
From Micro-soft to Bio-soft: Computing with

DNA

Lila Kari∗

Department of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7 Canada

website: http://www.csd.uwo.ca/˜lila
email: lila@csd.uwo.ca

“Jump at the sun and you might at least catch hold of the moon”
(Jamaican proverb)

1 From Digits and Beads to Bits and Biomolecules

The notion of computing seems nowadays to be so synonymous with computers,
that we often seem to forget that electronic computers are relatively new players
on the world stage, [31].

Indeed, a brief look at the history of humanity shows that since the earliest
days people needed to count and compute, either for measuring the months and
the seasons or for commerce and constructions. The means used for performing
calculations were whatever was available, and thus gradually progressed from
manual to mechanical, and from there on to electrical devices.

Indeed, man started off by counting on his digits, a fact attested by the use
of the word digit to mean both “any of the ten numbers from 0 to 9” and “a
finger, thumb or toe” (Oxford Advanced Learner’s Dictionary). The need for
counting and tracking occurrences in the physical world is witnessed by primitive
calendars like the one at Stonehenge, 2,800 B.C., or by primitive calculators like
the abacus. The abacus, the most common of which comes from China, was
man’s first attempt at automating the counting process, and it involved the idea
of positional representation: the value assigned to each bead (pebble, shell) was
determined not by its shape but by its position.

The transition to a qualitatively superior way of doing computation had
to wait until the 17th century when Pascal built the first mechanical adding
machine (1642), based on a gear system. In his machine, based on the design of
Hero of Alexandria (2 A.D.), a wheel engaged its single tooth with a ten-teeth

∗This paper was written during my visit in Japan supported by the “Research for the
Future” Program, JSPS-RFTF 96I00101 of the Japan Society for the Promotion of Science.

1

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1642

wheel once every time it revolved, the result being that it had to make ten
revolutions in order to completely turn the 10-teeth wheel once.

Later on, Charles Babbage (1812) theorized, but never built, a fully-automatic
steam driven calculating machine. In 1823 he envisioned a better idea, of an
“analytical engine” that would have conditional control and where the instruc-
tions were to be stored on punched cards.

The introduction in 1890 of the punched cards by Herman Hollerith, whose
firm later became International Business Machine (IBM), marked the transition
from the decimal system to the binary system. The binary system had two
states, 0 and 1, corresponding to the place in the card having or not a hole
punched in to it.

The binary representation could take advantage of many two-state devices
like card readers, electric circuits (on/off states) and vacuum tubes, and it led
to the next stage in the evolution of computing: the electronic one.

The theoretical foundation of modern electronic computers was laid by Alan
Turing who described in 1936, [58], a hypothetical device that became known
as a Turing machine. A Turing machine can read, write and erase symbols
written on squares of an infinite tape. Its endless tape can be interpreted as a
general purpose internal memory, on which operations of read, write and erase
are performed as in any modern day RAM.

The first high-speed electronic digital computer was the ENIAC (Electrical
Numerical Integrator and Calculator), which used almost 18,000 vacuum tubes
stored on 167 square meters, had input/output on punch cards, and could per-
form a few arithmetical operations. However, the instructions of a program had
to be “wired-in” separately for each problem. John von Neumann addressed this
issue and laid the principles of how a practical computer should be organized
and built. His main ideas were the introduction of a conditional go-to instruc-
tion and the storing of the data and the program together in the same memory
unit, which meant that the machine itself could alter either its data or program.
This lead to the 1st generation of modern programmable electronic computers
(1947), which used random access memory (RAM), had punch-card or punch-
tape input and output, and were the size of a great piano. They still required
considerable maintenance, attained only 70 % to 80 % reliable operation and
could be used for 8 to 12 years.

It was two technological advances, the discovery of the transistor in 1947
and building of the first integrated circuits in 1958, that truly released the po-
tential of electronic computers. In 1971 Intel released the first microprocessor.
In 1975 Bill Gates and Paul Allen wrote a BASIC (Beginners All purpose Sym-
bolic Instruction Code) compiler for ALTAIR 8800, hailed as the world’s first
minicomputer kit to rival commercial models. In the same year, the first soft-
ware company, Microsoft, was born. The PC explosion that followed and the
increasing popularity of the World Wide Web are witnesses of the computer
revolution, the fastest growing technology in man’s history.

The above mini-incursion into the history of computing is meant to point out
that electronic computers are only the latest in a long chain of man’s attempts to
use the best technology available for doing computations. While it is true that

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1643

their appearance, some 50 years ago, has revolutionized computing, computing
does not start with electronic computers, and there is no reason why it should
end with them. Indeed, even electronic computers have their limitations: there
is only so much data they can store and their speed thresholds determined by
physical laws will soon be reached. The latest attempt to break down these
barriers is to replace, once more, the tools for doing computations: instead of
electrical use biological ones.

Research in this area was started by Leonard Adleman in 1994, [1], when
he surprised the scientific community by using the tools of molecular biology to
solve a hard computational problem. Adleman’s experiment, solving an instance
of the Directed Hamiltonian Path Problem solely by manipulating DNA strands,
marked the first instance of a mathematical problem being solved by biological
means. The experiment provoked an avalanche of computer science/molecular
biology/biochemistry/physics research, while generating at the same time a mul-
titude of open problems.

The excitement DNA computing incited was mainly caused by its capabil-
ity of massively parallel searches. This, in turn, showed its potential to yield
tremendous advantages from the point of view of speed, energy consumption
and density of stored information. For example, in Adleman’s model, [2], the
number of operations per second was up to 1.2 × 1018. This is approximately
1,200,000 times faster than the fastest supercomputer. While existing super-
computers execute 109 operations per Joule, the energy efficiency of a DNA
computer could be 2 × 1019 operations per Joule, that is, a DNA computer
could be about 1010 times more energy efficient (see [1]). Finally, according
to [1], storing information in molecules of DNA could allow for an information
density of approximately 1 bit per cubic nanometer, while existing storage me-
dia store information at a density of approximately 1 bit per 1012 nm3. As
estimated in [8], a single DNA memory could hold more words than all the
computer memories ever made.

The research in the field has, from the beginning, had both experimental
and theoretical aspects; for an overview of the research on DNA computing see
[37].

The experiments that have actually been carried out are not numerous so
far. P. Kaplan, [34], replicated Adleman’s experiment; a Wisconsin team of com-
puter scientists and biochemists made partial progress in solving a 5-variable in-
stance of the SAT problem by using a surface-based approach, [46]; F.Guarnieri,
M.Fliss and C.Bancroft have used a horizontal chain-reaction for DNA-based ad-
dition, [26]. At the same time, various aspects of the implementability of DNA
computing have been experimentally investigated: in [19] the effect of good
encodings on the solutions of Adleman’s problem were addressed; the compli-
cations raised by using the Polymerase Chain Reaction were studied in [35];
the usability of self-assembly of DNA was studied in [64]; the experimental gap
between the design and assembly of unusual DNA structures was pointed out
in [56]; joining and rotating data with molecules was reported in [6]; concatena-
tion with PCR was studied in [6], [7]; evaluating simple Boolean formulas was
started in [27]; ligation experiments in computing with DNA were conducted in

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1644

[33] .
The theoretical work on DNA computing consists, on one side, of designing

potential experiments for solving various problems by means of DNA manip-
ulation. Descriptions of such experiments include the Satisfiability Problem
[44], breaking the Data Encryption Standard [15], expansions of symbolic de-
terminants [43], matrix multiplication [49], graph connectivity and knapsack
problem using dynamic programming [10], road coloring problem [32], exascale
computer algebra problems [61], and simple Horn clause computation [42]. On
the other side, the theoretical research on DNA computing comprises attempts
to model the process in general, and to give it a mathematical foundation. To
this aim, models of DNA computing have been proposed and studied from the
point of view of their computational power and their in-vitro feasibility (see, for
example, [1], [2], [12], [29], [38], [44], [63], [59]). There are pro’s and con’s for
each of the proposed models. The ones based on a combination of Adleman’s
bio-operations have the advantage that they are already implementable, the
downside being their involving extensive manual manipulation of test tubes and
serious possibilities of errors. On the other hand, the models based on splicing,
equality checking or on contextual insertion and deletion, [29], [30], [51], [50],
[21], [18], [59], [60], [38], [39], have the advantage that they represent “one-pot”
molecular computers based solely on hybridization and the actions of enzymes.
Moreover, they are formal models with the results backed up by mathemati-
cal proofs. Their disadvantage is that they have yet to be implemented in the
laboratory. Overall, the existence of different models with complementing fea-
tures shows the versatility of DNA computing and increases the likelihood of
practically constructing a DNA computing–based device.

A few more words, as to why we should prefer biomolecules to electricity for
doing computation: the short answer is that it seems more natural to do so. We
could look at the electronic technology as just a technology that was in the right
place at the right time; indeed, electricity hardly seems a suitable and intuitive
means for storing information and for computations. For these purposes, nature
prefers instead a medium consisting of biomolecules: DNA has been used for
millions of years as storage for genetic information, while the functioning of
living organisms requires computations. Such considerations seem to indicate
that using biomolecules for computations is a promising new avenue, and that
DNA computers might well be the successors of electronic computers.

2 From Mathematical Operations to Bio-operations

Any kind of computer, be it mechanical, electrical or biological, needs two basic
capabilities in order to function: to store information and to perform operations
on it. In the following I address both issues: how can information be stored
in DNA strands, and what molecular biology techniques could potentially be
used for computations. In order to distinguish between ordinary mathematical
operations and bio-molecular procedures performed on DNA strands, I will use
the term bio-operations to refer to the latter. For further details of molecular

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1645

biology terminology, the reader is referred to [40].
DNA (deoxyribonucleic acid) is found in every cellular organism as the stor-

age medium for genetic information. It is composed of units called nucleotides,
distinguished by the chemical group, or base, attached to them. The four bases,
are adenine, guanine, cytosine and thymine, abbreviated as A, G, C, and T .
(The names of the bases are also commonly used to refer to the nucleotides that
contain them.) Single nucleotides are linked together end–to–end to form DNA
strands. A short single-stranded polynucleotide chain, usually less than 30 nu-
cleotides long, is called an oligonucleotide. The DNA sequence has a polarity: a
sequence of DNA is distinct from its reverse. The two distinct ends of a DNA
sequence are known under the name of the 5′ end and the 3′ end, respectively.
Taken as pairs, the nucleotides A and T and the nucleotides C and G are said to
be complementary. Two complementary single–stranded DNA sequences with
opposite polarity will join together to form a double helix in a process called
base-pairing or annealing. The reverse process – a double helix coming apart to
yield its two constituent single strands – is called melting.

A single strand of DNA can be likened to a string consisting of a combination
of four different symbols, A, G, C, T . Mathematically, this means we have at
our disposal a 4 letter alphabet Σ = {A,G,C, T} to encode information, which
is more than enough, considering that an electronic computer needs only two
digits, 0 and 1, for the same purpose.

As concerning the operations that can be performed on DNA strands, the
proposed models of DNA computation are based on various combinations of the
following primitive bio-operations:
– Synthesizing a desired polynomial–length strand, used in all models. In stan-
dard solid phase DNA synthesis, a desired DNA molecule is built up nucleotide
by nucleotide on a support particle in sequential coupling steps. For example,
the first nucleotide (monomer), say A, is bound to a glass support. A solution
containing C is poured in, and the A reacts with the C to form a two-nucleotide
(2-mer) chain AC. After washing the excess C solution away, one could have
the C from the chain AC coupled with T to form a 3-mer chain (still attached
to the surface) and so on.
– Mixing: pour the contents of two test tubes into a third one to achieve union,
[1], [2], [5], [45], [54]. Mixing can be performed by rehydrating the tube contents
(if not already in solution) and then combining the fluids together into a new
tube, by pouring and pumping for example.
– Annealing: bond together two single-stranded complementary DNA sequences
by cooling the solution. (See [11], [16], [54], [57], [63].) Annealing in vitro is
also known as hybridization.
– Melting: break apart a double-stranded DNA into its single-stranded comple-
mentary components by heating the solution. (See [11], [16], [54], [57], [63].)
Melting in vitro is also known under the name of denaturation.
– Amplifying (copying): make copies of DNA strands by using the Polymerase
Chain Reaction (PCR). (See [1], [2], [5], [11], [12], [13], [16], [43], [45], [57].) PCR
is an in vitro method that relies on DNA polymerase to quickly amplify specific
DNA sequences in a solution. Indeed, the DNA polymerase enzymes perform

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1646

several functions including replication of DNA. The replication reaction requires
a guiding DNA single-strand called template, and a shorter oligonucleotide called
a primer, that is annealed to it. Under these conditions, DNA polymerase
catalyzes DNA synthesis by successively adding nucleotides to one end of the
primer. The primer is thus extended in one direction until the desired strand
that starts with the primer and is complementary to the template is obtained.

PCR involves a repetitive series of temperature cycles, with each cycle com-
prising three stages: denaturation of the guiding template DNA to separate its
strands, then cooling to allow annealing to the template of the primer oligonu-
cleotides, which are specifically designed to flank the region of DNA of interest,
and, finally, extension of the primers by DNA polymerase. Each cycle of the
reaction doubles the number of target DNA molecules, the reaction giving thus
an exponential growth of their number.
– Separating the strands by length using a technique called gel electrophoresis
that makes possible the separation of strands by length. The molecules are
placed at the top of a wet gel, to which an electric field is applied, drawing
them to the bottom. Larger molecules travel more slowly through the gel.
After a period, the molecules spread out into distinct bands according to size.
(See [1], [2], [5], [11], [12], [13], [16].)
– Extracting those strands that contain a given pattern as a substring by us-
ing affinity purification. This process permits single strands containing a given
subsequence v to be filtered out from a heterogeneous pool of other strands.
After synthesizing strands complementary to v and attaching them to magnetic
beads, the heterogeneous solution is passed over the beads. Those strands con-
taining v anneal to the complementary sequence and are retained. Strands not
containing v pass through without being retained. (See [1], [2], [11], [13], [16],
[45].)
– Cutting DNA double-strands at specific sites by using commercially available
restriction enzymes. One class of enzymes, called restriction endonucleases, will
recognize a specific short sequence of DNA, known as a restriction site. Any
double-stranded DNA that contains the restriction site within its sequence is
cut by the enzyme at that location. (See [11], [12], [13], [16], [29], [53], [57].)
– Ligating: paste DNA strands with compatible sticky ends by using DNA lig-
ases. Indeed, another enzyme called DNA ligase, will bond together, or “ligate”,
the end of a DNA strand to another strand. (See [11], [12], [13], [29], [53], [57],
[63].)
– Substituting: substitute, insert or delete DNA sequences by using PCR site-
specific oligonucleotide mutagenesis (see [13], [38]). The process is a variation of
PCR in which a change in the template can be induced by the process of primer
modification. Namely, one can use a primer that is only partially complementary
to a template fragment. (The modified primer should contain enough bases
complementary to the template to make it anneal despite the mismatch.) After
the primer is extended by the polymerase, the newly obtained strand will consist
of the complement of the template in which a few oligonucleotides have been
“substituted” by other, desired ones.
– Marking single strands by hybridization: complementary sequences are at-

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1647

tached to the strands, making them double-stranded. The reverse operation is
unmarking of the double-strands by denaturing, that is, by detaching the com-
plementary strands. The marked sequences will be double-stranded while the
unmarked ones will be single-stranded, [5], [46], [54].
– Destroying the marked strands by using exonucleases, (see [46]), or by cutting
all the marked strands with a restriction enzyme and removing all the intact
strands by gel electrophoresis, [5]. (By using enzymes called exonucleases, either
double-stranded or single-stranded DNA molecules may be selectively destroyed.
The exonucleases chew up DNA molecules from the end inward, and exist with
specificity to either single-stranded or double-stranded form.)
– Detecting and Reading: given the contents of a tube, say “yes” if it contains
at least one DNA strand, and “no” otherwise, [1], [2], [5], [11], [16], [45]. PCR
may be used to amplify the result and then a process called sequencing is used
to actually read the solution. The basic idea of the most widely used sequencing
method is to use PCR and gel electrophoresis. Assume we have a homogeneous
solution, that is, a solution containing mainly copies of the strand we wish
to sequence, and very few contaminants (other strands). For detection of the
positions of A’s in the target strand, a blocking agent is used that prevents
the templates from being extended beyond A’s during PCR. As a result of this
modified PCR, a population of subsequences is obtained, each corresponding to
a different occurrence of A in the original strand. Separating them by length
using gel electrophoresis will give away the positions where A occurs in the
strand. The process can then be repeated for each of C, G and T , to yield the
sequence of the strand. Recent methods use four different fluorescent dyes, one
for each base, which allows all four bases to be processed simultaneously. As
the fluorescent molecules pass a detector near the bottom of the gel, data are
output directly to an electronic computer.

The bio-operations listed above, and possibly others, will then be used to
write “programs”. A “program” will receive a tube containing DNA strands
encoding information as input, and return as output either “yes” or “no” or a
set of tubes. A bio-computation will consists of a sequence of bio-operations
performed on tubes containing DNA strands.

3 Who is afraid of lab errors?

Despite the progress achieved, the main obstacles to creating a practical DNA
computer still remain to be overcome. These obstacles are roughly of two types,
[2]:

– practical, arising primarily from difficulties in dealing with large scale sys-
tems and in coping with errors;

– theoretical, concerning the versatility of DNA computers and their capacity
to efficiently accomodate a wide variety of computational problems.

In the following I will point out possible pitfalls and complications that might
arise in the process of implementing each of the bio-operations enumerated in
the preceding section. None of the problems encountered seems clearly insur-

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1648

mountable: being aware of their existence is the first step towards overcoming
them.

To start from the beginning, synthesis of a DNA strand can sometimes re-
sult in the strand annealing to itself and creating a hairpin structure. Even
the seemingly straightforward mixing operation can sometimes pose problems:
if DNA is not handled gently, the sheer forces from pouring and mixing will
fragment it. Also of concern for this operation is the amount of DNA which
remains stuck to the walls of the tubes, pumps, pipette tips, etc., and is thus
“lost” from the computation.

Hybridization has also to be carefully monitored because the thermodynamic
parameters necessary for annealing to occur are sequence dependent. This is
important because, depending on the conditions under which the DNA reactions
occur, two oligonucleotides can hybridize without exact matching between their
base pairs. Hybridization stringency refers to the number of complementary
base pairs that have to match for DNA oligonucleotides to bond. It depends
on reaction conditions (salt concentration, temperature, relative percentage of
A’s and T ’s to G’s and C’s, duration of the reaction) and it increases with
temperature. One solution for increasing hybridization stringency is the choice
of good encodings for the input information of the problem, [19]. Another
solution proposed in [9] to avoid self annealing and mismatches is encoding
using specially chosen sequences as spacers that separate the information bits.

Amplification by PCR is used with the assumption that by maintaining a
surplus of primer to template one can avoid undesired template-template inter-
actions. As pointed out in [35], this assumption is not necessarily valid. Indeed,
experimental evidence points to the possibility of the creation of complex struc-
tures like folded DNA, complexes between several strands and incorrect ligation
products. This might further affect the accuracy of using the gel electrophoresis
technique for separation of strands by length. Indeed, in the presence of complex
structures, the mobility of the strands will not depend only on their length, as
desired, but also on the DNA conformation (shape). As a possible solution, the
use of denaturing or single-stranded gels for analysis is recommended in [35].
Moreover, by keeping concentrations low, heteroduplex (double-strands with
mismatches) formation and template-template interactions can be minimized.

Separation of strands by length and extraction of strands containing a given
pattern can also be inefficient, and this might pose problems with scale-up
of the test-tube approach. An alternative methodology has been proposed in
[46]: the set of oligonucleotides is initially attached to a surface (glass, silicon,
gold, or beads). They are then subjected to bio-operations such as marking,
unmarking and destruction, in order to obtain the desired solution. This method
greatly reduces losses of DNA molecules that occur during extraction by affinity
purification. Its drawbacks are that it relies on marking and unmarking which,
in turn, assume specificity and discrimination of single-base mismatches. While
these processes have proved reliable when using 15-mer sequences, they become
more difficult for shorter or longer polynucleotide strands. Another problem is
that the scale of the computation is restricted by the two-dimensional nature of
the surface-based approach: one cannot reach too high an information storing

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-1649

density.
Extraction of those strands that contain some given pattern is not 100% ef-

ficient, and may at times inadvertently retain strands that do not contain the
specified sequence. While the error rate is reasonable in case only a few extrac-
tions are needed, if the number of extractions is in the hundreds or thousands,
problems arise even if 95% efficiency of extraction is assumed. Indeed, the
probability of obtaining a strand encoding the solution, while at the same time
obtaining no strands encoding illegal solutions is quite low. As another possible
solution, in [5] the operation remove was proposed as a replacement for extract.
The compound operation remove removes from a set of strands all strings that
contain at least one occurrence of a given sequence. The operation is achieved
by first marking all the strands that contain the given sequence as a substring
and then destroying the marked strands. The advantage of the method is that
the restriction enzymes used for the remove operation have a far lower error
rate than extraction. One of the drawbacks is that, although the initial tube
might contain multiple copies of each strand, after many remove operations the
volume of material may be depleted below an acceptable empirical level. This
difficulty can be avoided by periodic amplification by PCR.

Cutting (cleavage) of a DNA strand by a restriction endonuclease is also re-
ferred to as digestion of the DNA by that enzyme. The process may sometimes
produce partial digestion products. One must test all protocols for the effec-
tiveness of the restriction enzyme used, and it is often necessary to find means
to remove undigested material. Similarly, the accuracy of ligation is high, but
not perfect. A ligase may ligate the wrong molecule to a sticky end, if it bears
a close resemblance to the target molecule.

Detection and sequencing conventionally require enzymatic reactions and gel
electrophoresis that are expensive and laborious processes. A possible solution
to these drawbacks is using a technique that achieves sequencing by hybridiza-
tion, offering a one-step automated process for reading the output, [48]. In this
method, target strands are hybridized to a complete set of oligonucleotides syn-
thesized on a flat solid surface (for example an array containing all the possible
8-mers) and then the target is reconstructed from the hybridization data ob-
tained. However, to avoid errors arising from self-annealing, a restricted genetic
alphabet is recommended with this method, using only two of the four bases. In
this way, the test tube contents would be resistant to intramolecular reactions
but not to intermolecular reactions.

Besides the accuracy of bio-operations, another peril of the implementation
of DNA computations is the fact that the size of the problem influences the con-
centration of reactants, and this, in turn, has an effect on the rate of production
and quality of final reaction products. In [41], an analysis of Adleman’s exper-
iment showed that an exponential loss of concentration occurs even on sparse
digraphs, and that this loss of concentration can become a significant consider-
ation for problems not much larger than those solved by Adleman. For volume
decreasing DNA algorithms, an error-resistant solution seems to be the repeated
application of PCR to the intermediate products, [17]. However, this cannot al-
ways be the solution, as not all algorithms are volume decreasing. Indeed, as

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16410

pointed out in [28], one barrier to scalable DNA computation is the weight of
DNA. In some cases, [3], to achieve the desirable error rate, approximately 23
Earth masses of DNA were needed. Clearly, this is not an acceptable situation,
and a combination of algorithm transformations (changing algorithms by using
intelligent space and time trade-offs) might be required to reduce the amount
of DNA, [2], [3], [54].

Indeed, until now we have mainly been concerned with the perils and pitfalls
of the biotechnology used to implement the bio-operations. This might have
given the skewed impression that the only way to advance the DNA computing
research is to wait for progresses in biotechnology. In fact, a complementary
approach to improving the accuracy of DNA computing should come from the
computer science side. It should include development of novel programming
techniques, the use of probabilistic algorithms, genetic algorithms, heuristic
approaches, ([7]), and other modifications of the classical mathematical problem-
solving tools.

This section, which discussed implementation techniques and the associated
error rates, indicates that many substantial engineering challenges to construct-
ing a DNA computer remain at almost all stages. However, we want to point out
that the issues of actively monitoring and adjusting the concentration of reac-
tants, as well as fault tolerance, are all addressed by biological systems in nature:
cells need to control the concentrations of various compounds, to arrange for
rare molecules to react, and they need to deal with undesirable byproducts of
their own activity. There is no reason why, when these problems have success-
fully been dealt with in vivo, they should not have solutions in vitro. As a
step in this direction, in [41] a mechanism is suggested, based on membranes
that separate volumes (vesicles) and on active systems that transport selected
chemicals across membranes. Moreover, [4], [61], [47], [52], suggest how familiar
computer design principles for electronic computers can be exploited to build
molecular computers.

4 Current Research: a Sample

As mentioned before, the current research in DNA computing has two aspects:
practical and theoretical. This section will give a sample of both, briefly de-
scribing an experimental project and some of the theoretical work of the DNA
computing research team at the University of Western Ontario, Canada, that
includes myself, Greg Gloor, Sheng Yu, Gabriel Thierrin, Yong Kang, Helmut
Jürgensen and our overseas colleagues Gheorghe Păun and Arto Salomaa.

4.1 Experimental research

The problems chosen for our experiments are The Shortest Common Superstring
Problem and The Bounded Post Correspondence Problem. The reasons for our
choices were the following:

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16411

• Both problems are NP-complete, that is they are hard computational prob-
lems. This means, in particular, that they cannot yet be solved in real-time by
electronic computers. (In fact, the question whether a real-time, i.e., polynomial
time algorithm exists for NP-complete problems is still open.) Finding efficient
DNA algorithms for solving them would thus indicate that DNA computing
could be quantitatively superior to electronic computing, [24].
• Both experiments proposed for solving the problems use readily available
reagents and techniques. The first problem is a good testing ground for Adle-
man’s bio-operations, while the second one tests other standard molecular pro-
cedures for potential use in DNA computing.
• The second problem is a famous computer science problem. If the condition
“bounded” were dropped, the resulting problem would be unsolvable by classi-
cal means of computation. The search for DNA solutions of this problem could
thus give insights into the limitations of DNA computing, and shed light into the
conjecture that DNA computing is a qualitatively new model of computation.

In the following I will only describe our DNA solution of the first problem,
[25], that is currently the object of our experimental work. Before formally
stating the problem, I summarize the notation used, [55]. For a set Σ, card(Σ)
denotes its cardinality, that is, the number of elements in Σ. An alphabet is a
finite nonempty set. Its elements are called letters or symbols. The letters will
be usually denoted by the first letters of the alphabet, with or without indices,
i.e., a, b, C, D, ai, bj , etc. (In the case of DNA computing, the alphabet at our
disposal is Σ = {A,C, G, T}.) If Σ = {a1, a2, . . . , an} is an alphabet, then any
sequence w = ai1ai2 . . . aik

, k ≥ 0, aij
∈ Σ, 1 ≤ j ≤ k is called a string (word)

over Σ. The length of the word w is denoted by |w| and, by definition, equals
k. The words over Σ will usually be denoted by the last letters of the alphabet,
with or without indices, for example x, y, wj , ui, etc. The set of all words con-
sisting of letters from Σ will be denoted by Σ∗.

The Shortest Common Superstring Problem [23]
INPUT: Alphabet Σ, finite set R of strings from Σ∗, and a positive integer K.
QUESTION: Is there a string w ∈ Σ∗ with length |w| ≤ K such that each string
x ∈ R is a substring of w, i.e., w = w0xw1, where each wi is a string in Σ∗?

Note that the problem remains NP-complete even if card(Σ) = 2 or if all x ∈ R
have lengths |x| ≤ 8 and contain no repeated symbols. On the other hand, the
problem is solvable in polynomial time if all x ∈ R have |x| ≤ 2.

Restatement of the Problem in Molecular Terms
Given n oligonucleotide strings x1, x2, . . . , xn of arbitrary lengths, and a positive
number K, is there a nucleotide sequence w of length K that contains all the
oligonucleotides x1, x2, . . . , xn as subsequences? (The solution to this problem
also provides a method for finding the minimum length sequence containing all
the given oligonucleotides. Note that such a sequence always exists: the catena-
tion x1x2 . . . xn of all nucleotides strings is a nucleotide sequence containing all

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16412

the given oligonucleotides. Due to possible overlaps, this catenation is not nec-
essarily the minimal (shortest) sequence that contains all given oligonucleotides.
The minimal sequence is called the shortest common superstring of the given
oligonucleotides.)

Proposed DNA Algorithm
Step 1. Encode all the strings {x1, x2, . . . , xn} of the set R in DNA strands.
Step 2. Generate all the possible DNA strands w of length less than or equal to
K.
Step 3. Let x1 be a string of R. From the string population of candidates
generated in Step 2 select only those strands that contain x1 as a subsequence.
From the newly obtained string population, select only those strings that contain
x2 ∈ R as a subsequence, etc. Repeat the step for each strand xi in R, 1 ≤ i ≤ n.
Step 4. If, after Step 3, there is any strand w remaining (which means that w
contains all xi ∈ R, 1 ≤ i ≤ n, as subsequences), say YES, otherwise say NO.

I omit here the details of our experimental project, mentioning only that initial
studies will be done using two chosen candidate oligonucleotide sequences, de-
rived by inspection, one of them containing all the given sequences and another
lacking at least one sequence. These test sequences will be flanked by marker se-
quences. These experiments will ensure that the procedure can reliably produce
a positive and a negative result.

4.2 Theoretical research

As mentioned in the first section, one of the aspects of the theoretical side
of the DNA computing research comprises attempts to find a suitable model
and to give it a mathematical foundation. This aspect is exemplified below by
the contextual insertion/deletion systems, [38], [39], a formal language model of
DNA computing.

As a formal language operation, the contextual insertion is a generalization
of catenation and insertion of strings and languages, [36]: words can be inserted
into a string only if certain contexts are present. More precisely, given a set of
contexts we put the condition that insertion of a word can be performed only
between a pair of words in the context set. Analogously, contextual deletion
allows erasing of a word only if the word is situated between a pair of words in
the context set.

Besides their being theoretically interesting, one of the motivations for study-
ing these operations is that they are already implementable in the laboratory.
Indeed, by using available reagents and a standard technique called PCR site-
specific oligonucleotide mutagenesis, [20], one can perform insertions and dele-
tions of nucleotide sequences in given contexts. (A similar operation, substi-
tution, has been proposed in [13] as a bio-operation necessary to simulate a
universal Turing machine.)

We have investigated mathematical properties of contextual insertions and
deletions (in the sequel we refer to them simply as insertions and deletions);

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16413

one of the obtained results is that the actions of every Turing machine can be
simulated entirely by using insertion and deletion rules.

In the following, several characterizations of recursively enumerable (RE)
languages (the equivalents of the Turing machine model of computation) are
briefly presented, using insertion-deletion systems. Such a system generates the
elements of a language by inserting and deleting words, according to their con-
texts (the insertion-deletion rules are triples (u, z, v), with the meaning that
z can be inserted or deleted in/from the context (u, v)). Grammars based on
insertion rules were already considered in [22] with linguistic motivation. In-
sertion/deletion operations are also basic in DNA and RNA processing, [14].
Our results show that these operations, even with strong restrictions on the
length of the contexts and/or on the length of the inserted/deleted words are
computationally complete, that is, they can simulate the work of any Turing
machine.

An insertion-deletion (shortly, insdel) system, [38], is a construct

γ = (V, T,A, I,D),

where V is an alphabet, T ⊆ V , A is a finite subset of V ∗, and I,D are finite
subsets of V ∗ × V ∗ × V ∗.

The alphabet T is the terminal alphabet of γ, A is the set of axioms, I is the
set of insertion rules, and D is the set of deletion rules. An insertion/deletion
rule is given in the form (u, z, v).

For x, y ∈ V ∗ we say that x derives y and we write x =⇒ y iff one of the
following two cases holds:

1. x = x1uvx2, y = x1uzvx2, for some x1, x2 ∈ V ∗ and (u, z, v) ∈ I (an
insertion step);

2. x = x1uzvx2, y = x1uvx2, for some x1, x2 ∈ V ∗ and (u, z, v) ∈ D (a
deletion step).

Denoting by =⇒∗ the reflexive and transitive closure of the relation =⇒, the
language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}.

Informally, L(γ) is the set of strings obtained from the initial axiom set A
by repeatedly applying insertion and deletion rules.

An insdel system γ = (V, T,A, I,D) is said to be of weight (n, m, p, q) if

max{|z| | (u, z, v) ∈ I} = n,

max{|u| | (u, z, v) ∈ I or (v, z, u) ∈ I} = m,

max{|z| | (u, z, v) ∈ D} = p,

max{|u| | (u, z, v) ∈ D or (v, z, u) ∈ D} = q.

Thus, n (respectively p) represent the maximum length of the inserted
(deleted) sequences, while m (respectively q) represent the maximum length
of the right/left contexts of insertion (deletion).

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16414

We denote by INSm
n DELq

p, n,m, p, q ≥ 0, the family of languages L(γ)
generated by insdel systems of weight (n′,m′, p′, q′) such that n′ ≤ n, m′ ≤ m,
p′ ≤ p, q′ ≤ q. When one of the parameters n, m, p, q is not bounded, we replace
it by ∞. Thus, the family of all insdel languages is INS∞∞DEL∞∞.

The main results obtained regarding insertion and deletion systems are:

Theorem 1 (([38])) RE = INS6
3DEL7

2.

Theorem 2 (([39])) RE = INS2
1DEL1

1.

Theorem 3 (([39])) RE = INS1
2DEL0

2.

Theorem 4 (([39])) RE = INS2
1DEL0

2.

The interpretation of, say, Theorem 1, is that the actions of every Turing
machine can be simulated by an insertion/deletion system with finitely many
rules, where the length of inserted strings is at most 3, and the length of both
the right and the left context of insertion is at most 6, while the length of deleted
strings is at most 2 and the length of the right and left contexts of deletion is
bounded by 7.

The proof that contextual insertions and deletions are enough to simulate
the actions of a Turing machine opens thus another possible way for designing
a molecular computer that uses readily available reagents and techniques.

5 Quo Vadis, DNA Computing?

“Predicting is difficult, especially of the future.” said someone famous whose
name I can’t recall. Indeed, the history of innovations abounds in erroneous
predictions about their future impact. As an example of overoptimism, when
helicopters were first invented it was predicted that, in the same way we had
personal automobiles, we would soon have personal helicopters in our backyard.
At the opposite pole, an instance of overpessimism is the forecast (made by
one of the leading persons at IBM) that there will be indeed a big market for
electronic computers: maybe four or five for the United States, at least one or
two for Great Britain... As these examples indicate, one indeed never knows
what future will bring and what sudden advance in technology will propel a
certain invention at the expense of its competitors.

In the same way, it is difficult to predict what vistas DNA computing research
will take in the future. The existing research projects seem to point to a few
short term goals and long term goals, summarized below. By its very nature,
such a list is both incomplete and subjective, and should be taken with a grain
of salt.
Some of the short term goals of the DNA computing research are:

– Test the bio-operations used in Adleman’s experiment (annealing, poly-
merase activity), for usability under other conditions and for other computa-
tional problems.

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16415

– Test other molecular procedures potentially useful for DNA computing (lig-
ation, restriction enzyme digestion, and nuclease digestion on immobilized sub-
strates) for applicability, implementability, scalability, error robusteness, cost
and possibility of automatization.

– Search for other types of problems that can potentially be solved by DNA
computing. Preference will be given to problems that have practical applica-
tions, for example scheduling problems, DNA memories, robotics or weather
prediction.
Some of the long(er) term goals of DNA computing research are:

– Evaluate existing models of DNA computing from the point of view of
their in-vitro implementability.

– Design a viable DNA computability model based on operations specific to
DNA processing in vitro: recombination (splicing), matching, insertion, dele-
tion, etc. Investigate the feasibility of the designed model: scalability, fault
tolerance and cost.

– Study the computational aspects of the designed model: In particular,
compare the model with existing models of computability (especially Turing
machines and Chomsky grammars): power, descriptional complexity, dynamic
complexity.

– Define and study computational complexity, biological complexity and
implementability measures for DNA computing.

– Search for primitive bio-operations necessary for describing a molecular
high-level language. A population of DNA sequences is a set of strings, therefore
these operations should include basic set operations, string operations and some
control operations. The operations should be easily implementable and easy
to automatize, and it should be possible to combine them in order to form
instructions for solving a large class of problems.

– Optimize “molecular procedures” that accomplish the bio-operations above.
For example, it is conceivable that one would need basic set operations, like
generate all the subsets with k elements of a given set and language theoretic
operations like catenate two strings or generate all the strings of a given length
over a given alphabet.

– Automate, as far as practical, the procedures above.
– Develop new problem-solving tools and programming techniques suited for

computation with bio-molecules.
– Determine classes of applications that (a) can be practically solved by

DNA computing, (b) have robust DNA-algorithms from the point of view of
error-detection and error-correction, and (c) have DNA solutions that show
substantial advantages (speed, information storage, energy efficiency) compared
with the electronic computer based solutions.

– Design DNA based modules for solving these classes of problems.
– Automate and construct DNA-based devices to solve the problems.
– Investigate the feasibility and advantages of a DNA computer.
– Design a DNA-based computer.
I venture to anticipate that the pioneer research in DNA computing, which

has as its ultimate goal the design of a DNA computer, will have great signifi-

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16416

cance in many aspects of science and technology. Indeed DNA computing sheds
new light onto the very nature of computation, and opens vistas for computabil-
ity models totally different from the classical ones. In an optimistic way, one
may think of an analogy between the work of researchers in this area and the
work on finding models of computation carried out in the 30’s, which has laid
the foundation for the design of the electronic computers.

Acknowledgements. I want to thank Tom Head, Satoshi Kobayashi and
Takashi Yokomori for their helpful suggestions and comments, and Michelle
Hoyle for clarifying discussions on the history of computing.

References

[1] L.Adleman. Molecular computation of solutions to combinatorial problems.
Science v.266, Nov.1994, 1021–1024.

[2] L.Adleman. On constructing a molecular computer. 1st DIMACS workshop
on DNA based computers, Princeton, 1995. In DIMACS series, vol.27 (1996),
1–21.

[3] L.Adleman, P.Rothemund, S.Roweis, E.Winfree. On applying molecular
computation to the Data Encryption Standard. 2nd DIMACS workshop on
DNA based computers, Princeton, 1996, 28–48.

[4] J.Amenyo. Mesoscopic computer engineering: automating DNA-based
molecular computing via traditional practices of parallel computer architec-
ture design. 2nd DIMACS workshop on DNA based computers, Princeton,
1996, 217–235.

[5] M.Amos, A.Gibbons, D.Hodgson. Error-resistant implementation of DNA
computation. 2nd DIMACS workshop on DNA based computers, Princeton,
1996, 87–101.

[6] M.Arita, M.Hagiya, A.Suyama. Joining and rotating data with molecules.
Proceedings of 1997 IEEE International Conference on Evolutionary Com-
putation, Indianapolis, 243–248.

[7] M.Arita, A.Suyama, M.Hagiya. A heuristic approach for Hamiltonian Path
Problem with molecules. Genetic Programming 1997: Proceedings of the Sec-
ond Annual Conference (GP-97), Morgan Kaufmann Publishers, in press.

[8] E.Baum. Building an associative memory vastly larger than the brain. Sci-
ence, vol.268, April 1995, 583–585.

[9] E.Baum. DNA sequences useful for computation. 2nd DIMACS workshop
on DNA based computers, Princeton, 1996, 122–127.

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16417

[10] E.Baum. D.Boneh. Running dynamic programming algorithms on a DNA
computer. 2nd DIMACS workshop on DNA based computers, Princeton, 1996,
141–147.

[11] D.Beaver. The complexity of molecular computation.
http://www.transarc.com/˜beaver/research/alternative/molecute/molec.html.

[12] D. Beaver. Computing with DNA. Journal of Computational Biology, (2:1),
Spring 1995.

[13] D.Beaver. A universal molecular computer. 1st DIMACS workshop on DNA
based computers, Princeton, 1995. In DIMACS series, vol.27 (1996), 29–36.

[14] R. Benne (ed.), RNA-Editing: The Alteration of Protein Coding Sequences
of RNA, Ellis Horwood, 1993.

[15] D.Boneh, C.Dunworth, R.Lipton. Breaking DES using a molecular com-
puter. 1st DIMACS workshop on DNA based computers, Princeton, 1995. In
DIMACS series, vol.27 (1996), 37–65.

[16] D.Boneh, R.Lipton, C.Dunworth, J.Sgall. On the computational power of
DNA. http://www.cs.princeton.edu/˜dabo.

[17] D.Boneh, C.Dunworth, J.Sgall, R.Lipton. Making DNA computers error
resistant. 2nd DIMACS workshop on DNA based computers, Princeton, 1996,
102–110.

[18] E.Csuhaj–Varju, R.Freund, L.Kari, G.Paun. DNA computing based on
splicing: universality results. First Annual Pacific Symposium on Biocom-
puting, Hawaii, 1996, also http://www.csd.uwo.ca/˜lila.

[19] R.Deaton, R.Murphy, J.Rose, M.Garzon, D.Franceschetti, S.Stevens. A
DNA based implementation of an evolutionary search for good encodings
for DNA computation. Proceedings of 1997 IEEE International Conference
on Evolutionary Computation, Indianapolis, 267–271.

[20] C.W.Dieffenbach, G.S.Dveksler, Eds. PCR primer: a laboratory manual,
Cold Spring Harbor Laboratory Press, 1995, 581-621.

[21] R.Freund, L.Kari, G.Paun. DNA computing based on splic-
ing: the existence of universal computers. Submitted. Also at
http://www.csd.uwo.ca/˜lila.

[22] B.S.Galiukschov. Semicontextual grammars (in Russian). Mat.logica i mat.
ling., Kalinin Univ., 1981, 38-50.

[23] M.Garey, D.Johnson. Computers and Intractability. A Guide to the Theory
of NP–completeness. W.H.Freeman and Company, San Francisco, 1979.

[24] D.K.Gifford. On the path to computation with DNA. Science
266(Nov.1994), 993–994.

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16418

[25] G.Gloor, L.Kari, S.Yu. A DNA solution to the Shortest Common Super-
string Problem. Manuscript.

[26] F.Guarnieri, M.Fliss, C.Bancroft. Making DNA add. Science, vol.273, July
1996, 220-223.

[27] M.Hagiya, M.Arita. Towards parallel evaluation and learning of Boolean
µ-formulas with molecules. Submitted.

[28] J.Hartmanis. On the weight of computations. Bulletin of the European As-
sociation of Theoretical Computer Science, 55(1995), 136–138.

[29] T.Head. Formal language theory and DNA: an analysis of the generative ca-
pacity of recombinant behaviors. Bulletin of Mathematical Biology, 49(1987)
737–759.

[30] T.Head, G.Paun, D.Pixton. Language theory and genetics. Generative
mechanisms suggested by DNA recombination. In Handbook of Formal Lan-
guages (G.Rozenberg, A.Salomaa eds.), Springer Verlag, 1996.

[31] M.Hoyle. Computers: From the Past to the Present.
http://www.interpac.net/˜eingang/Lecture/, 1997.

[32] N.Jonoska, S.Karl. A molecular computation of the road coloring problem.
2nd DIMACS workshop on DNA based computers, Princeton, 1996, 148-158.

[33] N.Jonoska, S.Karl. Ligation experiments in computing with DNA. Proceed-
ings of 1997 IEEE International Conference on Evolutionary Computation,
Indianapolis, 261–266.

[34] P.Kaplan, G.Cecchi, A.Libchaber. Molecular computation: Adleman’s ex-
periment repeated. Technical report, NEC Research Institute, 1995.

[35] P.Kaplan, G.Cecchi, A.Libchaber. DNA-based molecular computation:
template–template interactions in PCR. 2nd DIMACS workshop on DNA
based computers, Princeton, 1996, 159–171.

[36] L.Kari. On insertions and deletions in formal languages. Ph.D. thesis, Uni-
versity of Turku, Finland, 1991.

[37] L.Kari. DNA computing: arrival of biological mathematics. The Mathe-
matical Intelligencer, vol.19, nr.2, Spring 1997, 9–22.

[38] L.Kari, G.Thierrin. Contextual insertions/deletions and computability. In-
formation and Computation, 131, no.1 (1996), 47–61.

[39] L.Kari, G.Paun, G.Thierrin, S.Yu. At the crossroads of DNA computing
and formal languages: characterizing recursively enumerable languages using
insertion/deletion systems. Submitted.

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16419

[40] J.Kendrew et al., eds. The Encyclopedia of Molecular Biology, Blackwell
Science, Oxford, 1994.

[41] S.Kurtz, S.Mahaney, J.Royer, J.Simon. Active transport in biological com-
puting. 2nd DIMACS workshop on DNA based computers, Princeton, 1996,
111–121.

[42] S.Kobayashi, T.Yokomori, G.Sampei, K.Mizobuchi. DNA implementation
of simple Horn clause computation. Proceedings of 1997 IEEE International
Conference on Evolutionary Computation, Indianapolis, 213-217.

[43] T.Leete, M.Schwartz, R.Williams, D.Wood, J.Salem, H.Rubin. Massively
parallel DNA computation: expansion of symbolic determinants. 2nd DI-
MACS workshop on DNA based computers, Princeton, 1996, 49-66.

[44] R.Lipton. DNA solution of hard computational problems. Science, vol.268,
April 1995, 542–545.

[45] R.Lipton. Speeding up computations via molecular biology. 1st DIMACS
workshop on DNA based computers, Princeton, 1995. In DIMACS series,
vol.27 (1996), 67–74.

[46] Q.Liu, Z.Guo, A.Condon, R.Corn, M.Lagally, L.Smith. A surface-based
approach to DNA computation. 2nd DIMACS workshop on DNA based com-
puters, Princeton, 1996, 206–216.

[47] V.Mihalache. Prolog approach to DNA computing. Proceedings of 1997
IEEE International Conference on Evolutionary Computation, Indianapolis,
249–254.

[48] K.Mir. A restricted genetic alphabet for DNA computing. 2nd DIMACS
workshop on DNA based computers, Princeton, 1996, 128–130.

[49] J.Oliver. Computation with DNA: matrix multiplication. 2nd DIMACS
workshop on DNA based computers, Princeton, 1996, 236–248.

[50] G.Paun. On the power of the splicing operation. International Journal of
Computer Mathematics, 59(1995), 27–35.

[51] G.Paun, A.Salomaa. DNA computing based on the splicing operation.
Mathematica Japonica, vol.43, no.3, 1996, 607–632.

[52] J.Reif. Parallel molecular computation: models and simulations. Proceed-
ings: 7th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA’95) Santa Barbara, CA, July 1995, pp. 213-223.

[53] P.Rothemund. A DNA and restriction enzyme implementation of Turing
machines. 1st DIMACS workshop on DNA based computers, Princeton, 1995.
In DIMACS series, vol.27 (1996), 75–119.

Proc. of Bio-Computing and Emergent Comp., 1997, World Scientific, 146-16420

[54] S. Roweis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman, P. Rothe-
mund, L. Adleman. A sticker based architecture for DNA computation. 2nd
DIMACS workshop on DNA based computers, Princeton, 1996, 1–27.

[55] A.Salomaa. Formal Languages. Academic Press, New York, 1973.

[56] N.Seeman et al. The perils of polynucleotides: the experimental gap be-
tween the design and assembly of unusual DNA structures. 2nd DIMACS
workshop on DNA based computers, Princeton, 1996, 191–205.

[57] W.Smith. DNA computers in vitro and in vivo, 1st DIMACS workshop on
DNA based computers, Princeton, 1995. In DIMACS series, vol.27 (1996),
121–185.

[58] A.M.Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc.London Math Soc., Ser.2, 42(1936), 230–265.

[59] T.Yokomori, S.Kobayashi. DNA-EC: a model of DNA computing based on
equality checking. Submitted.

[60] T.Yokomori, S.Kobayashi, C.Ferretti. On the power of circular splicing sys-
tems and DNA computability. Proceedings of 1997 IEEE International Con-
ference on Evolutionary Computation, Indianapolis, 219–224.

[61] R.Williams, D.Wood. Exascale computer algebra problems interconnect
with molecular reactions and complexity theory. 2nd DIMACS workshop on
DNA based computers, Princeton, 1996, 260–268.

[62] E.Winfree. Complexity of restricted and unrestricted models of molecular
computation. 1st DIMACS workshop on DNA based computers, Princeton,
1995. In DIMACS series, vol.27 (1996), 187–198.

[63] E.Winfree. On the computational power of DNA annealing and ligation. 1st
DIMACS workshop on DNA based computers, Princeton, 1995. In DIMACS
series, vol.27 (1996), 199-221.

[64] E.Winfree, X.Yang, N.Seeman. Universal computation via self-assembly of
DNA: some theory and experiments. 2nd DIMACS workshop on DNA based
computers, Princeton, 1996, 172–190.

