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ABSTRACT
Regular chains and triangular decompositions are fundamen-
tal and well-developed tools for describing the complex so-
lutions of polynomial systems. This paper proposes adapta-
tions of these tools focusing on solutions of the real analogue:
semi-algebraic systems.

We show that any such system can be decomposed into
finitely many regular semi-algebraic systems. We propose
two specifications of such a decomposition and present cor-
responding algorithms. Under some assumptions, one type
of decomposition can be computed in singly exponential time
w.r.t. the number of variables. We implement our algorithms
and the experimental results illustrate their effectiveness.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, Analysis of algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
regular semi-algebraic system, regular chain, triangular de-
composition, border polynomial, fingerprint polynomial set

1. INTRODUCTION
Regular chains, the output of triangular decompositions

of systems of polynomial equations, enjoy remarkable prop-
erties. Size estimates play in their favor [12] and permit the
design of modular [13] and fast [17] methods for computing
triangular decompositions. These features stimulate the de-
velopment of algorithms and software for solving polynomial
systems via triangular decompositions.

For the fundamental case of semi-algebraic systems with
rational number coefficients, to which this paper is devoted,
we observe that several algorithms for studying the real so-
lutions of such systems take advantage of the structure of a
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regular chain. Some are specialized to isolating the real solu-
tions of systems with finitely many complex solutions [23, 10,
3]. Other algorithms deal with parametric polynomial sys-
tems via real root classification (RRC) [25] or with arbitrary
systems via cylindrical algebraic decompositions (CAD) [9].

In this paper, we introduce the notion of a regular semi-
algebraic system, which in broad terms is the “real” counter-
part of the notion of a regular chain. Then we define two
notions of a decomposition of a semi-algebraic system: one
that we call lazy triangular decomposition, where the ana-
lysis of components of strictly smaller dimension is deferred,
and one that we call full triangular decomposition where all
cases are worked out. These decompositions are obtained by
combining triangular decompositions of algebraic sets over
the complex field with a special Quantifier Elimination (QE)
method based on RRC techniques.

Regular semi-algebraic system. Let T be a regular chain of
Q[x1, . . . , xn] for some ordering of the variables x = x1, . . . , xn.
Let u = u1, . . . , ud and y = y1, . . . , yn−d designate respec-
tively the variables of x that are free and algebraic w.r.t. T .
Let P ⊂ Q[x] be finite such that each polynomial in P is
regular w.r.t. the saturated ideal of T . Define P> := {p >
0 | p ∈ P}. Let Q be a quantifier-free formula of Q[x] in-
volving only the variables of u. We say that R := [Q, T, P>]
is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebraic set S in Rd,
(ii) the regular system [T, P ] specializes well at every point

u of S (see Section 2 for this notion),
(iii) at each point u of S, the specialized system [T (u), P (u)>]

has at least one real zero.
The zero set of R, denoted by ZR(R), is defined as the set
of points (u, y) ∈ Rd × Rn−d such that Q(u) is true and
t(u, y) = 0, p(u, y) > 0, for all t ∈ T and all p ∈ P .

Triangular decomposition of a semi-algebraic system. In
Section 3 we show that the zero set of any semi-algebraic
system S can be decomposed as a finite union (possibly
empty) of zero sets of regular semi-algebraic systems. We
call such a decomposition a full triangular decomposition (or
simply triangular decomposition when clear from context) of
S, and denote by RealTriangularize an algorithm to compute
it. The proof of our statement relies on triangular decompo-
sitions in the sense of Lazard (see Section 2 for this notion)
for which it is not known whether or not they can be com-
puted in singly exponential time w.r.t. the number of vari-
ables. Meanwhile, we are hoping to obtain an algorithm for
decomposing semi-algebraic systems (certainly under some
genericity assumptions) that would fit in that complexity
class. Moreover, we observe that, in practice, full triangular

187



decompositions are not always necessary and that providing
information about the components of maximum dimension
is often sufficient. These theoretical and practical motiva-
tions lead us to a weaker notion of a decomposition of a
semi-algebraic system.

Lazy triangular decomposition of a semi-algebraic sys-

tem. Let S = [F,N≥, P>, H 6=] (see Section 3 for this nota-
tion) be a semi-algebraic system of Q[x] and ZR(S) ⊆ Rn be
its zero set. Denote by d the dimension of the constructible
set {x ∈ Cn | f(x) = 0, g(x) 6= 0, for all f ∈ F, g ∈ P ∪H}.
A finite set of regular semi-algebraic systems Ri, i = 1 · · · t
is called a lazy triangular decomposition of S if
• ∪ti=1ZR(Ri) ⊆ ZR(S) holds, and
• there exists G ⊂ Q[x] such that the real-zero set ZR(G)
⊂ Rn contains ZR(S)\

(
∪ti=1ZR(Ri)

)
and the complex-

zero set V (G) ⊂ Cn either is empty or has dimension
less than d.

We denote by LazyRealTriangularize an algorithm comput-
ing such a decomposition. In the implementation presented
hereafter, LazyRealTriangularize outputs additional informa-
tion in order to continue the computations and obtain a full
triangular decomposition, if needed. This additional infor-
mation appears in the form of unevaluated function calls,
explaining the usage of the adjective lazy in this type of de-
compositions.

Complexity results for lazy triangular decomposition. In
Section 4, we provide a running time estimate for computing
a lazy triangular decomposition of the semi-algebraic sys-
tem S when S has no inequations nor inequalities, (that is,
when N≥ = P> = H6= = ∅ holds) and when F generates
a strongly equidimensional ideal of dimension d. We show
that one can compute such a decomposition in time singly
exponential w.r.t. n. Our estimates are not sharp and are
just meant to reach a singly exponential bound. We rely
on the work of J. Renagar [20] for QE. In Sections 5 and 6
we turn our attention to algorithms that are more suitable
for implementation even though they rely on sub-algorithms
with a doubly exponential running time w.r.t. d.

A special case of quantifier elimination. By means of tri-
angular decomposition of algebraic sets over C, triangular
decomposition of semi-algebraic systems (both full and lazy)
reduces to a special case of QE. In Section 5, we implement
this latter step via the concept of a fingerprint polynomial
set, which is inspired by that of a discrimination polynomial
set used for RRC in [25, 24].

Implementation and experimental results. In Section 6
we describe the algorithms that we have implemented for
computing triangular decompositions (both full and lazy) of
semi-algebraic systems. Our Maple code is written on top
of the RegularChains library. We provide experimental data
for two groups of well-known problems. In the first group,
each input semi-algebraic system consists of equations only
while the second group is a collection of QE problems. To
illustrate the difficulty of our test problems, and only for this
purpose, we provide timings obtained with other well-known
polynomial system solvers which are based on algorithms
whose running time estimates are comparable to ours. For
this first group we use the Maple command Groebner:-

Basis for computing lexicographical Gröbner bases. For the
second group we use a general purpose QE software: qepcad
b (in its non-interactive mode) [5]. Our experimental results
show that our LazyRealTriangularize code can solve most of

our test problems and that it can solve more problems than
the package it is compared to.

We conclude this introduction by computing a triangular
decomposition of a particular semi-algebraic system taken
from [6]. Consider the following question: when does p(z) =
z3 + az + b have a non-real root x + iy satisfying xy < 1 ?
This problem can be expressed as (∃x)(∃y)[f = g = 0 ∧ y 6=
0∧xy−1 < 0], where f = Re(p(x+ iy)) = x3−3xy2 +ax+b
and g = Im(p(x+ iy))/y = 3x2 − y2 + a.

We call our LazyRealTriangularize command on the semi-
algebraic system f = 0, g = 0, y 6= 0, xy − 1 < 0 with the
variable order y > x > b > a. Its first step is to call the
Triangularize command of the RegularChains library on the
algebraic system f = g = 0. We obtain one squarefree regu-
lar chain T = [t1, t2], where t1 = g and t2 = 8x3 + 2ax − b,
satisfying V (f, g) = V (T ). The second step of LazyRe-
alTriangularize is to check whether the polynomials defin-
ing inequalities and inequations are regular w.r.t. the sat-
urated ideal of T , which is the case here. The third step
is to compute the so called border polynomial set (see Sec-
tion 2) which is B = [h1, h2] with h1 = 4a3 + 27b2 and
h2 = −4a3b2−27b4+16a4+512a2+4096. One can check that
the regular system [T, {y, xy− 1}] specializes well outside of
the hypersurface h1h2 = 0. The fourth step is to compute
the fingerprint polynomial set which yields the quantifier-
free formula Q = h1 > 0 telling us that [Q, T, 1− xy > 0] is
a regular semi-algebraic system. After performing these four
steps, (based on Algorithm 5, Section 6) the function call

LazyRealTriangularize([f, g, y 6= 0, xy − 1 < 0], [y, x, b, a])

in our implementation returns the following:

[{t1 = 0, t2 = 0, 1− xy > 0, h1 > 0}] h1h2 6= 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,
h1 = 0, 1− xy > 0, y 6= 0], [y, x, b, a]) h1 = 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,
h2 = 0, 1− xy > 0, y 6= 0], [y, x, b, a]) h2 = 0

The above output shows that {[Q, T, 1 − xy > 0]} forms
a lazy triangular decomposition of the input semi-algebraic
system. Moreover, together with the output of the recursive
calls, one obtains a full triangular decomposition. Note that
the cases of the two recursive calls correspond to h1 = 0 and
h2 = 0. Since our LazyRealTriangularize uses the Maple
piecewise structure for formatting its output, one simply
needs to evaluate the recursive calls with the value com-
mand, yielding the same result as directly calling RealTrian-
gularize



[{t1 = 0, t2 = 0, 1− xy > 0, h1 > 0}] h1h2 6= 0

[ ] h1 = 0
([{t3 = 0, t4 = 0,
h2 = 0, 1− xy > 0}]) h3 6= 0

[ ] h3 = 0

h2 = 0

where t3 = xy + 1, t4 = 2a3x − a2b + 32ax − 48b + 18xb2,
h3 = (a2 + 48)(a2 + 16)(a2 + 12).

From this output, after some simplification, one could ob-
tain the equivalent quantifier-free formula, 4a3 + 27b2 > 0,
of the original QE problem.
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2. TRIANGULAR DECOMPOSITION OF
ALGEBRAIC SETS

We review in the section the basic notions related to reg-
ular chains and triangular decompositions of algebraic sets.
Throughout this paper, let k be a field of characteristic 0 and
K be its algebraic closure. Let k[x] be the polynomial ring
over k and with ordered variables x = x1 < · · · < xn. Let
p, q ∈ k[x] be polynomials. Assume that p /∈ k. Then denote
by mvar(p), init(p), and mdeg(p) respectively the greatest
variable appearing in p (called the main variable of p), the
leading coefficient of p w.r.t. mvar(p) (called the initial of p),
and the degree of p w.r.t. mvar(p) (called the main degree
of p); denote by der(p) the derivative of p w.r.t. mvar(p);
denote by discrim(p) the discriminant of p w.r.t. mvar(p).

Triangular sets. Let T ⊂ k[x] be a triangular set, that is, a
set of non-constant polynomials with pairwise distinct main
variables. Denote by mvar(T ) the set of main variables of
the polynomials in T . A variable v in x is called algebraic
w.r.t. T if v ∈ mvar(T ), otherwise it is said free w.r.t. T .
If no confusion is possible, we shall always denote by u =
u1, . . . , ud and y = y1, . . . , ym respectively the free and the
main variables of T . Let hT be the product of the initials
of the polynomials in T . We denote by sat(T ) the saturated
ideal of T : if T is the empty triangular set, then sat(T )
is defined as the trivial ideal 〈0〉, otherwise it is the ideal
〈T 〉 : h∞T . The quasi-component W (T ) of T is defined as

V (T ) \ V (hT ). Denote W (T ) = V (sat(T )) as the Zariski
closure of W (T ).

Iterated resultant. Let p and q be two polynomials of k[x].
Assume q is non-constant and let v = mvar(q). We de-
fine res(p, q, v) as follows: if v does not appear in p, then
res(p, q, v) := p; otherwise res(p, q, v) is the resultant of p
and q w.r.t. v. Let T be a triangular set of k[x]. We define
res(p, T ) by induction: if T is empty, then res(p, T ) = p;
otherwise let v be the greatest variable appearing in T , then
res(p, T ) = res(res(p, Tv, v), T<v), where Tv and T<v denote
respectively the polynomials of T with main variables equal
to and less than v.

Regular chain. A triangular set T ⊂ k[x] is a regular chain
if: either T is empty; or (letting t be the polynomial in T
with maximum main variable), T \ {t} is a regular chain,
and the initial of t is regular w.r.t. sat(T \ {t}). The empty
regular chain is denoted by ∅. Let H ⊂ k[x]. The pair
[T,H] is a regular system if each polynomial in H is regular
modulo sat(T ). A regular chain T or a regular system [T,H],
is squarefree if for all t ∈ T , the der(t) is regular w.r.t. sat(T ).

Triangular decomposition. Let F ⊂ k[x]. Regular chains
T1, . . . , Te of k[x] form a triangular decomposition of V (F ) if

either: V (F ) = ∪ei=1W (Ti) (Kalkbrener’s sense) or V (F ) =
∪ei=1W (Ti) (Lazard’s sense). In this paper, we denote by
Triangularize an algorithm, such as the one of [18], computing
a triangular decomposition of the former kind.

Regularization. Let p ∈ k[x]. Let T be a regular chain of
k[x]. Denote by Regularize(p, T ) an operation which com-
putes a set of regular chains {T1, . . . , Te} such that (1) for
each i, 1 ≤ i ≤ e, either p ∈ sat(Ti) or p is regular w.r.t.

sat(Ti); (2) we haveW (T ) = W (T1)∪· · ·∪W (Te), mvar(T ) =
mvar(Ti) and sat(T ) ⊆ sat(Ti) for 1 ≤ i ≤ e.
Good specialization [8]. Consider a squarefree regular sys-
tem [T,H] of k[u,y]. Recall that y and u = u1, . . . , ud stand
respectively for mvar(T ) and x \ y. Let z = (z1, . . . , zd) be

a point of Kd. We say that [T,H] specializes well at z if: (i)
none of the initials of the polynomials in T vanishes mod-
ulo the ideal 〈z1 − u1, . . . , zd − ud〉; (ii) the image of [T,H]
modulo 〈z1−u1, . . . , zd−ud〉 is a squarefree regular system.

Border polynomial [25]. Let [T,H] be a squarefree regular
system of k[u,y]. Let bp be the primitive and square free
part of the product of all res(der(t), T ) and all res(h, T ) for
h ∈ H and t ∈ T . We call bp the border polynomial of [T,H]
and denote by BorderPolynomial(T,H) an algorithm to com-
pute it. We call the set of irreducible factors of bp the border
polynomial set of [T,H]. Denote by BorderPolynomialSet(T,H)
an algorithm to compute it. Proposition 1 follows from the
specialization property of subresultants and states a funda-
mental property of border polynomials.

Proposition 1. The system [T,H] specializes well at u ∈
Kd if and only if the border polynomial bp(u) 6= 0.

3. TRIANGULAR DECOMPOSITION OF
SEMI-ALGEBRAIC SYSTEMS

In this section, we prove that any semi-algebraic system
can be decomposed into finitely many regular semi-algebraic
systems. This latter notion was defined in the introduction.

Semi-algebraic system. Consider four finite polynomial
subsets F = {f1, f2, · · · , fs}, N = {n1, n2, · · · , nt}, P =
{p1, p2, · · · , pr}, and H = {h1, h2, · · · , h`} of Q[x1, . . . , xn].
Let N≥ denote the set of non-negative inequalities {n1 ≥
0, . . . , nt ≥ 0}. Let P> denote the set of positive inequal-
ities {p1 > 0, . . . , pr > 0}. Let H 6= denote the set of in-
equations {h1 6= 0, . . . , h` 6= 0}. We will denote by [F, P>]
the basic semi-algebraic system {f1 = 0, . . . , fs = 0, p1 >
0, . . . , pr > 0}. We denote by S = [F,N≥, P>, H 6=] the
semi-algebraic system (SAS) which is the conjunction of the
following conditions: f1 = 0, . . . , fs = 0, n1 ≥ 0, . . . , nt ≥ 0,
p1 > 0, . . . , pr > 0 and h1 6= 0, . . . , h` 6= 0.

Notations on zero sets. In this paper, we use “Z” to denote
the zero set of a polynomial system, involving equations and
inequations, in Cn and “ZR” to denote the zero set of a semi-
algebraic system in Rn.

Pre-regular semi-algebraic system. Let [T, P ] be a square-
free regular system of Q[u,y]. Let bp be the border polyno-
mial of [T, P ]. Let B ⊂ Q[u] be a polynomial set such that bp
divides the product of polynomials in B. We call the triple
[B 6=, T, P>] a pre-regular semi-algebraic system of Q[x]. Its
zero set, written as ZR(B 6=, T, P>), is the set (u, y) ∈ Rn
such that b(u) 6= 0, t(u, y) = 0, p(u, y) > 0, for all b ∈ B,
t ∈ T , p ∈ P . Lemma 1 and Lemma 2 are fundamental
properties of pre-regular semi-algebraic systems.

Lemma 1. Let S be a semi-algebraic system of Q[x]. Then
there exists finitely many pre-regular semi-algebraic systems
[Bi 6=, Ti, Pi>], i = 1 · · · e, s.t. ZR(S) = ∪ei=1ZR(Bi 6=, Ti, Pi>).

Proof. The semi-algebraic system S decomposes into
basic semi-algebraic systems, by rewriting inequality of type
n ≥ 0 as: n > 0 ∨ n = 0. Let [F, P>] be one of those
basic semi-algebraic systems. If F is empty, then the triple
[P,∅, P>], is a pre-regular semi-algebraic system. If F is
not empty, by Proposition 1 and the specifications of Tri-
angularize and Regularize, one can compute finitely many
squarefree regular systems [Ti, H] such that V (F )∩Z(P 6=) =
∪ei=1 (V (Ti) ∩ Z(Bi 6=)) holds and where Bi is the border
polynomial set of the regular system [Ti, H]. Hence, we have
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ZR(F, P>) = ∪ei=1ZR(Bi 6=, Ti, P>), where each [Bi 6=, Ti, P>]
is a pre-regular semi-algebraic system.

Lemma 2. Let [B 6=, T, P>] be a pre-regular semi-algebraic
system of Q[u,y]. Let h be the product of polynomials in B.
The complement of the hypersurface h = 0 in Rd consists
of finitely many open cells of dimension d. Let C be one
of them. Then for all α ∈ C, the number of real zeros of
[T (α), P>(α)] is the same.

Proof. From Proposition 1 and recursive use of Theorem
1 in [11] on the delineability of a polynomial.

Lemma 3. Let [B 6=, T, P>] be a pre-regular semi-algebraic
system of Q[u,y]. One can decide whether its zero set is
empty or not. If it is not empty, then one can compute a
regular semi-algebraic system [Q, T, P>] whose zero set in
Rn is the same as that of [B 6=, T, P>].

Proof. If T = ∅, we can always test whether the zero
set of [B 6=, P>] is empty or not, for instance using CAD. If
it is empty, we are done. Otherwise, defining Q = B 6= ∧ P>,
the triple [Q, T, P>] is a regular semi-algebraic system. If
T is not empty, we solve the quantifier elimination problem
∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0) and let Q be the
resulting formula. If Q is false, we are done. Otherwise, by
Lemma 2, above each connected component of B(u) 6= 0, the
number of real zeros of the system [B 6=, T, P>] is constant.
Then, the zero set defined by Q is the union of the connected
components of B(u) 6= 0 above which [B 6=, T, P>] possesses
at least one solution. Thus, Q defines a nonempty open set
of Rd and [Q, T, P>] is a regular semi-algebraic system.

Theorem 1. Let S be a semi-algebraic system of Q[x].
Then one can compute a (full) triangular decomposition of
S, that is, as defined in the introduction, finitely many reg-
ular semi-algebraic systems such that the union of their zero
sets is the zero set of S.

Proof. It follows from Lemma 1 and 3.

4. COMPLEXITY RESULTS
We start this section by stating complexity estimates for

basic operations on multivariate polynomials.

Complexity of basic polynomial operations. Let p, q ∈
Q[x] be polynomials with respective total degrees δp, δq, and
let x ∈ x. Let ~p, ~q, ~pq and ~r be the height (that is, the
bit size of the maximum absolute value of the numerator or
denominator of a coefficient) of p, q, the product pq and the
resultant res(p, q, x), respectively. In [14], it is proved that
gcd(p, q) can be computed within O(n2δ+1~3) bit operations
where δ = max(δp, δq) and ~ = max(~p, ~q). It is easy to
establish that ~pq and ~r are respectively upper bounded by
~p+~q+n log(min(δp, δq)+1) and δq~p+δp~q+nδq log(δp+
1) + nδp log(δq + 1) + log ((δp + δq)!). Finally, let M be a
k × k matrix over Q[x]. Let δ (resp. ~) be the maximum
total degree (resp. height) of a polynomial coefficient of M .
Then det(M) can be computed within O(k2n+5(δ + 1)2n~2)
bit operations, see [15].

We turn now to the main subject of this section, that is,
complexity estimates for a lazy triangular decomposition of a
polynomial system under some genericity assumptions. Let
F ⊂ Q[x]. A lazy triangular decomposition (as defined in the
Introduction) of the semi-algebraic system S = [F, ∅, ∅, ∅],

Algorithm 1: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F, ∅, ∅, ∅]
Output: a lazy triangular decomposition of S
T := Triangularize(F )1

for Ti ∈ T do2

bpi := BorderPolynomial(Ti, ∅)3

solve ∃y(bpi(u) 6= 0, Ti(u,y) = 0), and let Qi be the4

resulting quantifier-free formula
if Qi 6= false then output [Qi, Ti, ∅]5

which only involves equations, is obtained by the above al-
gorithm.

Proof of Algorithm 1. The termination of the algorithm is
obvious. Let us prove its correctness. Let Ri = [Qi, Ti, ∅],
for i = 1 · · · t be the output of Algorithm 1 and let Tj for
j = t + 1 · · · s be the regular chains such that Qj = false.
By Lemma 3, each Ri is a regular semi-algebraic system.
For i = 1 · · · s, define Fi = sat(Ti). Then we have V (F ) =
∪si=1V (Fi), where each Fi is equidimensional. For each i =
1 · · · s, by Proposition 1, we have

V (Fi) \ V (bpi) = V (Ti) \ V (bpi).

Moreover, we have

V (Fi) = (V (Fi) \ V (bpi)) ∪ V (Fi ∪ {bpi}).

Hence,

ZR(Ri) = ZR(Ti) \ ZR(bpi) ⊆ ZR(Fi) ⊆ ZR(F )

holds. In addition, since bpi is regular modulo Fi, we have

ZR(F ) \ ∪ti=1ZR(Ri) = ∪si=1ZR(Fi) \ ∪ti=1ZR(Ri)
⊆ ∪si=1ZR(Fi) \ (ZR(Ti) \ ZR(bpi))
⊆ ∪si=1ZR(Fi ∪ {bpi}),

and dim (∪si=1V (Fi ∪ {bpi})) < dim(V (F )). So the Ri, for
i = 1 · · · t, form a lazy triangular decomposition of S. �

In this section, under some genericity assumptions for F ,
we establish running time estimates for Algorithm 1, see
Proposition 3. This is achieved through:
(1) Proposition 2 giving running time and output size es-

timates for a Kalkbrener triangular decomposition of
an algebraic set, and

(2) Theorem 2 giving running time and output size esti-
mates for a border polynomial computation.

Our assumptions for these results are the following:
(H0) V (F ) is equidimensional of dimension d,
(H1) x1, . . . , xd are algebraically independent modulo each

associated prime ideal of the ideal generated by F in
Q[x],

(H2) F consists of m := n− d polynomials, f1, . . . , fm.
Hypotheses (H0) and (H1) are equivalent to the existence of
regular chains T1, . . . , Te of Q[x1, . . . , xn] such that x1, . . . , xd
are free w.r.t. each of T1, . . . , Te and such that we have
V (F ) = W (T1) ∪ · · · ∪ W (Te).

Denote by δ, ~ respectively the maximum total degree and
height of f1, . . . , fm. In her PhD Thesis [22], Á. Szántó de-
scribes an algorithm which computes a Kalkbrener triangu-
lar decomposition, T1, . . . , Te, of V (F ). Under Hypotheses

(H0) to (H2), this algorithm runs in time mO(1)(δO(n2))d+1

counting operations in Q, while the total degrees of the poly-

nomials in the output are bounded by nδO(m2). In addition,
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T1, . . . , Te are square free, strongly normalized [18] and re-
duced [1].

From T1, . . . , Te, we obtain regular chains E1, . . . , Ee form-
ing another Kalkbrener triangular decomposition of V (F ),
as follows. Let i = 1 · · · e and j = (d + 1) · · ·n. Let ti,j
be the polynomial of Ti with xj as main variable. Let ei,j
be the primitive part of ti,j regarded as a polynomial in
Q[x1, . . . , xd][xd+1, . . . , xn]. Define Ei = {ei,d+1, . . . , ei,n}.
According to the complexity results for polynomial opera-
tions stated at the beginning of this section, this transfor-

mation can be done within δO(m4)O(n) operations in Q.
Dividing ei,j by its initial we obtain a monic polynomial

di,j of Q(x1, . . . , xd)[xd+1, . . . , xn]. Denote by Di the regular
chain {di,d+1, . . . , di,n}. Observe that Di is the reduced lex-
icographic Gröbner basis of the radical ideal it generates in
Q(x1, . . . , xd)[xd+1, . . . , xn]. So Theorem 1 in [12] applies to
each regular chain Di. For each polynomial di,j , this theo-
rem provides height and total degree estimates expressed as
functions of the degree [7] and the height [19, 16] of the alge-

braic set W (Di). Note that the degree and height of W (Di)
are upper bounded by those of V (F ). Write di,j = Σµ

αµ
βµ
µ

where each µ ∈ Q[xd+1, . . . , xn] is a monomial and αµ, βµ
are in Q[x1, . . . , xd] such that gcd(αµ, βµ) = 1 holds. Let γ
be the lcm of the βµ’s. Then for γ and each αµ:
• the total degree is bounded by 2δ2m and,
• the height by O(δ2m(m~ + dm log(δ) + nlog(n))).

Multiplying di,j by γ brings ei,j back. We deduce the height
and total degree estimates for each ei,j below.

Proposition 2. The Kalkbrener triangular decomposition

E1, . . . , Ee of V (F ) can be computed in δO(m4)O(n) opera-
tions in Q. In addition, every polynomial ei,j has total degree
upper bounded by 4δ2m + δm, and has height upper bounded
by O(δ2m(m~ + dmlog(δ) + nlog(n))).

Next we estimate the running time and output size for
computing the border polynomial of a regular system.

Theorem 2. Let R = [T, P ] be a squarefree regular sys-
tem of Q[u,y], with m = #T and ` = #P . Let bp be the bor-
der polynomial of R. Denote by δR, ~R respectively the max-
imum total degree and height of a polynomial in R. Then the
total degree of bp is upper bounded by (`+m)2m−1δR

m, and

bp can be computed within (n` + nm)O(n)(2δR)O(n)O(m)~R3

bit operations.

Proof. Define G := P ∪ {der(t) | t ∈ T}. We need to
compute the `+m iterated resultants res(g, T ), for all g ∈ G.
Let g ∈ G. Observe that the total degree and height of g are
bounded by δR and ~R+log(δR) respectively. Define rm+1 :=
g, . . . , ri := res(ti, ri+1, yi), . . . , r1 := res(t1, r2, y1). Let i ∈
{1, . . . ,m}. Denote by δi and ~i the total degree and height
of ri, respectively. Using the complexity estimates stated at
the beginning of this section, we have δi ≤ 2m−i+1δR

m−i+2

and ~i ≤ 2δi+1(~i+1 + n log(δi+1 + 1)). Therefore, we have

~i ≤ (2δR)O(m2)nO(m)~R. From these size estimates, one
can deduce that each resultant ri (thus the iterated resul-

tants) can be computed within (2δR)O(mn)+O(m2)nO(m)~R2

bit operations, by the complexity of computing a determi-
nant stated at the beginning of this section.

Hence, the product of all iterated resultants has total
degree and height bounded by (` + m)2m−1δR

m and (` +

m)(2δR)O(m2)nO(m)~R, respectively. Thus, the primitive

and squarefree part of this product can be computed within
(n`+nm)O(n)(2δR)O(n)O(m)~R3 bit operations, based on the
complexity of a polynomial gcd computation stated at the
beginning of this section.

Proposition 3. From the Kalkbrener triangular decom-
position E1, . . . , Ee of Proposition 2, a lazy triangular de-
composition of f1 = · · · = fm = 0 can be computed in(
δn

2

n4n
)O(n2)

~O(1) bit operations. Thus, a lazy triangu-

lar decomposition of this system is computed from the input
polynomials in singly exponential time w.r.t. n, counting op-
erations in Q.

Proof. For each i ∈ {1 · · · e}, let bpi be the border poly-
nomial of [Ei, ∅] and let ~Ri (resp. δRi) be the height (resp.
the total degree) bound of the polynomials in the pre-regular
semi-algebraic system Ri = [{bpi}6=, Ei, ∅]. According to Al-
gorithm 1, the remaining task is to solve the QE problem
∃y(bpi(u) 6= 0, Ei(u,y) = 0) for each i ∈ {1 · · · e}, which

can be solved within ((m+ 1)δRi)
O(dm) ~O(1)

Ri
bit operations,

based on the results of [20]. The conclusion follows from the
size estimates in Proposition 2 and Theorem 2.

5. QUANTIFIER ELIMINATION BY RRC
In the last two sections, we saw that in order to compute

a triangular decomposition of a semi-algebraic system, a key
step is to solve the following quantifier elimination problem:

∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0), (1)

where [B 6=, T, P>] is a pre-regular semi-algebraic system of
Q[u,y]. This problem is an instance of the so-called real
root classification (RRC) [27]. In this section, we show how
to solve this problem when B is what we call a fingerprint
polynomial set.

Fingerprint polynomial set. Let R := [B 6=, T, P>] be a pre-
regular semi-algebraic system of Q[u,y]. Let D ⊂ Q[u]. Let
dp be the product of all polynomials in D. We call D a
fingerprint polynomial set (FPS) of R if:

(i) for all α ∈ Rd, for all b ∈ B we have:
dp(α) 6= 0 =⇒ b(α) 6= 0,

(ii) for all α, β ∈ Rd with α 6= β and dp(α) 6= 0, dp(β) 6= 0,
if the signs of p(α) and p(β) are the same for all p ∈ D,
then R(α) has real solutions if and only if R(β) does.

Hereafter, we present a method to construct an FPS based
on projection operators of CAD.

Open projection operator [21, 4]. Hereafter in this sec-
tion, let u = u1 < · · · < ud be ordered variables. Let
p ∈ Q[u] be non-constant. Denote by factor(p) the set of
the non-constant irreducible factors of p. For A ⊂ Q[u],
define factor(A) = ∪p∈A factor(p). Let Cd (resp. C0) be
the set of the polynomials in factor(p) with main variable
equal to (resp. less than) ud. The open projection operator
(oproj) w.r.t. variable ud maps p to a set of polynomials of
Q[u1, . . . , ud−1] defined below:

oproj(p, ud) := C0 ∪
⋃
f,g∈Cd, f 6=g

factor(res(f, g, ud))

∪
⋃
f∈Cd

factor(init(f, ud) · discrim(f, ud)).

Then, we define oproj(A, ud) := oproj(Πp∈A p, ud).

Augmentation. Let A ⊂ Q[u] and x ∈ {u1, . . . , ud}. Denote
by der(A, x) the derivative closure of A w.r.t. x, that is,

der(A, x) := ∪p∈A {der(i)(p, x) | 0 ≤ i < deg(p, x)}. The
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open augmented projected factors of A is denoted by oaf(A)
and defined as follows. Let k be the smallest positive integer
such that A ⊂ Q[u1, . . . , uk] holds. Denote by C the set
factor(der(A, uk)); we have
• if k = 1, then oaf(A) := C;
• if k > 1, then oaf(A) := C ∪ oaf(oproj(C, uk)).

Theorem 3. Let A ⊂ Q[u] be finite and let σ be a map
from oaf(A) to the set of signs {−1,+1}. Then the set Sd :=
∩p∈oaf(A) {u ∈ Rd | p(u)σ(p) > 0} is either empty or a

connected open set in Rd.

Proof. By induction on d. When d = 1, the conclusion
follows from Thom’s Lemma [2]. Assume d > 1. If d is not
the smallest positive integer k such that A ⊂ Q[u1, . . . , uk]
holds, then Sd can be written Sd−1×R and the conclusion fol-
lows by induction. Otherwise, write oaf(A) as C ∪E, where
C = factor(der(A, ud)) and E = oaf(oproj(C, ud)). We have:
E ⊂ Q[u1, · · · , ud−1]. Denote by M the set ∩p∈E {u ∈
Rd−1 | p(u)σ(p) > 0}. If M is empty then so is Sd and
the conclusion is clear. From now on assume M not empty.
Then, by induction hypothesis, M is a connected open set
in Rd−1. By the definition of the operator oproj, the prod-
uct of the polynomials in C is delineable over M w.r.t. ud.
Moreover, C is derivative closed (may be empty) w.r.t. ud.
Therefore ∩p∈oaf(A) {u ∈ Rd | p(u)σ(p) > 0} ⊂M × R is ei-
ther empty or a connected open set by Thom’s Lemma.

Theorem 4. Let R := [B 6=, T, P>] be a pre-regular semi-
algebraic system of Q[u,y]. The polynomial set oaf(B) is a
fingerprint polynomial set of R.

Proof. Recall that the border polynomial bp of [T, P ] di-
vides the product of the polynomials inB. We have factor(B)
⊆ oaf(B). So oaf(B) satisfies (i) in the definition of FPS.
Let us prove (ii). Let dp be the product of the polynomi-
als in oaf(B). Let α, β ∈ Rd such that both dp(α) 6= 0,
dp(β) 6= 0 hold and the signs of p(α) and p(β) are equal for
all p ∈ oaf(B). Then, by Theorem 3, α and β belong to
the same connected component of dp(u) 6= 0, and thus to
the same connected component of B(u) 6= 0. Therefore the
number of real solutions of R(α) and that of R(β) are the
same by Lemma 2.

From now on, let us assume that the set B in the pre-
regular semi-algebraic system R = [B6=, T, P>] is an FPS

of R. We solve the quantifier elimination problem (1) in
three steps: (s1) compute at least one sample point in each
connected component of the semi-algebraic set defined by
B(u) 6= 0; (s2) for each sample point α such that the spe-
cialized system R(α) possesses real solutions, compute the
sign of b(α) for each b ∈ B; (s3) generate the corresponding
quantifier-free formulas.

In practice, when the set B is not an FPS, one adds some
polynomials from oaf(B), using a heuristic procedure (for
instance one by one) until Property (ii) of the definition of an
FPS is satisfied. This strategy is implemented in Algorithm 3
of Section 6.

6. IMPLEMENTATION
In this section, we present algorithms for LazyRealTrian-

gularize and RealTriangularize that we have implemented on
top of the RegularChains library in Maple. We also provide
experimental results for test problems which are available at
www.orcca.on.ca/~cchen/issac10.txt.

Algorithm 2: GeneratePreRegularSas(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a set of pre-regular semi-algebraic systems
[Bi 6=, Ti, Pi>], i = 1 . . . e, such that
ZR(S) = ∪ei=1ZR(Bi 6=, Ti, Pi>)

∪ei=1ZR(sat(Ti) ∪ {Πb∈Bib}, N≥, P>, H 6=).

T := Triangularize(F ); T′ := ∅1

for p ∈ P ∪H do2

for T ∈ T do3

for C ∈ Regularize(p, T ) do4

if p /∈ sat(C) then T′ := T′ ∪ {C}5

T := T′; T′ := ∅6

T := {[T, ∅] | T ∈ T}; T′ := ∅7

for p ∈ N do8

for [T,N ′] ∈ T do9

for C ∈ Regularize(p, T ) do10

if p ∈ sat(C) then11

T′ := T′ ∪ {[C,N ′]}12

else13

T′ := T′ ∪ {[C,N ′ ∪ {p}]}14

T := T′; T′ := ∅15

T := {[T,N ′, P,H] | [T,N ′] ∈ T}16

for [T,N ′, P,H] ∈ T do17

B := BorderPolynomialSet(T,N ′ ∪ P ∪H)18

output [B, T,N ′ ∪ P ]19

Algorithm 3: GenerateRegularSas(B, T, P )

Input: S = [B 6=, T, P>], a pre-regular semi-algebraic
system of Q[u,y], where u = u1, . . . , ud and
y = y1, . . . , yn−d.

Output: A pair (D,R) satisfying:
(1) D ⊂ Q[u] such that factor(B) ⊆ D;
(2) R is a finite set of regular semi-algebraic systems,
s.t. ∪R∈RZR(R) = ZR(D 6=, T, P>).
D := factor(B \Q)1

if d = 0 then2

if RealRootCounting(T, P ) = 0 then3

return (D, ∅)4

else5

return (D, {[true, T, P ]})6

while true do7

S := SamplePoints(D, d); G0 := ∅; G1 := ∅8

for s ∈ S do9

if RealRootCounting(T (s), P (s)) = 0 then10

G0 := G0 ∪ {GenerateFormula(D, s)}11

else12

G1 := G1 ∪ {GenerateFormula(D, s)}13

if G0 ∩G1 = ∅ then14

Q := Disjunction(G1)15

if Q = false then return (D, ∅)16

else return (D, {[Q, T, P ]})17

else18

select a subset D′ ⊆ oaf(B) \D by some19

heuristic method
D := D ∪D′20
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Basic subroutines. For a zero-dimensional squarefree regu-
lar system [T, P ], RealRootCounting(T, P ) [23] returns the
number of real zeros of [T, P>]. For A ⊂ Q[u1, . . . , ud]
and a point s of Qd such that p(s) 6= 0 for all p ∈ A,
GenerateFormula(A, s) computes a formula ∧p∈A (p σp,s >0),
where σp,s is defined as +1 if p(s) > 0 and −1 otherwise. For
a set of formulas G, Disjunction(G) computes a logic formula
Φ equivalent to the disjunction of the formulas in G.

Proof of Algorithm 2. Its termination is obvious. Let us
prove its correctness. By the specification of Triangularize
and Regularize, at line 16, we have

Z(F, P6= ∪H 6=) = ∪[T,N′,P,H]∈TZ(sat(T ), P 6= ∪H 6=).

Write ∪[T,N′,P,H]∈T as ∪T . Then we deduce that

ZR(F,N≥, P>, H 6=) = ∪TZR(sat(T ), N≥, P>, H 6=).

For each [T,N ′, P,H], at line 19, we generate a pre-regular
semi-algebraic system [B 6=, T,N

′
> ∪ P>]. By Proposition 1,

we have

ZR(sat(T ), N≥, P>, H 6=) =
ZR(B 6=, T,N

′
> ∪ P>) ∪ ZR(sat(T ) ∪ {Πb∈Bb}, N≥, P>, H 6=),

which implies that

ZR(S) = ∪TZR(B 6=, T,N
′
> ∪ P>)

∪TZR(sat(T ) ∪ {Πb∈Bb}, N≥, P>, H 6=).

So Algorithm 2 satisfies its specification.

Algorithm 4: SamplePoints(A, k)

Input: A ⊂ Q[x1, . . . , xk] is a finite set of non-zero
polynomials

Output: A finite subset of Qk contained in
(Πp∈A p) 6= 0 and having a non-empty intersection with
each connected component of (Πp∈A p) 6= 0.
if k = 1 then1

return one rational point from each connected2

component of Πp∈A p 6= 0
else3

Ak := {p ∈ A | mvar(p) = xk}; A′ := oproj(A, xk)4

for s ∈ SamplePoints(A′, k − 1) do5

Collect in a set S one rational point from each6

connected component of Πp∈Akp(s, xk) 6= 0;
for α ∈ S do output (s, α)7

Algorithm 5: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a lazy triangular decomposition of S
T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

(D,R) = GenerateRegularSas(B, T, P ′)3

if R 6= ∅ then output R4

Proof of Algorithms 3 and 4. By the definition of oproj,
Algorithm 4 terminates and satisfies its specification. By
Theorem 4, oaf(B) is an FPS. Thus, by the definition of an
FPS, Algorithm 3 terminates and satisfies its specification.

Proof of Algorithm 5. Its termination is obvious. Let us
prove the algorithm is correct. Let Ri, i = 1 · · · t be the

Algorithm 6: RealTriangularize(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a triangular decomposition of S
T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

(D,R) = GenerateRegularSas(B, T, P ′)3

if R 6= ∅ then output R4

for p ∈ D do5

output RealTriangularize(F ∪ {p}, N, P,H)6

output. By the specification of each sub-algorithm, each Ri
is a regular semi-algebraic system and we have:

∪ti=1ZR(Ri) ⊆ ZR(S).

Next we show that there exists an ideal I ⊆ Q[x], whose
dimension is less than dim(Z(F, P 6= ∪ H6=)) and such that
ZR(S) \ ∪ti=1ZR(Ri) ⊆ ZR(I) holds.

At line 1, by the specification of Algorithm 2, we have

ZR(S) = ∪TZR(B 6=, T, P
′
>)

∪TZR(sat(T ) ∪ {Πb∈B b}, N≥, P>, H 6=).

At line 3, by the specification of Algorithm 3, for each B, we
compute a set D such that factor(B) ⊆ D and

∪TZR(D 6=, T, P
′
>) = ∪ti=1ZR(Ri)

both hold. Combining the two relations together, we have

ZR(S) = ∪TZR(Ri)
∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>, H 6=).

Therefore, the following relations hold

ZR(S) \ ∪ti=1ZR(Ri)
⊆ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>, H 6=)
⊆ ZR (∩T (sat(T ) ∪ {Πp∈D p})) .

Define

I = ∩T (sat(T ) ∪ {Πp∈D p}) .

Since each p ∈ D is regular modulo sat(T ), we have

dim(I) < dim (∩T sat(T )) ≤ dim(Z(F, P 6= ∪H 6=)).

So all Ri form a lazy triangular decomposition of S. �

Proof of Algorithm 6. For its termination, it is sufficient
to prove that there are only finitely many recursive calls
to RealTriangularize. Indeed, if [F,N, P,H] is the input of a
call to RealTriangularize then each of the immediate recursive
calls takes [F ∪{p}, N, P,H] as input, where p belongs to the
set D of some pre-regular semi-algebraic system [D 6=, T, P>].
Since p is regular (and non-zero) modulo sat(T ) we have:

〈F 〉 ( 〈F ∪ {p}〉.

Therefore, the algorithm terminates by the ascending chain
condition on ideals of Q[x]. The correctness of Algorithm 6
follows from the specifications of the sub-algorithms. �

Table 1. Table 1 summarizes the notations used in Tables 2
and 3. Tables 2 and 3 demonstrate benchmarks running in
Maple 14 β 1, using an Intel Core 2 Quad CPU (2.40GHz)
with 3.0GB memory. The timings are in seconds and the
time-out is 1 hour.

Table 2. The systems in this group involve equations only.
We report the running times for a triangular decomposition
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Table 1 Notations for Tables 2 and 3

symbol meaning
#e number of equations in the input system
#v number of variables in the input equations
d maximum total degree of an input equation
G Groebner:-Basis (plex order) in Maple
T Triangularize in RegularChains library of Maple
LR LazyRealTriangularize implemented in Maple
R RealTriangularize implemented in Maple
Q Qepcad b
> 1h computation does not complete within 1 hour
FAIL Qepcad b failed due to prime list exhausted

Table 2 Timings for varieties

system #v/#e/d G T LR
Hairer-2-BGK 13/ 11/ 4 25 1.924 2.396
Collins-jsc02 5/ 4/ 3 876 0.296 0.820

Leykin-1 8/ 6/ 4 103 3.684 3.924
8-3-config-Li 12/ 7/ 2 109 5.440 6.360

Lichtblau 3/ 2/ 11 126 1.548 11
Cinquin-3-3 4/ 3/ 4 64 0.744 2.016
Cinquin-3-4 4/ 3/ 5 > 1h 10 22

DonatiTraverso-rev 4/ 3/ 8 154 7.100 7.548
Cheaters-homotopy-1 7/ 3/ 7 3527 174 > 1h

hereman-8.8 8/ 6/ 6 > 1h 33 62
L 12/ 4/ 3 > 1h 0.468 0.676

dgp6 17/19/ 2 27 60 63
dgp29 5/ 4/ 15 84 0.008 0.016

of the input algebraic variety and a lazy triangular decom-
position of the corresponding real variety. These illustrate
the good performance of our tool.

Table 3. The examples in this table are quantifier elimi-
nation problems and most of them involve both equations
and inequalities. We provide the timings for computing a
lazy and a full triangular decomposition of the correspond-
ing semi-algebraic system and the timings for solving the
quantifier elimination problem via Qepcad b [5] (in non-
interactive mode). Computations complete with our tool on
more examples than with Qepcad b.

Remark. The output of our tools is a set of regular semi-
algebraic systems, which is different than that of Qepcad b.
We note also that our tool is more effective for systems with
more equations than inequalities.

Acknowledgments. The authors would like to thank the
referees for their valuable remarks that helped to improve
the presentation of the work.

Table 3 Timings for semi-algebraic systems

system #v/#e/d T LR R Q
BM05-1 4/ 2/ 3 0.008 0.208 0.568 86
BM05-2 4/ 2/ 4 0.040 2.284 > 1h FAIL

Solotareff-4b 5/ 4/ 3 0.640 2.248 924 > 1h
Solotareff-4a 5/ 4/ 3 0.424 1.228 8.216 FAIL

putnam 6/ 4/ 2 0.044 0.108 0.948 > 1h
MPV89 6/ 3/ 4 0.016 0.496 2.544 > 1h
IBVP 8/ 5/ 2 0.272 0.560 12 > 1h

Lafferriere37 3/ 3/ 4 0.056 0.184 0.180 10
Xia 6/ 3/ 4 0.164 191 739 > 1h

SEIT 11/ 4/3 0.400 > 1h > 1h > 1h
p3p-isosceles 7/ 3/ 3 1.348 > 1h > 1h > 1h

p3p 8/ 3/ 3 210 > 1h > 1h FAIL
Ellipse 6/ 1/ 3 0.012 > 1h > 1h > 1h
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