
How to Compute with DNA∗

Lila Kari1, Mark Daley1, Greg Gloor2, Rani Siromoney3, and
Laura F. Landweber4

1 Dept. of Computer Sci., Univ. of Western Ontario, London, ON N6A 5B7 Canada
lila@csd.uwo.ca, www.csd.uwo.ca/~lila
daley@csd.uwo.ca, www.csd.uwo.ca/~daley

2 Dept. of Biochemistry, Univ. of Western Ontario, London ON N6A 5C1 Canada
ggloor@julian.uwo.ca, www.biochem.uwo.ca/fac/~gloor

3 Dept. of Computer Sci., Madras Christian College, Madras 600 059 India
ranisiro@satyam.net.in

4 Dept. of Ecology & Evolutionary Biology, Princeton Univ., NJ 08544-1003 USA
lfl@princeton.edu, www.princeton.edu/~lfl

Abstract. This paper addresses two main aspects of DNA computing
research: DNA computing in vitro and in vivo. We first present a model
of DNA computation developed in [5]: the circular insertion/deletion sys-
tem. We review the result obtained in [5] stating that this system has
the computational power of a Turing machine, and present the outcome
of a molecular biology laboratory experiment from [5] that implements
a small instance of such a system. This shows that rewriting systems
of the circular insertion/deletion type are viable alternatives in DNA
computation in vitro. In the second half of the paper we address DNA
computing in vivo by presenting a model proposed in [17] and developed
in [18] for the homologous recombinations that take place during gene re-
arrangement in ciliates. Such a model has universal computational power
which indicates that, in principle, some unicellular organisms may have
the capacity to perform any computation carried out by an electronic
computer.

1 Introduction

Electronic computers are only the latest in a long chain of man’s attempts to use
the best technology available for doing computations. While it is true that their
appearance, some 50 years ago, has revolutionized computing, computing does
not start with electronic computers, and there is no reason why it should end
with them. Indeed, even electronic computers have their limitations: there is only
so much data they can store and their speed thresholds determined by physical
laws will soon be reached. The latest attempt to break down these barriers is
to replace, once more, the tools for doing computations: instead of electrical use
biological ones.[13]

Research in this area was started by Leonard Adleman in 1994, [1], when
he surprised the scientific community by using the tools of molecular biology to
solve a hard computational problem. Adleman’s experiment, solving an instance

C. Pandu Rangan, V. Raman, R. Ramanujam (Eds.): FSTTCS’99, LNCS 1738, pp. 269–282, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

270 Lila Kari et al.

of the Directed Hamiltonian Path Problem solely by manipulating DNA strands,
marked the first instance of a mathematical problem being solved by biological
means. The experiment provoked an avalanche of computer science/molecular
biology/biochemistry/physics research, while generating at the same time a mul-
titude of open problems.[13]

The excitement DNA computing incited was mainly caused by its capabil-
ity of massively parallel searches. This, in turn, showed its potential to yield
tremendous advantages from the point of view of speed, energy consumption and
density of stored information. For example, in Adleman’s model, [2], the number
of operations per second was up to 1.2 × 1018. This is approximately 1,200,000
times faster than the fastest supercomputer. While existing supercomputers ex-
ecute 109 operations per Joule, the energy efficiency of a DNA computer could
be 2× 1019 operations per Joule, that is, a DNA computer could be about 1010

times more energy efficient (see [1]). Finally, according to [1], storing information
in molecules of DNA could allow for an information density of approximately
1 bit per cubic nanometer, while existing storage media store information at a
density of approximately 1 bit per 1012 nm3. As estimated in [3], a single DNA
memory could hold more words than all the computer memories ever made.[12]

A few more words, as to why we should prefer biomolecules to electricity for
doing computation: the short answer is that it seems more natural to do so. We
could look at the electronic technology as just a technology that was in the right
place at the right time; indeed, electricity hardly seems a suitable and intuitive
means for storing information and for computations. For these purposes, nature
prefers instead a medium consisting of biomolecules: DNA has been used for
millions of years as storage for genetic information, while the functioning of
living organisms requires computations. Such considerations seem to indicate
that using biomolecules for computations is a promising new avenue, and that
DNA computers might soon coexist with electronic computers.[13]

The research in the field has, from the beginning, had both experimental
and theoretical aspects; for an overview of the research on DNA computing
see [12]. This paper addresses both aspects. After introducing the basic notions
about DNA in Section 2, in Section 3 we present a model of DNA computa-
tion developed in [5]: the circular insertion/deletion system. We show that this
system has the computational power of a Turing machine and also present the
results of a molecular biology laboratory experiment that implements a small
instance of such a system. This shows that rewriting systems of the circular
insertion/deletion type are viable alternatives in DNA computation in vitro.
Section 4 introduces DNA computing in vivo by presenting a model proposed
in [17], [18] for the homologous recombinations that take place during gene rear-
rangement in ciliates. We prove that such a model has universal computational
power which indicates that, in principle, some unicellular organisms may have
the capacity to perform any computation carried out by an electronic computer.

How to Compute with DNA∗ 271

2 What is DNA?

DNA (deoxyribonucleic acid) is found in every cellular organism as the storage
medium for genetic information. It is composed of units called nucleotides, dis-
tinguished by the chemical group, or base, attached to them. The four bases
are adenine, guanine, cytosine and thymine, abbreviated as A, G, C, and T .
(The names of the bases are also commonly used to refer to the nucleotides that
contain them.) Single nucleotides are linked together end–to–end to form DNA
strands. A short single-stranded polynucleotide chain, usually less than 30 nu-
cleotides long, is called an oligonucleotide (or, shortly, oligo). The DNA sequence
has a polarity: a sequence of DNA is distinct from its reverse. The two distinct
ends of a DNA sequence are known under the name of the 5′ end and the 3′

end, respectively. Taken as pairs, the nucleotides A and T and the nucleotides C
and G are said to be complementary. Two complementary single-stranded DNA
sequences with opposite polarity will join together to form a double helix in a
process called base-pairing or annealing. The reverse process – a double helix
coming apart to yield its two constituent single strands – is called melting.[12]

A single strand of DNA can be likened to a string consisting of a combination
of four different symbols, A, G, C, T . Mathematically, this means we have at
our disposal a 4-letter alphabet X = {A,G,C, T } to encode information. As
concerning the operations that can be performed on DNA strands, the existing
models of DNA computation are based on various combinations of the following
primitive bio-operations, [12]:
– Synthesizing a desired polynomial-length strand.
– Mixing: pour the contents of two test-tubes into a third.
– Annealing (hybridization): bond together two single-stranded complementary
DNA sequences by cooling the solution.
– Melting (denaturation): break apart a double-stranded DNA into its single-
stranded components by heating the solution.
– Amplifying (copying): make copies of DNA strands by using the Polymerase
Chain Reaction (PCR).
– Separating the strands by size using a technique called gel electrophoresis.
– Extracting those strands that contain a given pattern as a substring by using
affinity purification.
– Cutting DNA double-strands at specific sites by using commercially available
restriction enzymes.
– Ligating: paste DNA strands with compatible sticky ends by using DNA ligases.
– Substituting: substitute, insert or delete DNA sequences by using PCR site-
specific oligonucleotide mutagenesis.
– Detecting and Reading a DNA sequence from a solution.

The bio-operations listed above and possibly others, will then be used to
write “programs” which receive a tube containing DNA strands as input and
return as output a set of tubes. A computation consists of a sequence of tubes
containing DNA strands.

For further details of molecular biology terminology, the reader is referred
to [12], [16].

272 Lila Kari et al.

3 How to Compute with DNA: Circular Insertions and
Deletions

One of the aspects of the theoretical side of the DNA computing research com-
prises attempts to find a suitable model and to give it a mathematical foundation.
This aspect is exemplified below by the circular contextual insertion/deletion
system, [5] a formal language model of DNA computing. We mention the re-
sult obtained in [5] that the circular insertions/deletion systems are capable of
universal computations. We also give the results of an experimental laboratory
implementation of our model. This shows that rewriting systems of the circular
insertion/deletion type are viable alternatives in DNA computation.

Insertions and deletions of small circular strands of DNA into/from long
linear strands happen frequently in all types of cells and constitute also one of
the methods used by some viri to infect a host. We describe here a generalization
of insertions and deletions of words, [11], that aims to model these processes.
(Note that circular DNA strings have been studied in the literature in the context
of the splicing system model in [8], [9], [21], [24], [25].)[5]

In order to introduce our model, we first need some formal language defini-
tions and notations. Throughout this paper, X represents an alphabet (a finite
nonempty set), λ represents the empty word (the word containing 0 letters), •v
represents a circular string v (a set containing every circular permutation of the
linear string v). The length of a word v, denoted by |v|, is the number of occur-
rences of letters in v, counting repetitions. For a language L, by •L we denote
the set of all words •v where v ∈ L. For further formal language definitions and
notations the reader is referred to [22], [23].

In the style of [15], we define a circular insertion/deletion system, [5], as a
tuple

ID• = (X,T, I•, D,A)

where X is an alphabet, card(X) ≥ 2, T ⊆ X is the terminal alphabet, I• ⊆
(X∗)5 is the finite set of circular insertion rules, D ⊆ (X∗)3 is the finite set of
deletion rules, and A ⊆ X+ is a linear strand called the axiom.

A circular insertion rule in I• is written as (c1, g1, •x, g2, c2)I where (c1, c2)
represents the context of the insertion, •x is the string to be inserted and (g1, g2)
are the guides, i.e. the location where •x is cut.

Given the rule above, the guided contextual circular insertion of the circular
string •x into a linear string u is performed as follows. The circular word •x is
linearized by cutting it between g1 and g2 (provided g1g2 occurs as a subword
in x) and reading it clockwise starting from g1 and ending at g2. The resulting
linear strand is then inserted into the linear word u, between c1 and c2. If c1c2
does not occur as a subword in u no insertion can take place. An example of
circular insertion is illustrated in Figure 1.

A deletion rule in D is written as (c1, x, c2)D where (c1, c2) represents the
context of deletion and x is the string to be deleted.

How to Compute with DNA∗ 273

 x y x y

A B

x y

x yA B

4

21 3 BA

A B

Fig. 1. Graphical representation of a circular insertion in the context (x, y),
where the circular string is cut at the site (A,B). (From [5].)

Given the rule above, the linear contextual deletion of x from a linear word u
accomplishes the excision of the linear strand x from u, provided x occurs in u
flanked by c1 on its left side and by c2 on its right side.

If u, v ∈ X∗, we say that u derives v according to ID• and we write u⇒ v, [5],
if v is obtained from u by either a guided contextual circular insertion or by a
linear contextual deletion, i.e.,

– either u = αc1c2β, v = αc1g1x
′g2c2β and I• contains the circular insertion

rule (c1, g1, •x, g2, c2)I where g1x′g2 ∈ •x, or
– u =αc1xc2β, v =αc1c2β andD contains the linear deletion rule (c1, x, c2)D.
A sequence of direct derivations

u1 ⇒ u2 ⇒ . . .⇒ uk, k ≥ 0

is denoted by u1 ⇒∗ uk and uk is said to be derived from u1.
The language L(ID•), [5], accepted by the circular insertion/deletion system

ID• is defined as

L(ID•) = {v ∈ T ∗| v ⇒∗ A,A is the axiom }
Recall that, [23], a rewriting system (S,X ∪ {#}, F) is called a Turing ma-

chine iff the following conditions are satisfied.
(i) S and X ∪ {#} (with # �∈ X and X �= ∅) are two disjoint alphabets

referred to as the state and tape alphabet.
(ii) Elements s0 ∈ S, � ∈ X , and a subset Sf ⊆ S are specified, namely,

the initial state, the blank symbol, and the final state set. A subset Vf ⊆ X is
specified as the final alphabet.

(iii) The productions in F are of the forms

(1) sia → sjb overprint
(2) siac → asjc move right
(3) sia# → asj�# move right and extend workspace
(4) csia → sjca move left
(5) #sia → #sj�a move left and extend workspace

274 Lila Kari et al.

where si, sj ∈ S and a, b, c ∈ X . Furthermore, for each si, sj ∈ S and a ∈ X , F
either contains no productions (2) and (3) (resp. (4) and (5)) or else contains
both (2) and (3) (respectively (4), (5)) for every c ∈ X . For no si ∈ S and a ∈ X ,
the word sia is a subword of the left side in two productions of the forms (1),
(3) and (5).

We say that a word sw, where s ∈ S and w ∈ (X ∪ {#})∗ is final iff w
does not begin with a letter a such that sa is a subword of the left side of some
production in F . The language accepted by a Turing machine TM is defined by

L(TM) = {w ∈ V ∗
f | #s0w# ⇒∗ #w1sfw2# for some

sf ∈ Sf , w1, w2 ∈ X∗ such that sfw2# is final}
where ⇒ denotes derivation according to the rewriting rules (1) – (5) of the
Turing machine. A language is acceptable by a Turing machine iff L = L(TM)
for some TM. It is to be noted that TM is deterministic: at each step of the
rewriting process, at most one production is applicable.

The following result proved in [5] shows that the circular insertion/deletion
systems defined above have the computational power of a Turing machine.

Theorem 1. If a language is acceptable by a Turing machine TM, then there
exists a circular insertion/deletion system ID• accepting the same language.

To test the empirical validity of our theoretical model, we implemented, [5],
a small circular insertion/deletion system in the laboratory. The purpose of this
implementation was to show that in vitro circular insertion is possible and not
overwhelmingly difficult.

The following circular insertion/deletion system was chosen:

ID• = (X,T, I•, D, u)

where the alphabets are T,X = {A,C,G, T }, there are no deletion rules, i.e.
D = ∅, the axiom u is a small DNA segment from the Drosophila Melanogaster
genome and I• = (G,G, •v, TCGAC, TCGAC) where •v is a commercially avail-
able plasmid (circular strand). Note that A,C,G, T correspond to the four bases
that occur in natural DNA, and that the sequence G|TCGAC is the restriction
(cut) site for the Sal I enzyme.[5]

To begin the experiment, we synthesized the linear axiom u in which we
would then insert. This was accomplished by taking DNA from Drosophila (fruit
fly) and performing PCR with the primers BC+ and cd−. The result was the
amplification of a particular 682bp (basepair) linear sequence of DNA which
became the axiom u of the circular insertion/deletion system. The 682bp linear
strand was chosen to contain exactly one restriction site for the enzyme Sal I,
corresponding to the context of insertion (G, TCGAC). For the circular string
•v to be inserted we chose pK18h, a commercially available plasmid having
one restriction site for Sal I, corresponding to the guides (G, TCGAC) in the
insertion rule. [5]

How to Compute with DNA∗ 275

After verifying that the PCR had worked correctly and we had indeed ob-
tained the desired 682bp linear axiom u, we cut u with Sal I, cleaving it into two
new linear strands denoted by L and R, i.e. u = L|R. The product was checked
by gel electrophoresis to ensure the presence of bands corresponding to the sizes
of L (188bp) and R (493bp), as seen from the first band in the gel of Figure 2.
The plasmid •v was also cut and linearized in the same fashion resulting in the
linear strand v. [5]

Fig. 2. The first vertical lane of this gel consists of bands corresponding to the
unreacted linearized plasmid v, the linear strand u, and the two fragments of
the cut linear strand (R, respectively L). The second vertical lane shows a band
corresponding to the product obtained after reaction: the insertion of v into u,
i.e., u ← v. The third lane contains a standard 1kb (kilobase) ladder used to
measure the others. (From [5].)

At this point the linear strands L and R were combined with the linearized
pK18h, i.e. v, and ligase was added to reconnect the strands of DNA. After al-
lowing time for ligation, a gel was run to determine the products. The second
band from the gel shown in Figure 2 indicates that in addition to the desired
L|plasmid|R, we also obtain R|R, L|R, plasmid|plasmid and even plasmid | plas-
mid | plasmid. [5]

276 Lila Kari et al.

Note that the band corresponding to the approximate size of L|plasmid|R
can be seen as a smear. This could suggest the presence of R|plasmid|R or of
any other combination of two linear fragments and a plasmid which failed to
separate clearly from one another due to the large size. Thus further analysis
was required to ensure the presence of the desired product L|plasmid|R. [5]

In order to amplify the amount of DNA available at this point, the DNA was
recircularized and introduced into E. Coli bacteria. (The complex details of this
process are omitted here.)

Prior to sequencing, a restriction digest was performed on small amounts
of product isolated from each of the several bacterial colonies. If the starting
sample were a heterogeneous mixture of DNA molecules, each colony would
yield a different product. Consequently, the restriction digest of DNA samples
(each isolated from a particular colony) with enzymes Sal I, Stu I and Xba ,
resulted in bands indicating different size distributions. Of these, one sample
corresponded to the size of L|plasmid|R and the identity of the product was
confirmed by sequencing. [5]

This experiment demonstrates that it is possible to insert a plasmid into a
linear strand in vitro, implementing thus a circular insertion/deletion system.
Future experimental work would ideally include a much larger system to test the
scalability of this approach. [5]

4 How do Cells Compute?

The previous section presented one of the existing models of DNA computa-
tion and presented a toy experimental laboratory implementation. Despite the
progress achieved in this direction of research, the main obstacles to creating an
in vitro DNA computer still remain to be overcome. These obstacles are mainly
practical, arising from difficulties in coping with the error rates of bio-operations,
and with scaling up the existing systems. However, note that similar issues of ac-
tively adjusting the concentrations of reactions and fault detection and tolerance
are all addressed by biological systems in nature: cells. This leads to another di-
rection of research, DNA computing in vivo, which addresses the computational
capabilities of cellular organisms.

Here we describe a model proposed in [17] and developed in [18] for the
homologous recombinations that take place during gene rearrangement in cil-
iates and prove that such a model has the computational power of a Turing
machine. This indicates that, in principle, these unicellular organisms may have
the capacity to, perform at least any computation carried out by an electronic
computer.

Ciliates are a diverse group of 8000 or more unicellular eukaryotes (nucleated
cells) named for their wisp-like covering of cilia. They possess two types of nuclei:
an active macronucleus (soma) and a functionally inert micronucleus (germline)
which contributes only to sexual reproduction. The somatically active macronu-
cleus forms from the germline micronucleus after sexual reproduction, during the
course of development. The genomic copies of some protein-coding genes in the

How to Compute with DNA∗ 277

Fig. 3. Overview of gene unscrambling. Dispersed coding MDSs 1-7 re-
assemble during macronuclear development to form the functional gene copy
(top), complete with telomere addition to mark and protect both ends of the
gene. (From [17].)

micronucleus of hypotrichous ciliates are obscured by the presence of intervening
non-protein-coding DNA sequence elements (internally eliminated sequences, or
IES s). These must be removed before the assembly of a functional copy of the
gene in the somatic macronucleus. Furthermore, the protein-coding DNA seg-
ments (macronuclear destined sequences, or MDS s) in species of Oxytricha and
Stylonychia are sometimes present in a permuted order relative to their final
position in the macronuclear copy. For example, in O. nova, the micronuclear
copy of three genes (Actin I, α-telomere binding protein, and DNA polymerase
α) must be reordered and intervening DNA sequences removed in order to con-
struct functional macronuclear genes. Most impressively, the gene encoding DNA
polymerase α (DNA pol α) in O. trifallax is apparently scrambled in 50 or more
pieces in its germline nucleus [10]. Destined to unscramble its micronuclear genes
by putting the pieces together again, O. trifallax routinely solves a potentially
complicated computational problem when rewriting its genomic sequences to
form the macronuclear copies. [18]

This process of unscrambling bears a remarkable resemblance to the DNA al-
gorithm Adleman [1] used to solve a seven-city instance of the Directed Hamilto-
nian Path Problem. The developing ciliate macronuclear “computer” (Figure 3)
apparently relies on the information contained in short direct repeat sequences
to act as minimal guides in a series of homologous recombination events. These
guide-sequences act as splints, and the process of recombination results in linking
the protein-encoding segments (MDSs, or “cities”) that belong next to each other
in the final protein coding sequence. As such, the unscrambling of sequences that

278 Lila Kari et al.

encode DNA polymerase α accomplishes an astounding feat of cellular compu-
tation. Other structural components of the ciliate chromatin presumably play a
significant role, but the exact details of the mechanism are still unknown.[18]

In this section we define the notion of a guided recombination system, [18]),
that models the process taking place during gene rearrangement, and prove that
such systems have the computational power of a Turing machine, the most widely
used theoretical model of electronic computers.

The following strand operations generalize the intra- and intermolecular re-
combinations defined in [17] and illustrated in Figure 4 by assuming that ho-
mologous recombination is influenced by the presence of certain contexts, i.e.,
either the presence of an IES or an MDS flanking a junction sequence. The ob-
served dependence on the old macronuclear sequence for correct IES removal in
Paramecium suggests that this is the case ([19]). This restriction captures the
fact that the guide sequences do not contain all the information for accurate
splicing during gene unscrambling. [18]

u
x w

v

u x w

v

x

+

xv wxu x

Fig. 4. Intra- and intermolecular recombinations using repeats x. During in-
tramolecular recombination, after x finds its second occurrence in uxvxw, the
molecule undergoes a strand exchange in x that leads to the formation of two
new molecules: a linear DNA molecule uxw and a circular one •vx. The reverse
operation is intermolecular recombination. (From [14].)

Using an approach developed in [15] we use contexts to restrict the use of re-
combinations. A splicing scheme, [7], [8] is a pair (X,∼) where X is the alphabet

How to Compute with DNA∗ 279

and ∼, the pairing relation of the scheme, is a binary relation between triplets of
nonempty words satisfying the following condition: If (p, x, q) ∼ (p′, y, q′) then
x = y. In the splicing scheme (X,∼) pairs (p, x, q) ∼ (p′, x, q′) now define the
contexts necessary for a recombination between the repeats x. Then we define
contextual intramolecular recombination, [18] as

{uxwxv} ⇒ {uxv, •wx}, where u = u′p, w = qw′ = w′′p′, v = q′v′.

This constrains intramolecular recombination within uxwxv to occur only if
the restrictions of the splicing scheme concerning x are fulfilled, i.e., the first
occurrence of x is preceded by p and followed by q and its second occurrence is
preceded by p′ and followed by q′. (See Figure 4.)

Similarly, if (p, x, q) ∼ (p′, x, q′), then we define contextual intermolecular
recombination, [18]), as

{uxv, •wx} ⇒ {uxwxv} where u = u′p, v = qv′, w = w′p′ = q′w′′.

Informally, intermolecular recombination between the linear strand uxv and the
circular strand •wx may take place only if the occurrence of x in the linear
strand is flanked by p and q and its occurrence in the circular strand is flanked
by p′ and q′. Note that sequences p, x, q, p′, q′ are nonempty, and that both con-
textual intra- and intermolecular recombinations are reversible by introducing
pairs (p, x, q′) ∼ (p′, x, q) in ∼. (See Figure 4.)

The above operations resemble the “splicing operation” introduced by Head
in [7] and “circular splicing” ([8], [24], [21]). [20], [4] and subsequently [25]
showed that these models have the computational power of a universal Turing
machine. (See [22] for a review.)

The operations defined in [17] are particular cases of guided recombination,
where all the contexts are empty, i.e, (λ, x, λ) ∼ (λ, x, λ) for all x ∈ X+. This
corresponds to the case where recombination may occur between every repeat
sequence, regardless of the contexts. These unguided (context-free) recombina-
tions are computationally not very powerful: we can prove that they can only
generate regular languages. [18]

If we use the classical notion of a set, we can assume that the strings entering
a recombination are available for multiple operations. Similarly, there would be
no restriction on the number of copies of each strand produced by recombination.
However, we can also assume some strings are only available in a limited number
of copies. Mathematically this translates into using multisets, where one keeps
track of the number of copies of a string at each moment. In the style of [6], if N is
the set of natural numbers, a multiset of X∗ is a mapping M : X∗ −→ N∪{∞},
where, for a word w ∈ X∗, M(w) represents the number of occurrences of w.
Here,M(w) =∞means that there are unboundedly many copies of the string w.
The set supp(M) = {w ∈ X∗| M(w) �= 0}, the support of M , consists of the
strings that are present at least once in the multiset M . [12]

We now define a guided recombination system that captures the series of
dispersed homologous recombination events that take place during scrambled
gene rearrangements in ciliates.

280 Lila Kari et al.

Definition. ([18]) A guided recombination system is a triple R = (X,∼,A)
where (X,∼) is a splicing scheme, and A ∈ X+ is a linear string called the
axiom.

A guided recombination system R defines a derivation relation, [18], that
produces a new multiset from a given multiset of linear and circular strands, as
follows. Starting from a “collection” (multiset) of strings with a certain number
of available copies of each string, the next multiset is derived from the first one by
an intra- or inter-molecular recombination between existing strings. The strands
participating in the recombination are “consumed” (their multiplicity decreases
by 1) whereas the products of the recombination are added to the multiset (their
multiplicity increases by 1).

For two multisets S and S′ in X∗ ∪ X•, we say that S derives S′ and we
write S ⇒R S

′, iff one of the following two cases hold, [18]:
(1) there exist α ∈ supp(S), β, •γ ∈ supp(S′) such that
– {α} ⇒ {β, •γ} according to an intramolecular recombination step in R,
– S′(α) = S(α) − 1, S′(β) = S(β) + 1, S′(•γ) = S(•γ) + 1;
(2) there exist α′, •β′ ∈ supp(S), γ′ ∈ supp(S′) such that
– {α′, •β′} ⇒ {γ′} according to an intermolecular recombination step in R,
– S′(α′) = S(α′)− 1, S′(•β′) = S(•β′)− 1, S′(γ′) = S(γ′) + 1.
Those strands which, by repeated recombinations with initial and interme-

diate strands eventually produce the axiom, form the language accepted by the
guided recombination system. Formally, [18],

Lk
a(R) = {w ∈ X∗| {w} ⇒∗

R S and A ∈ supp(S)},

where the the multiplicity of w equals k. Note that Lk
a(R) ⊆ Lk+1

a (R) for any
k ≥ 1.

Theorem.([18])Let L be a language over T ∗ accepted by a Turing machine
TM = (S,X ∪ {#}, P) as above. Then there exist an alphabet X ′, a sequence
π ∈ X ′∗, depending on L, and a recombination system R such that a word w
over T ∗ is in L if and only if #6s0w#6π belongs to Lk

a(R) for some k ≥ 1.

The preceding theorem implies that if a word w ∈ T ∗ is in L(TM), then
#6s0w#6π belongs to Lk

a(R) for some k and therefore it belongs to Li
a(R) for

any i ≥ k. This means that, in order to simulate a computation of the Turing
machine on w, any sufficiently large number of copies of the initial strand will
do. The assumption that sufficiently many copies of the input strand are present
at the beginning of the computation is in accordance with the fact that there are
multiple copies of each strand available during the (polytene chromosome) stage
where unscrambling occurs. Note that the preceding result is valid even if we
allow interactions between circular strands or within a circular strand, particular
cases of which have been formally defined in [17].[18]

The proof that a guided recombination system can simulate the computa-
tion of a Turing machine suggests that the micronuclear gene, present in multiple

How to Compute with DNA∗ 281

copies, consists of a sequence encoding the input data, combined with a sequence
encoding a program, i.e., a list of encoded computation instructions. The “com-
putation instructions” can be excised from the micronuclear gene and become
circular “rules” that can recombine with the data. The process continues then by
multiple intermolecular recombination steps involving the linear strand and cir-
cular “rules”, as well as intramolecular recombinations within the linear strand
itself. The resulting linear strand, which is the functional macronuclear copy of
the gene, can then be viewed as the output of the computation performed on the
input data following the computation instructions excised as circular strands. [18]

The last step, telomere addition and the excision of the strands between
the telomere addition sites, can easily be added to our model as a final step
consisting of the deletion of all the markers, rule delimiters and remaining rules
from the output of the computation. This would result in a strand that contains
only the output of the computation (macronuclear copy of the gene) flanked by
end markers (telomere repeats). This also provides a new interpretation for some
of the vast quantity of non-encoding DNA found in micronuclear genes.[14]

In conclusion, in this section we presented a model proposed in [17] for the
process of gene unscrambling in hypotrichous ciliates. While the model is consis-
tent with our limited knowledge of this biological process, it needs to be rigor-
ously tested using molecular genetics. We have shown, however, that the model
is capable of universal computation. This both hints at future avenues for explor-
ing biological computation and opens our eyes to the range of complex behaviors
that may be possible in ciliates, and potentially available to other evolving ge-
netic systems. [18]

References

1. L.Adleman. Molecular computation of solutions to combinatorial problems. Science
v.266, Nov.1994, 1021–1024. 269, 270, 270, 277

2. L.Adleman. On constructing a molecular computer. 1st DIMACS workshop on
DNA based computers, Princeton, 1995. In DIMACS series, vol.27 (1996), 1–21.
270

3. E.Baum. Building an associative memory vastly larger than the brain. Science,
vol.268, April 1995, 583–585. 270

4. E. Csuhaj-Varju, R.Freund, L.Kari, and G. Păun. DNA computing based on splic-
ing: universality results. In Hunter, L. and T. Klein (editors). Proceedings of 1st
Pacific Symposium on Biocomputing. World Scientific Publ., Singapore, 1996, 179-
190. 279

5. M.Daley, L.Kari, G.Gloor, R.Siromoney. Circular contextual insertions/deletions
with applications to biomolecular computation. Proceedings of String Processing
and Information REtrieval ’99, Mexico, IEEE CS Press, 1999, in press. 269, 269,
269, 270, 272, 272, 272, 273, 273, 273, 274, 274, 275

6. S.Eilenberg. Automata, Languages and Machines. Academic Press, New York,
1984. 279

7. T.Head. Formal language theory and DNA: an analysis of the generative capacity
of recombinant behaviors. Bulletin of Mathematical Biology, 49(1987), 737–759.
278, 279

282 Lila Kari et al.

8. T. Head. Splicing schemes and DNA. Lindenmayer systems, G.Rozenberg and A.
Salomaa eds., Springer Verlag, Berlin, 1991, 371–383. 272, 278, 279

9. T.Head, G.Păun, D.Pixton. Language theory and genetics. Generative mech-
anisms suggested by DNA recombination. In Handbook of Formal Languages
(G.Rozenberg, A.Salomaa eds.), Springer Verlag, 1996. 272

10. D.C.Hoffman, and D.M. Prescott. Evolution of internal eliminated segments and
scrambling in the micronuclear gene encoding DNA polymerase α in two Oxytricha
species. Nucl. Acids Res. 25(1997), 1883-1889. 277

11. L.Kari. On insertions and deletions in formal languages. Ph.D. thesis, University
of Turku, Finland, 1991. 272

12. L.Kari. DNA computing: arrival of biological mathematics. The Mathematical In-
telligencer, vol.19, nr.2, Spring 1997, 9–22. 270, 271, 271

13. L.Kari. From Micro-Soft to Bio-Soft: Computing with DNA. Proceedings of
BCEC’97 (Bio-Computing and Emergent Computation) Skovde, Sweden, World
Scientific Publishing Co., 146–164.

14. L.Kari, L.F.Landweber. Computational power of gene rearrangement. Proceedings
of DNA Based Computers V, E.Winfree, D.Gifford eds., MIT, Boston, June 1999,
203-213. 278

15. L.Kari, G.Thierrin. Contextual insertions/deletions and computability. Informa-
tion and Computation, 131, no.1 (1996), 47–61. 272, 278

16. J.Kendrew et al., eds. The Encyclopedia of Molecular Biology, Blackwell Science,
Oxford, 1994. 271

17. L.F.Landweber, L.Kari. The evolution of cellular computing: nature’s solution to
a computational problem. Proceedings of 4th DIMACS meeting on DNA based
computers, Philadephia, 1998, 3-15. 269, 270, 276, 277, 278, 279, 280, 281

18. L.F.Landweber, L.Kari. Universal molecular computation in ciliates. In Evolution
as Computation, L.F.Landweber, E,Winfree, Eds., Springer Verlag, 1999. 269,
270, 276, 278, 279, 279, 280, 280, 280, 280, 280

19. E.Meyer,and S.Duharcourt. Epigenetic Programming of Developmental Genome
Rearrangements in Ciliates. Cell (1996) 87, 9-12. 278

20. G.Păun. On the power of the splicing operation. Int. J. Comp. Math 59(1995),
27-35. 279

21. D.Pixton. Linear and circular splicing systems. Proceedings of the First Interna-
tional Symposium on Intelligence in Neural and Biological Systems , IEEE Com-
puter Society Press, Los Alamos, 1995, 181–188. 272, 279

22. G.Rozenberg, and A.Salomaa eds. Handbook of Formal Languages, Springer Verlag,
Berlin, 1997. 272, 279

23. A.Salomaa. Formal Languages. Academic Press, New York, 1973. 272, 273
24. R. Siromoney, K.G. Subramanian and Dare Rajkumar, Circular DNA and splic-

ing systems. In Parallel Image Analysis. Lecture Notes in Computer Science 654,
Springer Verlag, Berlin, 1992, 260–273. 272, 279

25. T. Yokomori, S. Kobayashi and C. Ferretti. Circular splicing systems and DNA
computability Proc. of IEEE International Conference on Evolutionary Computa-
tion’97, 1997, 219–224. 272, 279

	Introduction
	What is DNA?
	How to Compute with DNA: Circular Insertions and Deletions
	How do Cells Compute?

