28 shows two patterns that form a repetition with a hole.

44

5.3.3 Searching with Gaps

Searching with gaps can be defined as finding patterns where trivial symbols

separate the symbols of a pattern; in other words, the pattern can be broken up
amongst non-pattern sequences symbols as well, though still appearing in sequential
order. Consider a query and a musical string representing pitch values of a musical
theme, such as the following:

• Text: 50, 57, 53, 50, 49, 50, 52, 53, 55, 53, 52
• Query: 50, 53, 49, 53

From simple observation, the query does not exist verbatim anywhere within

the text. However, it may be possible to identify the sequential symbols of the query
if gaps are allowed. Consider Figure 29:

Figure 29

Absolute MIDI Pitch Values of Bach’s “The Art of the Fugue”

By allowing gaps between the symbols of the query, additional patterns can be
matched that may be semantically relevant. In the case of Figure 29, a match for the
query was found when this approach was taken. The problem of searching with gaps
is similar to the problem of finding “repetitions with a hole”, as outlined earlier in
Section 5.3.2; the main difference here is that each space between non-trivial
symbols can be more than one symbol long. Thus, searching with gaps is similar to
searching for patterns with contiguous runs of don’t care symbols within a text. This
can be especially useful for searching polyphonic music represented in a single string,
where less emphasis on a good voice division algorithm can be adopted for increased
flexibility by allowing gaps in the searching process.

Use of this approach is explored by Antoniou et al., who use finite automata to

represent systems that can identify patterns with gaps [AHIM+06]. Additionally, gap
searching is heavily explored by Crochemore et al., who outline a number of
algorithms to achieve matching in several specific gap situations [CIMR+02]. Among
these algorithms, the following specific gap searching problems are explored:

• α-bounded gap searching, where α represents the maximum gap length that can
occur between two matched symbols

• α-strict-bounded gap searching, where gaps between symbols must be exactly α
in length

45

• ε-bounded gap searching, where ε represents the maximum gap length in total
than can divide the sequence of non-trivial pattern symbols

• a number of algorithms that combine the previous three approaches with {δ,γ}-
approximate matching (see Section 5.3.1).

5.3.4 Levenshtein (Edit) Distance

One of the most common ways to judge string similarity is the use of

Levenshtein distance, or edit distance [Lev66]. Edit distance is defined as the
minimum number of editing operations that must be performed to make the strings
identical [HD02]; classical Levenshtein distance outlines three editing operations:

• Insertion – A symbol is inserted into a string, making a string of length n
increase to a length of n+1

• Deletion – A symbol is deleted from a string, making a string of length n
decrease to a length of n-1

• Replacement/Substitution – A symbol is replaced with an existing symbol in a
string, resulting in no length increase or decrease

As an example, consider the words BARN and ARMS. The Levenshtein distance

between these two words is 3; that is, it would take three edit operations to
transform BARN into ARMS:

• Operation #1: DELETE B FROM BARN ARN
• Operation #2: REPLACE N IN ARN WITH M ARM
• Operation #3: INSERT S INTO ARM ARMS

While the term edit distance normally refers to the 3-operation Levenshtein

model, other operations can be used to determine edit distance as well. Mongeau
and Sankoff extend Levenshtein’s 3 basic operations by an additional two operations:
fragmentation allows a symbol to be broken up into multiple symbols, and
consolidation allows multiple symbols to be replaced by a single symbol [MS90]. Edit
distance operations can also be associated with weights; the example above shows an
edit cost of 3 to convert BARN into ARMS, which assumes that each of the 3 possible
edit operations incur a cost of 1 respectively. However, certain edit costs can be
altered by associating uneven weights to each, allowing for more complex edit
distances to be considered. This suits approaches such as the work of Hu et al., who
propose the comparison of musical patterns based on the (weighted) probability that
one pattern was derived from the other, which naturally invites the use of weighted
edit distance as a measurement [HD02].

The calculation of edit distance is normally done using a correlative matrix

with the two patterns being compared down each axis. The operations allowed for
the edit model form a pattern such that values in the matrix are selected to minimize

46

the growing edit distance on the downward diagonal of the matrix. For example, in
Figure 30 the 5 operations allowed form a pattern where the lowest value of previous
edit distance + edit cost is selected for the diagonal value.

Figure 30
Calculation pattern of the 5 edit operations allowed by Mongeau and Sankoff

Figure 31
Windowed constraint for use in edit distance calculation [HD02]

Since the entire correlative matrix must be considered to effectively determine

the edit distance between two strings, calculation can be quite inefficient when
dealing with the comparison of larger strings. Many authors use a windowed
constraint approach, where the calculation of very far edits are ignored, tangibly
improving efficiency. For example, Figure 31 graphically depicts the window used by
Hu and Dannenberg, who also slide the window along the string text to compare
patterns at each available position in the musical phrase (Figure 32). The grey areas
of the matrix are filled with a maximum distance tolerance value so that the
calculation of these areas is not required and close alignment is preserved; expensive
and unlikely edits will cause the calculation of the matrix to halt.

47

Figure 32

Sliding constraint windows used to calculate edit distances at multiple positions [HD02]

5.3.5 Smooth Pitch Contours

Most approaches toward MIR systems focus on string processing, and while this

has led to fast searching algorithms as was intended, recall accuracy has room for
improvement. The comparison of smooth pitch contours seems to be a growing area
of interest in recent MIR research, as some authors begin to focus on precision, even
while sacrificing speed in the process [AMW05]. The problem with most significantly
reduced representations (like strings) is that too much information is lost during
musical transcription processes, as algorithms tend to discard data that is complex to
deal with, and yet still potentially important. In the general sense, a pitch string is a
very inaccurate sequence when compared to the thousands of frequency samples used
to create the string originally. Thus, it is better to match a smoother contour, where
multiple pitch frequency estimations are used for each note; a compromise between
the 1:1 note vs. symbol relationship in strings, and the VAST:1 information overload
of sampled audio.

Mazzoni and Dannenberg’s early attempt at matching smooth contours provided

a basis for further research into their use [MD01]. In their approach, MIDI files are
broken down into a finer granularity than common strings; the pitch frequency
occurring at every 100ms of the musical phrase was recorded, thus forming a contour.
While their approach focused on MIDI files for source data, queries into the system
followed the query-by-humming paradigm (see Section 4.1), thus demonstrating their
efforts on sampled audio as well. The query is converted into a smooth, fine-grained
contour, and then overlaid on top of each target melody’s contour. A distance is
measured, which results in a ranking, and the smallest distance wins for all
comparisons in the database. While this resulted in slower processing times, accuracy
was successfully increased.

In recent work by Adams et al., the use of smooth contours is augmented by

iterative deepening to increase processing efficiency while maintaining accuracy
[AMW05]. The authors recognize that when comparing smooth pitch contours, time
information is inherent in the approach since the contour is plotted against time.
However, queries may not match (or start at) the exact time for the stored smooth

48

contour. Thus, some alignment must be done, and iterative deepening is used to
achieve dynamic alignment (called Dynamic Time Warping) during the search
process. The query is compared to all theme contours, first with short distances. If
initial comparisons are too far apart, the remainder of the contour will not be
compared any further with that theme, and the theme is disqualified. Alignment
occurs when enough iterations (3 to be exact in their experiments) occur to find the
best-fit theme for the query contour. The results are promising, with a claimed
increase in efficiency by a factor between 25 and 40 over previous methods.

5.3.6 Comparison of Histograms

The extraction of musical information through histograms has been sparsely

explored by a few MIR systems, using the information gathered to serve both primary
and secondary functions. As is the case with most musical extraction methods, the
histograms are usually formed from pitch information, where intervals or exact pitch
values are grouped logically within some time interval. The major advantage of using
histograms as a means for comparing two musical phrases is speed and simplicity;
most algorithms for information gathering and comparison are easy to design, and can
scale well to large databases of musical themes. Naturally, this approach can lead to
inaccuracies in matching, since the data gathered is purely statistical, and normally
lacks a full time-ordering which perpetuates false matches.

Tzanetakis et al. make use of pitch histograms in a novel, secondary way for

the realization of an effective MIR system [TEC02]. Their approach analyzes
histograms formed from musical pieces in an attempt to automatically classify the
piece into one of five target genres {Irish folk, Classical, Jazz, Rock, Electronica}
based on prior musical knowledge gained through machine learning algorithms on
existing categorized pieces. While their success was poor for some genres, the
approach could be refined to assist an MIR system that considers genre classification
when conducting searches, or when attempting to segment a melodic line (see
Section 5.4.11).

49

Figure 33

Histogram regions calculated in [Ada04], for a query of “Yankee Doodle”

Other work by Adams et al. attempted to compare three approaches for

matching musical information: string sequences of notes, smooth contours, and pitch
histograms [Ada04]. The histogram approach took a set of histograms from queries
and melodies; this was done by breaking up each musical phrase into regions, and
taking a histogram representing the frequency of occurrence of pitches within that
region (see example in Figure 33). The target and query were then matched based on
a simple distance measurement between their corresponding histograms. After
analysis of the three methods used, the authors found that the histogram approach
led to a good balance between the accuracy of smooth contours and the efficiency of
string-based approaches.

5.4 Pattern Induction Approaches

The problem of extracting significant repeating patterns from a musical piece

has been heavily explored by several authors. Most approaches attempt to find
patterns in strings of symbols, however each approach ultimately relies on the
underlying representation used for the music. The fundamental approaches below
(and some noteworthy and illustrative algorithms) outline some of the devices used
for identifying patterns in music; many of these devices can and have been used
together simultaneously, both in research and also in real-world MIR systems. Thus,
the sections below attempt to identify some building blocks of the many pattern
induction algorithms available to date. It should also be noted that many of these

50

approaches can be used for matching a query to a pattern within a database, since
the fundamental idea is very similar: given a text and a pattern, find all occurrences
of that pattern within the text [CCIM+99].

5.4.1 Use of Trees/Tries/Lattices

The organization of data into trees has long been an effective approach for a

vast number of searching algorithms. Many pattern induction techniques target these
structures due to the efficient search times associated with them; this is sometimes a
trade-off with space complexity, since large tree-like indices can have high storage
costs, depending on the type of tree used.

Figure 34
Example of suffix tree of a feature string S = “ABBABB” [HLC01]

Investigation into tree and lattice usage for MIR systems is widespread. An

excellent and well-cited pair of papers explores, among other things, the use of suffix
trie’s for the purpose of pattern identification [HLC01, LHC99]. These authors use a
type of suffix tree (called RP-tree) to store substrings, and then join suffixes together
based on positional information, while discarding all trivial patterns found during the
process. The process of joining strings together continues until only MRPs are left.
Verbeurgt et al. use suffix trees to identify musical patterns, not for the purpose of
musical information retrieval but instead for use in music generation [VDF04]. They
induce patterns by constructing a suffix tree and extracting right-maximal string sub-
sequences of pitch intervals. The resultant strings are statistically analyzed to
provide probabilistic input for musical composition via Markov chains.

51

Figure 35
Meek and Birmingham’s lattice for the first phrase of Mozart’s “Symphony no. 40”

In another excellent paper by Meek and Birmingham, the Melodic Motive

Extractor (MME) algorithm uses a lattice structure very similar to a tree, but allowing
multiple parents for each node (see Figure 35) [MB01]. Their approach uses MIDI files,
ignoring any that are malformed, and extracts only the top voice of all multi-voiced
instruments within each MIDI channel into a pitch interval contour. Many other
features are calculated, and patterns are organized by weight; a large factor of
weight is the frequency of occurrence of a particular pattern. Their approach
achieves highly successful theme extraction rates, ranging between 85% and 100%
effectiveness in trials. The authors also note that their approach is attractive
because it was formulated with little musical knowledge; that is, the authors did not
have to grasp the more complex concepts of musical theory to attain a desirable
result.

5.4.2 Use of n-grams

Musical n-grams are equal-length bits of information, usually derived from a

single feature string such as a pitch interval sequence. Thus, a complete musical
piece represented as a string can be divided into n-grams of length n, and stored as
such with no symbol loss from the original string(s) used to create the n-grams. The
extraction of n-grams is actually a deviation from true pattern induction; the majority
of n-grams extracted will not represent any perceptually significant repeating
pattern, if the n-gram even repeats at all. The use of n-grams instead (usually) aims
to provide full-text access to musical pieces, rather than access at a thematic level
only. While this requires more work for algorithms to search an entire database of
music, advances in musical string searching can alleviate the real-world burden
incurred when dealing with many n-grams. One area which has been not been
explored adequately is the possible storage of n-grams in tree structures, which could
further improve searching efficiency.

52

Downie and Nelson break down monophonic musical passages into a series of
pitch intervals of length n, to obtain an exhaustive n-grammed representation of
musical pieces [DN00]. In their work, several n-gram databases were created and
compared to study the effects of varying lengths of n, as well as varying alphabet
sizes for the n-gram strings. They found that, with adequate alphabetic cardinality
and sizes for n, n-grammed approaches can be effective for allowing full-text
retrieval within musical passages with reasonable efficiency. Still, their approach is
quite limited since it can only handle monophonic music; this either limits the
potential set of music that can be analyzed, or relegates the complexity of dealing
with polyphonic music to algorithms that can extract monophonic passages first in
order to provide properly-formed input.

The approach by Downie and Nelson has been improved by Doraisamy and

Rüger, who attempt to use the storage of musical n-grams for the purpose of
polyphonic full-text searching [DR01]. They use a sliding window to capture all
polyphonic notes within a frame, and for each slide they calculate all of the possible
combinations of time-ordered polyphonic notes, each one being stored as a new n-
gram. Like Downie and Nelson, the authors use upper-case letters to represent
(quantize) increasing pitch intervals, and lower-case letters to represent interval
drops. The results obtained from this approach left some to be desired; recall
accuracy is reduced compared to the monophonic n-gram approach, and the time and
space complexity of searching the vast sets of n-grams representing all possible
passages through each polyphonic musical phrase was considerable. Also, since most
users search pieces based on themes and repetitive passages, it is natural to question
the real utility of n-grammed systems for general use, when compared to other
proven and effective approaches.

5.4.3 Bit Parallelism

The main idea of bit parallelism is to pack values that require processing into a

machine word, to take advantage of the fast update operations inherent with modern
computer hardware, such as bit shifting operations. Sometimes these approaches
require the storage of bit operation results in tables, for later analysis.

Cambouropoulos et al. provide an approach to δ-approximate and {δ,γ}-

approximate string searching that makes use of bit parallelism [CCIM+99]. The
approach works as follows: for a given musical string of note events, patterns are
identified by comparing the string against a text in a sliding fashion. This results in a
series of “delta states”, such that each state is a binary sequence where a 1 appears
if two symbols are at most δ apart, and a 0 otherwise. The delta states are then
packed into machine words, and a series of binary operations (SHIFT, AND, OR, etc..)
are applied to determine the frequency of the string in the text. The entire
algorithm, called SHIFT-PLUS, uses dynamic programming and tables to remember
past values, and has been widely accepted as a successful and efficient way to induce
{δ,γ}-approximate patterns in musical strings.

53

Other work by Koh and Yu attempts to improve on efforts by Liu et al [KY01,

LHC99]. They create a bit index table for each musical passage in a large MIR
database. The initial number of entries in the table is equal to the number of distinct
notes in the passage. For each entry, a bit sequence is stored that contains a 1 value
for all string positions where the corresponding distinct note appears, and a zero
otherwise (see Figure 36, noting that the least-significant bit is considered as bit
number one):

Figure 36
The bit index table for the length-8 string SoSoSoMiFaFaFaRe. Adapted from [KY01]

The authors then devise an algorithm which uses a binary string join approach:

patterns of length 1 (bit index sequences which contain multiple 1 values) are
identified as a repeating patterns, and each of these are merged with all other
repeating patterns that have repeating patterns in adjacent bit positions. Each
merged result is tested to see if it is also repeating. If so, it is further merged with
repeating patterns in the same manner, until eventually no additional patterns can be
merged. A second phase is then applied that filters out MRPs, leading to significant
increases in both time and space complexity when compared to [LHC99].

One possible idea that has not been fully explored is the use of bit parallelism

to process very simple reduced pitch contours similar to step-leap and U,D,S (see
Sections 2.3.3.2 and 2.3.3.1). If the alphabet could be reduced to a size of two, say a
1 if the pitch raises or stays the same, and a zero otherwise, the potential for fast
pattern induction and searching would be great. This would require significant
testing however, since the information reduction imposed by such a small contour
alphabet could render the matching process too inaccurate to be of real-world use.

5.4.4 Application of Heuristics

This section makes casual mention of notable papers using heuristic algorithms,

since the papers listed here were only partially investigated by this literature survey.
Several algorithms presented by Crochemore et al. make use of heuristics for exact
and/or partial matching with {δ,γ}-approximation [CILP+02]; they apply two
occurrence and substring heuristics to allow skipping of characters that have already
been visited when matching strings, to reduce the number of pattern comparisons.
Their approach uses a modified Boyer-Moore algorithm, suffix tries and subword

54

graphs, eventually realizing a speed increase over the bit parallel approach presented
in [CCIM+99].

Takasu et al. divide musical phrases partly based on a simple heuristic where

phrases are bound by musical rests appearing in MIDI files [TY99]. This adds an
additional induction task, since there is no explicit way of expressing a rest within the
MIDI file format; however, once rests have been identified the task of segmenting the
music is made simpler. While some musical themes and repeating patterns do contain
rests, dividing music this way is a promising idea that could use further exploration,
since the computational burden of sliding windows could be significantly reduced by
intelligently selecting passages to test for repetition.

5.4.5 Dynamic Programming

Since pattern matching often requires the memory of past results to form new

matches, the process of pattern induction routinely makes use of dynamic
programming. Normally, this is coupled with other approaches such as bit parallelism
or correlative matrices (Sections 5.4.3 and 5.4.10), and is the de facto approach for
algorithms that induce patterns based on edit distance measurements (refer to
Section 5.3.4). A series of algorithms by Crochemore et al. make heavy use of
dynamic programming to accomplish relaxed matching for finding patterns in strings
with gaps [CIMR+02]. More recently, an algorithm by Cambouropoulos et al. uses
dynamic programming with matrices to resolve the problem of finding patterns where
don’t care symbols are present, thus improving the simplicity of finding repetitions
with a hole (see Section 5.3.2) [CCIM+05]. Other works that employ dynamic
programming for the purpose of pattern induction are vast, including [ABSW04,
Cam06, HCL98, LWC05, MS90, PK02, Rol98, Bak97, Tem01].

5.4.6 Multidimensional Projection

In a multidimensional projection approach, musical information is stored in a k-

dimensional Euclidian space, where k represents the number of single musical
features to be extracted from the musical source. Patterns are usually not defined as
exactly repeating sequences, but rather groupings of notes within the space that
satisfy a certain distance criteria to other note groups; these groups can be identified
as a cluster, and any cluster with more than one note would be considered a
repeating pattern against which a query can be compared. This provides some
advantages:

• Overcomes some limitations of string searching. For example, this approach
allows easier searching with gaps, since notes exist discretely in the k-
dimensional space rather than sequentially in a string. Also, multidimensional
projection is particularly suited for polyphony, as all notes can be plotted in

55

the same k-dimensional space, whereas multiple strings must be used for a full
polyphonic representation.

• Extensible and flexible. Allows the creation of general k-dimensional
algorithms that can handle an arbitrary number of musical features occurring
on k axes.

• Data reduction for targeting of specific features is easy. The removal of
dimensions from the multidimensional set can be done easily, allowing a
reduction on data before algorithmic processing begins, to increase both
accuracy and efficiency.

Figure 37
A sample 2D graph of pitch and onset time adapted from [MLW02]. Query notes are circled red. Boxes

A-C represent points close enough to be considered as “similar” to query.

By plotting the musical note values discretely, queries can be converted to k-

space points and tested for collisions (or some measure of distance) with original song
points as a means of determining similarity between the query and the original music.
Furthermore, databases can be organized in a couple of useful ways; one large k-
dimensional space can store the plotted values of all the songs in the database, or
each song can store it’s own points in a separate space for that song alone. The
former solution is usually a better fit, since searching for matches can occur very
quickly due to the need to perform a search only once; of course, some mechanism to
deal with collisions of notes from different songs in the same point of space would be
needed, similar to the considerations of hash functions.

Meredith et al. introduce two algorithms that operate generally on k-
dimensional datasets of musical information [MLW02]. They offer a slightly different
definition of a maximal repeating pattern, which instead refers to the pattern with

56

the maximum length that can be converted to another pattern within the kD space
(call a maximum translatable pattern, or MTP). The algorithms given are:

• SIA: Computes all maximal repeating patterns (calculates MTPs) within music
based on k dimensions of data and different translation vectors. The algorithm
achieves reasonable efficiency: O(n2).

• SIATEC: Computes classes of translationally-equivalent MTP classes within the
dataset. Less efficient O(n3), but has a reasonable average case.

Other work by Shin et al. plots values in a 2-dimensional space defined by

average length and pitch variation. They radii for all points in the graphical space, to
represent a maximum difference to the original pattern, and then test queries using a
distance measure against the clustered regions within the space (see Figure 38).

Figure 38

2D space with radial clusters for testing query note values, from [SKKK03]

5.4.7 String Joins

String joins, normally used in conjunction with suffix trees and tries, are a

technique used to find maximal repeating patterns by first finding smaller repeating
patterns and then joining them together based on positional information. Eventually,
these string joins will result in the construction of maximal repeating patterns, and
this occurs quickly since the size of the joined repeating patterns increases
exponentially. For example, this approach is explored in [LHC99], and later in
[HLC01] (see discussion of 5.4.1 for details).

57

5.4.8 Use of Graphs

Figure 39
A suffix tree (left) and subword graph (right) for the word w = 1521652659 from [CILP+02]

Graphs can be used to form relationships between notes or pattern weights,

where edges are placed based on a measure of some distance/similarity between the
musical nodes. After such a graph is constructed, processing algorithms can take
advantage of known practices in graph theory to analyze the relationships that occur
in musical passages, leading to pattern discovery. This approach is used in an
algorithm by Rolland called FlExPat, which stands for the Flexible Extraction of
Sequential Patterns [Rol01a, Rol98]. The algorithm, which is widely recognized
throughout MIR literature, as well as deployed in several real-world MIR systems,
extracts sequential patterns that can be defined as “a set of segments from a
sequential database which share a significant degree of resemblance” [RG02].

58

Figure 40
An example star-type pattern extracted from an equipollence graph [Rol01a]

Figure 41
Another illustration of the notion of a star-type pattern. Segment s0 (called the star’s centre) is

equipollent to all other segments in the pattern [RG02]

The algorithm builds an equipollence graph where musical sequences are

nodes, and two nodes are equipollent if they are sufficiently similar. The
identification of star-type sub-graphs of sufficient similarity leads to the extraction
and storage of patterns in a database or index; each star-type sub-graph is considered
a sequential pattern (or just pattern), consisting of one musical string segment which
is equipollent to all the other segments in the pattern (called the centre). These
constructs are illustrated in Figure 40 and Figure 41.

59

5.4.9 Construction of Automata

The construction of automata can help to both induce patterns and verify

queries. Recent work by Antoniou et al. focuses on the creation of a number of
automata for the purpose of identifying repeating patterns [AHIM+06].

Figure 42
Finite deterministic factor automaton resulting from union of individual automata for each string in a

set [AHIM+06]

Specifically, when searching for common patterns between length i and j

amongst a set of strings S = {S1,S2,… Sn}, the authors create an automaton for each
string in the set that accepts all factors within the length boundaries created by i and
j. Then each of these automata are merged together (unioned) and, if the result is
non-deterministic, converted to be deterministic (see Figure 42). The set of factors
accepted by this automaton are then used to create a second set of automata for the
strings in S, where each automaton is created using the factors identified in the
previously intersected global automaton. The second set of automata are once again
merged with the end result being that each repeated factor occurring in all of the
strings within S can be identified by the final deterministic union automaton; that is,
any string accepted by this last automaton will represent a repeating factor in the
set. The authors use this approach to allow for string searching with gaps. Other
papers that explore the use of automata for the searching of patterns within strings
are given by Crochemore et al. [CCGJ+93], Raffinot [Raf97], Navarro and Raffinot
[NR98], and by Hosoya et al. [HSIM05] for use in lyrical recognition.

5.4.10 Correlative Matrices

Correlative matrices, also called self-similarity matrices, allow patterns to be

discovered within a string of musical features by comparing that string to itself.
These devices are constructed by placing a musical string down both the x and y axes

60

of a matrix, to allow placement of numerical values that indicate the current and past
matching information at various points in the string (see Figure 43).

Figure 43
An example correlative matrix from [HCL98]

The resulting matrix can be analyzed for patterns forming in the rows and

columns; often these algorithms traverse the comparison space diagonally looking for
increasing values and value groupings as an indication of repeating patterns.
Correlative matrices can be quite spatially expensive for the induction of patterns
involving long musical strings, due to the inherent O(n2) complexity imposed by the
matrix itself. Use of correlative matrices can be found in a series of papers by Chen,
Hsu and Liu [HCL98, LHC99, HLC01], as well as in Smith and Medina [SM01].

5.4.11 A Word on Melodic Segmentation

A number of approaches attempt to identify patterns by segmenting a melodic

surface into perceptibly-bounded parts in a pre-processing stage for an induction
algorithm. This intrinsically increases the relevance of patterns that are checked for
repetition, as those that cross segmentation boundaries are omitted. Additionally,
musical segments can be processed independently, allowing for complicated induction
algorithms to be run incrementally or in parallel. One of the most important tasks in
melodic segmentation is determining how to identify appropriate boundaries in music;
the use of rests, bar divisions, and in many cases individual note weighting functions
can all help to contribute to a boundary strength profile that can suggest good
segmentation points. Melodic segmentation itself is an entire MIR research topic in its
own right, and is omitted from this paper due to scope constraints. Still, melodic
segmentation algorithms and approaches can be found in [Cam03, Cam06, CT04,
FN03, Meu02, MS03, SKKK03].

61

6.0 Summary and Discussion

This literature survey examined a wide range of papers dealing with topics

relating to musical information retrieval. The most common methods of representing
music were explored, with a particular emphasis on storing the various types of useful
musical features. Several prominent approaches and algorithms were outlined, both
in the areas of measuring musical similarity, and also the process of extracting
information from musical passages expressed in a variety of sampled and non-sampled
formats. While this area of MIR is well researched by the academic community, there
exists room for additional investigation into possible methods of extracting and
storing harmonic chord progressions; it is likely that a lack of useful algorithms in this
field is directly related to the difficulty of analyzing chordal progressions based on
notational information alone, a significant problem considering the most common file
format (MIDI) lacks many of the useful features of fully scored music. In general, MIR
researchers would greatly benefit from the emergence of a better standard music
format such as those of the digital score family; it is highly unlikely that such a format
would emerge as a de facto standard on its own, and thus algorithms that can
accurately and fully convert MIDI to more complex digital formats would be
invaluable.

Several methods of query capture and representation were also explored,

giving insight into some of the common problems associated with attempting to
interpret musical input from users with varying skills and abilities. The most
important of these paradigms is query by humming, since the human voice is the only
universal instrument available to all users of any race and/or ethnic background.
Still, query-by-humming is particularly error-prone during the transcription phase of
an MIR system, and research has revealed that any successful query mechanism would
require significant knowledge into both the common errors made by users, as well as
an in-depth understanding of issues in human psychoacoustics.

While it is clear from the topics explored that much work has been done in the

field of MIR, some areas remain that have not yet been sufficiently explored. First,
more authors should attempt to coordinate the advantages of multiple approaches to
musical pattern matching in a single MIR framework. For example, when searching
for patterns in music, a smooth contour approach often provides excellent accuracy,
though at a high computational cost. One solution to this would be to use the
advantages of reduced contours and smooth contours together; queries could first be
transcribed into a reduced contour and then searched among a reduced contour
database. This would result in a superset of the record matches that a smooth
contour approach would give. From this superset, an MIR system could then apply
smooth contour analysis for further refinement; thus, the reduced contour approach
would act as a filter to decrease the computational burden of applying smooth
contour analysis to the entire MIR database. It is conceptually feasible that this
approach would increase efficiency while incurring little or no cost in matching
accuracy.

62

This is particularly evident in the unexplored area of binary pitch contours, or

those pitch contours that can be represented in an alphabet of size 2 {0, 1}. The
closest resemblance to this approach would be the U,D,S approach by Ghias et al.
[GLCS95] outlined in Section 2.3.3.1, with the difference being that the S symbol is
removed. Consider a contour where a 1 is placed if a pitch interval represents an
increase or the same pitch, and a 0 is placed if the pitch interval represents a
decrease (see Figure 44).

Figure 44
A possible binary pitch contour for Frère Jacques

While this type of contour suffers from massive data loss in the pitch domain, it

is particularly well-suited to use the advantages of bit parallelism. This is especially
true with the advent of native 64-bit processing hardware, which could handle a
musical phrase of up to 64 pitch intervals in a single 64-bit value; studies have shown
that the average real-world theme melody for large databases of music hovers
between 55 and 70 notes [SMW97, LHC99]. For example, if the contour in Figure 44 is
taken to be a 64-bit value with 0’s padded to the least significant bits, the decimal
equivalent value would be 15985526877351575552. Even the storage of pitch
contours in 32-bit integers could serve many purposes, since themes could be broken
into parts or stored as a series of melodic subsets. By comparing melodic contours
using binary operations, large databases of musical themes could be searched very
quickly without requiring any data conversion. As mentioned above, if the resulting
matches are not sufficiently precise, refinement of the set with step-leap or smooth
contour comparisons could serve as a second stage and even third stage in the
matching process. Alternatively, the pairing of reduced rhythmic contours with
binary pitch contours could allow very fast searching in both the pitch and rhythmic
domain, as an enriched initial step. As stated in Section 2.4.4, no substantial
research involving reduced rhythmic contours has been done.

Other potential areas of research includes investigations into new types and

uses for musical histograms, as studies exploring these constructs seem to yield
positive results in general. The combination of multiple histograms in multiple
feature domains (rhythm, pitch, tempo change, etc..) could serve as an efficient and
useful method for pattern matching and extraction, or for further investigations into
genre classification similar to the work of [TEC02]. Another area open to study is the
identification of chordal progressions in music, where notes could be used to
harmonically analyze local tonic values and other intervals, perhaps as an aid for
melodic segmentation. Some effort in this area has been done by Klapuri [Kla03] (see
Section 3.2.4). Finally, limited research has been done to investigate how musical

63

patterns can be stored and used for automated musical composition; for some papers
that cover these issues, see [KF06, Mir01, Mir04, VDF04].

64

7.0 References

Note: For the reader’s convenience, a large (but not exhaustive) list of electronic
URLs for these and other documents can be found at:

http://www.demopoulos.org/?cat=4

[Ada04]

[ABSW04]

[AB02]

[AMW05]

[AHIM+06]

[Bak97]

[BM48]

[BEWS04]

[BMS00]

[BVW06]

[BZ91]

[Bro80]

[BM77]

[Cam01]

Adams, N. H. (2004) Time Series Representations for Music Information Retrieval,
University of Michigan

Adams, N. H., Bartsch, M., Shifrin J., and Wakefield, G. (2004) Time series alignment for
music information retrieval. In Proceedings of the International Conference on Music
Information Retrieval, 303–310

Adams, N. H., & Bolton, R.J. (2002) Eds. Lecture Notes In Computer Science, vol. 2447.
Springer-Verlag, London, 190-198

Adams, N. H., Marquez, D., and Wakefield, G. (2005) “Iterative Deepening for Melody
Alignment and Retrieval,” In Proc. Int. Conf. on Music Inf. Retrieval (ISMIR), London, UK,
September

Antoniou, P., Holub, J., Iliopoulos, C.S., Melichar, B., Peterlongo, P. (2006) Finding
Common Motifs with Gaps using Finite Automata. In O. H. Ibarra, Hsu-Chun Yen (eds.)
Proceedings of the 11th International Conference on Implementation and Application of
Automata (CIAA2006), National Taiwan University, Taipei, Taiwan, LNCS 4094, Springer-
Verlag, pp. 69-77

Bakhmutova, I. V., Gusev, V.D. and Titkova, T.N. (1997) The Search for Adaptations in
Song Melodies. Computer Music Journal, 12(1):58-67

Barlow, H., & Morgenstern, S. (1948) A Dictionary of Musical Themes. Crown Publishers

Batke, J., Eisenberg, G., Weishaupt, P., Sikora, T. (2004) A Query by Humming system
using MPEG-7 Descriptors. In Proceedings of the 116th AES Convention, 2004

Bello, J. P., Monti, G., Sandler, M. (2000) Techniques for Automatic Music Transcription.
In International Symposium on Music Information Retrieval, 2000

Bosma, M. Veltkamp, R. C., Wiering, F. (2006) Muugle: A modular music information
retrieval framework. In ISMIR Proceedings, 2006.

Brown, J. C., and Zhang, B. (1991) Musical frequency tracking using
the methods of conventional and narrowed autocorrelation. J. Acoust. Soc. Am. 89, 2346-
2354

Brook, B. S. Thematic catalogue. (1980) In The new Grove dictionary of music and
musicians, ed. Stanley Sadie. London: Macmillan Publishers, 1980.

Boyer, R. S., & Moore, J.S. (1977) A fast string searching algorithm. Commun. ACM 20,
10, 762-772

Cambouropoulos, E. (2001) Automatic pitch spelling: From numbers to sharps and flats. In
VIII Brazilian Symposium on Computer Music (SBC&M 2001), Fortaleza, Brazil

65

[Cam00a]

[Cam00b]

[Cam06]

[Cam03]

[CCI01]

[CCIM+05]

[CCIM+99]

[CT04]

[CC98]

[CEMS00]

[CKE01]

[Col04]

[CIR98]

Cambouropoulos, E. (2000) Extracting significant patterns from musical strings: some
interesting problems. In Proceedings of the London String Days workshop, King’s College
London and City University

Cambouropoulos, E. (2000) From MIDI to Traditional Musical Notation. In Proceedings of
the AAAI Workshop on Artificial Intelligence and Music: Towards Formal Models for
Composition, Performance and Analysis 30 July - 3 Aug 2000, Austin, Texas

Cambouropoulos, E. (2006) Musical Parallelism and Melodic Segmentation: A
Computational Approach. Music Perception 23(3):249-269

Cambouropoulos, E. (2003) Musical pattern extraction for melodic segmentation. In
Proceedings of the ESCOM Conference 2003, Hannover, Germany

Cambouropoulos, E., Crawford, T., Iliopoulos, C. S. (2001) Pattern processing in melodic
sequences: challenges, caveats and prospects. In Computers and the Humanities 35 (1),
pp. 9-21

Cambouropoulos, E., Crochemore, M., Iliopoulos, C. S., Mohamed, M., and Sagot, M.
(2005) A Pattern Extraction Algorithm for Abstract Melodic Representations that Allow
Partial Overlapping of Intervallic Categories. In, T. Crawford, M. Sandler, editors,
Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR
2005), pp. 167–174

Cambouropoulos, E., Crochemore, M., Iliopoulos, C. S., Mouchard, L., Pinzon, Y. J. (1999)
Algorithms for computing approximate repetitions in musical sequences. In R. Raman and
J. Simpson, editors, Proceedings of the 10th Australasian Workshop on Combinatorial
Algorithms, pages 129-144, Perth, WA, Australia

Cambouropoulos E., & Tsougras, C. (2004) Influence of Musical Similarity on Melodic
Segmentation: Representations and Algorithms. In Proceedings of the International
Conference on Sound and Music Computing (SMC04), Paris, France

Chen, J. C. C., Chen, A. L. P. (1998) Query by Rhythm: An Approach for Song Retrieval in
Music Databases. RIDE 1998: 139-146

Clausen, M., Engelbrecht, R., Meyer, D., and Schmitz, J. (2000) Proms: A web-based tool
for searching in polyphonic music. In Proceedings of the 1st International Symposium on
Music Information Retrieval (ISMIR 2000)

Clausen, M., Kurth, F., Engelbrecht, R. (2001): Context-based Retrieval in MIDI and Audio.
In Fellner, D.W., Fuhr, N., Witten, I. (Eds.): ECDL Workshop: Generalized Documents.
Darmstadt, September

Collins, N. (2004) Beat Induction and Rhythm Analysis for Live Audio Processing: 1st Year
PhD Report. Centre for Science and Music, Faculty of Music, University of Cambridge.
Released 18/06/2004

Crawford, T., Iliopoulos, C. S., and Raman, R. (1998) String Matching Techniques for
Musical Similarity and Melodic Recognition. Computing in Musicology 11, 73-100

66

[Cro81]

[CCGJ+93]

[CILP+02]

[CIMR+02]

[CINP03]

[DBPH+07]

[DO06]

[Dix00]

[DR01]

[Dow78]

[DN00]

[FN03]

[Foo99]

[GKM03]

Crochemore, M. (1981) An Optimal Algorithm for Computing the Repetitions in a Word.
Information Processing Letters 12, 244-250

Crochemore, M., Czuma, A., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski, W.,
Rytter, W. (1993) Fast practical multi-pattern matching. Rapport 93-3, Institut Gaspart
Monge, Université de Marne la Vallée

Crochemore, M., Iliopoulos, C. S., Lecroq, T., Pinzon, Y. J., Plandowski, W., and Rytter,
W. (2003) Occurrence and substring heuristics for δ-matching. Fundam. Inf. 56, 1,2, 1-21,
July

Crochemore, M., Iliopoulos, C., Makris, C., Rytter, W., Tsakalidis, A., Tsichlas, K. (2002)
Approximate string matching with gaps. Nordic Journal of Computing 9(1):54-65, Spring

Crochemore, M., Iliopoulos, C., Navarro, G., Pinzon, Y. (2003) A bit-parallel suffix
automaton approach for (δ, γ)-matching in music retrieval. In Proc. 10th International
Symposium on String Processing and Information Retrieval (SPIRE'03), Springer-Verlag,
pp. 211-223

Dannenberg, R. B., Birmingham, W. P., Pardo, B., Hu, N., Meek, C., Tzanetakis, G. (To
appear February 2007) A Comparative Evaluation of Search Techniques for Query-by-
Humming Using the MUSART Testbed,'' Journal of the American Society for Information
Science and Technology, 58(3)

De Poli, G., & Orio, N. (2006) Music Information Processing. Algorithms for Sound and
Music Computing, Chapter 6: Publication Status: UNKNOWN

Dixon, S., & Cambouropoulos E. (2000) Beat Tracking with Musical Knowledge. Accepted
for ECAI 2000, Berlin

Doraisamy, S., & Rüger, S. M. (2001) An approach toward a polyphonic music retrieval
system. In J. S. Downie and D. Bainbridge, editors, Proceedings of the 2nd Annual
International Symposium on Music Information Retrieval (ISMIR), pages 187-193, Indiana
University, Bloomington, Indiana, October

Dowling, W. J. (1978) Scale and contour: Two components of a theory of memory for
melodies. Psychological Review, 85(4):341-354

Downie, S., Nelson, M. (2000) Evaluation of a Simple and Effective Music Information
Retrieval Method. In Proc. of the ACM-SIGIR, Athens, GR, 73-80

Ferrand, M., & Nelson, P. (2003) Unsupervised learning of melodic segmentation: A
memory-based approach. In Proceedings of the 5th Triennial ESCOM Conference,
Hanover, Germany, pp. 141-144

Foote, J. (1999) An Overview of Audio Information Retrieval. Multimedia Systems, 7(1),
307–328

Gómez, E., Klapuri, A., Meudic, B. (2003) Melody Description and Extraction in the
Context of Music Content Processing. Journal of New Music Research
Vol.32.1, 2003.

67

[GSOP+06]

[GLCS95]

[Hof01]

[HHRK98]

[HSIM05]

[HCL98]

[HLC01]

[HD02]

[HDL02]

[ILMP00]

[KBT04]

[KNKT95]

[KF06]

[Kla03]

Gómez, E., Streich, S., Ong, B., Paiva, R., Tappert, S., Batke, J., Poliner, G., Ellis, D.,
Bello, J. (2006) A Quantitative Comparison of Different Approaches for Melody Extraction
from Polyphonic Audio Recordings. MTG-TR-2006-01

Ghias, A., Logan, J., Chamberlin, D., Smith, B. C. (1995) Query by humming: Musical
information retrieval in an audio database. In Proc. of ACM Multimedia, 231-236

Hofmann-Engl, L. (2001) Towards a cognitive model of melodic similarity. In Proceedings
of the 2nd Annual International Symposium on Music Information Retrieval, Bloomington,
Indiana, pp 143–151

Hoos, H., Hamel, K., Renz, K., Kilian J. (1998) The GUIDO Notation Format -- A Novel
Approach for Adequately Representing Score-Level Music. In Proceedings ICMC 98. 451–
454

Hosoya, T., Suzuki, M., Ito, A., Makino, S. (2005) Lyrics recognition from a singing voice
based on finite state automaton for music information retrieval. In Proc. ISMIR 2005, pp.
532–535

Hsu, J., Chen, A. L. P, and Liu, C. (1998) Efficient repeating pattern finding in music
databases. In Proceedings of the Seventh international Conference on information and
Knowledge Management CIKM '98, Bethesda, Maryland, United States, November 02-07.
ACM Press, New York, NY, 281-288

Hsu, J., Liu, C., Chen, A. L. P. (2001) Discovering nontrivial repeating patterns in music
data. IEEE Transactions on Multimedia, vol.3, no.3, pp.311-325, Sept

Hu, N., & Dannenberg, R. B. (2002) A Comparison of Melodic Database Retrieval
Techniques Using Sung Queries. In Joint Conference on Digital Libraries, Association for
Computing Machinery

Hu, N., Dannenberg, R. B., Lewis, A. L. (2002) A Probabilistic Model of Melodic Similarity.
In Proceedings of the International Computer Music Conference (ICMC'02), Gotheborg,
Sweden, September

Iliopoulos, C., Lecroq, T., Mouchard, L., Pinzon, Y. (2000) Computing approximate
repetitions in musical sequences. In Proc. of Prague Stringology Club Workshop
(PSCW’00), pages 49–59

Kapur, A., Benning, M., Tzanetakis, G. (2004) Query-By-Beat-Boxing: Music Retrieval for
the DJ. In Proc. of the 5th International Conference on Music Information Retrieval
(ISMIR 2004), Barcelona, October 10-14

Kashino, K., Nakadai, K., Kinoshita, T., and Tanaka, H. (1995) Organization of
Hierarchical Perceptual Sounds: Music Scene Analysis with Autonomous Processing
Modules and a Quantitative Information Integration Mechanism.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 1, 158–
164

Khalifa, Y. M. A., Foster, R. (2006) A Two-Stage Autonomous Evolutionary Music
Composer. EvoWorkshops 2006: 717-721

Klapuri, A. P. (2003) Musical meter estimation and music transcription. In Proc.
Cambridge Music Processing Colloquium, pages 40-5

68

[Kla00]

[KMP77]

[KY01]

[Kru90]

[KS79]

[LK94]

[Lar05]

[Lar03]

[LL98]

[LJ83]

[Lev66]

[Lin67]

[LHC99]

[LWC05]

Klapuri, A. P. (2000) Qualitative and quantitative aspects in the design of periodicity
estimation algorithms. In Proc. European Signal Processing Conference, Tampere,
Finland, September

Knuth, D. E., Morris, J. H., Pratt, V. R. (1977) Fast pattern matching in strings. SIAM
Journal on Computing 6, 1, 323-350

Koh, J., & Yu, W. D. (2001) Efficient Feature Mining in Music Objects. In Proceedings of
the 12th international Conference on Database and Expert Systems Applications
(September 03 - 05, 2001). Mayr, H. C., Lazanský, J., Quirchmayr, G., Vogel, P. Eds.
Springer-Verlag, London, 221-231

Krumhansl, C. L. (1990) Cognitive Foundations of Musical Pitch, Oxford University Press,
New York

Krumhansl, C. L., & Shepard, R. N. (1979) Quantification of the hierarchy of tonal
functions within a diatonic context. Journal of Experimental Psychology: Human
Perception and Performance, 5(4): 579-594

Large, E. W., & Kolen, J. F. (1994) Resonance and the perception of musical meter.
Connection Science, 6, 177 – 208

Lartillot, O. (2005) Multi-Dimensional Motivic Pattern Extraction Founded on Adaptive
Redundancy Filtering. In Journal of New Music Research Vol. 34, No. 4, pp. 375 – 393

Lartillot, O. (2003) Perception-based advanced description of abstract musical content. In
Izquierdo, E., ed., Digital Media Processing for Multimedia Interactive Services

Lemström, K., & Laine, P. (1998) Musical Information Retrieval Using Musical Parameters.
In Proc. 1998 International Computer Music Conference (ICMC'98), pp. 341-348

Lerdahl, F., Jackendoff, R. A. (1983) Generative Theory of Tonal Music. MIT Press,
Cambridge, MA

Levenshtein, V.I. (1966) Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, vol. 10, pp. 707-710

Lincoln, H. B. (1967) Some criteria and techniques for developing computerized thematic
indices. In Heckmann, editor, Electronische Datenverarbeitung in der Musikwissenschaft,
Regensburg

Liu, C., Hsu, J., Chen, A. L. P. (2005) Efficient theme and non-trivial repeating pattern
discovering in databases. In Proc. of ICDE 99, Sydney, Australia, pp. 14-21

Liu, N. H., Wu, Y. H., and Chen, A. L. P. (2005) An Efficient Approach to Extracting
Approximate Repeating Patterns in Music Databases. In Proceedings of International
Conference on Database Systems for Advanced Applications

69

[Lon87]

[MD01]

[MM04]

[MB02]

[MB01]

[Mer04]

[MLW02]

[Meu03]

[Meu02]

[MS03]

[Mir04]

[Mir01]

[MS90]

[NR98]

Longuet-Higgins, H. C. (1987) The perception of melodies. In H. Christopher Longuet-
Higgins, editor, Mental Processes: Studies in Cognitive Science, pages 105–129. British
Psychological Society/MIT Press, London, England and Cambridge, Mass

Mazzoni, D., & Dannenberg, R. B. (2001) Melody matching directly from audio. In 2nd
Annual International Symposium on Music Information Retrieval, Bloomington, Indiana,
USA

McKinney, M., & Moelants, D. (2004) Extracting the perceptual tempo from music. In
Proceedings of the 5th International Symposium on Musical Information Retrieval 2004.
Barcelona: Universitat Pompeu Fabru,

Meek, C., & Birmingham, W. P. (2002) Johnny can't sing: A comprehensive error model for
sung music queries. In Proceedings of the Third International Conference in Music
Informatics Retrieval

Meek, C. and Birmingham, W. P. (2001) Thematic Extractor. In 2nd Annual International
Symposium on Music Information Retrieval, Bloomington, Indiana University, Indiana,
119-128

Meredith, D. (2004) Comparing Pitch Spelling Algorithms on a Large Corpus of Tonal
Music. In U.K. Wiils (ed). Computer Music Modeling and Retrieval. Esbjerg, Denmark:
Springer-Verlag LNCS #3310

Meredith, D., Lemstrom, K., Wiggins, G. A. (2002) Algorithms for discovering repeated
patterns in multidimensional representations of polyphonic music. Journal of New Music
Research, 31(4):321--345

Meudic, B. (2003) Musical pattern extraction: from repetition to musical structure. In
Proceedings of CMMR (Computer Music Modeling and Retrieval), Montpellier, May

Meudic, B. (2002) A causal algorithm for beat tracking. 2nd conference on understanding
and creating music, Caserta, Italy

Meudic, B., St James, E. (2003) Automatic Extraction of Approximate Repetitions in
Polyphonic Midi Files Based on Perceptive Criteria. Computer Music Modelling and
Retrieval, LNCS 2771, Springer-Verlag

Miranda, E.R. (2004) At the Crossroads of Evolutionary Computation and Music: Self-
Programming Synthesizers, Swarm Orchestra and Origins of Melody. Evolutionary
Computation, Vol. 12, No. 2, pp. 137-158

Miranda, E.R. (2001) Composing Music Using Computers. Focal Press, Oxford, UK

Mongeau, M., & Sankoff, D. (1990) Comparison of Musical Sequences. In Hewlett, W., &
Selfridge-Field, E. eds. Melodic Similarity Concepts, Procedures, and Applications, MIT
Press, Cambridge

Navarro, G., & Raffinot, M. (1998) Fast and flexible string matching by combining bit-
parallelism and suffix automata. Technical Report TR/DCC-98-4, Dept. of Computer
Science, Univ. of Chile

70

[NO04]

[Par05]

[Par94]

[PK02]

[PG77]

[PE85]

[Raf97]

[Ren02]

[Rol98]

[Rol01a]

[Rol01b]

[Rol00]

[RG02]

[RRG99]

[Ros92]

Neve, G., Orio, N. (2004) Indexing and Retrieval of Music Documents through Pattern
Analysis and Data Fusion Techniques. In Proc. of the International Conference on Music
Information Retrieval, Barcelona, ES, pp. 216-223

Parker, C. L. (2005) Applications of Binary Classification and Adaptive Boosting to the
Query-By-Humming Problem. ISMIR 2005: 245-251

Parncutt, R. (1994) A Perceptual Model of Pulse Salience and Metrical Accent in Musical
Rhythms. Music Perception 11, 409-464

Paulus, J., & Klapuri, A. (2002) Measuring the similarity of rhythmic patterns. In
Proceedings of the International Conference on Music Information Retrieval

Piszczalski, M., & Galler, B. F. (1977) Automatic Music Transcription. Computer Music
Journal, 1, 24-31

Povel, D. J., & Essens, P. J. (1985) Perception of temporal patterns. Music Perception, 2,
411-441

Raffinot, M. (1977) On the multi-backward dawg matching algorithm (MultiBDM). In
Proceedings WSP’97, Carleton University Press, pp. 149-165

Renz, K. (2002) Algorithms and data structures for a music notation system based on
GUIDO music. PhD thesis, Universität Darmstadt

Rolland, P. Y. (1998) FlExPat: A Novel Algorithm for Musical Pattern Discovery. In
Proceedings of the XII Colloquium in Musical Informatics, Gorizia, Italy

Rolland, P. Y. (2001) FlExPat: Flexible Extraction of Sequential Patterns. In Proceedings
of the 2001 IEEE international Conference on Data Mining (November 29 - December 02,
2001). N. Cercone, T. Y. Lin, and X. Wu, Eds. ICDM. IEEE Computer Society, Washington,
DC, 481-488

Rolland, P. Y. (2001) Introduction: Pattern Processing in Music Analysis and Creation.
Computers and the Humanities, Volume 35, Number 1, February 2001, pp. 3-8(6)

Rolland, P. Y. & Ganascia J. G. (2000) Musical Pattern Extraction and Similarity
Assessment. In E. M. Miranda (Ed.), Readings in Music and Artificial Intelligence, Harwood
Academic 115-144

Rolland, P. Y. & Ganascia, J. G. (2002) Pattern Detection and Discovery: The Case of
Music Data Mining. In Proceedings of the ESF Exploratory Workshop on Pattern Detection
and Discovery (September 16 - 19, 2002), D. J. Hand, N. M.

Rolland, P. Y., Raškinis, G., Ganascia, J. G. (1999) Musical content-based retrieval: an
overview of the Melodiscov approach and system. In Proceedings of the Seventh ACM
international Conference on Multimedia (Part 1), Orlando, Florida, United States,
October 30 - November 05. MULTIMEDIA '99. ACM Press, New York, NY, 81-84

Rosenthal, D. (1992) Emulation of Human Rhythm Perception. Computer Music Journal
16(10):64-76

71

[Row93]

[Sch98]

[Sep01]

[SKKK03]

[SW81]

[SMW97]

[SM01]

[TY99]

[Tem97]

[Tem01]

[TB02]

[TEC02]

[UZ98]

[VDF04]

[WR03]

Rowe, R. (1993) Interactive Music Systems (Machine Listening and Composing).
Cambridge, Mass: The MIT Press

Scheirer, E. (1998) Tempo and Beat Analysis of Acoustic Musical Signals. Journal of the
Acoustical Society of America, 103(1):588,601, January

Seppänen, J. (2001) Computational models of musical meter recognition. Master's thesis,
Dept. Information Technology, Tampere University of Technology, August

Shin, C., Ku, K., Kim, K., Kim, Y. (2003) Automatic Construction of Theme Melody Index
from Music Database for Fast Content-Based Retrievals. ECIR 2003: 605-612

Smith, T. F., & Waterman, M. S. (1981) Identification of common molecular
subsequences. Journal of Molecular Biology 147, 195-197

Smith, L. A., McNab, R. J., Witten, I. H. (1997) Music Information Retrieval Using Audio
Input. In Proceedings of the AAAI: Intelligent Integration and Use of Test, Image, Video
and Audio Corpora, Stanford, CA, pp. 12-16

Smith, L., & Medina. R. (2001) Discovering themes by exact pattern matching. In Proc. of
International Symposium on Music Information Retrieval, pp 31-32

Takasu, A., Yanase, T., Kanazawa, T., and Adachi, J. (1999) Music Structure Analysis and
Its Application to Theme Phrase Extraction. In Proceedings of the Third European
Conference on Research and Advanced Technology For Digital Libraries (September 22 -
24, 1999). Abiteboul, S., & Vercoustre, A. Eds. Lecture Notes In Computer Science, vol.
1696. Springer-Verlag, London, 92-105

Temperley, D. (1997) An Algorithm for Harmonic Analysis. Music Perception, 15(1):31-68

Temperley, D. (2001) The Cognition of Basic Musical Structures. MIT Press, Camb, MA

Temperley, D., & Bartlette, C. (2002) Parallelism as a Factor in Metrical Structure. Music
Perception, 20(2):117-149

Tzanetakis, G., Ermolinskiy, A., Cook, P. (2002) Pitch Histograms in Audio and Symbolic
Music Information Retrieval. In Proc. 3rd ISMIR: 31-38

Uitdenbogerd, A. L., & Zobel, J. (1998) Manipulation of Music for Melody Matching. In
Proc. ACM Multimedia '98, pp. 235-240

Verbeurgt, K., Dinolfo, M., and Fayer, M. (2004) Extracting patterns in music for
composition via Markov chains. In Proceedings of the 17th international Conference on
innovations in Applied Artificial intelligence (Ottawa, Canada, May 17 - 20, 2004).
Orchard, R., Yang, C., Ali, M. Eds. Lecture Notes In Computer Science. Springer Verlag,
1123-1132

Wieczorkowska, A. A., & Ras, Z. W. (2003) Editorial—Music Information Retrieval. Journal
of Intelligent Information Systems 21, 5-8, July

