International Journal of Foundations of Computer Science
© World Scientific Publishing Company

OPERATIONS ON TRAJECTORIES WITH APPLICATIONS TO
CODING AND BIOINFORMATICS

LILA KARI

Department of Computer Science, The University of Western Ontario, London, Ontario, N6A
5B7, Canada, 1ila@csd.uwo.ca

and

STAVROS KONSTANTINIDIS

Dept. of Mathematics and Computing Science, Saint Mary’s University, Halifax, Nova Scotia,
B3H 3C3, Canada, s.konstantinidis@smu.ca

and

PETR SOSIK

Institute of Computer Science, Silesian University, 74601 Opava, Czech Republic,
petr.sosik@fpf.slu.cz

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We study binary word operations of the insertion, deletion and substitution type.
Many of these operations can be generalized into a unified framework by introducing so-
called trajectory condition. This generalization has been previously made for insertion
and deletion operations. In this paper we naturally extend this approach also to substi-
tution operations. We study closure properties and decision problems of substitutions
on trajectories. The obtained results are then applied to model complex noisy channels
and a cryptanalysis problem. Another application concerns the design of sets of DNA
strands without undesired bonds.

Keywords: formal languages; trajectory; noisy channel; biocomputing

1. Introduction

Binary word operations play an important role in formal language theory. They
serve for composition/decomposition of languages and their descriptions (gram-
mars, automata). They are also crucial for forming algebraic structures of formal
languages, such as abstract families of languages (AFL) [26], and have numerous
other applications. Besides their closure properties, language equations involving
these operations have been studied. Various problems from automaton theory [26],

coding theory [11], biocomputing [15] etc. have been reduced to finding solutions
to language equations involving these operations [11, 19].

In this paper we focus on insertion/deletion/substitution word operations, such
as catenation, insertion, quotient, shuffle, deletion, scattered deletion, substitution,
etc. These operations differ in the positions where the letters of one operand are
inserted/deleted /substituted into/from the other one. It turns out that one can
characterize all these positions by a set of binary strings called trajectories. Shuffle
on trajectories has been introduced and investigated in [25], characterizing a class
of insertion operations. Also their applications to concurrent processes modelling
were considered. Further related problems have been addressed e.g., in [22, 23].
An inverse operation, the deletion on trajectories, has been introduced in [3, 13].
Further theoretical results can be found e.g., in [4, 5, 6, 7], while for applications
we refer to [14, 15].

As a further natural extension, we introduce in Section 4 the operations of
substitution on trajectories. Substitution word operations were introduced in [11],
where they have been used to model noisy channels. A basic principle is to replace
certain letters of one argument by letters of the other argument. The trajectory
condition can restrict positions or frequency of these replacements. The idea of
substitution on trajectories seems to have interesting applications in coding theory
and bioinformatics.

The paper is organized as follows. A basic description of deletion/insertion op-
erations on trajectories is given in Section 3. Then in Section 4 we introduce substi-
tution on trajectories. Closure properties of substitution on trajectories are studied
in Section 5, and related decision questions in Section 6. In Section 7 we discuss
a few applications of the substitution on trajectories in modelling complex noisy
channels and a cryptanalysis problem. In the former case, the channels involved
permit only substitution errors. This restriction allows us to improve the time com-
plexity of the problem of whether a given regular language is error-detecting with
respect to a given channel [18]. Finally, in Section 8 applications to bioinformatics
are discussed. We characterize certain types of bonds of single DNA strands by op-
erations on trajectories. This allows for construction of a quadratic-time algorithm
testing the presence of such bonds in a given regular set of DNA words.

2. Definitions

An alphabet is a finite and nonempty set of symbols. In the sequel we shall use a
fixed alphabet ¥ which is assumed to be non-singleton, if not stated otherwise. The
set of all words (over ¥) is denoted by ¥*. This set includes the empty word A. The
length of a word w is denoted by |w]|, and |w|, denotes the number of occurrences
of z within w, for w € ¥*, x € X.

For a nonnegative integer n and a word w, we use w" to denote the word that
consists of n concatenated copies of w. The Hamming distance H(u,v) between
two words u and v of the same length is the number of corresponding positions in
which u and v differ. For example, H (abba, aaaa) = 2.

A mapping a : ¥* — ¥* is called a morphism (anti-morphism) of ¥* if a(uv) =

a(u)a(v) (respectively, a(uv) = a(v)a(u)) for all u,v € ¥*. Note that both a
morphism and an anti-morphism of ¥* are completely defined if we define their
values on the letters of X.

A language L is a set of words, or equivalently a subset of ¥*. A language is
said to be A-free if it does not contain the empty word. For a language L, we write
Ly to denote L U {A}. If n is a nonnegative integer, we write L™ for the language
consisting of all words of the form wy - - - w, such that each w; is in L. We also write
L* for the language L' U L? U--- and L* for the language L™ U L°. The notation
L° represents the complement of the language L, that is, L* = ¥* — L.

A nondeterministic finite automaton with A productions (or transitions), a A-
NFA for short, is a quintuple A = (S, X%, sg, F, P) such that S is the finite and
nonempty set of states, sg is the start state, F' is the set of final states, and P is
the set of productions of the form sz — ¢, where s and t are states in S, and z is
either a symbol in ¥ or the empty word. If there is no production with z = A, the
automaton is called an NFA. If for every two productions of the form sx; — ¢ and
sxy — to of an NFA we have that 1 # x5 then the automaton is called a DFA
(deterministic finite automaton). The language accepted by the automaton A is
denoted by L(A). The size |A| of the automaton A is the number |S| + |P|. We
refer the reader to [26] for further details on automata and formal languages.

A binary word operation is a mapping < : £* x £* — 2> where 2 is the set of
all subsets of ¥*. The characteristic relation of) is

Co ={(w,u,v) :w € uv}.
For any languages X and Y, we define

XoY = U u . (1)

ue X, veY

It should be noted that every subset B of ¥* x ¥* x ¥.* defines a unique binary
word operation whose characteristic relation is exactly B. The left inverse {! and
the right inverse " of ¢ are defined as

w € (xHv) iff z € (wdlv), for all v, z,w € X*,

we (udy) iff y € (u O™ w), for all u,y,w € ¥*.

Moreover, the word operation ¢’ defined by u{'v = v Qu is called reversed ¢.
It should be clear that, for every binary operation <, the triple (w,u,v) is in Cy
if and only if (u,w,v) is in Cy if and only if (v,u,w) is in Cy- if and only if
(w,v,u) is in Cyr. If 2 and y are symbols in {I,r,}, the notation (Y represents
the operation ({*)Y. Using the above observations, one can establish identities
between operations of the form 7Y,
Lemma 1 (i) O = o™ =" = O,

(”) <>Il — <>TI — <>lr’

(7”) <>Ir — <>ll — <>’l"l)

Bellow we list several binary word operations together with their left and right in-
verses [10].

Catenation®: u-v = {uv}, with /' = —,, and -7 = ——,.

!

Left quotient: u —q v = {w} if u = vw, with —){q = Jand —j = -

Right quotient: u —.q v = {w} if u = wo, with —L, = - and —7, = g

Shuffle (or scattered insertion): uwlllv = {ujvy - - - upvpupyr | k> 1,
W= Uy UgUg1, V=01 Ug }, with LY =~ and LLI" = ~»'.

Scattered deletion: u~> v = {uy - ugugs1 | k> 1, u = uvy - - UV UR41,
v =" v}, with ~0 = L1 and ~" = ~.

3. Shuffle and Deletion on Trajectories

The above insertion and deletion operations can be naturally generalized using
the concept of trajectories. A trajectory defines an order in which the operation
is applied to the letters of its arguments. Notice that this restriction is purely
syntactical, as the content of the arguments has no influence on this order. For-
mally, a trajectory is a string over the trajectory alphabet V = {0, 1}. The following
definitions are due to [3, 13, 25].

Let ¥ be an alphabet and let t be a trajectory, t € V*. Let a, 8 be two words
over X.

Definition 1 The shuffle of a with B on trajectory t, denoted by a Ll 3, is defined
as follows:

CMLLItﬁ = {oqﬁl...ak,@k|a:a1...ak7,6:,31...ﬂht:()"’lljl...()"”“lj‘y
where || = im and |Bm| = jm for all m, 1 <m < k}.

Observe that due to the above definition, if |a| # |t|o or |3] # |t|1, then a LLl; 8 = ().
Definition 2 The deletion of 8 from a on trajectory t is the following binary word
operation:

a~y B = Hog...apla=a1fy...arBk, B=01...0k, t =011 01k,
where || = im and |Bu| = jm for allm, 1 < m < k}.

Similarly as in the previous definition, if |a| # |t| or |8] # |1, then a ~; 3 = 0.
A set of trajectories is any set T' C V*. We extend the shuffle and deletion to
sets of trajectories as follows:

a'—UTﬁ:UaU—'tﬁ, aMTﬂ:Ua’\”tﬂ- (2)

teT teT

The operations LLIz and ~7 generalize to languages by (1).

aWe shall also write uv for u - v.

Ezample. The following binary word operations can be expressed via shuffle on
certain sets of trajectories.

(i) Let T = 0*1*, then LLIp = -, the catenation operation, and ~>q = —,, the
right quotient.
(ii) For T = 1*0* we have LLIz = -/, the anti-catenation, and ~7 = —q, the

left quotient.
(iii) Let T' = {0,1}*, then ~»y = LLI, the shuffle, and ~¢ = ~», the scattered
deletion.

Lemma 2 Let T be a set of trajectories. Then LY. = ~sq and ~Y = Wi,
Lemma 3 For all reqular languages Ly, Lo, and a regular set of trajectories T, both
Ly Wy Ly and Ly ~7 Lo are reqular languages.

Furthermore, let Ay, As and A be NFA’s accepting L1, Lo, and T, respectively.
Then there exists an NFA (A-NFA for ~>1) of the size O(|A1]-|Az2]-|Ar|) accepting
the language Ly Uy Ly (L1 ~>7 Lo, respectively).

4. Substitution on Trajectories

Based on the previously studied concepts of the insertion and deletion on trajec-
tories, we consider a generalization of three natural binary word operations which
are used to model certain noisy channels [11]. Generally, a channel [18] is a binary
relation v C ¥* x X* such that (u,u) is in 7 for every word w in the input domain
of v this domain is the set {u | (u,v) € v for some word v}. The fact that (u,v)
is in 7 means that the word v can be received from u via the channel .

In [11], certain channels with insertion, deletion and substitution errors are char-
acterized via word operations. For instance, the channel with exactly m insertion
errors is the set of all pairs (u,v) such that v € u LLI ¥, and analogously for deletion
errors. The following operations allow to characterize channels with substitution
errors.

Definition 3 For a trajectory t € V* and u,v € ¥* we define the substitution in
u by v on trajectory t as

uMiv = {uviugy .. UpVRUR41 | K> 0, u = wiar . ugGRUER41, U =01 U,
t=01110"1...0%10%+ | a;,0; € X,1<i <k, a; #v;,¥i,1 <i <k,
ji = luil, 1 <i <k+ 1}

Definition 4 For a trajectory t € V* and u,v € ¥* we define the substitution in
u of v on trajectory t as

ulNyv = {waiusas .. ugapugsr | k>0, 4= ugvr .. URURUR41, U = U1 ... U,
t=07110721...0% 109+, a;,v; € £,1<i <k, a; #v;,Vi,1<i <k,
i = w1 < <k +1}.

Definition 5 For a trajectory t € V* and u,v € ¥* we define the right difference
of u and v on trajectory t as

ubrv = {’U]Ug...vk|k20, U =ura1 ... UgagUg4+1, U = U101 ... UV Uk+1,

t=07110721...09% 109+, a;,v; € £,1<i <k, a; #v;,Vi,1<i <k,
Ji=|uwil,1<i<k+1}

Ezample. Consider an alphabet ¥ = {a,b,c}. Then

(i) aaaa Mg119 be = {abeal,
(il) aaaa Ngyqgaa = {abba, abca, acba, acca},
(iii) aaaa >o110 abea = {be}.

We note that, analogously to Definitions 1 and 2, if |u| # |¢| or |v| # |t|1,
then u X; v = w/A,v = (. Similarly, if the condition |u| = |v| = |¢| is not met,
then u >; v = . Observe also that for an arbitrary u,v € ¥*, t € V* one gets
u Xy o] <1, Jus;o| <1, but [ud, v < (|Z] — 1),

These operations can be generalized to sets of trajectories in the natural way:

uNXprv= UuNtv, ulNpv = UUANJ and ubrov= Uubtv.
teT teT teT
We give notice of the fact that the notation X was used also by A. Mateescu
in [21] and some other papers to denote splicing on routes.

Ezample. For positive integers m and I, with m < [, consider the SID (Substitution,
Insertion, Deletion) channel [17] that permits at most m substitution errors in any
[(or less) consecutive symbols of any input message. Using the operation X, this
channel is defined as the set of pairs of words (u,v) such that u € v Xy ¥* where
T is the set of all trajectories ¢ such that, for any subword s of ¢, if |s| < I then
Is|1 < m.

One can observe that similarly as in [11], substitution on trajectories can char-
acterize channels where errors occur in certain parts of words only, or with a certain
frequency. If we replace the language ¥* in the above example by a more specific
one, we can also model channels where errors depend on the content of the message.
Lemma 4 For a set of trajectories T and words u,v € X*, the following holds:

(i) Xy = Ap and X5 = D>,
(ii) Ny = Mg oand A} = >,
(iii) > = Al and >h = Xp .
Proof.
(i) Recall the characteristic relation Cx, of the operation X; . The statements
M = A, and X/ = >, t € T, follow directly by careful reading of the
definitions of X;, A, and >;. Now observe that

l _ I, —
u N v = U uM;v= U ulNyv=ulpo.
teT teT

The proof for X7, is analogous.

(ii) Due to Lemma 1, X\, = Ag implies Ay = Xp and X5, = g implies

TT:MZIT;:MT,:D’T‘ 1

(iii) Simil?rly7 M5 = > implies >4 = X, and consequently >4 = X5t = X,
= A}

O

5. Closure Properties

Before addressing the closure properties of substitution, we show first that any
(not necessarily recursively enumerable) language over a two letter alphabet can be
obtained as a result of substitution.

Lemma 5 For an arbitrary language L C {a,b}* there exists a set of trajectories
T such that

(i) L =a* Xy b*,

(i) L = a* Apa*.
Proof. Let T = ¢(L), ¢ : {a,b}* — V* being a coding morphism such that
¢(a) =0, ¢(b) = 1. The statements follow easily by definition. O

Similarly as in the case of shuffle and deletion on trajectories [3, 13, 25], the
substitution on trajectories can be characterized by simpler language operations.
Lemma 6 Let { be any of the operations Xy, Ay, . Then there exists a finite
substitution hy, morphisms hy, g and a regular language R such that for all languages
Ly, Ly CX*, and for all sets of trajectories T C V*,

Ly &g Ly = g((ha(L1) L ho (L) LLUT) N R). (3)

Proof. Let X; = {a;|a € X}, for i = 1,2,3, be copies of ¥ such that X, ¥, o,
Y3 and V are pairwise disjoint alphabets. For a letter a € X, we denote by a; the
corresponding letter from ¥;, 1 = 1,2, 3.

Let further h; : ¥ — (X1 U X3) be a finite substitution and let hy : ¥ — 3
and g: (1 UXo UX3UV) — ¥ be morphisms.

(i) If &7 =Xy, then define hy(a) = {a1,as}, ha(a) = as for each a € ¥. Let
R=(%;-{0}U{agbsl|a,be X, a#b})".

Let further g(a1) = a, g(az) = a for all a; € X1, ay € ¥, and g(z) = A for all
x € X3 UV. Then one can easily verify that (3) holds true.
(i) If Op = A, then let hy(a) = {a1} U{az} - X1, ha(a) = ay for each a € 3. Let
further
R=(%;-{0}U{azazb11l]a,b € X, a#b})",

and g(a;) = a for all a; € ¥y, g(x) = Aforall z € 2o UX3UV.
(iii) If &y = >, then define hy(a) = a1, ha(a) = {aa, az} for each a € 3. Let

R=({ar1a20|a € B} U{a1bsl|a,b e X, a # b})",

and g(asz) =afor all ag € X3, g(z) = A forallz € ¥, UXo U V.
O
Theorem 1 Let {$o be any of the operations Xp, Ag, >r. Let Ly, Lo C X* be
reqular languages and T C V* a regular set of trajectories. Let Ay, Ay and At be
NFA’s accepting L1, Ly and T, respectively.
Then there exists an NFA (a A\-NFA if {p = 1) A of the size |A] = O(JA1] -
|Ar| - |As|) accepting Ly o Lo.

Proof. Denote Ay = (Qr,V, s, Fr,pr) and A; = (Q;, %, s;, Fi,p;) for i = 1,2.
We show the construction of an NFA A accepting L; Xp Lo, the remaining cases
are analogous. Informally, given a word z € ¥*, A chooses nondeterministically a
trajectory ¢t € T, words 21 € Ly and zs € Lo and tests whether {z} = x1 X; xo.
Denote A = (Q,X, s, F,p). Let Q = Q1 XQr X Q2,5 = (81,57, 82), F = Fy X Fp x Fy,
and p be defined as follows. For all ¢; € Q1, q7 € Q1, @2 € @2, a € X,

(g1,97,92) a = (¢}, ¢p,q2) for all ¢y € Q1, ¢ € Q7 such that ga — ¢},
qr0 — ¢

(g1,97.92) a = (¢4, 47, q3) forall g1 € Q1, ¢ € Qr, g5 € Q2 such that ¢1b — ¢},
grl = ¢, @2a = g5, be X, a#b.

The reader can easily verify that L(A) = Ly Xp Ls. |
Theorem 2 Let {r be any of the operations X, Ap, D>r.

(i) Let any two of the languages Ly, Lo, T be regular and the third one be
context-free. Then Ly $r Lo is a context-free language.

(ii) Let any two of the languages Ly, Lo, T be context-free and the third one be
reqular. Then L1 {$r Lo is a non-contexi-free language for some triples (Lq,
Ly, T).

Proof.

(i) Follows by Lemma 6, and by closure of the class of context-free languages
with respect to finite substitution, shuffle, morphisms and intersection with
regular languages.

(ii) Consider the alphabet ¥ = {a,b, ¢, d}.

(a) Let O =Xp .
(1) Consider L; = {a"db®" |n > 0}, Ly = {a™c™|m > 0} and T = V*,
then (Ly Xy Ly) Na*da*c* = {a"da"c" |n > 0}.
(2) Consider Ly = {a™*" |n > 0}, Ly = ¢* and T = {0°™1™ |m > 0},
then Ly Xy Ly = {a"™b"c"™ |n > 0}.
(3) Conmsider Ly = at, Ly = {b"c"|n > 0} and T = {0™1*™ |m > 0},
then Ly Xy Ly = {a™b"c" |n > 0}.
(b) Let {4 = Ay . Consider:
(1) Ly = {a"ba*ba' |k +1+1=2n >0}, Ly = {a™ba™*! |m > 0} and
T=0"1T,
(2) L1 = {a"b"a™ |n > 0,m > 0}, Ly = a* and T = {0*"*11™|m >
0},
(3) L1 = a™ba™, Ly = {a"ba™ |n > 0} and T = {0™1?>™*! |m > 0},
then in all three cases (L1 Aq Lo) Na*b*ab* = {a™b"ad™ |n > 0}.
(c) Let &g = >p. Consider:
(1) Ly = {c*"dc™ |m > 0}, Ly = {a"b"da™ |n,m >0} and T = VT,
(2) Ly = {b"a"db™ |n,m > 0}, Ly = a*bTda™ and T = {1?™01™ |m >
0},
(3) Ly = ctdct, Ly = {a"b"da™ |n,m > 0} and T = {1*™01™ | m > 0},

then in all three cases (L1 > Lo) N {a,b}* = {a"b"a™ |n > 0}.

In all the above cases we have shown that Li {1 Lo is a non-context-free
language.

O

6. Decision Problems

In this section we study three elementary types of decision problems for language
equations of the form Ly {4 Lo = R, where { is one of the operations Xy, A, .
These problems, studied already for various binary word operations in [3, 9, 10, 13]
and others, are stated as follows. First, given Ly, L, and R, one asks whether the
above equation holds true. Second, the existence of a solution L; to the equation
is questioned, when L; is unknown (the left operand problem). Third, the same
problem is stated for the right operand L,. All these problems have their variants
when one of Ly, Ly (the unknown language in the case of the operand problems)
consists of a single word.

We focus now on the case when Ly, Ly and T are all regular languages. Then
Ly &7 Lo is also a regular language by Theorem 1, {1 being any of the operations
X7, Ag, >r. Immediately we obtain the following result.

Theorem 3 The following problems are both decidable if the operation {1 is one
of X, Ay, >, T being a regular set of trajectories:

(i) For given regular languages L1, Lo, R, is L1 { Lo = R?
(ii) For given regular languages L1, R and a word w € ¥*, is L1 {rw = R?

Also the decidability of the left and the right operand problems for languages
is a straightforward consequence of the results in Section 5 and some previously
known facts about language equations [10].

Theorem 4 Let {1 be one of the operations Xy, Ay, >p. The problem “Does
there exist a solution X to the equation X Sp L = R?7 (left-operand problem) is
decidable for reqular languages L, R and a regular set of trajectories T.

Proof. Due to [10], if a solution to the equation X {4 L = R exists, then also
Xmax = (R¢ O 1) is also a solution, ¢ being an invertible binary word operation.
In fact, Xmax is the maximum (with respect to the subset relation) of all the sets
X such that X $ L C R. We can conclude that a solution X exists iff

(RO L) Or L =R. (4)

holds. Observe that if {p is one of My, Ag, >, then &4 is Ag, X or Al
respectively, by Lemma 4. Hence the left side of the equation (4) represents an
effectively constructible regular language by Theorem 1. Consequently, the equality
of (4) is decidable and moreover the maximal solution Xpax = (R¢ &4 L)€ can be
effectively found if one exists. |
Theorem 5 Let { be one of the operations Xy, Ay, >p. The problem “Does
there exist a solution X to the equation L X = R?” (right-operand problem) is
decidable for reqular languages L, R and a regular set of trajectories T.

Proof. Similarly as in the proof of Theorem 4, a maximal solution to the equation
L& X = Ris Xmax = (L O RY)€ for a binary word operation {4, see [10]. Hence
a solution X exists iff

LOr(L Oy R) =R (5)

By Lemma 4, if {$ is one of Xp, Ap, D, then 7 is D, D/ or Mp, respectively.
Again the equality of (5) is effectively decidable by Theorem 1, and, moreover, an
eventual maximal solution Xpax = (L {7 RY)¢ can be effectively found. O

The situation is a bit different in the case when the existence of a singleton
solution to the left or the right operand problem is questioned. Another proof
technique takes place.

Theorem 6 Let {1 be one of the operations Xp, Ap, >r. The problem “Does
there exist a word w such that w $ L = R?” is decidable for regular languages L,
R and a reqular set of trajectories T

Proof. Assume that { is one of Xp, A, >7. Observe first that if y € w $p x
for some w,z,y € ¥*, then |y| < |w|. Therefore, if R is infinite, then there cannot
exist a solution w of a finite length satisfying w {$+ L = R. Hence for an infinite R
the problem is trivial.

Assume now that R is finite. As shown in [10], the regular set Xpax = (R &4 L)°
is the maximal set with the property X ¢ L C R. Hence w is a solution of
wdp L =R iff

(i) wOr L C R,ie. w€ Xmax, and

(ii) wdr L ¢ R.
Moreover, (ii) is satisfied iff w $p L € Ry for all Ry C R, and hence w ¢ (RS &Y L)°.
Hence we can conclude that the set S of all singleton solutions to the equation
w $r L = R can be expressed as

S=(ROYL) — | (RfOT L)

R1CR

Since we assume that R is finite, the set S is regular and effectively constructible
by Lemma 4, Theorem 1 and the closure of the class of regular languages under
finite union and under complement. Hence it is also decidable whether S is empty
or not, and eventually all its elements can be effectively listed. O

Theorem 7 Let {1 be one of the operations Xy, Ay, >p. The problem “Does
there exist a word w such that L {7 w = R?” is decidable for reqular languages L,
R and a regular set of trajectories T.
Proof. Assume first that { is one of My, A, . Observe that if y € 2 $pw
for some w,z,y € ¥£*, then |y| > |w|. Therefore, if a solution w to the equation
L$rw = R exists, then |w] < k, where k = min{|y| | y € R}. Hence, to verify
whether a solution exists or not, it suffices to test all the words from °UX'U. . .UXk.
Focus now on the operation >7. Analogously to the case of Theorem 6, we can
deduce that there is no word w satisfying L>7w = R, if R is infinite. Furthermore,
the set Xmax = (L > R = (L Xp R€)¢ is the maximal set with the property

10

L>7X C R. The same arguments as in the proof of Theorem 6 allow one to express
the set of all singleton solutions as

S=(LXr k)~ | (L™ RY)".
R1CR

For a finite R, the set S is regular and effectively constructible, hence we can decide
whether it contains at least one solution. O

We add that in the above cases of the left and the right operand problems, if
there exists a solution, then at least one can be effectively found. Moreover, in
the case of their singleton variants, all the singleton solutions can be effectively
enumerated.

7. Applications to Coding

In this section we discuss a few applications of the substitution-on-trajectories
operation in modelling certain noisy channels and a cryptanalysis problem. In
the former case, we revisit a decidability question involving the property of error-
detection.

Recall the example of a noisy channel characterized by the substitution on tra-
jectories in Section 4. In general, following the notation of [11], for any trajectory
set T' we shall denote by [Xp X*] the channel {(u,v) |u € L% v € u Xp *}. In
the context of noisy channels, the concept of error-detection is fundamental [18]. A
language L is called error-detecting for a channel v, if v cannot transform a word
in Ly to another word in Ly; that is, if u,v € Ly and (u,v) € 7 then u = v. Here
Ly is the language L U {\}. The empty word in this definition is needed in case
the channel permits symbols to be inserted into, or deleted from, messages — see
[18] for details. In our case, where only substitution errors are permitted, the above
definition remains valid if we replace Ly with L.

In [18] it is shown that, given a rational relation v and a regular language L,
we can decide in polynomial time whether L is error-detecting for v. Here we take
advantage of the fact that the channels [}y ¥£*] permit only substitution errors and
improve the time complexity of the above result.

Theorem 8 The following problem is decidable in time O(|A]*|T)).

Input: NFA A over ¥ and NFA Ay over {0,1}, such that L(Ay) =T.

Output: Yes/No, depending on whether L(A) is error-detecting for [Xp $*].
Proof. In [12] it is shown that given an NFA A, one can construct the NFA
A7 in time O(|A|?), such that the alphabet of A7 is E = ¥ x ¥ and the language
accepted by A7 consists of all the words of the form (z1,y1) - (n,yn), with each
(zi,yi) € E, such that =1 - - - x,, # y1 - - - yn, and the words z; - - -z, and y; - - - y,, are
in L(A). Let ¢ be the morphism of E into {0, 1} such that ¢(z,y) = 0iff z = y. One
can verify that L(A) is error-detecting for [Xp X*] iff the language ¢(L(A%))NT
is empty. Using this observation, the required algorithm consists of the following
steps: (i) Construct the NFA A? from A. (ii) Construct the NFA ¢(A?) by simply
replacing each transition s(z,y) — t of A% with s¢(z,y) — t. (iii) Use a product
construction on ¢(A%) and Ar to obtain an NFA B accepting ¢(L(A%)) NT. (iv)

11

Perform a depth first search algorithm on the graph of B to test whether there is a
path from the start state to a final state. O

We close this section with a cryptanalysis application of the operation Xp. Let
M be a set, of candidate binary messages (words over {0,1}) and let K be a set of
possible binary keys. An unknown message v in M is encrypted as v @ t, where
t is an unknown key in K, and & is the exclusive-OR logic operation. Let e be
an observed encrypted message and let 7' be a set of possible guesses for ¢, with
T C K. We want to find the subset X of M for which X & T' = e, that is, the
possible original messages that can be encrypted as e using the keys we have guessed
in T. In general T can be infinite and given, for instance, by a regular expression
describing the possible pattern of the key. We can model this problem using the
following observation whose proof is based on the definitions of the operations X
and @, and is left to the reader.

Lemma 7 For every word v € {0,1}x and trajectory t, v X; {0, 1}x = {v @ t}.

By the above lemma, we have that the equation X & T = e is equivalent to
X Xp ¥* = e. By Theorem 4, we can decide whether there is a solution for
this equation and, in this case, find the maximal solution X,.,. In particular,
Xmax = (e°A7X*)°. Hence, one needs to compute the set M N Xpax. Most likely,
for a general T, this problem is intractable. On the other hand, this method provides
an alternate way to approach the problem.

8. Applications to Bioinformatics

During many laboratory protocols involving manipulation of single DNA strands,
the following problem arises: one designs an experiment, assuming certain bonds
between these strands. Simultaneously, it is necessary to prevent any other unde-
sired types of bonds. Therefore one has to design carefully the set of single DNA
strands to prevent undesired bonds. A typical example is the design of primers for a
site-specific PCR reaction. Another case is the design of coding for DNA computing
processes, as in the famous Adleman’s experiment [1].

A significant number of research papers have been devoted to the problem of
DNA strands design. Due to space limitations we only cite a few [2, 8, 20, 24].
Many of these papers, such as [14, 15], rely on computational methods where the
shuffle and deletion on trajectories are used to characterize undesired bonds. In
this section we propose a new formalization of undesired bonds of DNA strands
with irregularities (bulges). We show how the operations on trajectories can be
effectively used to characterize such bonds and to solve some elementary problems
of the DNA strand design.

In the remainder of this section we represent the single-stranded DNA molecules
by strings over the DNA alphabet A = {A, C,T,G}. Therefore, some more formal
language prerequisites are necessary.

An involution # : ¥ — ¥ of ¥ is a mapping such that 6?2 is equal to the identity
mapping, i.e., 8(f(z)) = x for all z € ¥. It follows then that an involution 6 is
bijective and # = §~!. The identity mapping is a trivial example of an involution.
An involution of ¥ can be extended to either a morphism or an antimorphism

12

g b

(b) (c)

Figure 1: Three types of undesired bonds corresponding to Definition 7. Horizontal
lines and bulges represent DNA strands. Vertical lines represent bonds between
complementary nucleotides.

of ¥*. For example, if the identity of X is extended to a morphism of ¥*, we
obtain the identity involution of ¥*. However, if we extend the identity of ¥ to an
antimorphism of ¥* we obtain instead the mirror-image involution of ¥* that maps
each word ayas...a; onto ay ...asay, where a; € X, 1 <i < k.

If we consider the DNA-alphabet A, then the mapping 7 : A — A defined by
T(A) =T,7(T) = A,7(C) = G,7(G) = C can be extended in the usual way to an
antimorphism of A* that is also an involution of A*. This involution formalizes
the notion of Watson-Crick complement of a DNA sequence and will therefore be
called the DNA involution. By convention, a word w = ajas . ..a, in A* will signify
the DNA single strand 5’ — ajas...a, — 3'. According to this convention, single
strands wy, ws € A* are complementary and can stick together via hydrogen bonds
iff wi = 7(w2). In the following definitions, however, we allow for an arbitrary
alphabet ¥ and an arbitrary involution 6 over .

Definition 6 We define the following functions ¥* — 2> :

Ins(u) = {wvua|v €XT*, ur,us € ¥, u=wjusl;
Del(u) = {ujus|u=wujusus, u; € ¥*, 1<1i < 3};
Subs(u) = {wiusuz|u = uiusus, ui,us,uz € ¥, |us| = |uy| = H(ua, ub)}.

We note that in [16] and some other papers we have used a similar notation ins,
del and Sub. However, the mappings corresponding to this notation differ from the
above functions Ins, Del and Subs.

Definition 7 A language L C X% is called

0-ins-compliant iff VYw € L, z,y € ¥*, w2y € L, z € Ins(f(w)) = zy = \;
0-del-compliant iff Yw € L, z,y € ¥*, xzy € L, z € Del(f(w)) = zy = A;
0-sub-compliant iff Yw € L, z,y € X", xzy € L, z € Subs(f(w)) = zy = .

Intuitively, if a language L of single DNA strands is #-ins-compliant (#-del-
compliant, #-sub-compliant), then the strands in L cannot create bonds like those
in Fig. 1 (a) (or (b), (c), respectively). The above definition is motivated as follows:
the molecules depicted in Fig. 1 have “sticky” ends which can potentially react with
other molecules, producing undesired bonds. If, however, the condition zy = A is
satisfied, no sticky ends are present.

13

Below we characterize the compliance properties via operations on trajectories.
Some technical lemmata will be useful.
Lemma 8 (i) Ins(u) = ulllps1sg+ £*;
(i1) Del(u) = u ~rge1xgx 15
(iii) Subs(u) = u Mgxq+g X*.
Lemma 9 For arbitrary x,y € X%,
(i) x € Ins(y) iff y € Del(x);
(ii) = € Subs(y) iff y € Subs(x).
Proof. Follows by Lemmata 2, 4 and 8. o
In [14, 15], a general framework of bond-free language property has been pre-
sented. Within this framework we have characterized a sequence of various types
of undesired bonds between single DNA strands. We recall the definition.
Definition 8 A language property P is called a bond-free property of degree 2 if
there exist sets of trajectories Ti,, Tp and an involution 8 such that for an arbitrary

L C X*, L satisfies P iff
Vwe Xt z,ye ¥, (wilp, zNL £0, willy, yNO(L) #0) = zy =\

Intuitively, w and §(w) are complementary parts of two DNA strands. The opera-
tions w LL7, x and w LU, = characterize the lower and the upper strand, respec-
tively. We show now how to generalize the concept of the bond-free property to
cover also the bonds described in Fig. 1.

Theorem 9 Consider the sets of trajectories Ty, = 0* and T,,, = 0*1*0*. A lan-
guage L C X7T is O-ins-compliant (0-del-compliant, §-sub-compliant, respectively)

iff
Vwe Xt zy e T (wlldp, 2N L#0, willy, yNo(p(L) #0) = zy = A,

where the mapping =Del for 0-ins-compliance, p=Ins for 6-del-compliance and
1=Subs for 0-sub-compliance.

Proof. Consider the property of #-ins-compliance. By Definition 7, the fact that
a language L is #-ins-compliant is equivalent with each of the following statements:

Ywe X, Fz,y,z€ X, ay £\, mzy€ L, z€ Ins(f(w))) => w & L
Yw e X, B,y € X%, 2y # X, {2} Ins(@(w)){y}NL #£0)=>w¢gL
Yw e X, (Z*Ins(f(w))XT U S Ins(@(w))X*)NL #£0) =>w g L

Now observe that ¥*Ins(f(w)) X" = Ins((X*{w}XT)) and similarly X Ins(6(w))L*
Ins((XT{w}X*)). Therefore, L is §-ins-compliant iff

Vw € X, (Ins(@(Z{w}ET)) UIns(@(ET{w}E*))NL#0) =>wd L

Vw e X, (Ins(@(Z*{w}StUXH{w}E*)NL#A0) =>w¢gL

Vw e T, (E{w}ET UuSH{w}E*)NO(Del(L)) #0) = w g L (by Lemma 9)
Vw e XF, 3z,y € T, zy # A, {zwy} NODel(L)) #0) > w & L

Yw e X, z,y € X%, (w € L, {zwy} NO(Del(L)) #0) = zy = A

Vwe ST, z,y e ¥ (wlldp, zNL#0, wily, yN6O(Ins(L)) # 0) = zy =

14

The proof for the case of #-del-compliance and #-sub-compliance is analogous. O

The expressions in Definition 8 and Theorem 9 are identical except that (L)
is replaced by 6(¢)(L)). This allows us to apply techniques from [15] in the case
of f-ins-compliant, #-del-compliant or #-sub-compliant languages. Particularly, we
can decide in a quadratic time whether a given regular set of DNA strands satisfies
these 6-compliance conditions.

Theorem 10 The following problem is decidable in time O(]A|?) :

Input: an NFA A.

Output: Yes/No depending on whether L(A) is 0-ins-compliant, 6-del-compliant

or 0-sub-compliant, respectively.

Proof. Given an NFA A, by Lemmata 3, 6 and Theorem 1 we can construct a
(A-) NFA A’ of the size O(]A]), accepting Ins(L(A)), Del(L(A)) or Subs(L(A)), re-
spectively. The rest of the proof follows directly by Theorems 4.4, 4.7 and Corollary
4.5 in [15]. It is necessary only to replace all the occurrences of (L) by 6(Del(L)),
A(Ins(L)) or H(Subs(L)), respectively, in Theorems 4.4 and 4.7. In Corollary 4.5, we
obtain L Hp ¢(L) instead of L Hp L, where 1)=Del, Ins or Subs, respectively. O

Acknowledgements

This research was supported by the Canada Research Chair Grant to L.K.,
NSERC Discovery Grants R2824A01 to L.K. and R220259 to S.K., and by the
Grant Agency of Czech Republic, Grant No. 201/02/P079 to P.S.

References

1. L. Adleman, Molecular computation of solutions to combinatorial problems. Science
266 (1994), 1021 1024.

2. M. Arita, S. Kobayashi, DNA sequence design using templates. New Generation
Computing 20 (2002), 263-277.

3. M. Domaratzki, Deletion along trajectories. Theoretical Computer Science 320
(2004), 293-313.

4. M. Domaratzki, Trajectory-based codes. Acta Informatica 40 (6—7) (2004), 491—
527.

5. M. Domaratzki, Trajectory-based embedding orders. Fundamenta Informaticae 59
(4) (2004), 349 363.

6. M. Domaratzki, K. Salomaa, Decidability of trajectory-based equations. In J. Fiala,
V. Koubek and J. Kratochvl (Eds.), Mathematical Foundations of Computer Science
2004: 29th International Symposium. Berlin: LNCS 3153, 2004, pp. 723-734.

7. M. Domaratzki, A. Mateescu, K. Salomaa, S. Yu, Deletion on Trajectories and
Commutative Closure. In T. Harju and J. Karhumaki (Eds.), WORDS’03: jth
International Conference on Combinatorics on Words. TUCS General Publication
No. 27, Aug. 2003, pp. 309-319.

8. N. Jonoska, K. Mahalingam, Languages of DNA based code words. In J. Chen,
J. Reif (Eds.), Preproceedings of DNA9, June 1 4, 2003, Madison, Wisconsin, pp.
58 68.

9. M. Ito, L. Kari, G. Thierrin, Shuffle and scattered deletion closure of languages.
Theoretical Computer Science 245 (2000), 115-133.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

L. Kari, On language equations with invertible operations, Theoretical Computer
Science 132 (1994), 129 150.

L. Kari, S. Konstantinidis, Language equations, maximality and error detection. To
appear in Journal of Computer and System Sciences.

L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu, Finite-state error/edit-
systems and difference measures for languages and words. Dept. of Math. and
Computing Sci. Tech. Report No. 2003-01, Saint Mary’s University, Canada, 2003.

L. Kari, P. Sosik, Aspects of shuffle and deletion on trajectories. To appear in
Theoretical Computer Science.

L. Kari, S. Konstantinidis, P. Sosik, Preventing undesirable bonds between DNA
codewords. In C. Feretti, G. Mauri, C. Zandron (Eds.), DNA 10, Tenth International
Meeting on DNA Computing. University of Milano Bicocca, 2004, pp. 375 384.

L. Kari, S. Konstantinidis, P. Sosik, On properties of bond-free DNA languages. To
appear in Theoretical Computer Science.

L. Kari, G. Thierrin, Languages and monoids with disjunctive identity. Collect.
Math. 46 (1995), 97 107.

S. Konstantinidis, An algebra of discrete channels that involve combinations of three
basic error types. Information and Computation 167 (2001), 120-131.

S. Konstantinidis, Transducers and the properties of error detection, error correction
and finite-delay decodability. J. Universal Comp. Science 8 (2002), 278-291.

E. L. Leiss, Language Equations. Springer-Verlag, New York, 1999.

A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA words design. J.
Computational Biology 8:3 (2001), 201-220.

A. Mateescu, Splicing on routes: a framework of DNA computation. In C. Calude,
J. Casti, and M. Dinneen (Eds.), Unconvential Models of Computation, Berlin:
Springer-Verlag, 1998, pp. 273-285.

A. Mateescu, A. Salomaa, Nondeterministic trajectories. In W. Brauer, H. Ehrig,
J. Karhumiki and A. Salomaa (Eds.), Formal and Natural Computing: Essays Ded-
icated to Grzegorz Rozenberg, LNCS 2300 (2002), pp. 96 106.

A. Mateescu, K. Salomaa, S. Yu, On fairness of many—dimensional trajectories. J.
Automata, Languages and Combinatorics 5 (2000), 145 157.

G. Mauri, C. Ferretti, Word design for molecular computing: a survey. In J. Chen
and J.H. Reif (Eds.), DNA Computing, 9th International Workshop on DNA Based
Computers, LNCS 2943 (2004), pp. 37-46.

A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: syntactic con-
straints. Theoretical Computer Science 197 (1998), 1 56.

G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

16

