
Further Remarks on DNA Overlap AssemblyI

Srujan Kumar Enagantia, Oscar H. Ibarrab, Lila Karia,c,∗, Steffen Kopeckia

aDepartment of Computer Science, University of Western Ontario, London, ON, N6A
5B7, Canada

bDepartment of Computer Science, University of California Santa Barbara, Santa
Barbara, CA, 93106, USA

cSchool of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

Abstract

The operation of overlap assembly was defined by Csuhaj-Varju, Petre,
and Vaszil as a formal model of the linear self-assembly of DNA strands: The
overlap assembly of two strings, xy and yz, which share an “overlap” y, re-
sults in the string xyz. This paper continues the exploration of the properties
of the overlap assembly operation by investigating closure of various language
classes under iterated overlap assembly, and the decidability of the complete-
ness of a language. It also investigates the problem of deciding whether a
given string is terminal with respect to a language, and the problem of de-
ciding if a given language can be generated by an overlap assembly operation
of two given others.

Keywords: DNA computing, bio-operations, DNA self-assembly, overlap
assembly

1. Introduction

The word and language operation overlap assembly was first introduced
by Csuhaj-Varju, Petre, and Vaszil - under the name (self-)assembly - in [1],
and later studied in [2], as a formal model of the linear self-assembly of DNA
strands. Formally, the overlap assembly is a binary operation which, when

IThis research was supported by Natural Science and Engineering Council of Canada
(NSERC) Discovery Grant R2824A01 and a University of Western Ontario Grant to L.K.,
and US NSF Grant CCF-1117708 to O.H.I.

∗Corresponding author
Email address: lila.kari@uwo.ca (Lila Kari)

Preprint submitted to Information and Computation November 8, 2016

applied to two input strings xy and yz (where y is their nonempty overlap),
produces the output xyz.

The study of overlap assembly as a formal language operation is part
of ongoing efforts to provide a formal framework and rigorous treatment
of DNA-based information and DNA-based computation. More specifically,
this study can be placed in the context of studies of DNA bio-operations
enabled by the action of the DNA polymerase enzyme, such as hairpin com-
pletion and its inverse operation, hairpin reduction [3, 4, 5, 6], overlapping
concatenation [7], and directed extension [8].

The activity of DNA Polymerase presupposes the existence of a DNA sin-
gle strand, called template, and of a second short DNA strand, called primer,
that is Watson-Crick complementary to the template and binds to it. Given
a supply of individual nucleotides, DNA polymerase then extends the primer,
at one of its ends only, by adding individual nucleotides complementary to
the template nucleotides, one by one, until the end of the template is reached.
In the wet lab, the iteration of this process is used to obtain an exponential
replication of DNA strands, in a protocol called Polymerase Chain Reaction
(PCR). Experimentally, (parallel) overlap assembly of DNA strands under
the action of the DNA Polymerase enzyme was used for gene shuffling in,
e.g., [9]. In the context of experimental DNA computing, overlap assembly
was used in, e.g., [10, 11, 12, 13] for the formation of combinatorial DNA or
RNA libraries. Overlap assembly can also be viewed as modelling a special
case of an experimental procedure called cross-pairing PCR, introduced in
[14] and studied in, e.g., [15, 16, 17, 18].

This paper is a continuation of the theoretical analysis of overlap assem-
bly as a formal language operation, that was started in [1] and [2]. In [1],
the authors proposed a formal language operation called “self-assembly”, in-
spired by the linear self-assembly of DNA single strands via Watson-Crick
complementarity. The authors obtained closure properties of various lan-
guage classes under iterated overlap assembly, and studied the question of
whether or not a given language can be generated through assembly and,
if so, what is the minimal generator. In [2], the aforementioned formal op-
eration of self-assembly was renamed overlap assembly, to avoid confusion
with other usages of the syntagm self-assembly, such as in the context of
DNA computing by two-dimensional self-assembly of DNA rectangular tiles,
[19, 20, 21]. The paper [2] explored closure properties of basic language fam-
ilies under overlap assembly, decision problems, as well as the potential use
of iterated overlap assembly to generate combinatorial DNA libraries.

2

In this paper, following Section 2 comprising definitions, notations and
basic properties, in Section 3 we correlate the overlap assembly operation
with the superposition operation introduced in [22] and determine additional
closure properties of some language classes under iterated overlap assembly.
A string w is terminal with respect to a language L if w ∈ L and the re-
sult of the overlap assembly between w and L equals {w}; the terminal set
T (L) contains all words that are terminal with respect to L. In Section 4
we investigate the closure properties of terminal sets of complete languages
(languages closed under overlap assembly). In Section 5 we study three deci-
sion problems: deciding the completeness of an arbitrary language, deciding
whether a string is terminal with respect to a language, and deciding whether
a language is generated by an overlap assembly operation between two given
languages. Section 6 contains concluding remarks.

2. Basic definitions and notations

An alphabet Σ is a finite nonempty set of symbols. Σ∗ denotes the set of
all words over Σ, including the empty word λ. Σ+ is the set of all nonempty
words over Σ. For words w, x, y, z ∈ Σ∗ such that w = xyz we call the
subwords x, y, and z prefix, infix, and suffix of w, respectively. The sets
pref(w), inf(w), and suff(w) contain, respectively, all prefixes, infixes, and
suffixes of w. A prefix (resp., infix or suffix) x of w is proper if x 6= w. We
employ the following notation: Pref(w) = pref(w) \ {w}, Inf(w) = inf(w) \
{w}, and Suff(w) = suff(w) \ {w}. This notation is naturally extended
to languages; for example, Suff(L) =

⋃
w∈L Suff(w). The complement of a

language L ⊆ Σ∗ is Lc = Σ∗\L.
Let N be the set of non-negative integers and k be a positive integer. A

subset Q of Nk is a linear set if there exist vectors ~v0, ~v1, . . . , ~vn ∈ Nk such
that Q = {~v0 + i1~v1 + · · ·+ in~vn | i1, . . . , in ∈ N}. A finite union of linear sets
is called a semilinear set.

Let Σ = {a1, . . . , ak}. The Parikh map of a language L ⊆ Σ∗, denoted
Ψ(L), is defined as

Ψ(L) = {(|w|a1 , . . . , |w|ak) | w ∈ L},
where |w|ai is the number of ai’s in w.

2.1. The overlap assembly
An involution is a function θ : Σ∗ → Σ∗ with the property that θ2 is

the identity. θ is called an antimorphism if θ(uv) = θ(v)θ(u). Traditionally,

3

the Watson-Crick complementarity of DNA strands has been modeled as an
antimorphic involution over the DNA alphabet ∆ = {A,C,G, T}, [23, 24].

Figure 1: (a) The two input DNA single-strands, uv and θ(w)θ(v) bind to each other
through their complementary segments v and θ(v), forming a partially double-stranded
DNA complex. (b) DNA polymerase extends the 3’ end of the strand uv. (c) DNA
polymerase extends the 3’ end of the other strand. The resulting DNA double strand is
considered to be the output of the overlap assembly of the two input single strands.

Using the convention that a word x over this alphabet represents the DNA
single strand x in the 5’ to 3’ direction, the overlap assembly of a strand uv
with a strand θ(w)θ(v) first forms a partially double-stranded DNA molecule
with v in uv and θ(v) in θ(w)θ(v) attaching to each other, see Figure 1(a).
The DNA polymerase enzyme will extend the 3’ end of uv with the strand
w, see Figure 1(b). Similarly, the 3’ end of θ(w)θ(v) will extended, resulting
in a full double strand whose upper strand is uvw, see Figure 1(c). Formally,
the overlap assembly between uv and θ(w)θ(v) is uvw. Assuming that all
involved DNA strands are initially double-stranded, that is, whenever the
strand x is available, its Watson-Crick complement θ(x) is also available, one
can further simplify this model and, given two words x, y over an alphabet
Σ, define the overlap assembly of x with y, [1], as:

x� y = {z ∈ Σ+ | ∃u,w ∈ Σ∗,∃v ∈ Σ+ : x = uv, y = vw, z = uvw}.

The definition of overlap assembly can be extended to languages in the
natural way.

The iterated overlap assembly µ∗(L) of a language L is defined as:

µ0(L) = L, µi+1(L) = µi(L)� µi(L), µ∗(L) =
⋃
i≥0

µi(L).

Since w ∈ w � w for any nonempty word w, it easily follows that µi(L) ⊆
µi+1(L) for L ∈ Σ+.

4

A string w ∈ L is said to be terminal with respect to the language L if
w�L = L�w = {w}. A set of strings T (L) ⊆ L is said to be the (maximal)
terminal set of L if every w ∈ T (L) is terminal with respect to L and for all
w ∈ L\T (L), w is not terminal with respect to L, that is,

T (L) = {w ∈ L | w � L = L� w = {w}}.

A complete language is a language closed under overlap assembly, that
is, L � L = L. For every language L, the language µ∗(L) is complete and
µ∗(L) = L if and only if L is complete. The investigation of the terminal
set T (L) makes most sense if L is complete, but it is well-defined for all
languages L.

2.2. Basic properties of the overlap assembly

In this section we present a few basic properties of the (iterated) overlap
assembly and complete languages. The operation of overlap assembly is not
associative, as seen in the next example.

The following example shows that overlap assembly is not associative

(aba� a)� bac = {abac}, aba� (a� bac) = ∅.

The words in the example are chosen such that a and bac cannot form an
overlap; note that, however, aba� bac = (aba� a)� bac in this example.

However, overlap assembly does satisfy a property related to associativity,
as seen in the following result.

Lemma 2.1. For languages Lx, Ly and Lz, we have ((Lx�Ly)�Lz)∪(Lx�
Lz) = (Lx � (Ly � Lz)) ∪ (Lx � Lz).

Proof. Consider a word w ∈ ((Lx�Ly)�Lz)∪ (Lx�Lz). If w ∈ (Lx�Lz),
then w clearly belongs to (Lx � (Ly � Lz)) ∪ (Lx � Lz). Otherwise, there
exist x ∈ Lx, y ∈ Ly and z ∈ Lz such that w = (x � y) � z. Because
w /∈ x � z, we can factorize y = uy′v such that w = xy′z, u is a nonempty
suffix of x, and v is a nonempty prefix of z. We conclude uy′z ∈ (y � z)
and w = xy′v ∈ x � (y � z). The converse inclusion follows by similar
arguments.

The next lemma considers a word w ∈ µ∗(L) and its infixes that belong
to L. It is not difficult to see that the entire word w is “covered” by overlap-
ping words from L. We formalize this observation by saying that every two
consecutive letters in the word w are covered by an infix v of w that belongs
to L.

5

Lemma 2.2. Let L ∈ Σ∗ be any language and w = a1a2 · · · an ∈ µ∗(L) for
letters a1, a2, . . . , an ∈ Σ. For each integer k with 1 ≤ k < n there exist
integers j, ` such that 1 ≤ j ≤ k < ` ≤ n and ajaj+1 · · · a` ∈ L.

Proof. The statement is trivially true if |w| = n < 2 or w ∈ µ0(L) = L. By
induction, assume that the statement holds for all words in µi(L) and consider
w ∈ µi+1(L) \µi(L). We have w ∈ x� y for some x, y ∈ µi(L). If k < |x|, we
find j, ` such that 1 ≤ j ≤ k < ` ≤ |x| and ajaj+1 · · · a` ∈ L because x is a
proper prefix of w. Here, we know that we can always find j and ` because
of the inductive hypothesis that the statement is valid for all x ∈ µi(L). If
k ≥ |x| ≥ n− |y|+ 1, we find j, ` such that n− |y|+ 1 ≤ j ≤ k < ` ≤ n and
ajaj+1 · · · a` ∈ L because y is a proper suffix of w. Again, we are using the
inductive hypothesis that the statement is valid for all y ∈ µi(L).

Lemma 2.2 leads to the following statement, that allows us to identify
non-terminal words in a language µ∗(L).

Lemma 2.3. For a language L and a word w ∈ µ∗(L)\T (µ∗(L)), there exist
z ∈ µ∗(L) \ {w} and x ∈ L such that z ∈ w � x or z ∈ x� w.

Proof. A word w ∈ µ∗(L) is not terminal with respect to µ∗(L) if there exists
y ∈ µ∗(L) and v 6= w such that v ∈ w�y or v ∈ y�w. Due to symmetry, we
only consider the case when v ∈ w � y. Let y = y1y2 such that v = wy2 and
y1 is a suffix of w. We will use Lemma 2.2 with the following interpretation:
since y = y1y2 ∈ µ∗(L), there are x1, x2 ∈ Σ+ with x = x1x2 ∈ L such that
x1 is a suffix of y1 and x2 is a prefix of y2. Let z = wx2 and observe that
z ∈ w � x and z ∈ µ∗(L) \ {w}.

Finally, let us state a simple observation on complete languages.

Lemma 2.4. For any L ⊆ Σ∗ and # /∈ Σ, the languages #L and L# are
complete.

Proof. Since every word in #L contains exactly one letter #, this letter has
to match in an overlap assembly. Therefore, #w ∈ #x�#y for x, y, w ∈ Σ+

if and only if x is a prefix of y and w = y.

2.3. Automata models, augmented with counters

We will use the following notations for language acceptors:

6

• DFA (NFA) = deterministic (nondeterministic) finite automaton. DFAs
and NFAs are equivalent, and they accept exactly the regular languages.

• DPDA (NPDA) = deterministic (nondeterministic) pushdown automa-
ton, i.e., a DFA (NFA) augmented with a pushdown stack. NPDAs
accept exactly the context-free languages (CFLs).

• DCA (NCA) is a DPDA (NPDA) which uses only one stack symbol
in addition to the bottom stack symbol which is never erased. DCAS
(NCAs) are strictly weaker than DPDAs (NPDAs).

• DLBA (NLBA) = deterministic (nondeterministic) linear-bounded au-
tomaton, i.e., a two-way deterministic (nondeterministic) finite au-
tomaton that can read and re-write the tape. The machines have
left and right input end markers. NLBAs accept exactly the context-
sensitive languages (CSLs). It is a long-standing open problem whether
or not DLBAs are strictly weaker than NLBAs.

• DTM (NTM) = deterministic (nondeterministic) Turing machines. DTMs
and NTMs are equivalent, and they accepts exactly the recursively enu-
merable languages. Halting DTMs and NTMs are equivalent, and they
accept exactly the recursive languages.

We refer the reader to [25] for the formal definitions of these devices.
A counter is an integer variable that can be incremented by 1, decre-

mented by 1, left unchanged, and tested for zero. It starts at zero and cannot
store negative values. Thus, a counter is a pushdown stack on a unary al-
phabet, in addition to the bottom of the stack symbol which is never altered.
Note that a DCA (NCA) is equivalent to a DFA (NFA) which is augmented
with a counter.

An automaton (DFA, NFA, DPDA, NPDA, DCA, NCA, etc.) can be
augmented with a finite number of counters, where the “move” of the machine
also now depends on the status (zero or non-zero) of the counters, and the
move can update the counters. It is well known that a DFA augmented with
two counters is equivalent to a DTM [26].

In this paper, we will restrict the augmented counter(s) to be reversal-
bounded in the sense that each counter can only reverse (i.e., change mode
from non-decreasing to non-increasing and vice-versa) at most r times for
some given r. In particular, when r = 1, the counter reverses only once, i.e.,

7

once it decrements, it can no longer increment. Note that a counter that
makes r reversals can be simulated by d r+1

2
e 1-reversal counters [27]. Clo-

sure and decidable properties of various machines augmented with reversal-
bounded counters have been studied in the literature (see, e.g., [27, 28]). We
will use the notation DFCM, NFCM, DPCM, NPCM, DNCM, NFCM, etc.,
to denote a DFA, NFA, DPDA, NPDA, DCA, NCA, etc., augmented with
reversal-bounded counters.

Automata with reversal-bounded counters can “count”, as seen in the
following example.

Example 2.1. L = {xxr | x ∈ {a, b}+, |x|a = |x|b} can be accepted by an
NPCM M with two 1-reversal counters. Briefly, M operates as follows: It
scans the input and uses the pushdown stack to check that the input is a
palindrome (this requires M to “guess” the middle of the string) while using
two counters C1 and C2 to store the numbers of a’s and b’s it encounters.
Then, at the end of the input, on λ-transitions (i.e., without reading any
input symbol), M decrements C1 and C2 simultaneously and verifies that
they become zero at the same time. Note that the counters are 1-reversal.

A nondetermnistic stack automaton (NSA) is a generalization of an NPDA
in that during the computation, the machine can enter the stack in a read-
only mode. It can only push and pop by returning to the top of the stack
[29]. The deterministic version is denoted by DSA.

A nondeterministic stack-counter automaton (NSCA) is a special case of
an NSA in that the the stack alphabet is unary, except for the bottom of
the stack symbol which is never altered and only used for this purpose [30].
So, again, the machine can enter the unary storage in a read-only mode, i.e.,
it can only go up and down the unary storage and not alter the stack. It
can only push or pop by returning to the top of the stack. So the (unary)
stack height can vary during the computation. The deterministic version is
denoted by DSCA.

An NSCA (DSCA) is strictly more powerful than an NCA (DCA) as the
following example shows.

Example 2.2.

1. L1 = {ank | n, k ≥ 1} can be accepted by an NSCA M1 which on λ-
moves first writes Ban on the stack, where B is the bottom of the stack
symbol and n ≥ 1 is nondeterministically chosen. Then M1 goes up

8

and down the stack (on a read-only mode) and checks that the length
of the input is nk for some k. Note that after M1 has written Ban, it
will no longer pop or write on the stack.

2. L2 = {a1#a2# · · ·#ak | k ≥ 1} can be accepted by a DSCA M2 which,
on a λ-move first writes B (the bottom of the stack symbol) on the
stack. Then for each 1 ≤ i ≤ k, M1 pushes a on the stack (i.e.,
increases the length by 1) and then go down the stack and checks that
the next input segment ai is exactly the the numbers of a’s on the stack.
Note that M2 does not do any popping.

The languages L1 and L2 above cannot be accepted by NCAs, since these
languages have non-semilinear Parikh maps but languages accepted by NCAs
(in fact, by NPCMs) have semilinear Parikh maps [27].

NSPACE(S(n)) and NTIME(T (n)) denote the classes of languages ac-
cepted by nondeterministic Turing machines in S(n) space and T (n) time,
respectively. DSPACE(S(n)) and DTIME(T (n)) are the the corresponding
deterministic classes. PTIME denotes the class of languages accepted by
deterministic Turing machines in polynomial time.

3. The related superposition operation

The superposition operation is a binary operation proposed by Bottoni,
Labella, Manca, and Mitrana in [22] to model the action of the DNA Poly-
merase enzyme. The result of the superposition operation between words
x, y ∈ Σ+, denoted by x � y, consists of the set of all words z ∈ Σ+ obtained
by any of the four following cases (̄ denotes the morphic complement, that
is, ¯ is a morphism such that u = u for all words u):

1. If there exist u, v ∈ Σ∗, w ∈ Σ+ such that x = uw, y = wv, then
z = uwv ∈ x �1 y.

2. If there exist u, v ∈ Σ∗ such that x = uyv, then z = uyv ∈ x �2 y.

3. If there exist u, v ∈ Σ∗, w ∈ Σ+ such that x = wv, y = uw, then
z = uwv ∈ x �3 y.

4. If there exist u, v ∈ Σ∗ such that y = uxv, then z = uxv ∈ x �4 y.

9

The superposition operation can be naturally extended to languages. For
more on the superposition operation between two words (languages), the
reader is referred to [22, 31].

The superposition operation and the overlap assembly are closely related.
In particular, when we replace the complement ¯ by the identity, then case 1
above is identical to overlap assembly, i.e., x � y = x �1 y; case 3 above is
symmetrical to the overlap assembly, i.e., x�y = y �3 x; furthermore, cases 2
and 4 above give x �2 y = y �4 x = x if y is an infix of x. However, in
the general case of two languages or when we consider a “real” complement
function, the overlap assembly Lx � Ly does not give the same result as the
superposition Lx � Ly.

If ¯ is the identity, then the overlap assembly of a language L with itself
gives µ1(L) = L�L = L�L and, moreover, the iterated overlap assembly co-
incides with the analogously defined1 iterated superposition µ∗(L) = �∗(L).
In other words, the iterated overlap assembly is a special case of the iterated
superposition. Therefore, the (positive) closure results for the iterated su-
perposition, obtained in [22, 31], also hold for the iterated overlap assembly.
Indeed, the same results were independently obtained in [1], in its study of
closure properties of iterated overlap assembly:

Proposition 1 ([1]). The language classes of regular, context-sensitive, re-
cursive and recursively enumerable languages are closed under iterated over-
lap assembly.

The result that the family of context-free languages is not closed under
iterated overlap assembly (resp., iterated superposition) was proven in [1]
(resp., [22]). The following statement strengthens that result.

Theorem 3.1. There is a language L accepted by a 1-reversal DCA (i.e.,
a DFA with one counter that makes only 1 reversal) whose iterated overlap
assembly, µ∗(L), cannot be accepted by any NPCM (i.e., an NPDA with
reversal-bounded counters).

Proof. Let L = {$ai#$ai+1# | i ≥ 1}. Clearly, L can be accepted by a 1-
reversal DCA. Suppose µ∗(L) could be accepted by an NPCM. Then µ∗(L)∩

1When ¯ is not the identity, the iterated superposition has to be defined slightly different
than the iterated overlap assembly, because L ⊆ L�L does not necessarily hold. In [22, 31]
two iterated versions of the superposition are defined which turn out to yield the same
language.

10

$a#($a+#)+ = {$a1#$a2# · · · $ak#$ak+1# | k ≥ 1} could also be accepted
by an NPCM. This is not possible since the Parikh map of this language is
not semilinear, but it is known that the Parikh map of any NPCM language
is semilinear [27].

In contrast to the previous result, for any k and NFCM language L, µk(L)
can be accepted by an NFCM. This follows from the fact that L � L is an
NFCM language if L is an NFCM language [2].

In [22], the notion of a maximal (adult) language is defined, which is
analogous to the terminal set of a language. The authors consider maximal
(adult) words with respect to the iterated superposition of some language
L: A word x is a maximal word with respect to �∗(L) if x ∈ �∗(L) and
x � (�∗(L)) ⊆ {x}. Also, max �∗ (L) is defined as the set of all maximal
words with respect to �∗(L). We immediately obtain that T (µ∗(L)) is the
special case of max �∗ (L) where the complement ¯ is replaced by the identity.
From the results in [22, 31] we obtain the following result for terminal sets
of complete, regular languages:

Proposition 2. The terminal set T (L) of a complete, regular language L is
regular. In particular, the terminal set T (µ∗(L)) is regular if L is regular.

It is known from [22] that there exists a context-sensitive language L
such that the maximal language max �∗ (L) is undecidable. This result can
be strengthened as follows.

Theorem 3.2. There exists a (complete) language L ∈ DSPACE(log n),
such that T (L) and T (µ∗(L)) are undecidable.

Proof. Let M be a deterministic Turing machine with input alphabet Σ and
let $,# /∈ Σ. Note that the languages L1 = $Σ∗# and

L2 = {$w#n | w ∈ Σ∗, n ≥ 1, and M accepts w using at most log(n) space}

can be decided in deterministic log-space. Observe that the language L =
L1 ∪ L2 is complete (Lemma 2.4), hence T (L) = T (µ∗(L)); no word in L2

belongs to T (L); and a word $w# ∈ L1 belongs to T (L) if and only if M does
not accept w. Because M may accept an undecidable language, we cannot
decide T (L) in general.

A closure property of superposition with respect to the language class
PTIME has been stated in [31]. Thus, we have:

Proposition 3. The class PTIME is closed under iterated overlap assembly.

11

4. Iterated overlap assembly and terminal sets

In this section we further explore the iterated overlap assembly and ter-
minal sets. In the previous section we have seen that the terminal set of a
complete context-sensitive language can be undecidable (Theorem 3.2). In
this section we will show that the terminal set of a complete context-free
language is always context-sensitive (Theorem 4.2). We also show that, for
a context-free language L, the language T (µ∗(L)) is context-sensitive (Theo-
rem 4.3). We establish space and time complexities for deciding T (L) when
L is complete and given via certain automata models (Theorem 4.4 and
Corollaries 4.5–4.8). Lastly, we establish a relation between Schützenburger
constants and the iterated overlap assembly (Theorem 4.9).

We start with an observation about terminal sets of complete languages.

Theorem 4.1. The terminal set of a complete language L is given by

T (L) = L \ (Pref(L) ∪ Suff(L))

Proof. First, we prove T (L) ⊆ L \ (Pref(L) ∪ Suff(L)) by contradiction:
suppose there were w ∈ T (L)∩Pref(L) ⊆ L. w ∈ Pref(L) implies that there
is x ∈ L such that w is a proper prefix of x. Therefore, x ∈ w � x ⊆ w � L
which contradicts that w ∈ T (L) since the latter implies that w�L = w. A
similar case can be made when w ∈ T (L) ∩ Suff(L).

Now, let w ∈ L \ (Pref(L) ∪ Suff(L)) and suppose that w /∈ T (L). The
latter implies that there is x 6= w such that x ∈ w � L or x ∈ L � w; by
symmetry, we assume x ∈ w � L. Note that x ∈ L because L is complete.
Also, x ∈ w�L and x 6= w imply that w is a proper prefix of x. Since w is a
proper prefix of x ∈ L we obtain a contradiction. If we initially assume that
x ∈ L� w, we will similarly obtain a contradiction that w is a proper suffix
of x ∈ L.

Note that Proposition 2 now follows as a corollary of Theorem 4.1, since
regularity is preserved under the used operations. Next, we consider terminal
sets of context-free languages.

Theorem 4.2. The terminal set of a complete, context-free language L is not
necessarily a context-free language, but is always a context-sensitive language.

Proof. We first prove that T (L) for a complete, context-free language L may
not be context-free using a counter-example. Let

L = {#aibjck | i, j, k ≥ 1, k ≤ i ∨ k ≤ j}.

12

Note that L is clearly context-free and complete (using Lemma 2.4), but the
terminal set T (L) is not context-free:

T (L) = {#aibjck | i, j, k ≥ 1, k = max{i, j}}.

If L is a context-free language, then the language M = Pref(L)∪ Suff(L)
is context-free as well. Because the family of context-sensitive languages is
closed under intersection [25] and complementation [32, 33], we have that
T (L) = L ∩M c is context-sensitive.

Later, in Corollary 4.7, we will see that T (L) is, in fact, in DSPACE(log2 n)
and also in DTIME(n2.373).

So far, we have seen that the iterated overlap assembly of a context-free
language is context-sensitive (Proposition 1), and that the terminal set of a
context-sensitive language can be undecidable (Theorem 3.2). Next we prove
that, for context-free language L, the language T (µ∗(L)) is context-sensitive.

Theorem 4.3. The terminal set of µ∗(L) is context-sensitive if L is context-
free.

Proof. In order to decide w ∈ T (µ∗(L)) we decide the two properties which
are necessary and sufficient to decide the theorem statement.

1. w ∈ µ∗(L) and

2. (pref(w) ∩ Suff(L) ∩ Σ+) ∪ (suff(w) ∩ Pref(L) ∩ Σ+) = ∅.

Both properties can be decided in linear space when L is context-free; if L is
context-free, it is also context-sensitive and hence µ∗(L) is context-sensitive
(i.e. decidable in linear space) by Proposition 1. Furthermore, it is clear that
properties 1 and 2 are necessary for w to belong to T (µ∗(L)). If property 2
is not true, then there is a string in w � L or L� w other than w and that
falsifies that w is in T (µ∗(L)).

In order to show that the conditions are sufficient, we prove the contra-
positive. Consider w /∈ T (µ∗(L)). If w /∈ µ∗(L), then condition 1 is violated.
Otherwise, there exist z ∈ µ∗(L) \ {w} and x ∈ L such that z ∈ w � x or
z ∈ x � w, by Lemma 2.3. If z ∈ w � x, then suff(w) ∩ Pref(L) ∩ Σ+ 6= ∅;
and if z ∈ x � w, then pref(w) ∩ Suff(L) ∩ Σ+ 6= ∅ — hence, property 2 is
violated.

13

Next, we investigate the terminal set T (L) for various complete languages
L. For convenience, we assume that all (one-way) machines have a right end
marker in their read-only input tape. For nondeterministic machines, this
assumption can be made without loss of generality, since such a machine
can “guess” the end of the input and simulate the computation on the end
marker using λ-moves at the end of the input.

Theorem 4.4. If L is a complete language accepted by an NSCA, then T (L)
is in NSPACE(log n) and is also in PTIME.

Proof. Let L be accepted by an NSCAM . We claim that Pref(L) and Suff(L)
can be accepted by NSCAs. We construct an NSCA M1 accepting Pref(L).
M1, when given input x, will accept x if there is some nonempty y such that
xy is accepted by M . M1 operates as follows: It simulates M on x faithfully.
Then after processing x, M1, on λ-moves, guesses some suffix-string y symbol-
by-symbol and continues simulating the computation of M on y and accepts
if M accepts. Similarly, an NSCA M2 accepting Suff(L) can be constructed,
but in this case, given input x, M2, on λ-moves, guesses some nonempty
prefix-string y and simulates M . After guessing and processing y, M2 reads
x and continues simulating M and accepts if M accepts. Clearly, from M1

andM2, we can also construct an NSCAM3 accepting L3 = Pref(L)∪Suff(L).
It is known that every NSCA can be converted to an equivalent quasi-

real time NSCA, i.e., there is a d such that during the computation, the
number of consecutive λ moves on the input is bounded by d (hence the
NSCA runs in linear time) [30]. We can then convert M3 to an equivalent
quasi-real time NSCA M4. It follows that the stack-counter values during
the accepting computation is linear on the length of the input. Clearly,
the stack-counter can be simulated by two ordinary counters whose values
would also be linear in the length of the input. Hence the stack-counter
of M4 can be stored in log n space on a read/write tape. It follows that
L3 = Pref(L) ∪ Suff(L) is in NSPACE(log n). Now the complement Lc

3 of
L3 is also in NSPACE(log n) [32, 33]. Since NSPACE(log n) is clearly closed
under intersection, by Theorem 4.1, T (L) = L\ (Pref(L)∪Suff(L)) = L∩Lc

3

is also in NSPACE(log n). That T (L) is in PTIME follows from the fact that
NSPACE(log n) ⊆ PTIME.

We can use a similar construction as in the proof of Theorem 4.4 to obtain
the following results.

14

Corollary 4.5. If L is a complete language accepted by an NCA, then T (L)
is in NSPACE(log n) and DTIME(n2).

Proof. T (L) in NSPACE(log n) follows from Theorem 4.4 since NCA is a
special case of NSCA. The time complexity follows from the proof of Theorem
4.4 and the fact that every language accepted by an NCA is in DTIME(n2)
[34] and that this class is closed under complementation and intersection.

Corollary 4.6. If L is a complete language accepted by an NFCM, then T (L)
is in NSPACE(log n) and also in PTIME.

Proof. If L is accepted by an NFCM M , then, as in the proof of Theorem 4.4,
we can construct an NFCM M3 accepting L3 = Pref(L)∪Suff(L). It is known
that for any NFCM, there is a fixed constant d such that any string of length
n accepted by the NFCM can be accepted in dn steps, i.e., the values of
the counters are at most dn [35]. It follows that any NFCM language is in
NSPACE(log n). Then, as in the proof of Theorem 4.4, T (L) = L ∩ Lc

3 is in
NSPACE(log n) and, hence, also in PTIME.

The next corollary strengthens Theorem 4.2.

Corollary 4.7. If L is a complete language accepted by an NPDA (i.e., L
is a complete context-free language), then T (L) is in DSPACE(log2 n) and
DTIME(n2.373) (= complexity of matrix multiplication).

Proof. This follows by similar constructions as in Theorem 4.4 using the fact
that every language accepted by an NPDA is in DSPACE(log2 n) and also
in DTIME(n2.373) (= complexity of matrix multiplication [36]), and the fact
that these classes are closed under complementation and intersection.

Similarly, since the family of linear context-free languages (i.e., languages
accepted by 1-reversal NPDAs)is in DTIME(n2) [37], we have:

Corollary 4.8. If L is a complete linear context-free language, then T (L) is
in DTIME(n2).

Lastly, we consider the relation between Schützenberger constants [38]
and the iterated overlap assembly. A word w ∈ Σ+ is a (Schützenberger)
constant for L if w ∈ inf(L) and for all words u1, u2, v1, v2 ∈ Σ∗, we have
that

u1wv1 ∈ L and u2wv2 ∈ L =⇒ u1wv2 ∈ L.

15

The existence of constants in a language seems to have a close connection
to languages that are generated by some biologically inspired systems; for
example, every splicing language has a constant [39].

Theorem 4.9. Every word w ∈ Σ+ in µ∗(L) \ Inf(L) is a constant for
µ∗(L). If, in addition, w satisfies w ∈ inf(T (µ∗(L))), then w is a constant
for T (µ∗(L)) as well.

Proof. Let w ∈ µ∗(L) \ Inf(L) and let u1, v1, u2, v2 ∈ Σ∗ such that u1wv1 ∈
µ∗(L) and u2wv2 ∈ µ∗(L). In order to show that w is a constant, we show that
u1w ∈ µ∗(L) and wv2 ∈ µ∗(L); this implies that u1wv2 ∈ u1w�wv2 ⊆ µ∗(L).

Let x1 be the longest prefix of u1w that belongs to µ∗(L). If u1 is a
proper prefix of x1, then u1w ∈ x1 � w ⊆ µ∗(L). Otherwise, x1 would be
prefix of u1 which is not possible: Suppose x1 is a prefix of u1 and let x2
be such that x1x2 = u1wv1. Lemma 2.2 implies that there are y1, y2 ∈ Σ+

with y1y2 ∈ L such that y1 is a suffix of x1 and y2 is a prefix of x2. Since
w is no proper infix of a word in L, it is no infix of y2 either. We obtain
that x1y2 ∈ x1 � y1y2 ⊆ µ∗(L) is a prefix of u1w; this contradicts the choice
of x1 which is supposed to be the longest prefix with that property. By a
symmetric argument, we can show that wv2 ∈ µ∗(L). We conclude that w is
a constant for µ∗(L).

Now, consider the case when u1wv1 ∈ T (µ∗(L)) and u2wv2 ∈ T (µ∗(L))
and, hence, w ∈ inf(T (µ∗(L))). As we showed above, u1wv2 ∈ µ∗(L). In or-
der to obtain a contradiction, suppose that u1wv2 /∈ T (µ∗(L)). By Lemma 2.3
there exist z ∈ µ∗(L) \ {u1wv2} and x ∈ L such that z ∈ u1wv2 � x
or z ∈ x � u1wv2. Due to symmetry, we only consider the case when
z ∈ u1wv2 � x. Let y be the nonempty suffix of x such that z = u1wv2y.
Because x cannot have w as proper infix, we have u2wv2y ∈ u2wv2�x which
contradicts the premise u2wv2 ∈ T (µ∗(L)).

5. Decision problems

In this section we consider three decision problems: whether a language
is complete (Subsection 5.1), whether a string is terminal with respect to a
language (Subsection 5.2), and whether the overlap assembly of two given
languages equals a given third one (Subsection 5.3).

5.1. Deciding the completeness of a language

The problem of deciding if a given language is complete was studied in [1]
for language classes in Chomsky hierarchy. In this subsection we narrow the

16

gap between the language classes whose completeness is decidable and those
for which it is undecidable. Recall first a result from [1]:

Proposition 4 ([1]).
1. It is decidable if any given regular language is complete.
2. It is undecidable if any given context-free(resp., context-sensitive, re-

cursively enumerable) language is complete.

The following shows that Proposition 4, part 1 holds for DFCMs (i.e.,
DFAs augmented with reversal bounded counters).

Theorem 5.1. It is decidable, given a DFCM M , if L(M) is complete.

Proof. Given a DFCM M accepting L, we construct an NFCM M ′ accepting
L′ = L� L as follows:

M ′, when given input z, guesses a partition z = uvw for some u, v, w
with v 6= λ, and checks that uv is in L by running M on uv, and vw is
in L by running another copy of M on vw, and accepts z if and only if M
accepts uv and vw. Note that M ′ uses two sets of counters of M to simulate
the two copies of M . Clearly, L(M ′) = L � L. It follows that L � L = L
if and only if L(M ′) ⊆ L, and if and only if L(M ′) ∩ Lc = ∅. Since the
family of DFCM languages is effectively closed under complementation, we
can construct from M a DFCM accepting Lc [27]. The result follows, since
we can construct, given two NFCMs, an NFCM accepting their intersection
language, and emptiness of NFCMs is decidable [27].

In contrast to Theorem 5.1, for the case of NFCM we have the following
result which strengthens Proposition 4, part 2:

Theorem 5.2. It is undecidable, given a 1-reversal NCA (i.e., an NFA aug-
mented with one counter which makes only 1 reversal) M , whether L(M) is
complete.

Proof. We reduce the problem to the undecidability of the halting problem
for deterministic Turing machines (DTMs) on an initially blank tape.

Let Z be single-tape DTM. Without loss of generality, we assume that if
Z halts on an initially blank tape, it makes at least two moves. Assume that
Z does not write blanks. A configuration (ID) of Z can be represented by
a string xqy, where xy is the non-zero content of the tape and q is the state
of the TM. The initial configuration, ID1 = q0 (the initial state). We may

17

assume that the TM halts in a unique halting state f . Thus the halting ID
is of the form xfy for some x, y.

We construct a 1-reversal NCA M which accepts the language:

L(M) = {w | w 6= ID1#ID2 · · ·#IDk, where k ≥ 3, ID1 is the initial
configuration of Z on an initially blank tape, IDk is a halting configu-
ration of Z, and IDi+1 is the valid successor of IDi, 1 ≤ i ≤ k − 1}.

The construction of M is straightforward (see, e.g., [35]). For completeness,
we briefly sketch it here. Given input w, M accepts w if

(1) w is not of the format above, or
(2) ID1 is not the initial configuration, or
(3) IDk is not a halting configuration, or
(3) IDi+1 is not the valid successor of IDi for some i.

Clearly, M ’s finite-state control can check (1), (2), (3). To check (4), M
nontermiministically moves its input head to the beginning of some nonde-
terministically chosen IDi andrecords a nondeterministically chosen position
d within IDi by incrementing the counter to value d. Then M moves to
the beginning of IDi+1 and decrements the counter to zero to find the cor-
responding position in IDi+1. By doing this, M can detect if there is a
discrepancy in the symbols in the three positions d−1, d, d+1 of IDi+1 with
respect to the symbols in the corresponding positions in IDi.

Let Σ be the alphabet over which L(M) is defined. Clearly, L(M) = Σ∗

(which is complete) if Z does not halt on blank tape. However, if Z halts
on blank tape, L(M) = Σ∗ \ {x} for exactly one string x of the form
ID1#ID2# · · ·#IDk, k ≥ 3, and it is not complete because: ID1#ID2

is in L(M) (since it is not x) and ID2# · · ·#IDk is also in L(M) (since it is
not x). Hence, x = ID1#ID2# · · ·#IDk is in L(M) � L(M), but it is not
in L(M). It follows that L(M) is complete if and only if Z does not halt on
blank tape, which is undecidable.

5.2. Deciding the terminality of strings

We now investigate the problem of deciding whether a given string is
terminal with respect to a language. The following result gives sufficient
conditions for the decidability of whether a string w is terminal with respect
to a language.

18

Theorem 5.3. LetM be a class of machines, and let L be the corresponding
class of accepted languages, satisfying:

1. if L is in L, then for any string w in L, w � L and L� w are also in
L;

2. L is closed under intersection with regular sets;

3. L has a decidable emptiness problem;

and items 1 and 2 are effective. Then it is decidable, given a machine M in
M and a string w in L(M), if w is terminal with respect to L(M).

Proof. Let L be a language accepted by a machine M ∈ M and w be a
string in L. Then, by item 1, we can construct machines in M accepting
L1 = w � L and L2 = L� w. To check that L1 = {w}, we do the following:
since L is closed under intersection with regular sets (item 2) and has a
decidable emptiness problem (item 3), we check that L1 ∩ {w}c = ∅ (note
that w ∈ L1 is always true). Similarly, we can check that L2 = {w}.

Almost all classes of one-way nondeterministic machines satisfy condi-
tion 1 in Theorem 5.3. Indeed, given M accepting L and w ∈ L, we con-
struct a machine M ′ accepting w � L which, on a given input z, guesses a
decomposition of z into uvx and checks that that uv = w and vx is accepted
by M . Similarly, we can construct a machine M

′′
to accept L� w.

As examples, the classes of languages accepted by NPCMs and NSAs
satisfy condition 1 of Theorem 5.3, while condition 2 is also clearly satisfied.
Since emptiness for NPCMs and NSAs is decidable [27, 29], we have:

Corollary 5.4. It is decidable, given an NPCM (resp., NSA) M and a string
w in L(M), whether w is terminal with respect to L(M).

Next we show that condition 3 in Theorem 5.3 is a necessary condition.
We say that a class of languages L is closed under distinct-symbol concate-
nation if, given L ∈ L and a symbol $, not in the alphabet of L, $L and L$
are in L.

Theorem 5.5. Let M be a class of machines, and L be the correspond-
ing class of accepted languages. Assume that L is effectively closed under
distinct-symbol concatenation and union with a singleton language. If L has
an undecidable emptiness problem, then it is undecidable, given a language
L in L and a string w in L, whether w is terminal with respect to L.

19

Proof. Let M1 be a machine inM accepting a language L1 ⊆ Σ∗. Let %,#, $
be new symbols not in Σ. Consider the string w = %#. Construct a machine
M in M accepting the language L = {%#} ∪ {%#x$ | x ∈ L1}. Clearly,
%#� L = L�%# = {%#} if and only if L1 = ∅. We cannot decide if w is
terminal, since emptiness for L is undecidable.

An example of a class L such as the one in Theorem 5.5 is the class
of languages accepted by real-time DFAs augmented with two unrestricted
counters (real-time deterministic 2-counter machines). Real-time here means
that the machines have no λ-moves. It is known that it is undecidable, given
a deterministic machine Z which has no input tape but with two counters
that are initially zero, whether it will halt [26]. We construct from Z, a real-
time deterministic 2-counter machine M which (unlike Z) has an input tape.
M , when given a unary input string an, simulates Z’s counters faithfully
while reading a symbol a (of the input) on each move of Z, and accepts if
and only if Z halts after reading exactly n a’s. Clearly if Z halts after n
steps, M will accept an. If Z does not halt, M will not accept an for any
n. Hence, L(M) = ∅ if and only if Z does not halt, and M operates in
real-time. It follows that the emptiness problem for real-time deterministic
2-counter machines is undecidable. Now it is obvious that if L is accepted
by a real-time deterministic 2-counter machine M and $ is a new symbol,
then $L and L$ can also be accepted by real-time deterministic 2-counter
machines. If {x} is a singleton language, then L ∪ {x} can be accepted by
a real-time deterministic 2-counter machine M ′ which simulates M and also
incorporates in the finite-state control the string x; so M ′ can detect and
accept if the input is x. Hence, the assumptions in Theorem 5.5 are satisfied,
and we have:

Corollary 5.6. It is undecidable, given a real-time deterministic 2-counter
machine M and a string w in L(M), whether w is terminal with respect to
L(M).

As above, we can also construct a (one-way) real-time deterministic log n
space-bounded DTM to simulate Z. Hence, the emptiness problem for these
machines is also undecidable. Thus, we have:

Corollary 5.7. It is undecidable, given a real-time deterministic log n space-
bounded DTM M and a string w in L(M), whether w is terminal with respect
to L(M).

20

5.3. Deciding the given decomposition of a language

Finally, we consider the problem of deciding, given languages L,L1, L2,
whether L = L1 � L2.

Theorem 5.8.
1. It is undecidable, given a language L accepted by a 1-reversal NCA and

regular languages L1 and L2, whether L = L1 � L2.
2. It is undecidable, given a regular language L and languages L1 and L2

accepted by 1-reversal DPDAs (resp., DCAs), whether L = L1 � L2.

Proof. For part 1, let L ⊆ Σ+ be accepted by a 1-reversal NCA and let
L1 = L2 = Σ+. Hence, L1 � L2 = Σ+. The result follows, since it is
undecidable whether the language accepted by a 1-reversal NCA is equal to
Σ+ (as seen in the proof of Theorem 5.2).

For part 2, let L′1, L
′
2 ⊆ Σ+ be accepted by 1-reversal DPDAs (resp.,

DCAs). Let #, $ be new symbols not in Σ. Let L = {$$}, L1 = #L′1$∪{$$},
and L2 = #L′2$∪{$$} Clearly, L1 and L2 can also be accepted by 1-reversal
DPDAs (resp., DCAs). Then L = L1 � L2 if and only if L′1 ∩ L′2 = ∅. The
result now follows since it is undecidable if the intersection of two languages
accepted by 1-reversal DPDAs (resp., DCAs) is empty [25, 27].

In contrast to Theorem 5.8, part 2, when L is accepted by a deterministic
machine we have the following result.

Theorem 5.9. It is decidable, given a language L accepted by a DFCM
(resp., DPCM) and regular languages L1 and L2, whether L = L1 � L2.

Proof. Clearly, L3 = L1 � L2 is regular. Now L = L1 � L2 if and only if
L ∩ Lc

3 = ∅, and Lc ∩ L3 = ∅. The result follows since the class of DFCM
(resp., DPCM) languages is closed under intersection with regular sets and
complementation, and has a decidable emptiness problem [27, 40].

Finally, in contrast to Theorem 5.8, when the problem concerns “contain-
ment”, we have:

Theorem 5.10.
1. It is decidable, given languages L1 and L2 accepted by NFCMs and a

language L accepted by a DPCM, whether L1 � L2 ⊆ L.
2. It is decidable, given a language L accepted by an NPCM and regular

languages L1 and L2, whether L ⊆ L1 � L2.

21

Proof.

1. Clearly, L1 � L2 ⊆ L if and only if (L1 � L2) ∩ Lc = ∅ (where Lc is
the complement of L). If L1 and L2 are accepted by NFCMs, we can
effectively construct an NFCM accepting L1�L2 [2]. If L is accepted by
a DPCM, we can effectively construct a DPCM accepting Lc. Since the
languages accepted by NPCMs is effectively closed under intersection
with languages accepted by NFCMs [27], and the emptiness problem
for languages accepted by NPCMs is decidable, the result follows.

2. If L1 and L2 are regular languages accepted by DFAs, we can effectively
construct a DFA accepting L1�L2 [2]. The result follows since the com-
plement of a regular language is regular, NPCM languages are effec-
tively closed under intersection with regular sets [27], and the emptiness
problem for NPCMs is decidable [27].

6. Concluding remarks

This paper continues the exploration, started in [1] and [2], of the proper-
ties of the overlap assembly operation. In particular, it strengthens the results
given in [1] regarding the closure of language classes under iterated overlap
assembly and the decidability of the completeness of a language. It also
enhances the results regarding closure properties of terminating sets of lan-
guages (which are almost equivalent to maximal (adult) languages in [22, 31]).
Finally, it investigates the problem of deciding whether a given string is ter-
minal with respect to a language, and the problem of deciding if a given
language can be generated by an overlap assembly operation of two given
others. Further directions of research include investigations of decision prob-
lems such as those studied in Section 5.3 for various other language classes,
and finding an efficient algorithm that, given a language L, outputs a pair of
languages (if they exist) whose overlap assembly equals L.

Acknowledgements

We thank the reviewers for their comments which improved the presen-
tation of our results.

22

References

[1] E. Csuhaj-Varjú, I. Petre, G. Vaszil, Self-assembly of strings and lan-
guages, Theoretical Computer Science 374 (1-3) (2007) 74–81.

[2] S. K. Enaganti, O. H. Ibarra, L. Kari, S. Kopecki, On the overlap as-
sembly of strings and languages, Natural Computing (2016) 1–11.

[3] D. Cheptea, C. Mart́ın-Vide, V. Mitrana, A new operation on words
suggested by DNA biochemistry: hairpin completion, in: Proc. Trans-
gressive Computing, TC, 2006, pp. 216–228.

[4] F. Manea, V. Mitrana, Hairpin completion versus hairpin reduction, in:
S. B. Cooper, B. Löwe, A. Sorbi (Eds.), Proc. Computability in Europe,
CiE, Vol. 4497 of LNCS, 2007, pp. 532–541.

[5] F. Manea, C. Mart́ın-Vide, V. Mitrana, On some algorithmic problems
regarding the hairpin completion, Discrete Applied Mathematics 157
(2009) 2143–2152.

[6] S. Kopecki, On iterated hairpin completion, Theoretical Computer Sci-
ence 412 (29) (2011) 3629–3638.

[7] C. Mart́ın-Vide, G. Păun, J. Pazos, A. Rodŕıguez-Patón, Tissue P sys-
tems, Theoretical Computer Science 296 (2) (2003) 295–326.

[8] S. K. Enaganti, L. Kari, S. Kopecki, A formal language model of DNA
polymerase activity, Fundamenta Informaticae 138 (2015) 179–192.

[9] W. P. Stemmer, DNA shuffling by random fragmentation and reassem-
bly: in vitro recombination for molecular evolution, Proceedings of the
National Academy of Sciences 91 (22) (1994) 10747–10751.

[10] P. D. Kaplan, Q. Ouyang, D. S. Thaler, A. Libchaber, Parallel overlap
assembly for the construction of computational DNA libraries, Journal
of Theoretical Biology 188 (3) (1997) 333–341.

[11] Q. Ouyang, P. D. Kaplan, S. Liu, A. Libchaber, DNA solution of the
maximal clique problem, Science 278 (5337) (1997) 446–449.

23

[12] A. R. Cukras, D. Faulhammer, R. J. Lipton, L. F. Landweber, Chess
games: a model for RNA based computation, Biosystems 52 (1-3) (1999)
35–45.

[13] D. Faulhammer, A. R. Cukras, R. J. Lipton, L. F. Landweber, Molecu-
lar computation: RNA solutions to chess problems, Proceedings of the
National Academy of Sciences 97 (4) (2000) 1385–1389.

[14] G. Franco, C. Giagulli, C. Laudanna, V. Manca, DNA extraction by
XPCR, in: C. Ferretti, G. Mauri, C. Zandron (Eds.), Proc. DNA Com-
puting, (DNA 11), Vol. 3384 of LNCS, 2005, pp. 104–112.

[15] G. Franco, V. Manca, C. Giagulli, C. Laudanna, DNA recombination
by XPCR, in: A. Carbone, N. A. Pierce (Eds.), Proc. DNA Computing,
(DNA 12), Vol. 3892 of LNCS, 2006, pp. 55–66.

[16] V. Manca, G. Franco, Computing by polymerase chain reaction, Math-
ematical Biosciences 211 (2) (2008) 282–298.

[17] G. Franco, A polymerase based algorithm for SAT, in: M. Coppo,
E. Lodi, G. Pinna (Eds.), Theoretical Computer Science, Vol. 3701 of
LNCS, Springer Berlin Heidelberg, 2005, pp. 237–250.

[18] G. Franco, V. Manca, Algorithmic applications of XPCR, Natural Com-
puting 10 (2) (2011) 805–819.

[19] E. Winfree, X. Yang, N. Seeman, Universal computation via self-
assembly of DNA: Some theory and experiements, in: L. Landweber,
E. Baum (Eds.), Proc. DNA Computing, (DNA 2), Vol. 44 of DIMACS,
1998, pp. 191–213.

[20] E. Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California
Institute of Technology (1998).

[21] E. Winfree, T. Eng, G. Rozenberg, String tile models for DNA comput-
ing by self-assembly, in: A. Condon, G. Rozenberg (Eds.), Proc. DNA
Computing, (DNA 6), Vol. 2054 of LNCS, 2001, pp. 63–88.

[22] P. Bottoni, A. Labella, V. Manca, V. Mitrana, Superposition based
on Watson-Crick-like complementarity, Theory of Computing Systems
39 (4) (2006) 503–524.

24

[23] L. Kari, R. Kitto, G. Thierrin, Codes, involutions, and DNA encodings,
in: W. Brauer, H. Ehrig, J. Karhumäki, A. Salomaa (Eds.), Formal and
Natural Computing, Vol. 2300 of LNCS, 2002, pp. 376–393.

[24] S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA lan-
guages, in: N. Jonoska, N. C. Seeman (Eds.), Proc. DNA Computing,
(DNA 7), Vol. 2340 of LNCS, 2002, pp. 57–69.

[25] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley Inc., 1978.

[26] M. L. Minsky, Recursive unsolvability of Post’s problem of “Tag” and
other topics in theory of Turing machines, The Annals of Mathematics
74 (3) (1961) 437–455.

[27] O. H. Ibarra, Reversal-bounded multicounter machines and their deci-
sion problems, J. ACM 25 (1) (1978) 116–133.

[28] O. H. Ibarra, Automata with reversal-bounded counters: a survey, in:
Proc. Descriptional Complexity of Formal Systems, DCFS, 2014, pp.
5–22.

[29] S. Ginsburg, S. A. Greibach, M. A. Harrison, One-way stack automata,
J. ACM 14 (2) (1967) 389–418.

[30] S. Ginsburg, G. F. Rose, The equivalence of stack-counter acceptors
and quasi-realtime stack-counter acceptors, Journal of Computer and
System Sciences 8 (2) (1974) 243–269.

[31] F. Manea, V. Mitrana, J. Sempere, Some remarks on superposi-
tion based on Watson-Crick-like complementarity, in: V. Diekert,
D. Nowotka (Eds.), Developments in Language Theory, Vol. 5583 of
LNCS, 2009, pp. 372–383.

[32] N. Immerman, Nondeterministic space is closed under complementation,
SIAM J. Comput. 17 (5) (1988) 935–938.

[33] R. Szelepcsényi, The method of forced enumeration for nondeterministic
automata, Acta Informatica 26 (3) (1988) 279–284.

[34] S. A. Greibach, A note on the recognition of one counter languages,
Informatique Théorique et Applications 9 (2) (1975) 5–12.

25

[35] B. S. Baker, R. V. Book, Reversal-bounded multipushdown machines,
Journal of Computer and System Sciences 8 (3) (1974) 315–332.

[36] V. V. Williams, Multiplying matrices faster than Coppersmith-
Winograd, in: Proc. ACM Symposium on Theory of Computing, STOC,
2012, pp. 887–898.

[37] T. Kasami, A note on computing time for recognition of languages gen-
erated by linear grammars, Information and Control 10 (2) (1967) 209–
214.

[38] M.-P. Schützenberger, Sur certaines opérations de fermeture dans les
langages rationnels, in: Symposia Mathematica, Vol. 15, 1975, pp. 245–
253.

[39] P. Bonizzoni, N. Jonoska, Existence of constants in regular splicing lan-
guages, Information and Computation 242 (2015) 340–353.

[40] O. H. Ibarra, H.-C. Yen, On the containment and equivalence problems
for two-way transducers, Theoretical Computer Science 429 (2012) 155–
163.

26

	Introduction
	Basic definitions and notations
	The overlap assembly
	Basic properties of the overlap assembly
	Automata models, augmented with counters

	The related superposition operation
	Iterated overlap assembly and terminal sets
	Decision problems
	Deciding the completeness of a language
	Deciding the terminality of strings
	Deciding the given decomposition of a language

	Concluding remarks

