
Computing with DNA 413

413

From: Methods in Molecular Biology, vol. 132: Bioinformatics Methods and Protocols
Edited by: S. Misener and S. A. Krawetz © Humana Press Inc., Totowa, NJ

23

Computing with DNA

Lila Kari and Laura F. Landweber

1. A New Player in the History of Computation
A brief look at the history of humanity shows that since the earliest days

people needed to count and compute, either for measuring the months and the
seasons or for commerce and construction. The means used for performing
calculations were whatever was available, and thus progressed gradually from
manual (digits) to mechanical (abacus, mechanical adding engine), and from
there on to electronic devices. Electronic computers are only the latest in a
long chain of human efforts to use the best technology available for perform-
ing computations. Although it is true that their appearance, some 50 years ago,
has revolutionized computing, electronic computers mark neither the begin-
ning nor the end of the history of computation. Indeed, even electronic com-
puters have their limitations: There is a limit to the amount of data they
can store, and physical laws dictate the speed thresholds they will soon reach.
The most recent attempt to break down these barriers is to replace, once more,
the tools for performing computations with biological ones instead of electri-
cal ones.

DNA computing (also sometimes referred to as biomolecular computing or
molecular computing) is a new computational paradigm that employs
(bio)molecule manipulation to solve computational problems, at the same time
exploring natural processes as computational models. Research in this area
began with an experiment by Leonard Adleman, who surprised the scientific
community in 1994 (1) by using the tools of molecular biology to solve a diffi-
cult computational problem. Adleman’s experiment solved an instance of the
Directed Hamiltonian Path Problem solely by manipulating DNA strands. This
marked the first solution of a mathematical problem by use of biology.

414 Kari and Landweber

Computing with biomolecules (mainly DNA) generated a tremendous
amount of excitement by offering a brand new paradigm for performing and
viewing computations. The main idea was the encoding of data in DNA strands
and the use of tools from molecular biology to execute computational opera-
tions (1a). Besides the novelty of this approach, molecular computing has the
potential to outperform electronic computers. For example, DNA computa-
tions may use a billion times less energy than an electronic computer, while
storing data in a trillion times less space (2). Moreover, computing with DNA
is highly parallel: In principle there could be billions upon trillions of DNA
molecules undergoing chemical reactions, that is, performing computations,
simultaneously (3).

Despite the complexity of this technology, the idea behind DNA computing
follows from a simple analogy between the following two processes, one bio-
logical and one mathematical:

a. The complex structure of a living organism ultimately derives from applying
a set of simple operations (copying, splicing, inserting, deleting, and so on) to
initial information encoded in a DNA sequence.

b. Any computation, no matter how complex, is the result of combining very
simple basic arithmetical and logical operations.

Adleman realized that the two processes are not only similar but that
advances in molecular biology allow one to use biology to do mathematics.
More precisely, DNA strings can encode information while various molecular
biology laboratory techniques perform simple operations. (The reader is
referred to ref. 4 for further molecular biology notions.) These practical possi-
bilities of encoding information in a DNA sequence and performing simple
DNA strand manipulations led Adleman (1) to solve a seven node instance of
the Directed Hamiltonian Path Problem.

A directed graph G with designated nodes vin and vout is said to have a Hamil-
tonian path if and only if there exists a sequence of compatible one-way edges
e1, e2, ..., ez (that is, a path) that begins at vin, ends at vout and enters every other
node exactly once. A simplified version of this problem, known as the travel-
ing salesman problem, poses the following question: given an arbitrary collec-
tion of cities through which a salesman must travel, such as the graph in Fig. 1,
what is the shortest route linking those cities? Adleman’s version limited the
number of connecting routes between the cities by specifying the origin and
final destination cities of his journey. Because not all cities are connected, the
challenge was to discover a continous path to link them all, if one exists.

The following (nondeterministic) algorithm solves the problem:

1. Generate random paths through the graph.
2. Keep only those paths that begin with vin and end with vout.

Computing with DNA 415

3. If the graph has n nodes, then keep only those paths that enter exactly n nodes.
4. Keep only those paths that enter all of the nodes of the graph at least once.
5. If any paths remain, say “yes”; otherwise say “no”.

To implement step 1, each node of the graph was encoded as a random
20-base strand of DNA, or oligonucleotide. Then, for each (oriented) edge of
the graph, a different 20-base oligonucleotide was generated that contains
sequences complementary to the second half of the source node plus the first
half of the target node. By using these complementary DNA oligonucleotides
as splints, all DNA sequences corresponding to compatible edges would self-
assemble and be ligated, or linked together, by the enzyme T4 DNA ligase.
Hence, annealing and ligation reactions generated DNA molecules encoding
random paths through the graph (Fig. 2).

To implement step 2, the product of step 1 was amplified by polymerase
chain reaction (PCR) using oligonucleotide primers representing vin and vout.

Fig. 1. An example of the graph used in Adleman’s experiment (1). Cities, or nodes,
are represented as arbitrary DNA sequences. The traveling salesman must find the
simplest path which takes him through all seven cities shown, in this case departing
from San Francisco (city 0) and arriving in Rome (city 6) as the final destination.

416 Kari and Landweber

This amplified and thus retained only those molecules encoding paths that
begin with vin and end with vout.

For implementing step 3, agarose gel electrophoresis allowed separation
and recovery of DNA strands of the correct length. The desired path, if it exists,
would pass through all seven nodes, each of which was assigned a length
of 20 bases. Thus PCR products encoding the desired path would have to be
7 × 20 = 140 bp.

Step 4 was accomplished by successive use of affinity purification for each
node other than the start and end nodes. This process permits the separation
and recovery of single strands encoding a given node from a heterogeneous
pool of strands. DNA strands complementary to the node sequence were
attached to magnetic beads. The heterogeneous solution containing single-
stranded DNA was then passed over the beads and those strands containing the
node sequence were selectively retained. Strands that lack one of the required
node sequences generally do not survive step 4, because they pass through at
least one of the columns without being retained.

To implement step 5, the presence of a molecule encoding a Hamiltonian
path was checked by PCR. The first PCR amplified the results of step 4 and
checked for the presence of a product, as in step 2. If a product was present,
then a second PCR confirmed the presence of each internal node by using the
DNA oligonucleotides complementary to each node as PCR primers. This step

Fig. 2. Self assembly of DNA molecules representing paths through a graph. PCR
primers marking origin and final destination oligonucleotides (cities 0 and 3 here) are
shown as arrows. Complementary overlap exists between the second half of the
sequence representing city i and the first half of a sequence representing edge i → j,
and also between the second half of the sequence representing i → j and the first half
of the sequence representing city j.

Computing with DNA 417

also elegantly allowed mapping and readout of connected nodes in the graph,
without need for DNA sequencing.

A remarkable observation about Adleman’s experimental result is that it not
only solved a mathematical problem, but that it was also a difficult computa-
tional problem in the sense explained below (see refs. 5 and 6).

Problems can be ranked in difficulty according to the length of time the best
algorithm will require to solve the problem on a single computer. Algorithms
whose time complexity function is bounded by a polynomial function, in terms
of the size of the input describing the problem, are in the polynomial time class
P. Such algorithms are generally considered efficient. Any algorithm whose
time complexity function cannot be so bounded belongs to the inefficient
exponential class EXP. A problem is called intractable if it is so hard that no
polynomial time algorithm can possibly solve it.

A special class of problems, apparently intractable, including P and included
in EXP is the “nondeterministic polynomial time” class, or NP. The following
chain of inclusions between problem classes holds:

P ⊆ NP ⊆ EXP ⊆ Universal

NP contains the problems for which no polynomial time algorithm to solve
them is known, but that can be solved in polynomial time on a nondeterministic
computer (a computer that has the ability to pursue an unbounded number of
independent computational searches in parallel). The Directed Hamiltonian
Path problem is a special kind of problem in NP known as “NP-complete.” An
NP-complete problem has the property that every other problem in NP can be
reduced to it in polynomial time. Thus, in a sense, NP-complete problems are
the “hardest” problems in NP.

The question of whether or not the NP-complete problems are intractable,
mathematically formulated as “Does P equal NP?”, is now considered one of
the foremost open problems of contemporary mathematics and computer sci-
ence. Because the Directed Hamiltonian Path problem has been shown to be
NP-complete, it seems likely that no efficient (that is, polynomial time) algo-
rithm exists for solving it with an electronic computer.

Other experiments have followed Adleman’s to tackle mathematical prob-
lems using DNA manipulation. Kaplan et al. (7) repeated Adleman’s experi-
ment; Guarnieri, Fliss and Bancroft used a horizontal chain reaction for
DNA-based addition (8); a Wisconsin team of computer scientists and bio-
chemists made partial progress towards solving a five-variable instance of the
Satisfiability (SAT) problem using surface chemistry (9); Quyang et al. (10)
solved a six-variable NP-complete problem (the Maximal Clique Problem)
using restriction enzymes; and most recently one of our laboratories (11) has
solved a nine-variable SAT problem using RNA.

418 Kari and Landweber

At the same time, numerous experiments have investigated a variety of
aspects of the feasibility of DNA computing: They have addressed the effect of
good encodings on solutions to Adleman’s problem (12); studied the compli-
cations raised by PCR (13); investigated the use of self-assembly of DNA (14);
pointed out the experimental gap between design and assembly of unusual
DNA structures (15); reported joining and rotating data with molecules (16);
studied concatenation with PCR (16,17); made progress towards evaluating
simple Boolean formulas (18); conducted ligation experiments in computing
with DNA (19); implemented an expert “Inference Engine” based on molecu-
lar computing (20); and obtained a partial solution to the Shortest Common
Superstring Problem (21).

Theoretical studies have supplemented experimental research of DNA algo-
rithms by suggesting potential strategies for solving various problems by means
of DNA manipulation. Descriptions of such proposed experiments include the
SAT Problem (22), breaking the Data Encryption Standard (23,24), expansions
of symbolic determinants (25), matrix multiplication (26), graph connectivity
and the knapsack problem using dynamic programming (27), the road coloring
problem (28), exascale computer algebra problems (29), the Bounded Post Cor-
respondence Problem (30), and simple Horn clause computation (31).

2. Towards a DNA Computer
The experiments mentioned so far are singular experiments that construct

algorithms to solve particular problems. This immediately leads to two funda-
mental problems, posed already in refs. 1 and 6: What classes of problems can
be efficiently solved by DNA algorithms? and Is it possible, at least in prin-
ciple, to design a programmable DNA computer? Even though the models of
DNA computation that have been proposed to answer these questions all differ
from each other, they have a number of common features.

Indeed, any kind of computer, whether mechanical, electronic, or biologi-
cal, needs two basic capacities to function: storage of information and the abil-
ity to perform operations on stored data. In the following we address both
issues: how can information be stored in DNA strands, and what molecular
biology techniques are potentially useful for computation. To distinguish
between ordinary mathematical operations and biomolecular procedures per-
formed on DNA strands, we use the term bio-operations to refer to the latter.

A single strand of DNA can be described as a string composed of a combi-
nation of four different symbols, A, G, C, T. Mathematically, this means we
have at our disposal a four-letter alphabet Σ = {A, G, C, T} to encode informa-
tion. Incidentally, this is more than enough, considering that an electronic com-
puter needs only two digits, 0 and 1, for the same purpose.

Computing with DNA 419

Concerning the operations performed on DNA strands, the proposed models
of DNA computation generally use various combinations of the following
“primitive” bio-operations:

— Synthesizing a desired polynomial-length strand, used in all models.
— Mixing: Combine the contents of two test tubes to achieve union

(1,32–36).
— Melting: Dissociate a double-stranded DNA into its single-stranded

complementary components by heating the solution (35–39).
— Annealing: Bond together two single-stranded complementary DNA

sequences upon cooling the solution (35–39).
— Amplifying (copying): Make copies of DNA strands by using the poly-

merase chain reaction (PCR) (1,25,32–38,40).
— Separating the strands by length using gel electrophoresis or other size

fractionating methods (1,32,33,36,37,40).
— Extracting: Capture strands that contain a given pattern as a substring by

affinity purification (1,32,34,40).
— Cutting DNA double strands at specific sites by using commercially

available restriction enzymes. (37,38,40–42).
— Ligating: Join DNA strands with compatible sticky ends by using DNA

ligases (37–42).
— Substituting: Substitute, insert, or delete DNA sequences by using PCR

site-specific oligonucleotide mutagenesis (see refs. 40,43).
— Marking single strands by hybridization: Complementary sequences are

attached to the strands, making them double stranded. The reverse
operation is unmarking of the double-strands by denaturing (9,33,35).

— Destroying the marked strands by using a variety of nucleases, (9,11). or
by cutting marked strands with a restriction enzyme and purifying intact
strands by gel electrophoresis (10,33).

— Detecting and reading: Given the contents of a tube, say “yes” if it con-
tains at least one DNA strand that meets the requirements of the applied
operations, and then interpret the sequence; say “no” otherwise,
(1,32–34,36).

A biocomputation consists of a sequence of bio-operations performed on
tubes containing DNA strands. The bio-operations listed above, and possibly
others, may then be used to write “programs.” A program receives a tube con-
taining DNA strands encoding information as input, and returns as output either
statements “yes” or “no” or a new collection of tubes.

420 Kari and Landweber

Various models of DNA computing, based on combinations of the above
bio-operations, have been proposed and studied from the point of view of their
computational power plus feasibility (see, for example, 1,32,37,39,43–51).
There are advantages and disadvantages for each of the proposed models but,
overall, the existence of different models with complementary features shows
the versatility of DNA computing and increases the likelihood of practical con-
struction of a DNA computing device.

Many substantial engineering challenges to constructing a DNA computer
remain at almost every stage. These arise primarily from difficulties in dealing
with large-scale systems and in coping with ensuing errors (52). However, we
remark that the issues such as active monitoring and adjusting the concentra-
tions of biological molecules, as well as fault tolerance, are all addressed in
biological systems by nature: Cells must adjust the concentrations of various
compounds, to promote reactions of rare molecules, and they also cope with
undesirable byproducts of their own activity. Because cells can successfully
manage these problems in vivo, this may ultimately suggest strategies we can
mimic in vitro. Taking a theoretical step in this direction, (53) suggests the use
of membranes to separate volumes (vesicles) and active transport systems to
shuttle selected chemicals across these borders (53). Moreover, familiar com-
puter design principles for electronic computers could be exploited to build
biomolecular computers (3,54,55).

3. A Formal Model for DNA Computing
and its Computational Power

One aspect of theoretical research on DNA computing is the search for a
suitable formal model to describe molecular computations. This approach often
compares the computational power of such a model to the power of a Turing
machine, which is the formal model of today’s electronic computers.

We illustrate this type of research by contextual insertion/deletion systems
(43,51) a formal language model of DNA computing. We show that this model
of DNA computation, besides being feasible in the laboratory, has the full
power of a Turing machine.

Before formally stating the model, we summarize its terminology (56). For
a set Σ, card(Σ) denotes its cardinality, that is, the number of elements in Σ. An
alphabet is a finite nonempty set. Its elements are called letters or symbols.
The letters will usually be denoted by the first letters of the alphabet, with or
without indices, i.e., a, b, C, D, ai, bj, and so on. (In the case of DNA comput-
ing, the alphabet at our disposal is Σ = {A, C, G, T}.) If Σ = {a1, a2, . . . , an} is
an alphabet, then any sequence w = ai1ai2 . . . aik, k ≥ 0, aij ∈ Σ, 1 ≤ j ≤ k is
called a string (word) over Σ. The length of the word w is denoted by |w| and,
by definition, equals k. The words over Σ will usually be denoted by the last

Computing with DNA 421

letters of the alphabet, with or without indices, for example x, y, wj, ui, and so
on. The set of all words consisting of letters from Σ will be denoted by Σ*.

As a formal language operation, the contextual insertion is a generalization
of catenation and insertion of strings and languages, (57): Words can be
inserted into a string only if certain contexts are present. More precisely, given
a set of contexts we add the condition that insertion of a word can be performed
only between a pair of words in the context set. Analogously, contextual dele-
tion allows erasing of a word only if the word is situated between a pair of
words in the context set.

Besides being theoretically interesting, one of the motivations for studying
insertions and deletions is their relevance to laboratory manipulation. Indeed,
by using synthetic oligonucleotides and the technique of PCR site-directed
mutagenesis (58), one can insert and delete oligonucleotide sequences in a
variety of given contexts.

Kari et al. (43,51) investigated the mathematical properties of contextual
insertions and deletions (below we refer to them as simply insertions and dele-
tions): One of their results is that the actions of every Turing machine can be
simulated entirely by insertion and deletion rules. Beaver (40) proposed that a
similar operation, base substitution, simulates a universal Turing machine.

Using insertion-deletion systems, we briefly present several characteriza-
tions of recursively enumerable (RE) languages (the equivalents of the Turing
machine model of computation). Such a system generates the elements of a
language by inserting and deleting words, according to their contexts. Gram-
mars based on insertion rules were already considered (59) with linguistic
motivation. Insertion/deletion operations are also basic to DNA and RNA pro-
cessing, particular RNA splicing and editing reactions (60). Our results show
that these operations, even with strong restrictions on the length of the contexts
and/or on the length of the inserted/deleted words, are computationally com-
plete, that is, they can simulate the work of any Turing machine.

An insertion-deletion (in/del) system, (43), is a construct

γ = (V, T, A, I, D)

where V is an alphabet, T ⊆ V, A is a finite subset of V*, and I, D are finite
subsets of V* × V* × V*.

The alphabet T is the terminal alphabet of γ, A is the set of axioms, I is the set
of insertion rules, and D is the set of deletion rules. An insertion (deletion) rule
is written as a triple (u, z, v), which means that z can be inserted in (deleted
from) the context (u, v), where u represents the left context and v represents the
right context.

422 Kari and Landweber

For x, y ∈ V* we say that x derives y and we write x ⇒ y if one of the
following two cases holds:

1. x = x1uvx2, y = x1uzvx2, for some x1, x2 ∈ V* and (u, z, v) ∈ I (insertion)
2. x = x1uzvx2, y = x1uvx2, for some x1, x2 ∈ V* and (u, z, v) ∈ D (deletion).

Denoting by ⇒* the reflexive and transitive closure of the relation ⇒, the
language generated by γ is defined by

L(γ) = {w ∈ T*| x ⇒* w, for some x ∈ A}.

Informally, L(γ) is the set of strings obtained from the initial axiom set A by
repeated application of insertion and deletion rules.

An in/del system γ = (V, T, A, I, D) is said to be of weight (n, m, p, q) if

max {|z| | (u, z, v) ∈ I} = n,

max {|u| | (u, z, v) ∈ I or (v, z, u) ∈ I} = m,

max {|z| | (u, z, v) ∈ D} = p,

max {|u| | (u, z, v) ∈ D or (v, z, u) ∈ D} = q.

Thus n (respectively p) represents the maximum length of the inserted
(deleted) sequences, whereas m (respectively q) represent the maximum length
of the right/left contexts of an insertion (respectively deletion).

We denote by INS m
nDEL q

p, n, m, p, q ≥ 0, the family of languages L(γ) gen-
erated by in/del systems of weight (n′, m′, p′, q′) such that n′ ≤ n, m′ ≤ m,
p′ ≤ p, q′ ≤ q. When one of the parameters n, m, p, q is not bounded, we replace
it by ∞. Thus, the family of all in/del languages is INS∞

∞DEL∞
∞.

The main results obtained regarding insertion and deletion systems are:

Theorem 1 (34) RE = INS6
3del7

2.
Theorem 2 (35) RE = INS2

1DEL1
1.

Theorem 3 (35) RE = INS1
2DEL0

2.
Theorem 4 (35) RE = INS2

1DEL0
2.

The interpretation of Theorem 1 is that the actions of every Turing machine
can be simulated by an insertion/deletion system with finitely many rules,
where the length of inserted strings is at most 3, and the length of the right and
left contexts of insertion is at most 6, whereas the length of deleted strings is at
most 2 and the length of the right and left contexts of deletion is bounded by 7.
This suggests the possibility of using PCR site directed mutagenesis to simu-
late a Turing machine. Theorems 2–4 show that the same computational power
can be obtained even with shorter contexts and inserted/deleted strings. These
results point to yet another possible way of implementing biocomputations,
namely by using RNA editing (60) which consists of insertions and deletions

Computing with DNA 423

of a single nucleotide. The most recent result, (51), proves that faithful
restricted in/del systems have universal Turing machine power, where a faith-
ful restricted in/del system has insertions and deletions of one letter only, but
the length of contexts and inserted/deleted sequences is not bounded.

Overall, the general result that contextual insertions and deletions, by either
site-directed mutagenesis or RNA editing, are sufficient to simulate the actions
of a Turing machine suggests the existence of many platforms for biomolecular
computing.

4. Nature’s Solutions to Computational Problems
Research in molecular computing will undoubtedly have a great impact on

many aspects of science and technology. In particular, molecular computing
sheds new light on the very nature of computation, while it also introduces the
prospect of designing computing devices that differ radically from today’s
computers. Probing the limits of biomolecular computation both in vitro and in
vivo may provide new insights into the informational capacity of DNA in cel-
lular organisms and the range of computational processes that exist in nature.

4.1. RNA Editing

Already, we have shown that computational processes exist in a variety of
single- and multicellular organisms whose RNA molecules undergo RNA edit-
ing (61). Found in a wide variety of eukaryotes, from parasitic protozoa to
humans, RNA editing by addition, deletion, or substitution of nucleotides alters
the sequence of a messenger RNA before translation into protein. For example,
Fig. 3 shows a gene with an enormous number of uridine (U) insertions.
(Sequence information in RNA is encoded in A, C, G, or U, with U replacing
T.) In organisms such as trypanosomes RNA editing adds and deletes literally
hundreds of uridine residues. These create initiation and termination codons,
alter the structural features of transcripts, and construct over 90% of the coding
capacity of this gene. On average, U insertions and deletions contribute to more
than 60% of the nucleotides contained many genes. The other bases–A, C, and
G–are completely conserved between the DNA and the RNA sequence (60).

Fig. 3. RNA editing by u insertion/deletion. Comparison of an edited RNA sequence
encoding H. mariadeanei cytochrome oxidase subunit III (bottom) with its genomic
DNA copy (top) (60). DNA sequences in upper case; uridines in mRNA that are added
by RNA editing in lowercase (boldface); two encoded thymidines deleted from the
mRNA indicated by asterisks.

424 Kari and Landweber

RNA editing restores coding messenger RNA (mRNA) sequences from
encrypted pieces of the genome. Base-pairing interactions between small
“guide RNA” (gRNA) molecules and the “pre-edited mRNA molecule” pro-
vide the context for determining these insertions and deletions (Fig. 4). Aston-
ishingly, this process can create a single conserved protein coding sequence
from over a dozen or so RNA molecules, each encoded in a unique circular
DNA molecule (with the gene itself located on a maxicircle and the genes for
each guide RNA usually found on one of the thousands of minicircles).

For every inserted U in the messenger RNA sequence, a corresponding A or
G in the gRNA pairs with the fully edited product (Fig. 4). Complete editing
proceeds 3′ to 5′ on the mRNA and requires a full set of overlapping gRNAs.
Editing by each guide RNA creates an anchor sequence for binding the next
guide RNA, leading to an ordered cascade of insertions and deletions—a genu-
inely RNA-based computer (61).

4.2. Gene Unscrambling

Ciliated protozoa possess two types of nuclei: an active macronucleus
(soma) and a functionally inert micronucleus (germline) that contributes only
to sexual reproduction. The macronucleus develops from the micronucleus
after sexual reproduction. The micronuclear copies of some protein-coding
genes in hypotrichous ciliates are obscured by intervening nonprotein-coding
DNA sequences (internally eliminated sequences, or IESs) which must be
removed before the assembly of a functional macronuclear DNA copy. Fur-
thermore, the protein-coding DNA segments (macronuclear destined
sequences, or MDSs) in Oxytricha and Stylonychia are sometimes present in
a permuted order relative to their final position in the macronuclear copy.
For example, we have found that the gene encoding DNA polymerase α in
S. lemnae is scrambled in several dozens of pieces in the micronucleus. Des-
tined to unscramble its micronuclear genes by putting the pieces together again,
O. trifallax impressively solves a potentially complicated computational

Fig. 4. Guide RNA–messenger RNA base-pairing interactions direct RNA editing.
Lowercase a’s and g’s in the top gRNA sequence base pair with and guide the inser-
tion of boldface lowercase u’s in this portion of the bottom messenger RNA sequence.

Computing with DNA 425

problem when assembling its functional sequences from their smaller constitu-
ents (61).

The process of unscrambling bears a striking resemblance to the DNA algo-
rithm Adleman (1) used to solve a seven-city instance of the Directed Hamilto-
nian Path problem. The developing ciliate macronuclear ‘computer’ (Fig. 5)
makes use of the information contained in short 2–14 nucleotide direct repeats.
These act as guides in a series of homologous recombination events. For
example, the DNA sequence present at the junction between MDS n and the
downstream IES is generally the same as the sequence between MDS n +1 and
its upstream IES, leading to correct ligation of MDS n to MDS n + 1. By pro-
viding the splints analogous to edges in Adleman’s graph, this mechanism
assembles protein-encoding segments (MDSs, or ‘cities’ or nodes in this graph)
in the correct order in which they belong in the final protein coding sequence
(“Hamiltonian Path”), though the details of this mechanism are still unknown.
As such, the unscrambling of gene sequences accomplishes an astounding feat
of cellular computation, especially as Hamiltonian Path Problems of this size
(approx 50 nodes) present a challenge to any computer.

Together RNA editing and gene unscrambling provide a unique array of
potentially usable paradigms for biological computation. Furthermore, these
processes underscore the diversity of computational paradigms that exist in

Fig. 5. Gene unscrambling as a computational problem. Dispersed coding MDSs,
such as 1–3–5–7–6–2–4 (bottom), reassemble during macronuclear development to
form the functional gene copy (top). Telomere addition marks and protects the ends of
the gene, replacing the role of PCR primers in Step 2 of Adleman’s experimental com-
putation, because only those strands that have telomeres at both ends survive (61).

426 Kari and Landweber

biological systems and suggest a plethora of models for importing biology
into mathematics.

References

1. Adleman, L. (1994) Molecular computation of solutions to combinatorial prob-
lems. Science 266, 1021–1024.

1a. Kari, L. (1997) DNA computing: arrival of biological mathematics. The Math-
ematical Intelligencer, 19, 2, 9–22.

2. Baum, E. (1995) Building an associative memory vastly larger than the brain.
Science 268, 583–585.

3. Reif, J. (1995) Parallel molecular computation: models and simulations, in
Proceedings of the 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, Santa Barbara, CA, pp. 213–223.

4. Kendrew, J. (eic) (1994) The Encyclopedia of Molecular Biology, Blackwell
Science, Oxford.

5. Garey, M. and Johnson, D. (1979) Computers and Intractability. A Guide to the
Theory of NP-completeness. W. H. Freeman and Company, San Francisco.

6. Gifford, D. K. (1994) On the path to computation with DNA. Science 266,
993–994.

7. Kaplan, P., Cecchi, G., and Libchaber, A. (1995) Molecular computation:
Adleman’s experiment repeated. NEC Technical Report.

8. Guarnieri, F., Fliss, M., and Bancroft, C. (1996) Making DNA add. Science, 273,
220–223.

9. Liu, Q., Guo, Z., Condon, A., Corn, R., Lagally, M., and Smith, L. (1999) A
surface-based approach to DNA computation, in DNA Based Computers II (L. F.
Landweber and E. B. Baum, eds.), DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 44, American Mathematical Society, Provi-
dence, RI, pp. 123–132.

10. Ouyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A. (1997) DNA solution of the
maximal clique problem. Science, 278, 446–9.

11. Cukras, A., Faulhammer, D., Lipton, R., and Landweber, L. F. (1998). Chess
games: a model for RNA-based computation, in Proceedings of the Fourth Inter-
national Meeting on DNA Based Computers (Kari, L., Rubin, H., and Wood,
D. H., eds.), University of Pennsylvania, Philadelphia, PA, pp. 27–37.

12. Deaton, R., Murphy, R., Rose, J., Garzon, M., Franceschetti, D., and Stevens, S.
(1997) A DNA based implementation of an evolutionary search for good
encodings for DNA computation, in Proceedings of the IEEE International Con-
ference on Evolutionary Computation, Indianapolis, IN, IEEE, Piscataway, NJ,
pp. 267–271.

13. Kaplan, P., Cecchi, G., and Libchaber, A. (1999) DNA-based molecular compu-
tation: template-template interactions in PCR, in DNA Based Computers II

Computing with DNA 427

(Landweber, L. F. and Baum, E. B., eds.), DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 44, American Mathematical Society,
Providence, RI, pp. 97–104.

14. Winfree, E., Yang, X., and Seeman, N. (1999) Universal computation via self-
assembly of DNA: some theory and experiments, in DNA Based Computers II
(Landweber, L. F. and Baum, E. B., eds.), DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 44, American Mathematical Society,
Providence, RI, pp. 191–213.

15. Seeman, N., Wang, H., Liu, B., Qi, J., Li, X., Yang, X., Liu, F., Sun, W., Shen, Z.,
Sha, R., Mao, C., Wang, Y., Zhang, S., Fu, T.-J., Du, S., Mueller, J. E., Zhang, Y.,
and Chen, J. (1999) The perils of polynucleotides: the experimental gap between
the design and assembly of unusual DNA structures, in DNA Based Computers II
(Landweber, L. F. and Baum, E. B., eds.), DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 44, American Mathematical Society,
Providence, RI, pp. 215–233.

16. Arita, M., Hagiya, M., and Suyama A., (1997) Joining and rotating data with mole-
cules, in Proceedings of the IEEE International Conference on Evolutionary Com-
putation, Institute of Electrical and Electronics Engineers (IEEE), pp. 243–248.

17. Arita, M., Suyama, A., and Hagiya, M., (1997) A heuristic approach for Hamilto-
nian Path Problem with molecules, in Genetic Programming 1997: Proceedings
of the Second Annual Conference (Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M., Iba, H., and Riolo, R. L., eds.), Stanford University, Palo Alto, CA,
Morgan Kaufmann, pp. 457–462.

18. Hagiya, M. and Arita M. (1999) Towards parallel evaluation and learning of Bool-
ean μ-formulas with molecules, in DNA Based Computers III (D. H. Wood, ed.),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, RI, in press

19. Jonoska, N. and Karl, S. (1997) Ligation experiments in computing with DNA.
Proceedings of the IEEE International Conference on Evolutionary Computation,
Indianapolis, IN, IEEE, Piscataway, NJ, pp. 261–266.

20. Mulawka, J., Weglenski, P., and Borsuk, P. (1998). Implementation of the Infer-
ence Engine based on Molecular Computing Technique, in press.

21. Gloor, G., Kari, L., Gaasenbeek, M., and Yu, S. (1998) Towards a DNA solution
to the Shortest Common Superstring Problem, in Proceedings of the IEEE Inter-
national Joint Symposia on Intelligence and Systems, Rockville, MD, IEEE Com-
puter Society Press, Los Alamitos, CA, pp. 140–145.

22. Lipton, R. (1995) DNA solution of hard computational problems. Science, 268,
542–545.

23. Boneh, D., Dunworth, C., and Lipton, R. J. (1996). Breaking DES using a
molecular computer, in DNA Based Computers: Proceedings of a DIMACS Work-
shop (Lipton, R. J. and Baum, E. B., eds.), American Mathematical Society, Provi-
dence, RI, 27, pp. 37–65.

428 Kari and Landweber

24. Adleman, L., Rothemund, P., Roweis, S., and Winfree, E. (1999) On applying
molecular computation to the Data Encryption Standard, in DNA Based Comput-
ers II (Landweber, L. F. and Baum, E. B., eds.), DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, vol. 44, American Mathematical
Society, Providence, RI, pp. 31–44.

25. Leete, T., Schwartz, M., Williams, R., Wood, W., Salem, J., and Rubin, H. (1999)
Massively parallel DNA computation: expansion of symbolic determinants, in
DNA Based Computers II (Landweber, L. F. and Baum, E. B., eds.), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, Ameri-
can Mathematical Society, Providence, RI, pp. 45–58.

26. Oliver, J. (1997) Matrix multiplication with DNA. Journal of Molecular Evolu-
tion, 45, 161–7.

27. Baum, E. and Boneh, D. (1999) Running dynamic programming algorithms on a
DNA computer, in DNA Based Computers II (Landweber. F. and Baum, E. B.,
eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, vol. 44, American Mathematical Society, Providence, RI, pp. 77–85.

28. Jonoska, N. and Karl, S. (1999) A molecular computation of the road coloring
problem, in DNA Based Computers II (Landweber, L. F. and Baum, E. B., eds.),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
44, American Mathematical Society, Providence, RI, pp. 87–96.

29. Williams, R. and Wood, D. (1999) Exascale computer algebra problems intercon-
nect with molecular reactions and complexity theory, in DNA Based Computers II
(Landweber, L. F. and Baum, E. B., eds.), DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 44, American Mathematical Society,
Providence, RI, pp. 267–275.

30. Kari, L., Gloor, G., and Yu, S. (1999) Using DNA to solve the Bounded Post
Correspondence Problem. Theoretical Computer Science, in press.

31. Kobayashi, S., Yokomori, T., Sampei, G., and Mizobuchi, K. (1997) DNA imple-
mentation of simple Horn clause computation, in Proceedings of the IEEE Inter-
national Conference on Evolutionary Computation, Indianapolis, IN, IEEE,
Piscataway, NJ, pp. 213–217.

32. Adleman, L. (1996) On constructing a molecular computer, in DNA Based Com-
puters: Proceedings of a DIMACS Workshop (Lipton, R. J. and Baum, E. B., eds.),
American Mathematical Society, Providence, RI, pp. 1–21.

33. Amos, M., Gibbons, A., and Hodgson, D. (1999) Error-resistant implementation
of DNA computation, in DNA Based Computers II (Landweber, L. F. and Baum,
E. B., eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 44, American Mathematical Society, Providence, RI, pp. 151–161.

34. Lipton, R. (1996) Speeding up computations via molecular biology, in DNA Based
Computers (Lipton, R. J. and Baum, E. B., eds.), American Mathematical Society,
Providence, RI, pp. 67–74.

35. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N., Goodman, M., Rothemund,
P., and Adleman, L. (1999) A sticker based architecture for DNA computation, in

Computing with DNA 429

DNA Based Computers II (Landweber, L. F. and Baum, E. B., eds.), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, Ameri-
can Mathematical Society, Providence, RI, pp. 1–29.

36. Ogihara, M. and Ray, A. (1998). The minimum DNA computation model and its
computational power. University of Rochester, Technical report TR-672.

37. Beaver, D. (1995) Computing with DNA. J. Comput. Biol., 2, 1–7.
38. Smith, W. (1996) DNA computers in vitro and in vivo, in DNA Based Computers:

Proceedings of a DIMACS Workshop (Lipton, R. J. and Baum, E. B., eds.), Ameri-
can Mathematical Society, Providence, RI, DIMACS series, 27, pp. 121–185.

39. Winfree, E. (1996) On the computational power of DNA annealing and ligation,
in DNA Based Computers: Proceedings of a DIMACS Workshop (Lipton, R. J.
and Baum, E. B., eds.), American Mathematical Society, Providence, RI,
DIMACS series, vol. 27, pp. 199–221

40. Beaver, D. (1996) A universal molecular computer, in DNA Based Computers:
Proceedings of a DIMACS Workshop (Lipton, R. J. and Baum, E. B., eds.), Ameri-
can Mathematical Society, Providence, RI, pp. 29–36.

41. Head, T. (1987) Formal language theory and DNA: an analysis of the generative
capacity of recombinant behaviors. Bulletin of Mathematical Biology, 49,
737–759.

42. Rothemund, P. (1996) A DNA and restriction enzyme implementation of Turing
machines, in DNA Based Computers: Proceedings of a DIMACS Workshop
(Lipton, R. J. and Baum, E. B., eds.), American Mathematical Society, Provi-
dence, RI, pp. 75–119.

43. Kari, L., and Thierrin, G. (1996) Contextual insertions/deletions and computabil-
ity. Information and Computation, 131, 47–61.

44. Yokomori, T. and Kobayashi, S. (1999) DNA-EC: a model of DNA computing
based on equality checking, in DNA Based Computers III (in Wood, D. H., ed.),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, Providence, RI. , in press.

45. Head, T., Paun, G., and Pixton, D. (1996) Language theory and molecular genet-
ics, in Handbook of Formal Languages (Rozenberg, G. and Salomaa, A., eds.),
Springer Verlag, Berlin, 2, 295–358.

46. Paun, G. and Salomaa, A. (1996) DNA computing based on the splicing opera-
tion. Mathematica Japonica, 43, 3, 607–632.

47. Paun, G. (1995) On the power of the splicing operation. International Journal of
Computer Mathematics, 59, 27–35.

48. Freund, R., Kari, L., and Paun, G. (1999) DNA computing based on splicing: the
existence of universal computers. Theory of Computing Systems 32, 69–112.

49 Csuhaj-Varju, E., Freund, R., Kari, L., and Paun, G. (1996). DNA computing
based on splicing: universality results, in Proceedings of 1st Annual Pacific Sym-
posium on Biocomputing, Hawaii (Hunter, L. and Klein, T., eds.), World Scien-
tific Publ., Singapore, pp. 179–190.

50. Yokomori, T., Kobayashi, S., and Ferretti, C. (1997) On the power of circular

430 Kari and Landweber

splicing systems and DNA computability, in Proceedings of the IEEE Interna-
tional Conference on Evolutionary Computation, Indianapolis, IN, IEEE,
pp. 219–224.

51. Kari, L., Paun, G., Thierrin, G., and Yu, S. (1999) At the crossroads of DNA
computing and formal languages: characterizing recursively enumerable lan-
guages using insertion/deletion systems, in DNA Based Computers III (Wood, D.
H., ed.), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, Providence, RI, in press.

52. Hartmanis, J. (1995) On the weight of computations. Bulletin European Associa-
tion of Theoretical Computer Science, 55, 136–138.

53. Kurtz, S., Mahaney, S., Royer, J., and Simon, J. (1999) Active transport in
biological computing, in DNA Based Computers II (Landweber, L. F. and Baum,
E. B., eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 44, American Mathematical Society, Providence, RI, pp. 171–179.

54. Amenyo, J. (1999) Mesoscopic computer engineering: automating DNA-based
molecular computing via traditional practices of parallel computer architecture
design, in DNA Based Computers II (Landweber, L. F. and Baum, E. B., eds.),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol.
44, American Mathematical Society, Providence, RI, pp. 133–150.

55. Mihalache, V. (1997) Prolog approach to DNA computing, in Proceedings of the
IEEE International Conference on Evolutionary Computation, Indianapolis, IN,
IEEE, pp. 249–254.

56. Salomaa, A. (1973) Formal Languages. Academic Press, New York.
57. Kari, L. (1991) On insertions and deletions in formal languages. Ph.D. thesis,

University of Turku, Finland.
58. Dieffenbach, C. W. and Dveksler, G. S., (eds.), (1995) PCR primer: a laboratory

manual, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press,
pp. 581–621.

59. Galiukschov, B. S. (1981) Semicontextual grammars (in Russian). Mat. logica
i mat. ling., Kalinin Univ., 38–50.

60. Landweber, L. F. and Gilbert, W. (1993). RNA editing as a source of genetic
variation. Nature 363, 179–182.

61. Landweber, L. F. and Kari, L. (1998) The Evolution of DNA Computing: Nature’s
Solution to a Combinatorial Problem, in Genetic Programming 1998: Proceed-
ings of the Third Annual Conference, July 22–25, 1998, (Koza, J. R., Banzhaf,
W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg,
D. E., Iba, H., and Riolo, R. L., eds), University of Wisconsin, Madison, WI, San
Francisco, CA, Morgan Kaufmann, pp. 700–708.

