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Abstract. For a regular chain R in dimension one, we propose an algo-
rithm which computes the (non-trivial) limit points of the quasi-component
of R, that is, the set W (R) \W (R). Our procedure relies on Puiseux se-
ries expansions and does not require to compute a system of generators
of the saturated ideal of R. We provide experimental results illustrating
the benefits of our algorithms.

1 Introduction

The theory of regular chains, since its introduction by J.F. Ritt [22], has been
applied successfully in many areas including differential systems [8, 2, 13], differ-
ence systems [12], unmixed decompositions [14] and primary decomposition [23]
of polynomial ideals, intersection multiplicity calculations [17], cylindrical alge-
braic decomposition [7], parametric [28] and non-parametric [4] semi-algebraic
systems. Today, regular chains are at the core of algorithms computing triangular
decomposition of polynomial systems and which are available in several software
packages [16, 26, 27]. Moreover, those algorithms provide back-engines for com-
puter algebra system front-end solvers, such as Maple’s solve command.

This paper deals with a notorious issue raised in all types of triangular decom-
positions, the Ritt problem, stated as follows. Given two regular chains (algebraic
or differential) R and S, whose saturated ideals sat(R) and sat(S) are radical,
check whether the inclusion sat(R) ⊆ sat(S) holds or not. In the algebraic case,
the challenge is to test such inclusion without computing a system of genera-
tors of sat(R). This question would be answered if one would have a procedure
with the following specification: for the regular chain R compute regular chains
R1, . . . , Re such that W (R) = W (R1) ∪ · · · ∪ W (Re) holds, where W (R) is the
quasi-component of R and W (R) is the Zariski closure of W (R).

We propose a solution to this algorithmic quest, in the algebraic case. To
be precise, our procedure computes the non-trivial limit points of the quasi-
component W (R), that is, the set lim(W (R)) := W (R) \W (R) as a finite union
of quasi-components of some other regular chains, see Theorem 7 in Section 7.
We focus on the case where sat(R) has dimension one.

When the regular chain R consists of a single polynomial r, primitive w.r.t.
its main variable, one can easily check that lim(W (R)) = V (r, hr) holds, where



hr is the initial of r. Unfortunately, there is no generalization of this result when
R consists of several polynomials, unless R enjoys remarkable properties, such
as being a primitive regular chain [15]. To overcome this difficulty, it becomes
necessary to view R as a “parametric representation” of the quasi-component
W (R). In this setting, the points of lim(W (R)) can be computed as limits (in the
usual sense of the Euclidean topology 1) of sequences of points along “branches”
(in the sense of the theory of algebraic curves) of W (R) . It turns out that these
limits can be obtained as constant terms of convergent Puiseux series defining
the “branches” of W (R) in the neighborhood of the points of interest.

Here comes the main technical difficulty of this approach. When computing
a particular point of lim(W (R)), one needs to follow one branch per defining
equation of R. Following a branch means computing a truncated Puiseux ex-
pansion about a point. Since the equation of R defining a given variable, say
Xj , depends on the equations of R defining the variables Xj−1, Xj−2, . . ., the
truncated Puiseux expansion for Xj is defined by an equation whose coefficients
involve the truncated Puiseux expansions for Xj−1, Xj−2, . . ..

From Sections 3 to 7, we show that this principle indeed computes the de-
sired limit points. In particular, we introduce the notion of a system of Puiseux
parametrizations of a regular chain, see Section 3. This allows us to state in
Theorem 3 a concise formula for lim(W (R)) in terms of this latter notion. Then,
we estimate to which accuracy one needs to effectively compute such Puiseux
parametrizations in order to deduce lim(W (R)), see Theorem 6 in Section 6.

In Section 8, we report on a preliminary implementation of the algorithms
presented in this paper. We evaluate our code by applying it to the question
of removing redundant components in Kalkbrener’s decompositions and observe
the benefits of this strategy. Section 2 briefly reviews notions from the theories of
regular chains and algebraic curves. We conclude this section with an example.

Consider the regular chain R = {r1, r2} ⊂ k[X1, X2, X3] with r1 = X1X
2
2 +

X2 + 1, r2 = (X1 + 2)X1X
2
3 + (X2 + 1)(X3 + 1). We have W (R) = V (R) \V (hR)

with hR = X2
1 (X1 + 2). To determine lim(W (R)), we compute Puiseux series

expansions of r1 at X1 = 0 and X1 = −2. For such calculation, we use Maple’s
command algcurves[puiseux] [24]. The Puiseux expansions of r1 at X1 = 0 are:

[X1 = T,X2 = −1− T +O(T 2)], [X1 = T,X2 = −1/T + 1 + T +O(T 2)].

Clearly, the second expansion does not yield a limit point. After substituting the
first expansion into r2, we have:

r′2 = r2(X1 = T,X2 = −1− T+O(T 2), X3) = (T+2)TX2
3+(−T+O(T 2))(X3+1).

Now, we compute Puiseux series expansions of r′2 which are

[T = T,X3 = 1− 1/3 T +O(T 2)], [T = T,X3 = −1/2 + 1/12 T +O(T 2)].

So the regular chains {X1, X2 + 1, X3 − 1} and {X1, X2 + 1, X3 + 1/2} give
the limit points of W (R) at X1 = 0. Similarly, {X1 + 2, X2 − 1, X3 + 1} and
{X1 + 2, X2 + 1/2, X3 + 1} give the limit points of W (R) at X1 = −2.

1 The closures of W (R) in Zariski and the Euclidean topologies are equal when k = C.



2 Preliminaries

This section is a review of various notions from the theories of regular chains,
algebraic curves and topology. For these latter subjects, our references are the
textbooks of R.J. Walker [25], G. Fischer [11] and J. R. Munkres [20]. Notations
and hypotheses introduced in this section are used throughout the paper.

Multivariate polynomials. Let k be a field which is algebraically closed. Let
X1 < · · · < Xs be s ≥ 1 ordered variables. We denote by k[X1, . . . , Xs] the
ring of polynomials in the variables X1, . . . , Xs and with coefficients in k. For a
non-constant polynomial p ∈ k[X1, . . . , Xs], the greatest variable in p is called
main variable of p, denoted by mvar(p), and the leading coefficient of p w.r.t.
mvar(p) is called initial of p, denoted by init(p).

Zariski topology. We denote by As the affine s-space over k. An affine variety
of As is the set of common zeroes of a collection F ⊆ k[X1, . . . , Xs] of polynomi-
als. The Zariski topology on As is the topology whose closed sets are the affine
varieties of As. The Zariski closure of a subset W ⊆ As is the intersection of all
affine varieties containing W .

Relation between Zariski topology and the Euclidean topology. When k = C,
the affine space As is endowed with both Zariski topology and the Euclidean
topology. While Zariski topology is coarser than the Euclidean topology, we
have the following (Corollary 1 in I.10 of [19]) key result. Let V ⊆ As be an
irreducible affine variety and U ⊆ V be open in the Zariski topology induced
on V . Then, the closure of U in Zariski topology and the closure of U in the
Euclidean topology are both equal to V .

Limit points. Let (X, τ) be a topological space. Let S ⊆ X be a subset. A point
p ∈ X is a limit point of S if every neighborhood of p contains at least one point
of S different from p itself. If the space X is a metric space, the point p is a limit
point of S if and only if there exists a sequence (xn, n ∈ N) of points of S \ {p}
with p as limit. In practice, the “interesting” limit points of S are those which
do not belong to S. For this reason, we call such limit points non-trivial and we
denote by lim(S) the set of non-trivial limit points of S.

Regular chain. A set R of non-constant polynomials in k[X1, . . . , Xs] is called
a triangular set, if for all p, q ∈ R with p 6= q we have mvar(p) 6= mvar(q). A
variable Xi is said free w.r.t. R if there exists no p ∈ R such that mvar(p) = Xi.
For a nonempty triangular set R, we define the saturated ideal sat(R) of R to be
the ideal 〈R〉 : h∞R , where hR is the product of the initials of the polynomials in
R. The saturated ideal of the empty triangular set is defined as the trivial ideal
〈0〉. The ideal sat(R) has several properties, in particular it is unmixed [3]. We
denote its height, that is the number of polynomials in R, by e, thus sat(R) has
dimension s − e. Let Xi1 < · · · < Xie be the main variables of the polynomials
in R. We denote by rj the polynomial of R whose main variable is Xij and by
hj the initial of rj . We say that R is a regular chain whenever R is empty or
{r1, . . . , re−1} is a regular chain and he is regular modulo the saturated ideal
sat({r1, . . . , re−1}). The regular chain R is said strongly normalized whenever



each of the main variables of the polynomials of R (that is, Xi1 < · · · < Xie)
does not appear in hR.

Limit points of the quasi-component of a regular chain. We denote byW (R) :=
V (R)\V (hR) the quasi-component of R, that is, the common zeros of R that do
not cancel hR. The above discussion implies that the closure of W (R) in Zariski
topology and the closure of W (R) in the Euclidean topology are both equal to
V (sat(R)), that is, the affine variety of sat(R). We denote by W (R) this common
closure and lim(W (R)) this common set of limit points.

Rings of formal power series. Recall that k is an algebraically closed field. We
denote by k[[X1, . . . , Xs]] and k〈X1, . . . , Xs〉 the rings of formal and convergent
power series in X1, . . . , Xs with coefficients in k. When s = 1, we write T instead
of X1. For f ∈ k[[X1, . . . , Xs]], its order is defined by min{d | f(d) 6= 0} if f 6= 0
and by ∞ otherwise, where f(d) is the homogeneous part of f in degree d. We
denote by Ms the only maximal ideal of k[[X1, . . . , Xs]], that is, Ms = {f ∈
k[[X1, . . . , Xs]] | ord(f) ≥ 1}. Let f ∈ k[[X1, . . . , Xs]] with f 6= 0. Let k ∈ N.
We say that f is (1) general in Xs if f 6= 0 mod Ms−1, (2) general in Xs of
order k if we have ord(f mod Ms−1) = k.

Formal Puiseux series. We denote by k[[T ∗]] =
⋃∞
n=1 k[[T

1
n ]] the ring of

formal Puiseux series. For a fixed ϕ ∈ k[[T ∗]], there is an n ∈ N>0 such that

ϕ ∈ k[[T
1
n ]]. Hence ϕ =

∑∞
m=0 amT

m
n , where am ∈ k. We call order of ϕ the

rational number defined by ord(ϕ) = min{mn | am 6= 0} ≥ 0. We denote by
k((T ∗)) the quotient field of k[[T ∗]].

Convergent Puiseux series. Let ϕ ∈ C[[T ∗]] and n ∈ N such that ϕ = f(T
1
n )

holds for some f ∈ C[[T ]]. We say that the Puiseux series ϕ is convergent if we
have f ∈ C〈T 〉. Convergent Puiseux series form an integral domain denoted by
C〈T ∗〉; its quotient field is denoted by C(〈T ∗〉). For every ϕ ∈ C((T ∗)), there
exist n ∈ Z, r ∈ N>0 and a sequence of complex numbers an, an+1, an+2, . . . such
that we have ϕ =

∑∞
m=n amT

m
r and an 6= 0. Then, we define ord(ϕ) = n

r .

Puiseux Theorem. If k has characteristic zero, the field k((T ∗)) is the algebraic
closure of the field of formal Laurent series over k. Moreover, if k = C, the field
C(〈T ∗〉) is algebraically closed as well. From now on, we assume k = C.

Puiseux expansion. Let B = C((X∗)) or C(〈X∗〉). Let f ∈ B[Y ], where d :=
deg(f, Y ) > 0. Let h := lc(f, Y ). According to Puiseux Theorem, there exists
ϕi ∈ B, i = 1, . . . , d, such that f

h = (Y −ϕ1) · · · (Y −ϕd). We call ϕ1, . . . , ϕd the
Puiseux expansions of f at the origin.

Puiseux parametrization. Let f ∈ C〈X〉[Y ]. A Puiseux parametrization of f is
a pair (ψ(T ), ϕ(T )) of elements of C〈T 〉 for some new variable T , such that (1)
ψ(T ) = T ς , for some ς ∈ N>0; (2) f(X = ψ(T ), Y = ϕ(T )) = 0 holds in C〈T 〉,
and (3) there is no integer k > 1 such that both ψ(T ) and ϕ(T ) are in C〈T k〉.
The index ς is called the ramification index of the parametrization (T ς , ϕ(T )).
It is intrinsic to f and ς ≤ deg(f, Y ). Let z1, . . . , zς denote the distinct roots of
unity of order ς in C. Then ϕ(ziX

1/ς), for i = 1, . . . , ς, are ς Puiseux expansions
of f . For a Puiseux expansion ϕ of f , let c minimum such that both ϕ = g(T 1/c)
and g ∈ C〈T 〉 holds. Then (T c, g(T )) is a Puiseux parametrization of f .



3 Puiseux expansions of a regular chain

In this section, we introduce the notion of Puiseux expansions of a regular chain,
motivated by the work of [18, 1] on Puiseux expansions of space curves. Through-
out this section, let R = {r1, . . . , rs−1} ⊂ C[X1 < · · · < Xs] be a strongly nor-
malized regular chain whose saturated ideal has dimension one and assume that
X1 is free w.r.t. R.

Lemma 1 Let hR(X1) be the product of the initials of the polynomials in R.
Let ρ > 0 be small enough such that the set Uρ := {x = (x1, . . . , xs) ∈ Cs | 0 <
|x1| < ρ} does not contain any zeros of hR. Define Vρ(R) := V (R) ∩ Uρ. Then,
we have W (R) ∩ Uρ = Vρ(R).

Proof. It follows from the observation that Uρ ∩ V (hR) = ∅.

Notation 1 Let W ⊆ Cs. Denote lim0(W ) := {x = (x1, . . . , xs) ∈ Cs | x ∈
lim(W ) and x1 = 0}.

Lemma 2 We have lim0(W (R)) = lim0(Vρ(R)).

Proof. By Lemma 1, we have W (R) ∩ Uρ = Vρ(R). Meanwhile, lim0(W (R)) =
lim0(W (R) ∩ Uρ) holds. Thus lim0(W (R)) = lim0(Vρ(R)) holds.

Lemma 3 For 1 ≤ i ≤ s − 1, let di := deg(ri, Xi+1). Then R generates a
zero-dimensional ideal in C(〈X∗1 〉)[X2, . . . , Xs]. Let V ∗(R) be the zero set of R

in C(〈X∗1 〉)s−1. Then V ∗(R) has exactly
∏s−1
i=1 di points, counting multiplicities.

Proof. It follows directly from the definition of regular chain, and the fact that
C(〈X∗1 〉) is an algebraically closed field.

Definition 1 We use the notations of Lemma 3. Each point in V ∗(R) is called
a Puiseux expansion of R.

Notation 2 Let m = |V ∗(R)|. Write V ∗(R) = {Φ1, . . . , Φm}. For i = 1, . . . ,m,
write Φi = (Φ1

i (X1), . . . , Φs−1i (X1)). Let ρ > 0 be small enough such that for

1 ≤ i ≤ m, 1 ≤ j ≤ s − 1, each Φji (X1) converges in 0 < |X1| < ρ. We define

V ∗ρ (R) := ∪mi=1{x ∈ Cs | 0 < |x1| < ρ, xj+1 = Φji (x1), j = 1, . . . , s− 1}.

Theorem 1 We have V ∗ρ (R) = Vρ(R).

Proof. We prove this by induction on s. For i = 1, . . . , s − 1, recall that hi is
the initial of ri. If s = 2, we have r1(X1, X2) = h1(X1)

∏d1
i=1(X2 − Φ1

i (X1)). So
V ∗ρ (R) = Vρ(R) clearly holds.

Now we consider s > 2. Write R′ = {r1, . . . , rs−2}, R = R′ ∪ {rs−1}, X ′ =
X2, . . . , Xs−1, X = (X1, X

′, Xs), x
′ = x2, . . . , xs−1, x = (x1, x

′, xs), and m′ =
|V ∗(R′)|. For i = 1, . . . ,m, let Φi = (Φ′i, Φ

s−1
i ), where Φ′i stands for Φ1

i , . . . , Φ
s−2
i .



Assume the theorem holds for R′, that is V ∗ρ (R′) = Vρ(R
′). For any i = 1, . . . ,m′,

there exist i1, . . . , ids−1
∈ {1, . . . ,m} such that we have

rs−1(X1, X
′ = Φ′i, Xs) = hs−1(X1)

ds−1∏
k=1

(Xs − Φs−1ik
(X1)). (1)

Note that V ∗(R) = ∪m′i=1 ∪
ds−1

k=1 {(X ′ = Φ′i, Xs = Φs−1ik
)}. Therefore, by induction

hypothesis and Equation (1), we have

V ∗ρ (R) = ∪m′i=1 ∪
ds−1

k=1 {x | x ∈ Uρ, x′ = Φ′i(x1), xs = Φs−1ik
(x1)}

= ∪ds−1

k=1 {x | (x1, x′) ∈ V ∗ρ (R′), xs = Φs−1ik
(x1)}

= {x | (x1, x′) ∈ V ∗ρ (R′), rs−1(x1, x
′, xs) = 0}

= {x | (x1, x′) ∈ Vρ(R′), rs−1(x1, x
′, xs) = 0}

= Vρ(R).

Theorem 2 Let V ∗≥0(R) := {Φ = (Φ1, . . . , Φs−1) ∈ V ∗(R) | ord(Φj) ≥ 0, j =
1, . . . , s− 1}. Then we have lim0(W (R)) = ∪Φ∈V ∗≥0

(R){(X1 = 0, Φ(X1 = 0))}.

Proof. By definition of V ∗≥0(R), we immediately have

lim0(V ∗ρ (R)) = ∪Φ∈V ∗≥0
(R){(X1 = 0, Φ(X1 = 0))}.

Next, by Theorem 1, we have V ∗ρ (R) = Vρ(R). Thus, we have lim0(V ∗ρ (R)) =
lim0(Vρ(R)). Besides, with Lemma 2, we have lim0(W (R)) = lim0(Vρ(R)). Thus
the theorem holds.

Definition 2 Let V ∗≥0(R) be as defined in Theorem 2. Let M = |V ∗≥0(R)|. For

each Φi = (Φ1
i , . . . , Φ

s−1
i ) ∈ V ∗≥0(R), 1 ≤ i ≤ M , we know that Φji ∈ C(〈X∗1 〉).

Moreover, by Equation (1), we know that for j = 1, . . . , s − 1, Φji is a Puiseux

expansion of rj(X1, X2 = Φ1
i , . . . , Xj = Φj−1i , Xj+1). Let ςi,j be the ramifica-

tion index of Φji and (T ςi,j , Xj+1 = ϕji (T )), where ϕji ∈ C〈T 〉, be the cor-

responding Puiseux parametrization of Φji . Let ςi be the least common mul-

tiple of {ςi,1, . . . , ςi,s−1}. Let gji = ϕji (T = T ςi/ςi,j ). We call the set GR :=
{(X1 = T ςi , X2 = g1i (T ), . . . , Xs = gs−1i (T )), i = 1, . . . ,M} a system of Puiseux
parametrizations of R.

Theorem 3 We have lim0(W (R)) = GR(T = 0).

Proof. It follows directly from Theorem 2 and Definition 2.

Remark 1 The limit points of W (R) at X1 = α 6= 0 can be reduced to the com-
putation of lim0(W (R)) by a coordinate transformation X1 = X1 +α. Given an
arbitrary one-dimensional regular chain R, the set lim(W (R)) can be computed
in the following manner. Compute a regular chain N which is strongly normal-

ized and such that sat(R) = sat(N) and V (hN ) = V (ĥR) both hold, where ĥR is
the iterated resultant of hR w.r.t R. See [6]. Let Xi := mvar(hR). Note that N is
still a regular chain w.r.t. the new order Xi < {X1, . . . , Xn}\{Xi}. Observe that
lim(W (R)) ⊆ lim(W (N)) holds. Thus we have lim(W (R)) = lim(W (N))\W (R).



4 Puiseux parametrization in finite accuracy

In this section, we define the Puiseux parametrizations of a polynomial f ∈
C〈X〉[Y ] in finite accuracy, see Definition 4. For f ∈ C〈X〉[Y ], we also define the
approximation of f for a given accuracy, see Definition 3. This approximation
of f is a polynomial in C[X,Y ]. In Sections 5 and 6, we prove that to compute
a Puiseux parametrization of f of a given accuracy, it suffices to compute a
Puiseux parametrization of an approximation of f of some finite accuracy.

In this section, we review and adapt the classical Newton-Puiseux algo-
rithm to compute Puiseux parametrizations of a polynomial f ∈ C[X,Y ] of
a given accuracy. Since we do not need to compute the singular part of Puiseux
parametrizations, the usual requirement discrim(f, Y ) 6= 0 is dropped.

Definition 3 Let f =
∑∞
i=0 aiX

i ∈ C[[X]]. For any τ ∈ N, we call f (τ) :=∑τ
i=0 aiX

i the polynomial part of f of accuracy τ +1. Let f =
∑d
i=0 ai(X)Y i ∈

C〈X〉[Y ]. For any τ ∈ N, we call f̃ (τ) :=
∑d
i=0 a

(τ)
i Y i the approximation of f of

accuracy τ + 1.

Definition 4 Let f ∈ C〈X〉[Y ], with deg(f, Y ) > 0. Let σ, τ ∈ N>0 and g(T ) =∑τ−1
k=0 bkT

k. Let {T k1 , . . . , T km} be the support of g(T ). The pair (Tσ, g(T )) is
called a Puiseux parametrization of f of accuracy τ if there exists a Puiseux
parametrization (T ς , ϕ(T )) of f such that: (i) σ divides ς; (ii) gcd(σ, k1, . . . , km) =
1; and (iii) g(T ς/σ) is the polynomial part of ϕ(T ) of accuracy (ς/σ)(τ − 1) + 1.
Note that if σ = ς, then g(T ) is the polynomial part of ϕ(T ) of accuracy τ .

Definition 5 ([10]) A C-term2 is defined as a triple t = (q, p, β), where q and p
are coprime integers, q > 0 and β ∈ C is non-zero. A C-expansion is a sequence
π = (t1, t2, . . .) of C-terms, where ti = (qi, pi, βi). We say that π is finite if there
are only finitely many elements in π.

Definition 6 Let π = (t1, . . . , tN ) be a finite C-expansion. We define a pair
(Tσ, g(T )) of polynomials in C[T ] in the following manner: (i) if N = 1, set σ =

1, g(T ) = 0 and δN = 0; (ii) otherwise, let a :=
∏N
i=1 qi, ci :=

∑i
j=1

(
pj
∏N
k=j+1 qk

)
(1 ≤ i ≤ N), δi := ci/gcd(a, c1, . . . , cN ) (1 ≤ i ≤ N). Set σ := a/gcd(a, c1, . . . , cN )

and g(T ) :=
∑N
i=1 βiT

δi . We call the pair (Tσ, g(T )) the Puiseux parametriza-
tion of π of accuracy δN + 1. Denote by ConstructParametrization an algorithm
to compute (Tσ, g(T )) from π.

Definition 7 Let f ∈ C〈X〉[Y ] and write f as f(X,Y ) :=
∑d
i=0

(∑∞
j=0 ai,jX

j
)
Y i.

The Newton Polygon of f is defined as the lower part of the convex hull of the
set of points (i, j) in the plane such that ai,j 6= 0.

Let f ∈ C〈X〉[Y ]. We denote by NewtonPolygon(f, I) an algorithm to com-
pute the segments in the Newton Polygon of f , where I is a flag controlling

2 It is a simplified version of Duval’s definition.



the algorithm specification as follows. If I = 1, only segments with non-positive
slopes are computed. If I = 2, only segments with negative slopes are computed.
Such an algorithm can be found in [25]. Next we introduce some notations which
are necessary to present Algorithm 2.

Let f ∈ C[X,Y ], t = (q, p, β) be a C-term and ` ∈ N s.t. NewPoly(f, t, `) :=

X−`f(Xq, Xp(β + Y )) ∈ C[X,Y ]. Let f =
∑d
i=0

∑m
j=0 ai,jX

jY i ∈ C[X,Y ] and
let ∆ be a segment of the Newton Polygon of f . Denote SegmentPoly(f,∆) :=
(q, p, `, φ) such that the following holds: (1) q, p, ` ∈ N; φ ∈ C[Z]; q and p are
coprime, q > 0; (2) for any (i, j) ∈ ∆, we have qj + pi = `; and (3) letting
i0 := min({i | (i, j) ∈ ∆}), we have φ =

∑
(i,j)∈∆ ai,jZ

(i−i0)/q.

Theorem 4 Algorithm 2 terminates and is correct.

Proof. It directly follows from the proof of the Newton-Puiseux algorithm in
Walker’s book [25], the relation between C-expansion and Puiseux parametriza-
tion discussed in Duval’s paper [10], and Definitions 6 and 4.

Algorithm 1: NonzeroTerm(f, I)

Input: f ∈ C[X,Y ]; I = 1 or 2.
Output: A finite set of pairs (t, `), where t is a C-term, and ` ∈ N.
S := ∅;1

for each ∆ ∈ NewtonPolygon(f, I) do2

(q, p, `, φ) := SegmentPoly(f,∆);3

for each root ξ of φ in C do4

for each root β of Uq − ξ in C do {t := (q, p, β);S := S ∪ {(t, `)}}5

return S6

Algorithm 2: NewtonPuiseux

Input: f ∈ C[X,Y ]; a given accuracy τ > 0 ∈ N.
Output: All the Puiseux parametrizations of f of accuracy τ .
π := ( ); S := {(π, f)}; P := ∅;1

while S 6= ∅ do2

let (π∗, f∗) ∈ S; S := S \ {(π∗, f∗)}; if π∗ = ( ) then I := 1 else I := 2;3

(Tσ, g(T )) := ConstructParametrization(π∗);
if deg(g(T ), T ) + 1 < τ then4

C := NonzeroTerm(f∗, I);5

if C = ∅ then6

P := P ∪ {(Tσ, g(T ))}7

else8

for each (t = (p, q, β), `) ∈ C do9

π∗∗ := π∗ ∪ (t); f∗∗ := NewPoly(f∗, t, `); S := S ∪ {(π∗∗, f∗∗)}10

else11

P := P ∪ {(Tσ, g(T ))}12

return P13



5 Computing in finite accuracy

Let f ∈ C〈X〉[Y ]. In this section, we consider the following problems: (a) Is
it possible to use an approximation of f of some finite accuracy m in order to
compute a Puiseux parametrization of f of a prescribed finite accuracy τ? (b)
If yes, how to calculate m from f and τ? (c) Provide an upper bound on m.
Theorem 5 provides the answers to (a) and (b) while Lemma 6 answers (c).

In the rest of this paper, the proof of a lemma is omitted if it is a routine.

Lemma 4 Let f ∈ C〈X〉[Y ]. Let d := deg(f, Y ) > 0. Let q ∈ N>0, p, ` ∈ N and
assume that q and p are coprime. Let β 6= 0 ∈ C. Assume that q, p, ` define the
segment qj+pi = ` of the Newton Polygon of f . Let f1 := X−`1 f(Xq

1 , X
p
1 (β+Y1)).

Then, we have the following results: (i) for any given m1 ∈ N, there exists
a number m ∈ N such that the approximation of f1 of accuracy m1 can be
computed from the approximation of f of accuracy m; (ii) moreover, it suffices
to take m = bm1+`

q c.

Theorem 5 Let f ∈ C〈X〉[Y ]. Let τ ∈ N>0. Let σ ∈ N>0 and g(T ) =
∑τ−1
k=0 bkT

k.
Assume that (Tσ, g(T )) is a Puiseux parametrization of f of accuracy τ . Then
one can compute a number m ∈ N such that (Tσ, g(T )) is a Puiseux parametriza-

tion of accuracy τ of f̃m−1, where f̃m−1 is the approximation of f of accuracy
m. We denote by AccuracyEstimate an algorithm to compute m from f and τ .

Proof. By Lemma 4 and the construction of the Newton-Puiseux algorithm, we
conclude that there exists a number m ∈ N such that (Tσ, g(T )) is a Puiseux
parametrization of accuracy τ of the approximation of f of accuracy m.

Next we show that there is an algorithm to compute m. We initially set

m′ := τ . Let f0 :=
∑d
i=0

(∑m′

j=0 ai,jX
j
)
Y i. That is, f0 is the approximation of

f of accuracy m′ + 1. We run the Newton-Puiseux algorithm to check whether
the terms ak,m′X

m′Y k, 0 ≤ k ≤ d, make any contributions in constructing
the Newton Polygons of all fi. If at least one of them make contributions, we
increase the value of m′ and restart the Newton-Puiseux algorithm until none
of the terms ak,m′X

m′Y k, 0 ≤ k ≤ d, makes any contributions in constructing
the Newton Polygons of all fi. We set m := m′.

Lemma 5 Let d, τ ∈ N>0. Let ai,j, 0 ≤ i ≤ d, 0 ≤ j < τ , and bk, 0 ≤
k < τ be symbols. Write a = (a0,0, . . . , a0,τ−1, . . . , ad,0, . . . , ad,τ−1) and b =

(b0, . . . , bτ−1). Let f(a, X, Y ) =
∑d
i=0

(∑τ−1
j=0 ai,jX

j
)
Y i ∈ C[a][X,Y ] and let

g(b, X) =
∑τ−1
k=0 bkX

k ∈ C[b][X]. Let p := f(a, X, Y = g(b, X)). Let Fk :=
coeff(p,Xk), 0 ≤ k < τ − 1, and F := {F0, . . . , Fτ−1}. Then under the order
a < b and b0 < b1 < · · · < bτ−1, F forms a zero-dimensional regular chain in
C(a)[b] with main variables (b0, b1, . . . , bτ−1) and main degrees (d, 1, . . . , 1). In

addition, we have (i) F0 =
∑d
i=0 ai,0b

i
0, and (ii) init(F1) = · · · = init(Fτ−1) =

der(F0, b0) =
∑d
i=1 i · ai,0b

i−1
0 .



Proof. Write p =
∑d
i=0

(∑τ−1
j=0 ai,jX

j
)(∑τ−1

k=0 bkX
k
)i

as a univariate polyno-

mial in X. Observe that F0 =
∑d
i=0 ai,0b

i
0. Therefore F0 is irreducible in C(a)[b].

Moreover, we have mvar(F0) = b0 and mdeg(F0) = d.

Since d > 0, we know that a1,0

(∑τ−1
k=0 bkX

k
)

appears in p. Thus, for 0 ≤ k <
τ , bk appears in Fk. Moreover, for any k ≥ 1 and i < k, bk can not appear in Fi
since bk and Xk are always raised to the same power. For the same reason, for any
i > 1, bik cannot appear in Fk, for 1 ≤ k < τ . Thus {F0, . . . , Fτ−1} is a triangular
set with main variables (b0, b1, . . . , bτ−1) and main degrees (d, 1, . . . , 1).

Moreover, we have init(F1) = · · · = init(Fτ−1) =
∑d
i=1 i · ai,0b

i−1
0 , which is

coprime with F0. Thus F = {F0, . . . , Fτ−1} is a regular chain.

As a direct corollary, we have the following lemma.

Lemma 6 Let f =
∑d
i=0

(∑∞
j=0 ai,jX

j
)
Y i ∈ C[[X]][Y ]. Assume that d =

deg(f, Y ) > 0 and f is general in Y . Let ϕ(X) =
∑∞
k=0 bkX

k ∈ C[[X]] such that
f(X,ϕ(X)) = 0 holds. Let τ > 0 ∈ N. Then all coefficients bi, for 0 ≤ i < τ , can
be completely determined by {ai,j | 0 ≤ i ≤ d, 0 ≤ j < τ} if and only if b0 is a
simple zero of f(0, Y ). Therefore, “generically”, all coefficients bi, for 0 ≤ i < τ ,
can be completely determined by the approximation of f of accuracy τ .

6 Accuracy estimates

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs] be a strongly
normalized regular chain. In this section, we show that to compute the limit
points of W (R), it suffices to compute the Puiseux parametrizations of R of
some accuracy. Moreover, we provide accuracy estimates in Theorem 6.

Lemma 7 Let f = ad(X)Y d+· · ·+a0(X) ∈ C〈X〉[Y ], where d = deg(f, Y ) > 0.

For 0 ≤ i ≤ d, let δi := ord(ai). Let k := min(δ0, . . . , δd). Let f̃ := X−kf . Then

we have f̃ ∈ C〈X〉[Y ] and f̃ is general in Y . This operation of producing f̃ from
f is called “making f general” and we denote it by MakeGeneral.

The following lemma shows that computing limit points reduces to making
a polynomial f general.

Lemma 8 Let f ∈ C〈X〉[Y ], where deg(f, Y ) > 0, be general in Y . Let ρ > 0
be small enough such that f converges in |X| < ρ. Let Vρ(f) := {(x, y) ∈ C2 |
0 < |x| < ρ, f(x, y) = 0}. Then lim0(Vρ(f)) = {(0, y) ∈ C2 | f(0, y) = 0} holds.

Proof. With 1 ≤ i ≤ c, for some c such that 1 ≤ c ≤ deg(f, Y ), let (X =
T ςi , Y = ϕi(T )) be the distinct Puiseux parametrizations of f . By Lemma 1
and Theorem 3, we have lim0(Vρ(f)) = ∪ci=1{(0, y) ∈ C2 | y = ϕi(0)}. Let
(X = Tσi , gi(T )), i = 1, . . . , c, be the corresponding Puiseux parametrizations

of f of accuracy 1. By Theorem 5, there exists an approximation f̃ of f of



some finite accuracy such that (X = Tσi , gi(T )), i = 1, . . . , c, are also Puiseux

parametrizations of f̃ of accuracy 1. Thus, we have ϕi(0) = gi(0), i = 1, . . . , c.

Since f̃ is general in Y , by Theorem 2.3 in [25], we have ∪ci=1{(0, y) ∈ C2 | y =

gi(0)} = {(0, y) ∈ C2 | f̃(0, y) = 0}. Since f̃(0, y) = f(0, y), the lemma holds.

Lemma 9 Let a(X1, . . . , Xs) ∈ C[X1, . . . , Xs]. Let gi =
∑∞
j=0 cijT

j ∈ C〈T 〉, for

i = 1 · · · s. We write a(g1, . . . , gs) as
∑∞
k=0 bkT

k. To compute a given coefficient
bk, one only needs to know the coefficients of the polynomial a and the coefficients
ci,j for 1 ≤ i ≤ s, 0 ≤ j ≤ k.

Lemma 10 Let f = ad(X)Y d + · · ·+a0(X) ∈ C〈X〉[Y ], where d = deg(f, Y ) >
0. Let δ := ord(ad(X)). Then “generically”, a Puiseux parametrization of f of
accuracy τ can be computed from an approximation of f of accuracy τ + δ.

Proof. Let f̃ := MakeGeneral(f). Observe that f and f̃ have the same system of
Puiseux parametrizations. Then the conclusion follows from Lemma 7 and 6.

Let R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)} ⊂ C[X1 < · · · < Xs] be a
strongly normalized regular chain. For 1 ≤ i ≤ s − 1, let hi := init(ri), di :=
deg(ri, Xi+1) and δi := ord(hi). We define fi, ςi, Ti, ϕi(Ti), 1 ≤ i ≤ s − 1, as
follows. Let f1 := r1. Let (X1 = T ς11 , X2 = ϕ1(T1)) be a Puiseux parametrization
of f1. For i = 2, . . . , s− 1 do
(i) Let fi := ri(X1 = T ς11 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1).

(ii) Let (Ti−1 = T ςii , Xi+1 = ϕi(Ti)) be a Puiseux parametrization of fi.
Before stating our main result on the bound, we first present several lemmas.

Lemma 11 For 0 ≤ i ≤ s − 2, define gi(Ts−2) := T
∏s−2

k=i+1 ςk
s−2 . Let T0 := X1.

Then we have Ti = gi(Ts−2), 0 ≤ i ≤ s− 2.

Proof. We prove it by induction. Clearly it holds for i = s− 2. Suppose it holds

for i. Then we have Ti−1 = T ςii =

(
T

∏s−2
k=i+1 ςk

s−2

)ςi
=
(
T

∏s−2
k=i ςk

s−2

)
. Therefore it

also holds for i− 1. So it holds for all 0 ≤ i ≤ s− 2.

Lemma 12 There exist numbers τ1, . . . , τs−2 ∈ N such that in order to make
fs−1 general in Xs, it suffices to compute the polynomial parts of ϕi of accuracy
τi, 1 ≤ i ≤ s − 2. Moreover, if we write the algorithm AccuracyEstimate for
short as θ, the accuracies τi can be computed in the following manner: τs−2 :=
(
∏s−2
k=1 ςk)δs−1 + 1, τi−1 := max(θ(fi, τi), (

∏i−1
k=1 ςk)δs−1 + 1), for 2 ≤ i ≤ s− 2.

Proof. By Lemma 11, we have g0(Ts−2) = T
∏s−2

k=1 ςk
s−2 . Since ord(hs−1(X1)) = δs−1,

we have ord(hs−1(X1 = g0(Ts−2))) =
(∏s−2

k=1 ςk

)
δs−1. Let τs−2 := (

∏s−2
k=1 ςk)δs−1+

1. By Lemma 7, to make fs−1 general in Xs, it suffices to compute the polynomial
parts of the coefficients of fs−1 of accuracy τs−2.

By Lemma 9, we need to compute the polynomial parts of ϕi(gi(Ts−2)),

1 ≤ i ≤ s − 2, of accuracy τs−2. Since ord(gi(Ts−2)) =
∏s−2
k=i+1 ςk, to achieve



this accuracy, it is enough to compute the polynomial parts of ϕi of accuracy
(
∏i
k=1 ςk)δs−1 + 1, for 1 ≤ i ≤ s− 2.
Since we have fi = ri(X1 = T ς11 , X2 = ϕ1(T1), . . . , Xi = ϕi−1(Ti−1), Xi+1)

and (Ti−1 = T ςii , Xi+1 = ϕi(Ti)) is a Puiseux parametrization of fi, by Theo-
rem 5 and Lemma 9, to compute the polynomial part of ϕi of accuracy τi, we need
the polynomial part of ϕi−1 of accuracy θ(fi, τi). Thus, τs−2 := (

∏s−2
k=1 ςk)δs−1+1

and τi−1 = max(θ(fi, τi), (
∏i−1
k=1 ςk)δs−1 + 1) for 2 ≤ i ≤ s − 2 will guarantee

fs−1 can be made general in Xs.

Theorem 6 One can compute positive integer numbers τ1, . . . , τs−1 such that,
in order to compute lim0(W (R)), it suffices to compute Puiseux parametrizations
of fi of accuracy τi, for i = 1, . . . , s− 1. Moreover, generically, one can choose
τs−1 := 1, τs−2 := (

∏s−2
k=1 ςk)δs−1 + 1, τi = (

∏s−2
k=1 ςk)(

∑s−1
k=2 δi) + 1, for i =

1, . . . , s− 3, and each index ςk can be set to dk, for k = 1, . . . , s− 2.

Proof. By Lemma 12, we know that τ1, . . . , τs−1 can be computed. By Lemma 11,

we haveX1 = T
∏i−1

k=1 ςk
i−1 . Since ord(hi(X1)) = δi, we have ord(hi(X1 = T

∏i−1
k=1 ςk

i−1 )) =(∏i−1
k=1 ςk

)
δi. By Lemma 10, generically a Puiseux parametrization of fi of ac-

curacy τi can be computed from an approximation of fi of accuracy τi + δi. In
Lemma 12, let θ(fi, τi) = τi + (

∏i−1
k=1 ςk)δi, 2 ≤ i ≤ s − 2, which implies the

bound in the theorem. Finally we observe that ςk ≤ dk holds, for 1 ≤ k ≤ s− 2.

7 Algorithm

In this section, we provide a complete algorithm for computing the non-trivial
limit points of the quasi-component of a one-dimensional strongly normalized
regular chain based on the results of the previous sections.

Proposition 1 Algorithm 4 is correct and terminates.

Proof. This follows from Theorem 3, Theorem 5, Theorem 6 and Lemma 8.

Theorem 7 Let R ⊂ Q[X1, . . . , Xn] be a regular chain such that dim(sat(R)) =
1. Then there exists an algorithm to compute regular chains Ri ∈ Q[X1, . . . , Xn],
i = 1, . . . , e, such that lim(W (R)) = ∪ei=1W (Ri).

Proof. By Remark 1, we can assume that R is strongly normalized and X1 is
free w.r.t. R. By Proposition 1, there is an algorithm to compute lim(W (R)).
Thus, it suffices to prove that lim(W (R)) can be represented by regular chains
in Q[X1, . . . , Xn], whenever R ⊂ Q[X1, . . . , Xn] holds. By examining carefully
Algorithms 1, 2, 3, 4, and their subroutines, one observes that only Algorithms 1
and 4 may introduce numbers that are in the algebraic closure Q of Q, and not in
Q itself. In fact, for each x = (x1, . . . , xn) ∈ lim(W (R)), Algorithms 1 and 4 in-
troduce a field extension Q(ξ1, . . . , ξm) such that we have xi ∈ Q[ξ1, . . . , ξm]. Let
Y1, . . . , Ym bem new symbols. LetG := {g1(Y1), g2(Y1, Y2), . . . , gm(Y1, Y2, . . . , Ym)}



Algorithm 3: LimitPointsAtZero

Input: A regular chain R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)}.
Output: The non-trivial limit points of W (R) whose X1-coordinates are 0.
let S := {(T0)};1

compute the accuracy estimates τ1, . . . , τs−2 by Theorem 6; let τs−1 = 1;2

for i from 1 to s− 1 do3

S′ := ∅;4

for Φ ∈ S do5

fi := ri(X1 = Φ1, . . . , Xi = Φi, Xi+1);6

if i > 1 then7

let δ := ord(fi, Ti−1); let fi := fi/T
δ
i−1;8

E := NewtonPuiseux(fi, τi);9

for (Ti−1 = φ(Ti), Xi+1 = ϕ(Ti)) ∈ E do10

S′ := S′ ∪ {Φ(Ti−1 = φ(Ti)) ∪ (ϕ(Ti))}11

S := S′12

if S = ∅ then return ∅ else return eval(S, Ts−1 = 0)13

Algorithm 4: LimitPoints

Input: A regular chain R := {r1(X1, X2), . . . , rs−1(X1, . . . , Xs)}.
Output: All the non-trivial limit points of W (R).
let hR := init(R); let L be the set of zeros of hR in C; S := ∅;1

for α ∈ L do2

Rα := R(X1 = X1 + α); Sα := LimitPointsAtZero(Rα);3

update Sα by replacing the first coordinate of every point in Sα by α;4

S := S ∪ Sα5

return S6

be an irreducible regular chain (i.e. generating a maximal ideal over Q) such that
G(Y1 = ξ1, . . . , Ym = ξm) = 0 holds. Since xi ∈ Q[ξ1, . . . , ξm], there exists fi ∈
Q[Y1, . . . , Ym], i = 1, . . . , n, such that xi = fi(Y1 = ξ1, . . . , Ym = ξm). Let Sx :=
{X1 = f1(Y1, . . . , Ym), . . . , Xn = fn(Y1, . . . , Ym), G(Y1, . . . , Ym) = 0}. The pro-
jection of the zero set of Sx on the (X1, . . . , Xn)-space is the zero set of an irreg-
ular chain Rx ∈ Q[X1, . . . , Xm] and we have lim(W (R)) = ∪x∈lim(W (R))W (Rx).

8 Experimentation

We have implemented Algorithm 4 of Section 7, which computes the limit points
of the quasi-component of a one-dimensional strongly normalized regular chain.
The implementation is based on the RegularChains library and the command
algcurves[puiseux] [24] of Maple. The code is available at http://www.orcca.

on.ca/~cchen/ACM13/LimitPoints.mpl. This preliminary implementation re-
lies on algebraic factorization, whereas, as suggested in [10], applying the D5
principle [9], in the spirit of triangular decomposition algorithms [6], would be



sufficient when computations need to split into different cases. This would cer-
tainly improve performance greatly and this enhancement is work in progress.

As pointed out in the introduction, the computation of the limit points of
the quasi-component of a regular chain can be applied to removing redundant
components in a Kalkbrener triangular decomposition. In Table 1, we report on
experimental results of this application.

The polynomial systems listed in this table are one-dimensional polynomial
systems selected from the literature [5, 6]. For each system, we first call the
Triangularize command of the library RegularChains, with the option “’nor-
malized=’strongly’, ’radical’=’yes’”. For the input system, this process computes
a Kalkbrener triangular decomposition R where the regular chains are strongly
normalized and their saturated ideals are radical. Next, for each one-dimensional
regular chain R in the output, we compute the limit points lim(W (R)), thus
deducing a set of regular chains R1, . . . , Re such that the union of their quasi-
components equals the Zariski closure W (R). The algorithm Difference [5] is then
called to test whether or not there exists a pair R,R′ of regular chains of R such
that the inclusion W (R) ⊆ W (R′) holds. In Table 1, the columns T and #(T)

Table 1. Removing redundant components.

Sys T #(T) d-1 d-0 R #(R)

f-744 14.360 4 1 3 432.567 1
Liu-Lorenz 0.412 3 3 0 216.125 3
MontesS3 0.072 2 2 0 0.064 2

Neural 0.296 5 5 0 1.660 5
Solotareff-4a 0.632 7 7 0 32.362 7

Vermeer 1.172 2 2 0 75.332 2
Wang-1991c 3.084 13 13 0 6.280 13

denote respectively the timings spent by Triangularize and the number of regular
chains returned by this command; the columns d-1 and d-0 denote respectively
the number of 1-dimensional and 0-dimensional regular chains; the columns R
and #(R) denote respectively the timings spent on removing redundant com-
ponents in the output of Triangularize and the number of regular chains in the
output irredundant decomposition. As we can see in the table, most of the de-
compositions are checked to be irredundant, which we could not do before this
work by means of triangular decomposition algorithms. In addition, the three re-
dundant 0-dimensional components in the Kalkbrener triangular decomposition
of system f-744 are successfully removed in about 7 minutes, whereas we cannot
draw this conclusion in more than one hour by a brute-force method comput-
ing the generators of the saturated ideals of regular chains. Therefore, we have
verified experimentally the benefits provided by the proposed algorithms.



9 Concluding remarks

In this paper, we proposed an algorithm for computing the limit points of the
quasi-component of a regular chain in dimension one by means of Puiseux series
expansions. In the future, we will investigate how to compute the limit points in
higher dimension with the help of the Abhyankar-Jung theorem [21].
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