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Abstract. We present parallel algorithms with optimal cache complexity for the kernel routine
of many real root isolation algorithms, namely the Taylor shift by 1. We then report on multicore
implementation for isolating the real roots of univariate polynomials with integer coefficients
based on a classical algorithm due to Vincent, Collins and Akritas. For processing some well-
known benchmark examples with sufficiently large size, our software tool reaches linear speedup
on an 8-core machine. In addition, we show that our software is able to fully utilize the many
cores and the memory space of a 32-core machine to tackle large problems that are out of reach
for a desktop implementation.

1. Introduction

Isolating the real roots of a univariate polynomial is a driving subject in computer algebra. On
the one hand, it is closely related to fundamental algorithms such as polynomial multiplication
and Taylor shift [14]. On the other hand, it is one of the particular areas in scientific computing
where computer algebra provides unmatchable tools, for example, counting rigorously the
number of real roots of a polynomial. Many researchers have studied this problem under various
angles from algebraic algorithms to implementation techniques. We refer the reader to the latest
paper [13] for a survey of related works on this topic and the references therein.

Today, multicore processors with hierarchical memories have entered the mainstream of
computer architectures. However, harvesting the power of multicores is challenging. Besides,
understanding the implications of hierarchical memory has become an essential part of
performance software engineering. In this work, we revisit a classical algorithm due to Vincent,
Collins and Akritas [4] for isolating the real roots of univariate polynomials. We explore
the parallelism of this algorithm and design fine-grained parallel algorithms with different
strategies for the kernel routine, i.e., Taylor shift, aiming at attaining efficient implementations
for polynomial real root isolation on multicores. This paper is an extension of the two-page
abstract for our poster [2] presented in ISSAC 2010. Before this work, several other pioneer
works [3, 5, 10, 11] have also been conducted on this topic with different techniques. The paper [3]
reports on a first attempt on parallelizing real root isolation problem. Their work shows that
the amount of parallelism is limited if only the traversal of the binary tree associated with the
isolation problem is parallelized. Later works [5, 10, 11] focus on improving Taylor shift via high
performance computing techniques. The paper [5] proposes new scheduling algorithms for the
pyramid DAG associated with Taylor shifts and reduces the communication complexity overhead



to linear. The paper [10, 11] improves the efficiency of Taylor shift computation and real root
isolation based on a technique of register tiling.

This paper is organized as follows. Section 2 introduced the sequential algorithm of Vincent-
Collins-Akritas and the Taylor shift operation. In Sections 3, 4 and 5, we present our strategies,
divide-and-conquer and blocking, for a fine-grained parallelization of the Taylor shift procedure
and a parallel algorithm for univariate real root isolation. We show that both can be optimal
in terms of cache complexity. Their implementation face several challenges (scheduling, in place
execution) that we address in Sections 6, 7, 8. In the experimentation, in Section 9, we report
timings for processing well-known test examples as well as a real-world challenging problem,
respectively on 8-core and 32-core machines. We conclude in Section 10 by discussing extensions
of this study.

2. The sequential algorithm

Let p be a univariate squarefree polynomial with integer coefficients. To isolate the real roots of
p, the Vincent-Collins-Akritas (VCA, for short) algorithm [4] computes a list of disjoint intervals
with rational endpoints such that each real root of p belongs to a single interval and each interval
contains only one real root of p. Clearly, the problem of isolating the real roots of p and that
counting of them are essentially the same. Thus, one algorithm solving one of these problems
can be adapted to solve the other. Since the output of the counting problem is simpler, we
present, as Algorithm 1 below, the version of the VCA Algorithm solving this latter problem.

The main subroutine of Algorithm 1 is RootsInZeroOne, that is, Algorithm 2, in which the
operation of dominant cost is performed at Lines 3 and 7. This computation, which substitutes
x for x+ 1 in p1, is called the Taylor shift by 1 (or simply Taylor shift) of the polynomial p1.

Algorithm 1: RealRoots(p)

Input: a univariate squarefree
polynomial p of degree d

Output: the number of real roots of
p

begin1

Let k ≥ 0 be an integer such that2

the absolute value of all the real
roots of p is less than or equal to
2k;
if x | p then m := 1 else m := 0;3

p1 := p(2kx);4

p2 := p1(−x);5

m′ := RootsInZeroOne(p1);6

m := m+ RootsInZeroOne(p2);7

return m+m′;8

end9

Algorithm 2: RootsInZeroOne(p)

Input: a univariate squarefree
polynomial p of degree d

Output: the number of real roots of
p in (0, 1)

begin1

p1 := xdp(1/x);2

p2 := p1(x+ 1); //Taylor shift3

Let v be the number of sign4

variations of the coefficients of p2;
if v ≤ 1 then return v;5

p1 := 2dp(x/2);6

p2 := p1(x+ 1); //Taylor shift7

if x | p2 then m := 1 else m := 0;8

m′ := RootsInZeroOne(p1);9

m := m+ RootsInZeroOne(p2);10

return m+m′;11

end12

Executing Lines 4 and 5 in Algorithm 1 and executing Lines 2 and 6 in Algorithm 2 simply
require to “traverse the data” and “update the coefficients”, thus have a linear cost with respect
to the data size. Apart from its recursive calls, the other computational costs of Algorithm 2
come from the Taylor shift which cost is more than linear (in fact quadratic, as we shall see
later). Therefore, same for Algorithm 1, most of the work comes from this latter operation,
which justifies the effort devoted to implementing it efficiently.



In order to better understand this operation, consider a polynomial f(x) = adx
d+· · ·+a1x+a0

of degree d. The Taylor shift of f is the polynomial f0(x) = f(x+ 1) computed by the Pascal’s
triangle relation (or Horner’s rule) fi(x) := fi+1(x) × (x + 1) + ai for i successively equal to
d− 1, . . . , 1, 0 with fd(x) := ad, as illustrated for d = 3 in Example 1.

Example 1 Let f(x) = a3x
3 + a2x

2 + a1x+ a0. We construct the following Pascal’s triangle.

0 0 0 0
↓ ↓ ↓ ↓

a3 → + → + → + → + → c3
↓ ↓ ↓

a2 → + → + → + → c2
↓ ↓

a1 → + → + → c1
↓

a0 → + → c0

Performing the addition in the diagonal direction is exactly the same as computing f(x+ 1) in
Horner’s rule, which brings f(x+ 1) = c3x

3 + c2x
2 + c1x+ c0.

3. Parallelization of the Vincent-Collins-Akritas algorithm

A first opportunity for parallel execution appears in Algorithm 1. Indeed, the two calls to
RootsInZeroOne can be performed concurrently. Similarly, in Algorithm 2, the two recursive
calls can be performed concurrently. If the amount of work was always balanced among the two
calls to RootsInZeroOne in Algorithm 1 as well as among the two recursive calls in Algorithm 2,
then those concurrent calls would create significant parallelism. However, this situation will
rarely happen in practice. Indeed, observe that one call to Algorithm 2 may quickly terminate
at Line 5. In fact, Lines 4 and 5 implement the so-called Descartes’s Rule (see [12] for detail)
which is a criterion for detecting that a polynomial has no more than one root in the range
(0, 1). For this reason, that is, for the configuration of the real roots of p, the work is likely to be
unbalanced among the recursive calls in Algorithm 2. Consequently, it is likely to be unbalanced
among the two calls to RootsInZeroOne in Algorithm 1 as well. Therefore, one should look for
other opportunities for parallel execution.

The only other possibility is the Taylor shift computations. There are clearly several ways of
“filling the Pascal’s triangle”. Setting the origin (0, 0) at the top left corner, one may proceed
row by row, or column per column, or with the elements of coordinates (i, j) satisfying i+ j = k
for k successively equal to = 0, 1, . . . , d. We call this latter traversal anti-diagonal.

This observation suggests a potential for concurrency. As mentioned in the introduction, we
discuss two parallelization schemes: one is a divide-and-conquer approach (d-n-c, for short) and
the other is a blocking strategy (blocking, for short). They are discussed in detail in Sections 4
and 5, respectively.

4. A divide-and-conquer strategy for computing the Taylor shift in parallel

The elements of the Pascal’s triangle, and thus the coefficients of f(x + 1), can be computed
in a divide-and-conquer manner, demonstrated by the Subfigures (a) and (b) in Figure 1.
Each triangular or square region is recursively divided into smaller regions until a base case
is reached. Clearly, in both the triangular division and the square (or two-way tableau) division,
opportunities for parallel execution are created. To be precise, the regions labeled by II can be
computed concurrently.
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Figure 1. Illustration for the d-n-c and blocking strategies

In the rest of this paper, we assume that adding two integers is done within a constant
amount of time. This property is true for machine integers. For multi-precision integers, this
assumption is necessary in order to keep the analysis of the parallelization of Algorithms 1 and
Algorithm 2 simple. For large input polynomials, relaxing this assumption is more realistic and
estimating the cost of each addition in the construction of the Pascal’s triangle lead to finer
results and more opportunities for parallelism. The level of technical details, however, increase
substantially and we will report this study in a forthcoming paper.

Since adding two integers depends linearly on their size, assuming that each integer addition
is done in constant time implies that each integer fits within a constant number of bits. Let C be
this number. Based on this assumption, we analyze the d-n-c approach for different complexity
measures relevant to a multicore implementation, with an emphasis on cache complexity.

4.1. Work, span and parallelism estimates.

Our estimates follow the fork-join multithreaded programming model of the Cilk language [7].
For a two-way tableau with n as input data size, the work U1(n) required for filling this tableau
satisfies U1(n) = 4U1(n/2) + Θ(1), for n > 1, and U1(1) ∈ Θ(1), which implies U1(n) ∈ Θ(n2).
(For simplicity, we may think of n as a power of 2.) For the same construction, the span (or
critical path, or depth) satisfies U∞(n) = 3U∞(n/2)+Θ(1), for n > 1, and U∞(1) ∈ Θ(1), which
leads to U∞(n) ∈ Θ(nlog2 3).

For a Pascal’s triangle with n as input data size, the work T1(n) satisfies T1(n) = 2T1(n/2) +
U1(n/2), for n > 1, and T1(1) ∈ Θ(1), which gives T1(n) ∈ Θ(n2). For the same construction, the
span T∞(n) satisfies T∞(n) = T∞(n/2) +U∞(n/2), for n > 1, and T∞(1) ∈ Θ(1), which implies
that T∞(n) = Θ(nlog2 3). Therefore, for both constructions, the parallelism is Θ(n2−log2 3). Since
2− log2 3 is approximately 0.45, this indicates a relatively low parallelism, unless n is very large.

4.2. Space complexity estimate.

Consider first the sequential algorithm. One can observe that, at any point of the construction
of the Pascal’s triangle, the knowledge of 2n, and only 2n, integers (with n = d + 1) is needed
in order to continue the construction until its completion. Moreover, the whole algorithm can
be executed in place within the space allocated to the input 2n integers. At completion, the
output n integers can be found in this allocated space, most likely in its first n slots.

The same property is easy to prove for the d-n-c approach. To do so, one first establishes by
induction a similar property for the two-way tableau construction, see Subfigure (b) in Figure 1.
Then, one proves by induction the desired property for the divide-and-conquer approach of the
Pascal’s triangle depicted by Subfigure (a) in Figure 1.

Finally, we conclude that the d-n-c approach can be executed in place in space 2nC.



4.3. Cache complexity estimates.

We use the (Z,L) ideal cache model of [6], where Z is the number of words in the cache and L
is the number of words per cache line. Let QS(n) (resp. QT (n)) be the number of cache misses
incurred by the d-n-c approach at the level of the two-way tableau (resp. Pascal’s triangle) on
input data of size n.

When n is small enough, all the data read and written by the algorithm fit in cache. In this
case, the number of cache misses is proportional to the amount of read/written data. Thus,
there exists a positive constant α such that for n ≤ αZ we have QS(n) = 2n/L + 2. Here we
use the fact that the whole algorithm is executed in place within 2n integer slots. The +2 in
2n/L+ 2 comes from the fact that scanning an array of m consecutive words in memory incurs
m/L or m/L+ 1, depending on alignment issues.

For n > αZ, we have the obvious equality QS(n) = 4QS(n/2) + Θ(1). To summarize, we
have:

QS(n) =

{
2n/L+ 2 n ≤ αZ
4QS(n/2) + Θ(1) otherwise.

Solving this recurrence equation, we obtain:

QS(n) = Θ(n2/(ZL)).

The cache complexity analysis of the d-n-c construction of the Pascal’s triangle leads to a
similar recurrence equation:

QT (n) =

{
2n/L+ 2 n ≤ αZ
2QT (n/2) +QS(n/2) + Θ(1) otherwise,

for a positive constant α which can be chosen equal to the previous one. Elementary calculations
leads finally to:

QT (n) = Θ(n2/(ZL)). (1)

Next we prove that such a cache complexity estimate result is optimal. Since the cache
complexity of the Pascal’s triangle is dominated by that of the Tableau construction, it is
enough to show that QS(n) is optimal. To this end, we rely on the lower bound of the I/O
complexity on the product of two direct lines established by Hong and Kung [8]. As shown in
Figure 7-1 of [8], a Tableau is exactly the product of two direct lines L2. From Section 8 of [8],
we have Q = |V |/S, where Q is the minimum I/O time, V is the sequential time and S is the
number of red pebbles available. Translating those into the language of cache complexity, we
have |V | = n2, S = Z and Q/L = n2/(ZL) is the minimum number of cache misses. Thus
QS(n) is cache optimal.

One may wonder how things could be worse. In fact, it is not hard to verify that, for the
two-way Tableau a row-by-row construction or a column-by-column construction would lead to a
cache complexity of Θ(n2/L+n). Since, in practice, Z is quite large (typically a few Megabytes
for a L2 cache), the result of Formula (1) is much more attractive.

5. A blocking strategy for computing the Taylor shift in parallel

As noted in Section 4, the d-n-c suffers from a relatively low parallelism. There is, in fact, a hint
for increasing the parallelism. One can observe that, in the above triangle division, parts of the
small triangle regions II can be evaluated before completing region I.

A first solution implementing this observation is to increase the number of “ways” in the
above divide-and-conquer algorithm. However, this leads to very complex code. In addition,
this increases the cache complexity,



A better solution is to adopt a blocking strategy. This is achieved by partitioning the entire
Pascal’s triangle into blocks of format B ×B, as shown in Subfigure (c) of Figure 1. Of course
B should be tuned in order for a block to fit in cache. Then, the blocks are visited (and their
elements are computed) following an anti-diagonal traversal.

5.1. Work, span and parallelism estimates.

The work for each block is Θ(B2). Since we have (n/B)2 blocks, we retrieve the work
T1(n) ∈ Θ(n2). The span for each block is Θ(B2). Indeed, each block is executed serially. Since
there are n/B parallel steps in the anti-diagonal traversal, the span of the whole algorithm is
Θ(Bn). So the parallelism is Θ(n2/(Bn)), which is Θ(n/B). This result is more attractive than
the parallelism of the d-n-c approach. However, the d-n-c approach has the advantage of being
cache-oblivious, that is, the knowledge of the characteristics of the cache is not required in order
to minimize the number of cache misses in practice.

5.2. Space complexity estimate.

For each B×B block, the computation is sequential and is easily carried out in place within 2B
integer slots. At the k-th parallel step k blocks are being computing while 2n/B − 2k ranges of
B input integers have not been used yet. Therefore, in total (2n/B − 2k)B + k 2B = 2n integer
slots are sufficient to run the whole algorithm.

5.3. Cache complexity estimates.

Let α be the constant introduced in the cache complexity analysis of the d-n-c approach. Assume
that B = αZ holds. Then, the number of cache misses for each block is 2B/L+ 1 and the total
number of cache misses is

Q(n) = Θ((n/B)2(2B/L+ 1)) = Θ(n2/(BL)) = Θ(n2/(ZL)).

Therefore, provided that B = αZ holds, we retrieve the optimal cache complexity result
established for the d-n-c approach.

6. Optimizing the multicore implementation

In this section, in Section 7 and in Section 8, we report on our implementation techniques for
parallelization of Taylor shift computations targeting multicores. We show how to implement
the d-n-c approach and the blocking strategy such that computing the Taylor shift of a univariate
polynomial of degree d runs in-place using space 2Cn where n = d + 1. As before, C is the
number of bytes for encoding a coefficient type (32-bit integer, 64-bit long integer or GMP
multi-precision integer of bounded size). Recall that parallel execution can be achieved following
either the blocking strategy or the the d-n-c approach, described respectively in Section 4 and
Section 5. For both, the number of additions, and thus the work, is the same as that in the
sequential construction of a Pascal triangle. However, the blocking strategy is theoretically more
attractive in terms of parallelism whereas the d-n-c approach is cache-oblivious.

Given a polynomial of degree d, the number of blocks in the blocking strategy depends on the
block size. Similarly, the number of division steps (or recursions) in the d-n-c approach depends
on the base case. The best size of the base case shall be the one by which the program gives the
best timing and speedup ratio, as a successful combination of many aspects, such as sufficient
parallelism, low overhead of parallel constructs and function calls, low rate of cache misses, etc.
In particular, the proper base case size may vary for polynomials with different coefficient size
and on different computer architectures. Therefore, we include the size of the base case in our
program as an adjustable (i.e. tunable) parameter. A user can first estimate the size of the base



case based on the size of the coefficients of the input polynomial and the targeting computer
architecture, and further fine-tune it by trial runs.

In the following two sections we describe our methods for in-place Taylor shift computation
and for dynamically scheduling the tasks for concurrent execution according to the degree d of
the input polynomial and the parameter B for the base case size. Section 7 covers the blocking
strategy in detail while Section 8 offers an overview of the d-n-c strategy.

7. Optimizing the multicore implementation for the blocking strategy

Let B > 0 be the block size. For a polynomial f of degree d and n = d+1 > B, let q and r be the
quotient and the remainder in the integer division of n by B. Thus we have n = qB + r, where
q ≥ 1, r ≥ 0 and r < B. Depending on whether r is null or not, we classify the results of the
blocking strategy into two cases: the regular case and irregular case corresponding respectively
to r = 0 and r > 0. We illustrate them with examples in Figure 2.
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Figure 2. Case illustration for implementing the blocking strategy

7.1. The regular case: B | n
When r = 0, the entire computations in the Pascal triangle (let’s name it PTR) are divided
into small tableau of dimension B × B (for the intermediate computations) and small Pascal
triangles of leg length B along the hypotenuse of PTR (near the end of the computation). For
the example in Subfigure (a) of Figure 2 for which d = 8, B = 3 and hence B | (n = 9), the
blocking strategy divides the computations into three tableau of dimension 3× 3 including L1,1

on the first row and L2,1 and L2,2 on the second row, and three small Pascal triangles with leg
length equal to 3 denoted by A3,1, A3,2 and A3,3 on the last row.

In general we can deduce that there are q−1 rows of tableau of dimension B×B starting from
the point of the right angle of PTR with each row parallel to the hypotenuse of PTR and only
one row of small Pascal triangles of leg length B along the hypotenuse of PTR. Furthermore, if
we index the q−1 rows of the small tableau by i where i = 1, · · · , q−1, in the ith row there will
be i number of tableaus with each dimension of B × B. The number of small Pascal triangles
along the hypotenuse of PTR is q.

Let us call the computation involved in each small tableau or a small Pascal triangle a task.
The questions at this point are: How to schedule the tasks defined by the blocking strategy for



parallel execution? What data structure can be used to minimize the synchronization cost for
preserving the data coherency? How to store the intermediate data to obtain good locality?

According to the computational dependencies in the Taylor shift operation as shown in
Example 1, the execution order of the tasks defined by the blocking method are deterministic.
A task with indices (i, j) can not proceed until the one with indices (i, j − 1) and the one with
indices (i − 1, j) are completed. In general, it can be represented by a Direct Acyclic Graph
(DAG). In Figure 2, Subfigure (b) is a DAG representation of the example in Subfigure (a).
However, the general DAG scheduling problem has been shown NP complete. In this work we
design a parallel scheduling algorithm which is efficient in practice for computing Taylor shift
on multicores. The basic idea is that the tasks with indices (i, j) for j = 1, · · · , i are executed
in parallel. When all of them are completed, the tasks with indices (i+ 1, j) for j = 1, · · · , i+ 1
can start and run in parallel as well. This scheme is applied to all the tasks with indices (i, j)
for i = 1, · · · , q. In this way we exploit the parallelism offered by the many tasks on the same
computational step while respecting the computational dependencies between two consecutive
steps. The mapping between the tasks and CPUs are handled by the parallel platform Cilk++.

The entire Taylor shift operation is carried out in-place in an array S of size 2n with indices
from 0 to 2n − 1. Initially the coefficients a0, a1, . . . , ad of the input polynomial of degree d
are copied to the first half space of S. The second half space of S are initialized to 0. An
example is shown in Subfigure (a) of Figure 2. The working space of a task in S is scheduled
so that it will not interleave with that of other tasks in parallel, to avoid from using locks for
concurrent accessing to the same region of S. This is realized by properly arranging the space
of S for storing the intermediate and the final results of the tasks in one parallel step, and its
final results will be used as the input for some of the tasks in the next step.

More precisely, the working space of a task with indices (i, j), denoted by Si,j , is the
consecutive space between S[n + (2j − i − 2)B] and S[n + (2j − i)B] inclusively. Before the
task starts, Si,j holds the input data (the results from some tasks in the (i − 1)th step). The
first half space of Si,j (with length B) holds the input data as the left side of a tableau or a
triangle, while the second half holds the input data as the top side. The data accesses involved in
the computation are carefully indexed so that all the computation can be done in-place. Further
more, the final results are stored in the same space and are in the right order as the input for
some of the tasks in the next step of computation. This way of memory management provides
good data locality.

In the regular case, the in-place task processing is achieved by two procedures for the
two different types of tasks, tableau and triangle, namely, TableauBaseInPlace(S, n, i, j, B), a
sequential procedure to perform the computation for a task with indices (i, j) in the form of
a tableau in work space Si,j and TriangleBaseInPlace(S, n, i, j, B), a sequential procedure to
perform the computation for a task with indices (i, j) in the form of a Pascal triangle in work
space Si,j . The pseudo-code snippets for the two procedures are presented in Figure 3.

7.2. The irregular case: B - n
An example of a case where r > 0 is given in Subfigure (b) of Figure 2. In the irregular case, we
obtain also q rows of tasks. The tasks on the rows from 1 to q − 2 are tableau with dimension
of B × B and the tasks on the qth row (last row) are small Pascal triangles. However, the
tasks on the (q − 1)th row are neither tableau nor triangular. We call these tasks “polygon”.
It turns out that the scheduling algorithm for the regular case still works for the irregular case.
We can also use a work space of size 2n to achieve in-place parallel computation. We only
need to treat the “polygon” tasks by a special procedure for in-place processing, what we call
PolygonBaseInPlace(S, n, i, j, B). Its pseudo-code snippet is shown in Figure 3.



S[k +B − 1] = S[k +B − 1]

for u = 0, · · · , B − 1 do

+S[k +B + u]
for v = B − 2, · · · , u do
S[k + v] = S[k + v] + S[k + v + 1]

}

k = n + (2j − i− 2)B
TriangleBaseInPlace(S, n, i, j, B){

+S[k + u + t + 1]
S[k + u] = S[k + u− 1]

for u = 1, · · · , r do

S[k]+ = S[k + t + 1]
S[k + v]+ = S[k + v − 1]

for v = t + 2, · · · , B + u do
S[k + t + 1]+ = S[k + u]

for u = t− 1, · · · , 1 do
+S[k + u + v + 2]

S[k + u + v + 1] = S[k + u + v]
for v = 0, · · · , B − 1 do

for u = B − 2, · · · , t do

PolygonBaseInPlace(S, n, i, j, B){

for u = B, · · · , 2B − 1 do
r = n mod B;

k = n + (2j − i− 2)B

}

S[k + u]+ = S[k + u− 1]

t = B − r − 1

k = n + (2j − i− 2)B
TableauBaseInPlace(S, n, i, j, B){

for u = B, · · · , 2B − 1 do
S[k + u]+ = S[k + u− 1]

for u = B − 2, · · · , 1 do
for v = 0, · · · , B − 1 do
S[k + u + v + 1] = S[k + u + v]

+S[k + u + v + 2]
S[k]+ = S[k + 2]
for u = 1, · · · , B − 1 do

S[k + u] = S[k + u− 1]
+S[k + u + 2]

S[k +B] = S[k +B − 1]
}

Figure 3. Key sub-procedures for implementing the blocking strategy

8. Optimizing the multicore implementation for the d-n-c strategy

In section 4, we have described briefly the d-n-c algorithm. Here we provide some implementation
details.
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(a) Regular case: n is a power of 2 (b) Irregular case: n is not a power of 2

Figure 4. Case illustration for implementing the d-n-c strategy

When n is a power of 2, as shown in (a) of Figure 4, each block in the divided Pascal’s triangle
is either a square tableau or a triangle. We call this case the regular case. When n is not a
power of 2, as shown in (b) of Figure 4, a tableau may not be square. Indeed, the lengths of two
edges of a tableau may differ by one. This irregular case suggests us to implement the divide-
and-conquer approach using two arrays of n elements rather than one array with 2n elements
as for the blocking strategy.

For efficiency reason, there is usually a sequential base case for a parallel divide-and-
conquer algorithm. In our implementation of d-n-c algorithm, there are two types of base
cases: tableau base case and triangle base case. We provide here the in-place imple-
mentation of the tableau base case. The implementation of the triangle case is similar.



Algorithm 3: TableauBase(p, s, q, t)

Input: a base block whose left edge is an array p of length s
and whose top edge is an array q of length t

Output: the right edge of the block is stored in p and the
bottom edge of the block is stored in q

begin1

for i = 0 to t− 1 do2

p[0]← p[0] + q[i];3

for j = 1 to s− 1 do4

p[j]← p[j] + p[j − 1];5

q[i]← p[s− 1];6

end7

9. Experimentation

We have implemented in Cilk++ [9] the algorithms presented in Sections 4 and 5 together with
the corresponding parallel version of the VCA Algorithm for real root isolation. For integer
arithmetic, we rely on the GMP library [1].

We have tested our software on well-known benchmark examples, including the Bnd and Cnd
polynomials from [11], the Chebychev and Mignotte polynomials from [5], as well as randomly
generated polynomials. All the benchmark runs are carried out on an 8-core machine with 8
GB memory and 6 MB of L2 cache. Each processor is an Intel Xeon X5460 @3.16 GHz.

The timing results for a set of test cases with different configurations are summarized in
Tables 1, 2 and 3. In each case, n− 1 and k denote the degree and the coefficient size (number
of bits) of the input polynomial whereas B denotes both the base case size of d-n-c and the block
size of blocking. The values of B reported herein are the ones which give the best timing after
tuning.

The benchmark results show that our program reaches linear speedup on an 8-core machine
for sufficiently large problems. We have also tested several other data traversal approaches for
computing Taylor shifts and we have observed that our d-n-c and blocking outperform all of
them. Overall, blocking demonstrates a slight win over d-n-c except for the case of Mignotte
polynomials.

Table 1. Timings of ParTaylorShift (in seconds).
n k B method Bnd polynomial [11] Cnd polynomial [11] Random polynomial

8-core 1-core Sp 8-core 1-core Sp 8-core 1-core Sp
5000 5000 50 blocking 1.33 6.49 4.9 0.92 2.26 2.5 1.33 6.50 4.9
5000 5000 8 d-n-c 1.45 6.63 4.6 0.94 2.33 2.5 1.45 6.63 4.6
10000 10000 50 blocking 7.70 50.76 6.6 4.40 17.46 4.0 7.79 50.78 6.5
10000 10000 8 d-n-c 8.54 51.66 6.0 4.22 17.64 4.2 8.51 51.65 6.1
25000 25000 50 blocking 103.9 778.9 7.5 42.6 261.2 6.1 103.9 778.7 7.5
25000 25000 8 d-n-c 110.1 789.6 7.2 41.5 261.7 6.3 110.2 789.7 7.2

In addition, we have used our software to isolate the real roots of a large polynomial
coming from the study of limit cycles of dynamical systems on a 32-core machine. This
polynomial has degree 426, and the bit size of its coefficients is 1900. It is available at http:

//www.orcca.on.ca/~cchen/ammcs2011.txt. The 32-core machine has 8 Quad Core AMD



Opteron 8354 @2.2 GHz connected by 8 sockets; each core has 64 KB L1 data cache and 512
KB L2 cache; every four cores share 2 MB of L3 cache; the total memory is 126 GB. In about 15
minutes, our software manages to isolate all the 78 real roots of this large polynomial using this
32-core machine. However, we could not process this polynomial on a standard desktop (Intel
Core 2 Quad CPU @2.40 GHz and 3.0 GB memory).

Table 2. Timings of Parris for Chebychev and Mignotte polynomials (in seconds).
n B method Chebychev polynomial [5] Mignotte polynomial [5]

8-core 4-core 1-core Sp 8-core 4-core 1-core Sp
400 50 blocking 59.09 106.41 413.87 7.0 166.69 222.65 564.91 3.4
400 8 d-n-c 59.02 107.55 420.18 7.1 128.57 181.95 572.65 4.5
500 50 blocking 173.83 323.18 1269.61 7.3 not enough
500 8 d-n-c 173.92 324.48 1279.05 7.4 memory

Table 3. Timings of Parris for random polynomials (in seconds).
n k d-n-c blocking

B 8-core 1-core Speedup B 8-core 1-core Speedup
1000 1000 8 0.94 3.26 3.5 50 0.87 3.21 3.7
2000 2000 8 3.51 18.84 5.4 50 3.25 18.58 5.7
3000 3000 8 4.07 23.33 5.7 50 3.82 22.89 6.0
4000 4000 8 38.26 246.34 6.4 50 35.84 243.82 6.8
5000 5000 8 200.62 1372.70 6.8 50 184.07 1340.95 7.3

10. Concluding remarks

In this paper, we revisit the core routine of many univariate real root isolation algorithms,
namely the Taylor shift operation. We discuss two strategies (divide-and-conquer and blocking)
to implement this operation in parallel on multicores. Assuming that the cost of adding two
integers is constant, we show that both strategies are cache optimal. For the second approach,
however, this requires to choose the block size accurately.

On an 8-core machine, for benchmark examples of relatively large size, the speedup for both
the Taylor shift computation and the real root isolation is nearly linear. We also demonstrate the
effectiveness of our software by processing a large real-world polynomial on a 32-core machine
with more than a hundred of gigabytes memory.

The assumption that the cost of adding two integers is constant is considerably strong for the
Taylor shift operation. Consider, indeed, a univariate polynomial p(x) of degree d, with integer
coefficients. Assume that the height of p(x) (that is, the bit size of the maximum absolute value
of a coefficients in p(x)) is bounded by h. Then, the height of p(x+ 1) is bounded by h+ d [14].
Therefore, to further improve the work presented here, we are preparing a new report where our
cache complexity analysis of the Taylor shift operation takes into account this potential increase
of height. Since two blocks of the same size in the Pascal’s triangle can be quite different in
terms of the work required to fill them, we would like to design a new blocking strategy with
dynamical granularity aiming at balancing the work load among the blocks.
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