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Abstract

We discuss parametric polynomial systems, with algorithms for real root classification and trian-
gular decomposition of semi-algebraic systems as our main applications. We exhibit new results
in the theory of border polynomials of parametric semi-algebraic systems: in particular a geomet-
ric characterization of its “true boundary” (Definition 1). In order to optimize the corresponding
decomposition algorithms, we also propose a technique, that we call relaxation, which can sim-
plify the decomposition process and reduce the number of components in the output. This paper
extends our earlier works [6, 7].

Key words: triangular decomposition, regular semi-algebraic system, border polynomial,
effective boundary, relaxation.

1. Introduction

Triangular decompositions of semi-algebraic systems were introduced in [6] together with an algorithm for
generating those decompositions. This algorithm can either be eager , computing the entire decomposition,
or lazy, only computing a subset of it corresponding to the highest (complex) dimensional components, and
deferring lower-dimensional components. While computing the entire decomposition is known to have a worst-
case complexity which is doubly-exponential in the number of variables [4, 11], under plausible assumptions
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the lazy variant has a singly-exponential complexity. Despite this encouraging complexity result, it is still
desirable to improve the practical efficiency of both types of decomposition. In a subsequent paper [7], various
research directions have been investigated in order to reach this goal. Two of those directions have lead us to
new results which extend our work beyond the topic of triangular decomposition of semi-algebraic systems.
We have chosen to dedicate this new article to these two directions while work extending the other materials
of [7] will be reported elsewhere.

Solving polynomial systems of arbitrary dimension has natural connections with solving parametric poly-
nomial systems. Algorithms for real root classification [20], cylindrical algebraic decomposition [9] and tri-
angular decomposition of semi-algebraic systems [6] illustrate this observation. The two subjects that we
discuss in this paper are based on the notion of a border polynomial introduced in [20] which is at the core
of all algorithms solving parametric polynomial systems via triangular decomposition.

The contributions of the present paper enhance the tools supporting those algorithms in two ways. First,
the notion of an effective boundary replaces that of a border polynomial with a more geometrical (and
less algebraic) framework, leading to deeper results: Example 2 illustrates the difference between these two
notions. Secondly, the technique of relaxation allows us to greatly simplify computations based on border
polynomials, such as real root classification and triangular decomposition of semi-algebraic systems. To better
understand the significance of these two contributions, we present informally our main results on effective
boundaries. Then we illustrate the technique of relaxation with a detailed example.

One central question in the study of parametric polynomial systems is the dependence of the solutions
on the parameter values. As discussed in [15], there are different ways to express the fact that the zeros of a
parametric system “usually” depend continuously on the parameters in a neighborhood of a given parameter
value. The notion of a border polynomial, introduced in [20], and the notion of a discriminant variety, intro-
duced in [12] aims at capturing the parameter values at which this dependence is not continuous, i.e. where
“things change qualitatively”. Other similar but more restrictive notions like “generalized discriminant” and
“generalized resultant” were introduced in [14].

Although the original definition of a border polynomial suggested in [20] is similar to the one of [15], thus
based on topological considerations, the study of this notion in subsequent papers is primarily algebraic,
which leads to some “unhelpful” results. Here’s an example of those. For a squarefree regular chain T ,
regarded as a real parametric system in its free variables u, the border polynomial BP (T ) encodes the locus
of the u-values at which T has lower rank or at which T is no longer a squarefree regular chain. (See §2
for the notions related to triangular decomposition and regular chains.) Consequently, for each connected
component C of the complement of the real hypersurface defined by BP (T ) the number of real solutions of
the regular chain T is constant at any point of C. However, BP (T ) is not an invariant of the variety W (T ), 1

which is a bottleneck in designing better variety decomposition algorithms based on the notion of a border
polynomial.

The definition and properties of a discriminant variety of a parametric system as presented in [12] are
more intrinsic. However, this notion does not behave well under “splitting”. More precisely, if the solution
set of a parametric system S is the union of the solution sets of two parametric systems S1 and S2 (S, S1,
S2 having of course the same parameters and unknowns), there is a priori no simple relationship between
the minimal discriminant varieties of S, S1 and S2.

With the notion of an effective boundary, we aim at identifying a tool which is as independent as possible
of algebraic considerations, while capturing the desirable geometrical properties of a border polynomial. In
our ISSAC paper [7], the notion of an effective boundary was essentially restricted to squarefree regular
chains. If T is such a set, we established in [7] that the effective boundary of T (regarded as a parametric
system in its free variables) is an invariant of W (T ) that is, unchanged when replacing T by T ′ as long as

1 W (T ) is the Zariski closure of the quasi-component of T , see Section 2
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W (T ) = W (T ′) holds. In many ways, our notion of effective boundary is related to the “better projection”

ideas in the classical [10, and many others] approach to cylindrical algebraic decomposition.

In Section 3, we study the notion of an effective boundary of a well-determined parametric system S,

see Definition 1. Among the various results of this section, we highlight three of them below. The first

one, see Theorem 1, states that the effective boundaries of S capture the topological properties of the border

polynomials of S. The second, namely Theorem 3, states that transformations of S that are “generically” not

significant leave the effective boundaries of S unchanged. Equivalently, this means that two well-determined

parametric semi-algebraic systems S1, S2, which “generically” have the same zero set, have also the same

effective boundaries. Definition 3 specifies the notion of genericity that we use here. The third of these main

results, see Theorem 4, states that the effective boundaries are well-behaved under splitting. More precisely,

if S, S1, S2 are three well-determined parametric semi-algebraic systems (with the same parameters and

unknowns) such that a zero of S is generically either a zero of S1 or a zero of S2, and such that S1 and S2

have no common effective boundaries, then the set of effective boundaries of S is the union of those of S1 and

S2. This type of result is clearly an important property in view of designing efficient decomposition algorithms.

And again, neither border polynomials, nor discriminant varieties enjoy properties like Theorem 4.

Another important direction aiming at improving the practical efficiency of decomposition algorithms

is to obtain criteria that prevent redundant computations. A well-known example of such techniques are

Buchberger’s criteria for the computation of Gröbner bases. Our technique of relaxation, presented in Sec-

tion 4, was motivated by a similar purpose for the computation of triangular decomposition of semi-algebraic

systems. Let us introduce this technique by an example. Consider the semi-algebraic system

S = [f = 0, x− b > 0], where f = ax3 + bx− a and a < b < x.

The LazyRealTriangularize command [5] of the RegularChains library in Maple implements an algorithm

of [6] which computes a triangular decomposition of S as follows. It starts by computing the border polynomial

B = {a, b1, b2} of the system S, regarded as parametric in (a, b), together with the fingerprint polynomial

set 2 (FPS) F = {a, b1, b2, b, p1, p2, p3}. where b1 = ab3 + b2 − a, b2 = 27a3 + 4b3, p1 = 2b3 + 1, p2 = b3 − 4

and p3 = b− 1. Then, the LazyRealTriangularize command returns one regular semi-algebraic system, namely

S1 = [Q1, {f = 0, x− b > 0}], corresponding to the main component of S and seven un-evaluated recursive

calls, corresponding to components of lower dimension. The regular semi-algebraic system S1 consists of one

equation, namely f = 0, one inequality, namely x − b > 0, and Q1 which is a quantifier-free formula given

below.

Q1 = (b < 0 ∧ p1 6= 0 ∧ b1 6= 0 ∧ a 6= 0 ∧ b2 6= 0)
∨

(p1 > 0 ∧ b1 > 0 ∧ a < 0 ∧ p3 > 0 ∧ p2 6= 0 ∧ b2 6= 0)
∨

(b > 0 ∧ p1 > 0 ∧ b1 6= 0 ∧ a < 0 ∧ p3 < 0 ∧ p2 < 0 ∧ b2 6= 0)
∨

(b > 0 ∧ p1 > 0 ∧ b1 < 0 ∧ a > 0 ∧ p3 < 0 ∧ p2 < 0 ∧ b2 > 0).

The above mentioned seven recursive calls are all of the form LazyRealTriangularize([p = 0, f = 0, x− b > 0]),

for each polynomial p ∈ F . The key observation is that some of these recursive calls can simply be avoided

if some of the strict inequalities in Q1 are relaxed, that is, replaced by non-strict inequalities. The results of

§4, and in particular Theorem 7 provide criteria for this purpose. Returning to our example, when relaxation

techniques are used, LazyRealTriangularize(S) will produce one regular semi-algebraic system S2 = [Q2, {f =

0, x− b > 0}], and three un-evaluated recursive calls, where

2 See Section 2 for a definition of this term
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Q2 = (b ≤ 0 ∧ b1 6= 0 ∧ a 6= 0 ∧ b2 6= 0)
∨

(p1 ≥ 0 ∧ b1 > 0 ∧ a < 0 ∧ p3 ≥ 0 ∧ b2 6= 0)
∨

(b ≥ 0 ∧ p1 ≥ 0 ∧ b1 6= 0 ∧ a < 0 ∧ p3 ≤ 0 ∧ p2 ≤ 0 ∧ b2 6= 0)
∨

(b ≥ 0 ∧ p1 ≥ 0 ∧ b1 < 0 ∧ a > 0 ∧ p3 ≤ 0 ∧ p2 ≤ 0 ∧ b2 > 0).

Moreover, it turns that these three un-evaluated recursive calls are of the form LazyRealTriangularize([p =
0, f = 0, x − b > 0]), for p ∈ B. Continuing with that example, one can check that the full triangular
decomposition of S produces 16 and 9 regular semi-algebraic systems, without and with relaxation tech-
niques, respectively. Therefore, relaxation techniques can help simplify the output of our algorithms. More
experimental evidence are provided in Section 4.3.

As we shall see in Section 4 with Example 13, relaxation techniques apply not only to triangular de-
composition of semi-algebraic systems but also to real root classification. Moreover, with Theorem 7, they
provide an algorithmic criterion for deciding whether a given semi-algebraic set, represented by a Tarski
quantifier-free formula, is open or not.

This enhancement of Theorem 7 was not present in our ISSAC 2011, i.e. paper [7]. On the front of effective
boundaries, many results are new developments w.r.t. to [7].:
• the more general definition of an effective boundary (Definition 1) which has lead us to revisit the proofs
of Theorems 1 and 2,

• most of the properties of effective boundaries under splitting; in particular Theorems 3 and 4 which are
completely new,

• the study of the effective boundaries of a parametric equation, in particular Theorem 6, which is also new.

2. Triangular decomposition

We summarize below the notions and notations introduced in [7]. For the definition of a triangular de-
composition of an algebraic system we refer to [8, 18] and for that of an semi-algebraic system, we refer
to [6].

Topology. We recall a few basic definitions for the reader’s convenience. We refer to [16] for more advanced
notions in general topology and to [2] for topological questions related to real algebraic geometry, such
as Sard’s Theorem. Let X be a topological space and S be a subset of X . The interior (resp. closure) of
S, denoted by S̊ (resp. S) consists of all points x ∈ X such that there exists a neighborhood (resp. each
neighborhood) of x contained in S (resp. contains a point of S). The frontier of S, denoted by ∂S consists
of all points x ∈ X such that every neighborhood of x contains at least one point of S and at least one
point not of S. We have S = S̊ ·∪ ∂S. The subset S is said to be connected if it is connected under its
subspace topology, that is, if it is not the union of two (or more) disjoint nonempty open sets of S. Assuming
X not empty, the maximal connected subsets of X are called the connected components of X . Note that
the connected components of X form a partition of X . In our proofs, arguments involving connectivity and
dimension are always made for subsets of the Euclidean space Rn, which is a fully normal topological space
(while spaces endowed with Zariski Topology may not even be normal topological spaces). In particular, this
context establishes an equivalence between the topological (or axiomatic) and algebraic notions of dimension.

Zero sets. In this paper, we use “Z” to denote the zero set over C of a polynomial system, involving equations
and inequations. We use “ZR” to denote the zero set over R of a semi-algebraic system. If a semi-algebraic
set S is finite, we denote by #(S) the number of its distinct points. In Rn, we use the Euclidean topology;
in Cn, we use the Zariski topology.
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Polynomials. Throughout this paper, all polynomials are in Q[x], with ordered variables x = x1 < · · · < xn.
We order monomials of Q[x] by the lexicographical ordering induced by x1 < · · · < xn. Then, we require that
the coefficient of the leading monomial of every polynomial in a regular chain or in a border polynomial set
(defined hereafter) is equal to 1. Let p be a polynomial in Q[x] \Q. We denote by mvar(p), init(p), mdeg(p)
and der(p) respectively the greatest variable appearing in p (called the main variable of p), the leading
coefficient of p w.r.t. mvar(p) (called the initial of p), the degree of p w.r.t. mvar(p) (called the main degree
of p) and the derivative of p w.r.t. mvar(p). Let v ∈ x. Denote by lc(p, v), deg(p, v), der(p, v), discrim(p, v)
respectively the leading coefficient, degree, derivative and discriminant of p w.r.t. v.

Triangular set. Let T ⊂ Q[x] be a triangular set, that is, a set of non-constant polynomials with pairwise
distinct main variables. Denote by mvar(T ) the set of main variables of the polynomials in T . A variable v
in x is called algebraic w.r.t. T if v ∈ mvar(T ), otherwise it is said free w.r.t. T . If no confusion is possible,
we shall always denote by u = u1, . . . , ud and y = y1, . . . , ym (m+ d = n) respectively the free and the main
variables of T . When T is regarded as a parametric system, the free variables in T are its parameters.

Let hT be the product of the initials of the polynomials in T . We denote by sat(T ) the saturated ideal of
T : if T is the empty triangular set, then sat(T ) is defined as the trivial ideal 〈0〉, otherwise it is the colon
ideal 〈T 〉 : h∞

T . The quasi-component W (T ) of T is defined as V (T ) \ V (hT ). Denote by W (T ) the Zariski
closure of W (T ), which is equal to V (sat(T )). Denote by WR(T ) the set ZR(T ) \ ZR(hT ).

Iterated resultant. Let p, q ∈ Q[x] \Q. Let v = mvar(q). Denote by res(p, q, v) the resultant of p, q w.r.t. v.
Let T ⊂ Q[x] be a triangular set. We define res(p, T ) inductively: if T is empty, then res(p, T ) = p; otherwise
let v be the largest variable occurring in T , then res(p, T ) = res(res(p, Tv, v), T<v), where Tv and T<v denote
respectively the polynomials of T with main variables equal to and less than v.

Regular chain. A triangular set T ⊂ Q[x] is called a regular chain if: either T is empty; or (letting t be the
polynomial in T with maximum main variable), T \ {t} is a regular chain, and the initial of t is regular 3

w.r.t. sat(T \ {t}). Let H ⊂ Q[x]. The pair [T,H ] is a regular system if each polynomial in H is regular
modulo sat(T ). A regular chain T or a regular system [T,H ], is squarefree if for all t ∈ T , the polynomial
der(t) is regular w.r.t. sat(T ). Given u ∈ Rd, we say that a squarefree regular system [T,H ] specializes well
at u if hT (u) 6= 0 and [T (u), H(u)] is a squarefree regular system. A regular chain is called d-dimensional if
it has exactly d free variables, that is, if its saturated ideal has dimension d.

Semi-algebraic system. Consider four finite polynomial sets F = {f1, . . . , fs}, N = {n1, . . . , nk}, P =
{p1, . . . , pe}, and H = {h1, . . . , hℓ} of Q[x]. Let N≥ denote the set of non-negative inequalities {n1 ≥
0, . . . , nk ≥ 0}. Let P> denote the set of positive inequalities {p1 > 0, . . . , pe > 0}. Let H 6= denote the set
of inequations {h1 6= 0, . . . , hℓ 6= 0}. We denote by S = [F,N≥, P>, H 6=] the semi-algebraic system (SAS)
defined as the conjunction of the constraints f1 = · · · = fs = 0, N≥, P>, H 6=. When N≥, H 6= are both empty,
the system S is called a basic semi-algebraic system and denoted by [F, P>].

Triangular semi-algebraic systems. Let T ⊂ Q[x] be a regular chain with u = u1, . . . , ud as free variables
and y = y1 < · · · < ym as main variables, so that x \ y = u. Let H and P be as above. The pair [T, P>]
(resp. [T,H 6=]) is called a squarefree triangular semi-algebraic system, STSAS for short, if [T, P ] (resp. [T,H ])
forms a squarefree regular system. More generally, the triple [T,H 6=, P>] is called an STSAS if [T,H ∪ P ] is
a squarefree regular system. A point of Rd+m is a zero of [T,H 6=, P>] if it is a zero of [T,H 6=] making each
polynomial of P> strictly positive. Unless specified differently, we will regard [T, P>], [T,H 6=] , [T,H 6=, P>]
as parametric semi-algebraic systems with u as parameters and y as unknowns.

Regular semi-algebraic system. Let T and P be as above. let Q be a quantifier-free formula of Q[u]. We
say that R := [Q, T, P>] is a regular semi-algebraic system if

3 We say that a polynomial p ∈ Q[x] is regular w.r.t. an ideal I ⊂ Q[x] if p is neither null nor a zero-divisor modulo I
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(i) Q defines a non-empty open semi-algebraic set S in Rd;
(ii) [T, P ] specializes well at every point of S,
(iii) at each u ∈ S, the specialized system [T (u), P (u)>] has at least one real zero.
Regular semi-algebraic systems play the role for semi-algebraic systems that regular systems play from
algebraic systems, that is, the zero set of any semi-algebraic systems can be decomposed into finitely many
zero sets of regular semi-algebraic systems. See [6] for details.

Well-determined parametric polynomial system. Let S be a semi-algebraic system defined by polynomials
in Q[u,y] where u = u1, . . . , ud are regarded as parameters and y = y1 < · · · < ym as unknowns. Since we
are solving parametrically over the reals, we consider, the canonical projection ΠU:

ΠU : ZR(S) ⊂ Rd+m 7→ Rd

ΠU(u1, . . . , ud, y1, . . . , ym) = (u1, . . . , ud)

Let us denote by F (resp. I) the set of the polynomials of S defining equations (resp. inequations or strict
inequalities). The ideal 〈F 〉 : (

∏
h∈I h)∞ is called the ideal associated with S. We say that S is well-determined

if the set u is an ⊆-maximal algebraic independent variable set modulo the ideal associated with S. Note
that the notion of “ well-determined” is more general than the notion of “well-behaved” used in [12], in the
sense that it is less restrictive for F . Indeed, the polynomial set F is not required to have exactly m elements,
nor to generate a radical ideal in Q(u)[y].

Example 1. Consider the following semi-algebraic system

S = {x(x2 + ay + b) = x(y2 + bx+ a) = 0, x > 0}

with parameters a, b. The ideal generated by the polynomials defining the equations of S is

〈x〉 ∩ 〈x2 + ay + b, y2 + bx+ a〉.

The polynomial system S′ = {x(x2+ay+b) = x(y2+bx+a) = 0} with parameters a, b is not well-determined,
since {a, b} is not a maximal algebraic independent set modulo 〈x〉. However, the ideal associated to S is
I := 〈x2+ay+b, y2+bx+a〉, and {a, b} is a maximal algebraic independent variable set modulo I. Therefore,
S is a well-determined parametric semi-algebraic system.

Border polynomial [20, 21, 6, 15]. Let S be a well-determined parametric polynomial system of Q[u,x].
Let α ∈ Cd (resp. α ∈ Rd). We say that S is Z-continuous (resp. ZR-continuous) at α if there exists
a neighborhood Oα of α such that for any two parameter values α1, α2 ∈ Oα, we have #(Z(S(α1)) =
#(Z(S(α2)) (resp. #(ZR(S(α1)) = #(ZR(S(α2))). A polynomial b in Q[u] is called a border polynomial of
the parametric polynomial system S over C (resp. over R) if the zero set Z(b) (resp. ZR(b)) contains all the
points at which S is not Z-continuous (resp. not ZR-continuous). In this paper, unless specified differently, all
border polynomials are considered over R. Let R be either a squarefree regular chain T , or a squarefree regular
system [T,H ], or an STSAS [T, P>] in Q[x]. We denote by Bsep(T ), Bini(T ), Bineqs([T, P ]) the set of the
irreducible factors of

∏
t∈T res(discrim(t,mvar(t)), T ),

∏
t∈T res(init(t), T ), and

∏
f∈P res(f, T ), respectively.

The set BP(R) defined as Bsep(T ) ∪ Bini(T ) ∪ Bineqs([T, P ]) is called a border polynomial set of S. Lemma 1
justifies the terminology while Lemma 2 states the fundamental property of border polynomials.

Lemma 1. With the above notations, the polynomial
∏

f∈BP(R) f is a border polynomial of R.

Lemma 2. Let b ∈ Q[u] be a border polynomial of S. Then, for any connected component C of ZR(b 6= 0)
and for any two parameter values u1, u2 in C, we have #ZR(R(u1)) = #ZR(R(u2)).
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Fingerprint polynomial set. Let T, P be as above and let B ⊂ Q[u] be finite. The polynomial system
R = [B 6=, T, P>] is called a pre-regular semi-algebraic system, if each p ∈ BP([T, P>]) is a factor of some
polynomial in B. Suppose R is a pre-regular semi-algebraic system. A polynomial set D ⊂ Q[u] is called a
fingerprint polynomial set (FPS) of R if:
(i) we have ZR(D 6=) ⊆ ZR(B 6=) and,
(ii) for all α, β ∈ ZR(D 6=) with α 6= β, if the signs of p(α) and p(β) are the same for all p ∈ D, then R(α)

has real solutions if and only if R(β) does.

Open CAD operator [17, 3, 6]. Let u = u1 < · · · < ud be ordered variables. For a polynomial p ∈ Q[u],
denote by factor(p) the set of the non-constant irreducible factors of p; for A ⊂ Q[u], define factor(A) =
∪p∈A factor(p). For a squarefree polynomial p, the open projection operator (oproj) w.r.t. a variable v ∈ u is
defined as below:

oproj(p, v) := factor(discrim(p, v) lc(p, v)).

If p is not squarefree, then we define oproj(p, v) := oproj(p∗, v), where p∗ is the squarefree part of p; then
for a polynomial set A, we define oproj(A, v) := oproj(Πf∈A f, v).

Given A ⊂ Q[u] and x ∈ {u1, . . . , ud}, denote by der(A, x) the derivative closure of A w.r.t. x. The open
augmented projected factors of A, denoted by oaf(A), is defined as follows. Let k be the smallest positive
integer such that A ⊂ Q[u1, . . . , uk] holds. Let C = factor(der(A, uk)). Then, we have
(1) if k = 1, then oaf(A) := C,
(2) if k > 1, then oaf(A) := C ∪ oaf(oproj(C, uk)).

3. Effective Boundaries

Throughout this section, we consider a well-determined parametric semi-algebraic system S with param-
eters u = u1, u2, . . . , ud and unknowns y = y1 < · · · < ym, with d ≥ 1 and m ≥ 1.

Definition 1 formalizes the notion of an effective boundary for S and thus extends the definition we
introduced in [7] for the restricted case of squarefree triangular semi-algebraic systems. Moreover Definition 1
is somewhat simpler than that of [7] and relies on the following observation. Let h ⊂ Rd be a real hypersurface
defined by f(u) = 0, for f ∈ Q[u]. Let α be a point of h at which h is not singular. Then there exists an open
ball O centered at α such that O \h admits two connected components (in the topological space induced by
O).

This result could be derived from the implicit function theorem. It turns out that it is also an immediate
consequence of Lemma 2.15 in [1] by S. Basu, A. Gabrielov, and N. Vorobjov. This lemma is a generalization
of the Jordan–Brouwer Theorem that suits our above observation. A similar result appearing in the literature
is another generalization of the Jordan–Brouwer Theorem by E.L. Lima [13], see the remark at the end of
this latter paper.

Definition 1 (Effective boundary). Let h ⊂ Rd be a hypersurface defined by an irreducible polynomial
p ∈ Q[u]. We say that h is an irreducible effective boundary for S if there exists an open ball O ⊂ Rd

satisfying the following three conditions:
(a) O \ h consists of two connected components O1, O2,
(b) for i = 1, 2 and any two points α1, α2 ∈ Oi we have #Z(S(α1)) = #Z(S(α2)),
(c) for any β1 ∈ O1, β2 ∈ O2 we have #Z(S(β1)) 6= #Z(S(β2)).
When the above holds, we say that O is a witness ball for h and we say that p is an irreducible effective
border factor. The union of all irreducible effective boundaries of S is called the effective boundary of S,
denoted by eb(S); the set of all irreducible border factors is denoted ebf(S).

The following example illustrates the notion of an effective boundary.
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Example 2. Consider the semi-algebraic system S = {ax2 + bx+ 1 = 0} with parameters a, b. One border
polynomial of S is a(b2 − 4a). One can verify from Figure 1 that ZR(b

2 − 4a = 0) is an irreducible effective
boundary of S. Meanwhile, ZR(a = 0) is not, as the behavior on both sides of this hypersurface is the same,
even though the behavior on the line itself is different. Indeed, all (a, b)-values in the unfilled area (note
that a = 0 is filled) will specialize S to have 2 real solutions while all (a, b)-values in the filled region will
specialize S to have no real solutions.

Fig. 1. Effective and non-effective boundary

The following lemma is a basic property of witness balls that we often use in the proof of other results of
this section.

Lemma 3. With the notations of Definition 1, let O be a witness ball of the hypersurface h defined by
ZR(p = 0). Recall that O\h consists of two connected components O1, O2. Then O∩ZR(p = 0) has dimension
d− 1 and we have

O ∩ ∂ O1 ∩ ∂ O2 = O ∩ ZR(p = 0).

Proof. Observe that {O1, O2, O ∩ ZR(p = 0)} forms a partition of O. Observe also that O,O1, O2 have
dimension d. On one hand this implies that any open ball centered at a point of O ∩ ZR(p = 0) meets both
O1, O2. Thus we have O ∩ZR(p = 0) ⊆ O ∩ ∂ O1 ∩ ∂ O2. On the other hand, both O ∩ ∂ O1 and O ∩ ∂ O2 are
clearly contained in O ∩ ZR(p = 0). Thus ∂ O1 ∩ ∂ O2 ⊇ O ∩ ZR(p = 0) also holds. Moreover, it is clear that
O ∩ ZR(p = 0) has dimension d− 1. 2

The following proposition shows that we have much flexibility to choose witness balls for a given irreducible
effective boundary.

Proposition 1. Let p be an irreducible effective border factor for the effective boundary h of S. Let b be a
non-zero squarefree polynomial in Q[u]. Then there exists a witness ball Ob of h satisfying (Ob \h) ⊂ ZR(b 6=
0). Moreover, if h 6⊆ ZR(b = 0) holds, one can choose Ob such that Ob ⊂ ZR(b 6= 0) holds. Furthermore, in
both cases, we can impose the following additional condition: the set Ob ∩ h does not contain any singular
points of h.

Proof. We first prove the second claim and, thus, we assume that h 6⊆ ZR(b = 0) holds. Let O be a witness
ball for h. Since O \ h is not connected, the dimension of h ∩ O must be d − 1. From our assumption, it
follows that (h∩O) \ZR(b = 0) is not empty. Let α be a point in (h ∩O) \ZR(b = 0). Let r be the distance
from α to ZR(b = 0). Consider Ob an open ball centered at α and with radius less than r. Then we have
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Ob ⊂ ZR(b 6= 0). It is easy to verify that Ob is a witness ball for h as well. This proves our second claim. We
now prove the first claim of the proposition. If h 6⊆ ZR(b = 0) holds, the conclusion follows immediately from
the second claim. So let us assume from now on that h ⊆ ZR(b = 0) holds, i.e. p divides b. Moreover, since b is
squarefree, we have gcd(p, b

p
) = 1. Therefore, we have h 6⊆ ZR(

b
p
= 0). Applying the second claim, we deduce

that there exists a witness ball Ob for h such that Ob ⊂ ZR(
b
p
6= 0). It is obvious that (Ob \ h) ⊂ ZR(b 6= 0)

holds as well. Finally, the third claim of the proposition follows from Sard’s Theorem. 2

3.1. Border polynomials and effective boundaries

The goal of this section is to show the notion of an effective boundary captures the topological properties
of border polynomials. A first step in this construction is Theorem 1, which has also another important
consequence: the effective boundaries of S are computable, which was not obvious from Definition 1. A
second step is Theorem 2 which states that the effective boundaries of S play essentially the same role as
its border polynomials in the context of parametric polynomial system solving. That is, in broad terms,
the effective boundaries of S capture the locus of the points in the parameter space at which S is not
ZR-continuous

4 .
Before entering the results of this section, let us recall that the hypersurface defined by a border polynomial

of S partitions the parameter space into regions, where the number of real solutions is locally invariant. One
might imagine that the effective boundaries of S are strongly related to a border polynomial of S, thanks to
this property. Indeed, we have the following proposition stating this relation.

Proposition 2. Let b ∈ Q[u] be a border polynomial of S and let p ∈ Q[u] be a polynomial defining an
irreducible effective boundary of S. Then, the polynomial p divides b in Q[u].

Proof. We proceed by contradiction. Let h be the irreducible effective boundary of S defined by p. Suppose
h 6⊆ ZR(b = 0) holds. Then by Proposition 1, we can choose a witness ball O of h such that O ⊂ ZR(b 6= 0)
holds. By Lemma 2, for any two points α1, α2 ∈ O, the equality #ZR(S(α1)) = #ZR(S(α2)) holds. That is
a contradiction with the fact that O is a witness ball, see point (c) in Definition 1. 2

Remark 1. The above Proposition 2 justifies the terminology of an irreducible effective border factor. This
result also implies that there are only finitely many irreducible effective border factors, and thus only finitely
many irreducible effective boundaries. Therefore, the set eb(S) itself is a hypersurface and ebf(S) is a finite
set in Q[u].

Remark 2. It follows from Proposition 2 that eb(S) is a subset of the intersection of all the hypersurfaces
ZR(b) where b is any border polynomial of S. In addition, the set eb(S) is also a subset of the minimal
discriminant variety W of S. This follows from the fact if {g1, . . . , ge} ⊂ Q[u] is a basis of the ideal I(W ) ⊂
Q[u], then each polynomial gi is a border polynomial of S, see [15].

With Definition 1, one may wonder whether the set eb(S) is computable. The following theorem will lead
to a positive answer.

Theorem 1. Let b be a border polynomial of S. An irreducible factor p of b is an irreducible effective border
factor of S if and only if there exist two connected components C1, C2 of ZR(b 6= 0) satisfying the following
two properties:

(1) ∂ C1 ∩ ∂ C2 ∩ ZR(p = 0) is of dimension d− 1,
(2) for each pair (α1, α2) ∈ C1 × C2 we have #ZR(S(α1)) 6= #ZR(S(α2)).

4 See Section 2 for that term.
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Proof. “⇒”. Assume that p is an effective border polynomial factor of S. Let O be a witness ball for p.
According to Proposition 1, we can choose O such that O \ ZR(p = 0) ⊂ ZR(b 6= 0) holds. By definition of a
witness ball, the set O \ZR(p = 0) consists of two connected components, say O1, O2. Let C1 and C2 be the
connected components of ZR(b 6= 0) containing O1 and O2, respectively. Since ∂ C1∩∂ C2∩ZR(p = 0) clearly
contains ∂ O1 ∩ ∂ O2 ∩ ZR(p = 0), it follows from Lemma 3 that ∂ C1 ∩ ∂ C2 ∩ ZR(p = 0) is of dimension
d− 1. Now the above property (2) follows directly from the definition of a border polynomial.

“⇐”. Suppose there exist two connected components C1, C2 of ZR(b 6= 0) satisfying the above (1) and
(2) in the theorem statement. Let u∗ be a non-singular point of ZR(p = 0) belonging to (∂ C1 ∩ ∂ C2 ∩
ZR(p = 0)) \ ZR(

b
p
= 0). As in Proposition 1, we can choose an open ball Ou∗ centered at u∗ such that

Ou∗ ⊆ ZR(
b
p
6= 0). Moreover, since u∗ is a non-singular, we can choose Ou∗ such that the set Ou∗ \ZR(p = 0)

consists of two connected components.
Let C be the connected component of ZR(

b
p
6= 0) containing u∗. Observe that Ou∗ ⊂ C holds, which

implies

Ou∗ \ ZR(p = 0) = Ou∗ ∩ (C \ ZR(p = 0)). (1)

Observe that C1 ⊂ C and C2 ⊂ C hold as well. Indeed Ou∗ ∩ C1, Ou∗ ∩ C2 are both not empty and C1, C2

are connected components of ZR(b 6= 0). Therefore, both C1 and C2 are two of the connected components of
C \ ZR(p = 0) (which is contained in ZR(

b
p
6= 0)). Observe now that we clearly have

Ou∗ ∩C = (Ou∗ ∩ C1) ∪ (Ou∗ ∩ C2) ∪ (Ou∗ \ (C1 ∩ C2)). (2)

Since C1, C2 are two connected components of C \ ZR(p = 0), Relations (1) and (2) lead to the following
disjoint union

Ou∗ \ ZR(p = 0) = Ou∗ ∩ (C \ ZR(p = 0))

= (Ou∗ ∩ C1) ·∪ (Ou∗ ∩ C2) ·∪ (((C \ ZR(p = 0)) \ (C1 ∪ C2)) ∩Ou∗) ,
(3)

Recall that Ou∗ \ ZR(p = 0) has exactly two connected components. Since (Ou∗ ∩ C1) and (Ou∗ ∩ C2) are
both not empty, we deduce

Ou∗ \ ZR(p = 0) = (Ou∗ ∩ C1) ·∪ (Ou∗ ∩ C2).

Then, clearly Ou∗ is a witness ball for ZR(p = 0). 2

Remark 3. The above theorem implies that the effective border factors are computable. This can be achieved
with the adjacency information and sample points of a cylindrical algebraic decomposition of ZR(b 6= 0).
However, computing effective border factors is not the goal of this article and we will return to this question
in a future paper.

The following theorem states that, given a border polynomial b of S, the complement of eb(S) and the
complement of ZR(b = 0) have similar properties w.r.t. to the number of solutions of S.

Theorem 2. Let b ∈ Q[u] be a border polynomial of S. If two points α1, α2 ∈ ZR(b 6= 0) are in the same
connected component of the complement of eb(S), then #ZR(S(α1)) = #ZR(S(α2)) holds.

Proof. Let p ∈ Q[u] be a squarefree polynomial such that ZR(p = 0) = eb(S) holds. Recall that p divides b.
Let g := b

p
. By definition of p, no irreducible factors of g is an effective border factor.

Let C be a connected component of ZR(p 6= 0). Since p divides b, every connected component of ZR(b 6= 0)
is a subset of a connected component of ZR(p 6= 0). Thus, each connected component of C ∩ ZR(b 6= 0) is a
connected component of ZR(b 6= 0). Consequently, we can consider C1, . . . , Ce the connected components of
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ZR(b 6= 0) which are also all the connected components of C ∩ ZR(b 6= 0). We observe that, if e = 1 holds,

then the conclusion of the theorem follows immediately from the definition of a border polynomial.

Assume from now on that e > 1 holds. We can write down a finite sequence S := C′
1, . . . , C

′
k (k ≥ e) such

that: (1) each C′
i (i = 1 · · · k) is one of C1, . . . , Ce; (2) each Ci (i = 1 · · · e) is in S; (3) for all 1 ≤ j < k,

the dimension of ∂ C′
i ∩ ∂ C′

i+1 is d− 1. For each 1 ≤ i ≤ e, let ni be the number of real solutions of S after

specialization at a point of C′
i. The proof of this theorem will be complete as soon as we have established

that all ni’s are equal. Proceeding by contradiction, we assume that the conclusion is false. Thus, there must

exists 1 ≤ j < e such that nj 6= nj+1 holds, which implies that there exists an irreducible factor of g which
is also an irreducible effective border factor according to Theorem 1. This is a contradiction to the definition

of g. 2

3.2. Properties of effective boundaries under splitting

The main objective of this section is to show that effective boundaries are well-behaved under splitting,
which is an important property in view of efficient algorithm design. To be more precise, Theorem 4 states

that if the solution set of a parametric polynomial system S decomposes generically (in some technical sense)

into the union of the zero sets of two parametric polynomial systems S1 and S2, then every effective boundary

of S is either an effective boundary of S1 or an effective boundary of S2. Moreover, if S1 and S2 have no

common effective boundaries, then each of their effective boundaries is also an effective boundary of S.
Neither border polynomials, nor discriminant varieties enjoy a similar property, as illustrated by Example 7.

A first step toward Theorem 4 is a notion of “genericity” defined through Definitions 2 and 3, illustrated

by Examples 3, 4 and 5, then studied by means of Propositions 3, 4 and 5. In fact, those propositions provide

fundamental examples that are used in our subsequent results. The proofs of those propositions are routine

and not reported here.
A second step is Theorem 3 which states that the effective boundaries of S depend only on its main

components.

Definition 2. Let I be the ideal associated with the parametric system S. Recall that we assume that S is
well-determined. Let p be an associated prime ideal of I. The ideal p is called a main prime component of I

(or S) if u is a ⊆-maximal algebraically independent set modulo p.

Definition 3. Let S1, . . . , Se be finitely many well-determined parametric polynomial systems in Q[u,x]
with parameters u. We say that an assertion on S1, . . . , Se is generically true if there exists a polynomial

t ∈ Q[u] such that for each parameter value α with t(α) 6= 0, the assertion is true after specializing the

systems S1, . . . , Se at α.

Next we show some of the related concepts based on the “generically true” statements.

Example 3. A well-determined parametric polynomial system S is said to be generically zero-dimensional if

there exists b ∈ Q[u] such that for each parameter value α with b(α) 6= 0, the ideal of S(α) is zero-dimensional.

Example 4. Let S1, S2 be well-determined parametric semi-algebraic systems in Q[u,x] with parameters

u. We say that the two systems S1 and S2 generically have the same set of solutions, or are generically

equivalent if there exists t ∈ Q[u] such that for each parameter value α, with t(α) 6= 0, the solution set of

S1(α) equals that of S2(α). One can check that this property is equivalent to S1 and S2 have the same set

of main components. Similarly, one can check that S1 and S2 generically have no common solutions if and
only S1 and S2 have no common main components.
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Example 5. Let S1, S2 be well-determined parametric semi-algebraic systems in Q[u,x] with parameters
u. The solution set of S is generically a disjoint union of the solution set of S1 and that of S2 if and only if
the following conditions hold:
• S1 and S2 have no common main component,

• the union of the sets of main components of S1 and that of S2 equals to the set of main components of S.

The proof of the following statements, namely Proposition 3, 4 and 5, is rather straight forward.

Proposition 3. Let S1 := [F1=, N≥, H1 6=, P>] and S2 := [F2=, N≥, H2 6=, P>] be two parametric well-
determined semi-algebraic systems 5 of Q[u,y] such that we have

〈F1〉 : (
∏

h∈P∪H1

h)∞ = 〈F2〉 : (
∏

h∈P∪H2

h)∞

Then, the systems S1 and S2 are generically equivalent.

Proposition 4. Let S1 := [T1=, N≥, H1 6=, P>] and S2 := [T2=, N≥, H2 6=, P>] be two parametric well-

determined semi-algebraic systems of Q[u,y] for which T1, T2 are squarefree regular chains with u as main
variables and such that sat(T1) = sat(T2) holds. Assume also that every polynomial in N ∪ H1 ∪ H2 ∪ P
is regular w.r.t. sat(T ). Then, the systems S1 and S2 are generically equivalent.

Proposition 5. Let S1 := [T=, N≥, H 6=, P>], S1 := [T1=, N≥, H1 6=, P>] and S2 := [T2=, N≥, H2 6=, P>] be
three parametric well-determined semi-algebraic systems of Q[u,y] for which T , T1, T2 are squarefree regular
chains with u as main variables and such that sat(T ) = sat(T1) ∩ sat(T2) holds. Assume also that every
polynomial in N ∪ H ∪ H1 ∪ H2 ∪ P is regular w.r.t. sat(T1). Then, the solution set of S is generically
the union of the solution set of S1 and that of S2.

Theorem 3 states that the effective boundaries of S depend only on its main components. That is, if
two parametric polynomial systems have the same solutions generically, then they share the same effective
boundary.

Theorem 3. Given two well-determined parametric semi-algebraic systems S1 and S2, suppose S1 and S2

are generically equivalent. Then we have eb(S1) = eb(S2).

Proof. Let t ∈ Q[u] such that we have

∀α ∈ ZR(t 6= 0) =⇒ ZR(S1(α)) = ZR(S2(α)).

Let b1 ∈ Q[u] and b2 ∈ Q[u] be border polynomials of S1 and S2, respectively. Let h be an irreducible
effective boundary of S1 and let O be a witness ball of h such that we have O \ h ⊂ ZR(t 6= 0). Clearly, O
is also a witness ball for h as an irreducible effective boundary of S2. By the same arguments, we can show
that any irreducible effective boundary of S2 is also an effective boundary of S1. 2

Corollary 1 ([7]). For any two STSASes R1 = [T1, H1>, P>] and R2 = [T2, H2>, P>] satisfying sat(T1) =
sat(T2), we have eb(R1) = eb(R2).

Remark 4. According to Theorem 3, the inequations are irrelevant to the effective boundaries of a paramet-
ric semi-algebraic system. However, the inequalities do contribute to effective boundaries (see Example 6).

5 Please refer to Section 2 for these notations.
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Example 6. The following two parametric semi-algebraic systems illustrate that the inequalities do con-
tribute to effective boundaries:

S1 := {f = 0}, S2 := {f = 0, g > 0},

where f := x2 − ax+ b, g := x + a. S1 The set of the effective border factors of S1 is {−4b+ a2} while the
set of the effective border factors of S2 is {−4b+ a2, b+ 2a2}.

Since we aim at decomposing the input system (using triangular decomposition), an interesting problem to
investigate is the relation between the effective boundaries of this input system and those of the subsystems
in one of its (triangular) decomposition. The following theorem is dedicated to this problem.

Theorem 4. Given three well-determined parametric semi-algebraic systems S, S1 and S2. We assume that
the solution set of S is generically a disjoint union of the solution sets of S1 and S2. Then we have ebf(S) ⊆
ebf(S1) ∪ ebf(S2). Moreover, if ebf(S1) ∩ ebf(S2) = ∅ holds, then we have ebf(S) = ebf(S1) ∪ ebf(S2).

Proof. By assumption, there exists a polynomial t ∈ Q[u] such that for all α ∈ ZR(t 6= 0) we have

ZR(S(α)) = ZR(S1(α)) ·∪ ZR(S2(α)).

Let us denote the effective border polynomial factor sets of S, S1, S2 respectively by E, E1, E2. Let b, b1,
b2 be border polynomials of S, S1, and S2, respectively.

We first prove that ebf(S) ⊆ ebf(S1) ∪ ebf(S2) holds. To do so, we proceed by contradiction and consider
an irreducible polynomial p ∈ Q[u] such that p ∈ E and p 6∈ E1 ∪E2 both hold. Thus, there exists a witness
ball O of ZR(p = 0) such that

O ⊂ ZR(
∏

f∈E1

f
∏

f∈E2

f 6= 0) and O \ ZR(p = 0) ⊂ ZR(t b1 b2 6= 0)

both hold, thanks to Proposition 1 (and its proof). Let O1, O2 be the two connected components of O\ZR(p =
0). Let β1 ∈ O1, β2 ∈ O2. Clearly, O is a subset of a connected component of ZR(

∏
f∈E1

f 6= 0). According
to Theorem 2, we have #ZR(S1(β1)) = #ZR(S1(β2)). Similarly, we have #ZR(S2(β1)) = #ZR(S2(β2)).

Since ZR(S(βi)) = ZR(S1(βi)) ·∪ ZR(S1(βi)) holds for i ∈ {1, 2}, we deduce that #ZR(S(β1)) = #ZR(S(β2))
holds, which is a contradiction to the fact that O is a witness ball of ZR(p = 0) (see property (c) in Defini-
tion 1).

Now, we assume that ebf(S1) ∩ ebf(S2) = ∅ holds and we prove that ebf(S) = ebf(S1) ∪ ebf(S2) holds.
In fact, we just need to show that we have ebf(S1) ∪ ebf(S2) ⊆ ebf(S). We proceed again by contradiction.
Without loss of genericity, we assume E1 \E 6= ∅ and consider a polynomial p ∈ E1 \E. Thus there exists a
witness ball O of p (as an effective border factor of S1) such that we have

O ⊆ ZR(
∏

f∈E

f
∏

f∈E2

f 6= 0) and O \ ZR(p = 0) ⊂ ZR(t b b2 6= 0).

Let O1, O2 be the two connected components of O\ZR(p = 0). Let β1 ∈ O1, β2 ∈ O2. Clearly, O is a subset of
a connected component of ZR(

∏
f∈E f 6= 0). According to Theorem 2, we have #ZR(S(β1)) = #ZR(S(β2)).

Similarly, we have #ZR(S2(β1)) = #ZR(S2(β2)). Since ZR(S(βi)) = ZR(S1(βi)) ·∪ ZR(S1(βi)) holds for
i ∈ {1, 2} we deduce that #ZR(S1(β1)) = #ZR(S1(β2)) holds, which contradicts the fact that O is a witness
ball of p as an effective border factor of S1. 2

A decomposition property such as Theorem 4 does not hold for border polynomials or discriminant
varieties [12]. Indeed, for border polynomials and discriminant varieties, the projection of the intersection of
the “main components” count. Let’s see a concrete but simple example illustrating this fact.
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Example 7. Let S := {f1f2 = 0}, S1 := {f1 = 0} and S2 := {f2 = 0} be three systems with parameters
(a, b, c), where

f1 := ax2 + bx+ c,

f2 := bx2 + cx+ a.

Clearly, the solution set of S is generically a disjoint union of the solution sets of S1 and S2. For each of S,
S1 and S2, its border polynomial factors define its minimal discriminant variety. The border polynomial set,
B, of S is:

{a, b,−4ab+ c2,−4ac+ b2, c+ a+ b, c2 − ac+ a2 − cb− ab+ b2}.

The border polynomial set, B1, of S1 is: {a,−4ac+b2}. The border polynomial set, B2, of S2 is: {b,−4ab+c2}.
The difference B \ (B1 ∪B2) is {c+ a+ b, c2 − ac+ a2 − cb− ab+ b2}.

Corollary 2. Given three squarefree regular chains T , T1, T2 and a polynomial set P in Q[u,y]. We consider
the STSASes R := [T, P>], R1 := [T1, P>], R2 := [T2, P>] and assume the following properties
(i) sat(T ) = sat(T1) ∩ sat(T2) holds,
(ii) R1, R2 have no common effective boundary.

Then ebf(R1) ∪ ebf(R2) = ebf(R) holds.

Theorem 5. Let R = [B 6=, T, P>] be a pre-regular semi-algebraic system and D = oaf(ebf(R)). Then D∪B
is an FPS of R.

Proof. By Theorem 3 in [6] (which states a property of the oaf operator) each realizable strict sign condition
on D defines a connected component of ZR(

∏
f∈D f 6= 0).

Let α1, α2 be any two points realizing the same strict sign condition on D ∪ B, say S. Let C := ZR(S).
Observe that C is contained in a connected component of ZR(

∏
f∈D f 6= 0), thus contained in a connected

component of ZR(
∏

f∈ebf(R) f 6= 0).

Since α1, α2 are in the same connected component of ZR(
∏

f∈ebf(R) f 6= 0) and since α1, α2 ∈ ZR(
∏

f∈B f 6=

0), Theorem 2 implies that we have #ZR(R(α1)) = #ZR(R(α2)). Therefore, by definition, D∪B is an FPS
of R. 2

Remark 5. Let R = [B 6=, T, P>] be a pre-regular semi-algebraic system. Theorem 5 implies that we can
rely on ebf(R), rather than B, in order to compute an FPS of R. Since B can be much larger than ebf(R),
this provides an opportunity to speedup computations in practice.

Observe that Corollary 1 shows that, for an STSAS, its inequations do not participate to the effective
boundary set. However inequalities do.

Corollary 2 indicates that we can recycle the computation of an FPS for S in order to compute an FPS
of S1 and an FPS of S2, when S splits to S1 and S2.

3.3. Effective boundaries of squarefree triangular semi-algebraic systems

In this section, we shall discuss effective boundaries in the context of triangular decomposition. Example 2
shows that some of the factors of a (or even the minimal) border polynomial may not be effective. The main
result is that the border polynomial factors related purely to initials are not effective border polynomial
factors.

Theorem 6. Let x be a variable and f ∈ Q[u, x] be non-constant and such that the term of degree zero in x
is not zero. Denote by δ the discriminant of f w.r.t. x. Let S be the parametric polynomial system {f = 0}
with u as parameters. Let p ∈ Q[u] be an irreducible effective border polynomial factor of S. Then p divides
δ in Q[u].
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We will need the notation and two lemmas below in order to prove Theorem 6.

Notation 1. Let r be a rational number and let

p = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

be a polynomial in Q[u][x], where x is a variable. We denote by M(p, x, r) the polynomial

xn

(
(an(r +

1

x
)n + an−1(r +

1

x
)n−1 + · · ·+ a1(r +

1

x
) + a0

)
.

It is easy to check that the initial of M(p, x, r) is anr
n + an−1r

n−1 + · · ·+ a1r + a0, that is, p(r).

Lemma 4. Let F := {f0, f1, . . . , fk} be a set of polynomials in Q[u] with gcd(f0, f1, . . . , fk) = 1, then there

exists only finitely many rational numbers r such that gcd(f0,
∑k

i=1 r
ifk) 6= 1 holds.

Proof. We prove this by contradiction. Assume that there are infinitely many rational numbers r such that
gcd(f0,

∑k

i=1 r
ifk) 6= 1 holds. Then, by the pigeonhole principle, there must exist an irreducible factor g of

f0 such that for infinitely many rational numbers r we have g | gcd(f0,
∑k

i=1 r
ifi). Let rj , for j = 0 · · · k,

be distinct rational numbers such that g | gcd(f0,
∑k

i=1 r
i
jfi) holds. Let qj = f0+

∑k
i=1 r

i
jfi, for j = 0 · · · k.

Then g | qj holds as well. Observe that we have



1 r0 r20 · · · rk0

1 r1 r21 · · · rk1
...

...
...

...
...

1 rk r2k · · · rkk







f0

f1
...

fk




=




q0

q1
...

qk




.

Therefore g | fi holds, for i = 0 · · · k, since each fi can be represented as a linear combination of q0, . . . , qk.
Therefore g is a common divisor of f0, f1, · · · , fk, which contradicts the assumption that gcd(f0, f1, . . . , fk) =
1. 2

Lemma 5. Let f := anx
n + an−1x

n−1 + · · ·+ a1x+ a0 and g := bmxm + bm−1x
m−1 + · · ·+ b1x+ b0 be two

polynomials of Q[u][x]. Let r be a rational number such that f(r)g(r) 6= 0 holds. Denote by f∗ and g∗ the
polynomials M(f, x, r) and M(g, x, r), respectively. Then we have
(i) res(f, g, x) = res(f∗, g∗, x) holds,
(ii) discrim(f, x) = discrim(f∗, x) holds.

In particular, if f and g are primitive w.r.t. x over Q[u], then one can choose r such that

gcd(init(f, x), init(f∗, x)) = 1 and gcd(init(g, x), init(g∗, x)) = 1

both hold.

Proof. Let α1, . . . , αn be the n roots of f w.r.t. x in Q[u], the algebraic closure of Q[u]. Similarly, let
β1, . . . , βn be the m roots of g w.r.t. x in Q[u]. We make the following observations.
(a) From the Sylvester matrix, it is clear that res(f, g, x) = res(xnf( 1

x
), xmg( 1

x
), x) holds.

(b) From the Poisson formula, that is,

res(f, g, x) = amn bnm
∏

1≤i≤n,1≤j≤m

(βj − αi),

it is easy to see that for any rational number r, we have res(f, g, x) = res(f(x+ r), g(x+ r), x).
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Hence, we deduce that res(f, g, x) = res(xnf( 1
x
), xmg( 1

x
), x) = res(f∗, g∗, x) holds. Note the n roots of f∗

are 1
αi−r

(for i = 1, . . . , n). Recall that we have init(f∗, x) = f(r). Therefore, thanks again to the Poison
formula, the discriminant discrim(f∗, x) is given by

discrim(f∗, x) = f(r)2n−2
∏

1≤i<j≤n(
1

αi−r
− 1

αj−r
)2

= f(r)2n−2
∏

1≤i<j≤n(
αj−αi

(αi−r)(αj−r))
2

= f(r)2n−2 discrim(f, x)
a
2n−2

n

( an

f(r))
2n−2

= discrim(f, x)

The second part follows from Lemma 4. 2

Some results similar to the first part of the above Lemma 5 can be found in [3]. We are ready to give a
proof of Theorem 6.

Proof. Let r be a rational number such that f(r) 6= 0 (regarding f as a univariate polynomial in x) and
gcd(init(f), init(f∗)) = 1 where f∗ := M(f, x, r).

It is obvious that for each parameter value α such that init(f∗)(α) an(α) a0(α) 6= 0, the number of real
solutions of f = 0 equals to that of f∗ = 0. Let h be an irreducible effective boundary of f = 0 and O be a
witness ball such that O \ h ⊂ ZR(a0 6= 0). Then it is easy to verify that O is also a witness ball for h to
be an irreducible effective boundary of f∗ = 0. Therefore, the set of irreducible effective border polynomial
factors of f = 0 and that of f∗ = 0 are the same.

Note that init(f, x) δ (resp. init(f∗, x) δ ) is a border polynomial of f (resp. f∗). According to Propo-
sition 2, if p ∤ discrim(f, x), then p divides both init(f, x) and init(f∗, x), which is a contradiction to
gcd(init(f, x), init(f∗, x)) = 1. 2

Remark 6. Theorem 6 can be generalized to a regular chain instead of a single polynomial. This can be
stated as follows. Let T be a squarefree regular chain and view T as a parametric semi-algebraic system
with the free variables of T as parameters; let p be an irreducible effective border factor of the parametric
semi-algebraic system T . Then, the polynomial p divides Bsep(T ) in Q[u]. Our current proof involves a fair
amount of intermediate notions and results, thus it will be reported in a future paper.

3.4. Effective boundaries: algorithmic benefits

In this section, we show how the notion of an effective boundary and related results can speed up the
computation of finger polynomial sets in two major scenarios.

We stress the fact that we are not computing effective boundaries explicitly. However, we take advantage of
the fact that Theorem 6 and Corollary 2 (or more generally Theorem 4) provide criteria certifying that a given
polynomial is not an effective border polynomial factor. We illustrate these criteria in the above examples.
We note that obtaining an efficient algorithm for computing effective boundaries is work in process.

Given a pre-regular semi-algebraic system R = [B 6=, T, P>], all known approaches for computing an FPS
of R proceeds by searching an FPS (hopefully small in size) from a large “universal” FPS set, such as oaf(B)
(proposed in [6]) or oaf(ebf(S))∪B (proposed in Theorem 5 and based the notion of an effective boundary).
The following simple example shows the difference between these two “universal” FPSes and why the latter
is computationally advantageous.

Example 8. Let f1 := x − b2 − a c, f2 := x2 − a x − b c. Let b1 := res(f1, f2, x) = (−c b − b2 a − a2 c +
b4 + 2 c b2 a + a2 c2) and b2 := discrim(f2, x) = a2 + 4 b c. Note R := [{b1, b2}, [f1 f2], ∅] is a pre-regular
semi-algebraic system. It is easy to deduce that ebf(R) = {b2}, since f1 is of degree 1 and b1 is not a
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effective border polynomial factor according to Theorem 4. With the projection order a > b > c, we have
oaf({b2}) = {a, b, c, 4 c b+a2} (4 polynomials, three of them being variables) and oaf({b1, b2}) = {a, b, c,−1+
c,−c+ b3, c− 1

2 , 4 c b+a2, 12 − c+ c2, c2− c+ 1
8 , 4 c

3− 4 c2+ b3, c+ b3− 4 c2+4 c3,− 1
2 b

2−a c+ c b2+ c2 a, 1
16 −

1
4 c+

5
4 c

2−2 c3+c4, b3 c2−b3 c+ 1
4 b

3+4 c3−8 c4+4 c5,−c b−b2 a−a2 c+b4+2 c b2 a+a2 c2} (15 polynomials
in total, much more complicated).

In practice, in the process of computing an FPS of a pre-regular semi-algebraic system, one usually ends
up producing a set with richer properties, that we call a comprehensive finger polynomial set and that we
define as follows. Let S be a well-determined parametric polynomial system with parameters u. Then a
polynomial set D ⊂ Q[u] is called a comprehensive fingerprint polynomial set of S if for all α, β ∈ ZR(D 6=)
with α 6= β the following holds: if the signs of p(α) and p(β) are the same for all p ∈ D, then the number
of solutions of S(α) is finite and the same as the number of solutions of S(β). It is easy to check that any
comprehensive FPS of the pre-regular semi-algebraic system R = [B 6=, T, P>] containing the B set is also an
FPS of R.

Now, when computing triangular decompositions of semi-algebraic system, the following scenario often
occurs: a pre-regular semi-algebraic system R := [B=, T, P>] splits into two subsystems R1 := [B 6=, T1, P>]
and R2 := [B 6=, T2, P>] such that ZR(R) = ZR(R1) ·∪ZR(R2) and Bsep(T1) ∩ Bsep(T2) = ∅ both hold. When
this happens, we have ebf(R1) ∩ ebf(R2) = ∅ and, moreover, a comprehensive FPS of R will often be a
(comprehensive) FPS of R1 and R2. The following example (where the set-theoretical difference of two
semi-algebraic sets is wanted) illustrates this computationally advantageous scenario.

Example 9. Let R := [{a, b, a − b}, [(x2 − a) (x2 − b)], { }] be a pre-regular semi-algebraic system with
parameters a, b. Let R1 := [{a, b, a− b}, [(x2 − a)], { }] be another such system, which encodes the solutions
of ZR(R)\ZR(x

2− b = 0). Suppose that one has already checked that D := {a, b, a− b} was a comprehensive
FPS. Suppose also that the current task is to compute an FPS of R1. Then one can check that D is indeed
an FPS of R1 at little cost since the sample points of each connected components of ZR(D 6=) have already
been computed when checking that D was an FPS of R.

4. Relaxation techniques

Let S be a parametric polynomial system in Q[u,y], where u are the parameters and y are the unknowns.
A fundamental question is the following.

Question 1. For which parameter values of u, does S have a prescribed number, say k, of distinct real
solutions?

Question 1 is a generalization of the existential quantifier elimination problem, which can be answered
by classical techniques such as cylindrical algebraic decomposition. If S is a well-determined system, letting
b be a border polynomial of S one may ask a weaker but strongly related question. In many applications,
however, answering this latter question is sufficient.

Question 2. Assuming that b(u) 6= 0 holds, give a necessary and sufficient condition on u for S to have k
distinct real solutions?

Question 2 is usually addressed in the following way, via real root classification [20, 19].
(0) Set B to be the irreducible factors of b; initialize F to B;
(1) Check whether there is a disjunction of strict sign conditions of polynomials in F , providing the desired

necessary and sufficient condition.
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(2) If so, return the disjunction of sign conditions; if not, enlarge F in an appropriate manner and return to
Step (1).

The above procedure terminates within finitely many steps. We stress the fact, however, that this produces
an answer to a variant of Question 2. Indeed, when the above procedure terminates, a necessary and sufficient
condition for S to have k distinct real solutions is determined by strict sign conditions of polynomials in
F , rather than B. It is, therefore, natural to consider the parameter values u satisfying the following two
conditions

(i)
∏

f∈B f(u) 6= 0 holds and,
(ii) there exists f ∈ F \B such that f(u) = 0 holds.
and determine which of those parameter values yield k distinct real solutions for S. This leads to a recursive
process, which is potentially very costly.

One natural way to tackle this question is to check whether or not the strict sign conditions of the
polynomials in F \ B can be relaxed into non-strict ones. Such a technique is called relaxation and is the
topic of this section. To help the reader focusing on the main idea, the results of this section are stated for
k taking the value “at least one” instead of a positive integer value. But all the results of this section hold
also for k being any positive integer or even any positive integer range.

4.1. Relaxation

The following notions of sign condition and relaxation appear in [2] in a more general setting. Throughout
this section, we consider a finite set F ⊂ Q[x] such that the polynomials of F are pairwise coprime.

Definition 4. We call any semi-algebraic system of the form
∧

f∈F
f σf 0, (4)

where σf is one of >,<,≥,≤, a sign condition on F , or an F -sign condition. An F -sign condition is called
strict if every σf involved belongs to {>,<}. An F -sign condition C is called realizable if C has at least one
real solution. If clear from context, F -sign condition is abbreviated to sign condition.

Definition 5 (Relaxation of sign condition). For an F -sign condition C given as in (4) and a subset E of

F , the (partial) relaxation of C w.r.t. E, denoted by C̃E , is defined by

∧
p∈F

p σ̃p 0 where σ̃p =





≤, if p ∈ E and σp is <,

≥, if p ∈ E and σp is >,

σp, otherwise.

Let Q =
∨e

i=1 Ci be a quantifier-free formula, where each Ci is an F -sign condition. The relaxation of Q

w.r.t. E, denoted by Q̃E , is defined as
∨e

i=1 C̃i

E
. If E contains only one polynomial h, then we also denote

the relaxation by Q̃h.

Remark 7. If every conjunction Ci of Q is a strict F -sign condition, Q defines an open set. It is natural
to ask whether Q̃E , the relaxation of Q w.r.t. E, defines an open set or not. It turns out that this openness
testing problem is strongly related to Question 2, see Theorem 7. We first supply two examples. Example 10
illustrates the case where the relaxed formula still defines an open set while Example 11 supplies a case
where the formula no longer defines an open set after relaxation is applied.

Example 10. It is easy to see that {x ∈ R | x2 − 2 > 0, x > 0} and {x ∈ R | x2 − 2 > 0, x ≥ 0} are equal
and open.
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Fig. 2. The curves b = 0 and p = 0 in red and blue, respectively.

Example 11. Now consider two polynomials b = y2 − x2(x + 1) and p = y2 + (x − 1/2)2x(x + 1). The
complement of the hypersurface b = 0 in R2, the (x, y)-plane, consists of three regions, namely R1, R2, R3,
as shown on Figure 11. A quantifier-free formula describing R1 is Q = (b < 0 ∧ p > 0). The relaxation of Q

w.r.t. p is Q̃p = (b < 0 ∧ p ≥ 0), whose zero set contains the region R1 and an isolated point (x = 1
2 , y = 0)

from the region R3. Therefore, the zero set of Q̃p is not open.

Remark 8. As we will see with Theorem 7, a question related to the relaxation of sign conditions is to
decide whether a given semi-algebraic set, represented by a Tarski quantifier-free formula, is open or not.
This problem can be solved via quantifier elimination. Given a semi-algebraic set S in Rn represented by a
quantifier-free formula Q, consisting of constraints of polynomials in Q[x], whether or not S is open can be
characterized by the following quantified formula:

∀(x1, x2, . . . , xn) ∃ǫ ∀(a1, a2, . . . , an)
(
Q(x1, x2, . . . , xn) ∧ ǫ > 0 ∧

∑n

i=1(xi − ai)
2 < ǫ

)
=⇒ Q(a1, a2, . . . , an).

By using a general purpose quantifier elimination routine, one can eliminate the quantified variables in the
above formula. and obtain “true” (resp. “false”) if S is open (resp. not open). This method will introduce
n + 1 extra variables and so is not of practical interest. However, the criterion for testing whether a semi-
algebraic set (represented by a Tarski quantifier-free formula) is open or not, provided by Theorem 7, reduces
to testing whether a semi-algebraic set is empty or not, without introducing extra variables. This is a much
more attractive result in terms of algebraic complexity. Note that checking whether or not a semi-algebraic
set is empty as well as computing the set-theoretic difference of two semi-algebraic set can be done by
algorithms presented in [7] and the software tools in the RegularChains library [5].

Notation 2. Let us fix notation for the rest of Section 4. Let S,B, F be as in the discussion preceding
Section 4.1, thus S is a parametric polynomial system in Q[u,y], with u as parameters and B,F are finite
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subsets of Q[u] such that B ⊆ F holds and B is the set of the irreducible factors of a border polynomial of
S. In addition, let D ⊆ Q[u] be such that we have B ⊆ D ⊆ F . Let Qi (i = 0, 1) be a quantifier-free formula
in disjunctive form such that each conjunction clause C of it is in the following form: C = ∧f∈F f σf 0,
where σf ∈ {>,<} if f ∈ D and σf ∈ {≥,≤} if f ∈ F \D. Moreover, assume that for any parameter value
u such that D(u) 6= 0 holds, the system S(u) has (resp. has no) real solutions if and only if Q1(u) (resp.
Q0(u)) is true. Let h be a polynomial in D \ B. Denote by Dh the set D \ {h}. Denote by ∂i (i = 0, 1) the

frontier of the set ZR(Qi). Denote by Gi (i = 0, 1) the set ZR(Q̃i

h
)∩ZR(Qi). Finally, let Si (i = 0, 1) be the

semi-algebraic set such that ZR(Q̃i

h
) = Gi ·∪ Si holds, where the symbol ·∪ denotes disjoint union.

4.2. Main Theorem

The following result implies a practical criterion for relaxation. Indeed Condition (i) can be tested algo-
rithmically. When this condition holds, Condition (ii) is the desired conclusion. Examples 12 and 13 illustrate
how to implement this technique.

Theorem 7. The following three statements are equivalent:

(i) we have ZR(Q̃1

h
)∩ZR(Q̃0

h
) = ∅,

(ii) for any u ∈ ZR(D
h
6=), the system S(u) has real solutions (resp. no real solutions) if and only if Q̃1

h
(u)

(resp. Q̃0

h
(u)) is true,

(iii) both sets ZR(Q̃0

h
) and ZR(Q̃1

h
) are open.

Before providing the proof, we supply several properties of the objects involved in Theorem 4.2, through
a series of lemmas.

Lemma 6. ZR(Q0) and ZR(Q1) are both open sets.

Proof. On one hand, ZR(D 6=) = ZR(Q0) ·∪ZR(Q1). On the other hand, there exists a finite set of connected
open sets, O = {C1, . . . , Ce}, such that ZR(D 6=) = ∪e

i=1Ci holds. By Lemma 2, for each Ci ∈ O, either
Ci ⊆ ZR(Q0) or Ci ⊆ ZR(Q1) holds. Therefore, each of ZR(Q0) and ZR(Q1) is a union of finitely many
elements of O and is are open. 2

Lemma 7. For each parameter value u ∈ ZR(Q0)∩ZR(B 6=), the specialized system S(u) has no real solu-

tions; for each parameter value u ∈ ZR(Q1)∩ZR(B 6=), the specialized system S(u) has real solutions.

Proof. Let u ∈ ZR(Q0)∩ZR(B 6=). There exists a connected component C of ZR(Q0) and a connected com-
ponent C′ of ZR(B 6=) such that u ∈ C ∩ZR(B 6=) ⊆ C′ holds. Since C ⊆ ZR(Q0) ⊆ ZR(B 6=), we have C ⊆ C′.
Since the number of real solutions of R is constant above C′ (by Lemma 2) and R has no real solutions
above C, we conclude that S(u) has no real solutions. The other part of the lemma is proved similarly. 2

Note thatGi = ZR(Q̃i

h
)∩ZR(Qi) ⊆ ZR(B 6=)∩ZR(Qi) holds for i = 0, 1. We have the following proposition

as a direct consequence of Lemma 7.

Proposition 6. For each parameter value u ∈ G0, the specialized system S(u) has no real solutions; for
each parameter value u ∈ G1, the specialized system S(u) has real solutions.

Lemma 8. The following relations hold:

∂0 ∪ ∂1 = ZR(
∏

f∈D

f) and ∂0 ∩ ∂1 ⊆ ZR(
∏

f∈B

f).
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Proof. By Lemma 6, both ZR(Q0) and ZR(Q1) are open sets. We have ∂0 ∪ ∂1 = ∂(ZR(Q0) ∪ ZR(Q1)),
since ZR(Q0) ∩ ZR(Q1) = ∅ holds. Therefore, we have

∂0 ∪ ∂1 = ZR(Q0) ∪ ZR(Q1) \ (ZR(Q0) ∪ ZR(Q1))

= ZR(D 6=) \ (ZR(D 6=))

= ZR(
∏

f∈D f).

By Lemma 7, the sets ZR(Q0)∩ZR(B 6=) and ZR(Q1)∩ZR(B 6=) are necessarily disjoint. Therefore, the set

ZR(Q0)∩ZR(Q1)∩ZR(B 6=) is empty. Since ∂0 ⊆ ZR(Q0) and ∂1 ⊆ ZR(Q1) hold, the conclusion follows. 2

Lemma 9. For i = 0, 1, the following relations hold:

(a) ZR(Qi)∩ZR(D
h
6=) ⊆ ZR(Q̃i

h
),

(b) ZR(Q̃0

h
) ∪ ZR(Q̃1

h
) = ZR(D

h
6=).

Proof. Since ZR(Q̃i

D
) is a closed set, we have ZR(Qi) ⊆ ZR(Q̃i

D
). Therefore, we have

ZR(D
h
6=)∩ZR(Qi) ⊆ ZR(D

h
6=)∩ZR(Q̃i

D
) = ZR(Q̃i

h
).

By (a), we have ZR(D
h
6=) ∩ (∪i=0,1ZR(Qi)) ⊆ ∪i=0,1ZR(Q̃i

h
), which implies ZR(D

h
6=) ⊆ ZR(Q̃0

h
) ∪ ZR(Q̃1

h
).

And ZR(Q̃0

h
) ∪ ZR(Q̃1

h
) ⊆ ZR(D

h
6=) holds since all polynomials in Dh remain strict after relaxing h. 2

Proposition 7. The inclusions S0 ⊆ ZR(h = 0) ∩ ZR(Q̃0

h
) and S1 ⊆ ZR(h = 0) ∩ ZR(Q̃1

h
) both hold.

Proof. Let i ∈ {0, 1}. Recall that we have Gi = ZR(Q̃i

h
) ∩ ZR(Qi) and ZR(Q̃i

h
) = Gi ·∪Si. Therefore, we

have ZR(Qi) ⊆ Gi and Si = ZR(Q̃i

h
) \ Gi ⊆ ZR(Q̃i

h
) \ ZR(Qi) ⊆ ZR(h = 0). Hence, we deduce that

Si ⊆ ZR(h = 0)∩ZR(Q̃i

h
) holds. 2

Lemma 10. Both S1 ⊆ G0 and S0 ⊆ G1 hold.

Proof. By Lemma 8, we have ∂0 ∪ ∂1 = ZR(
∏

f∈D f = 0). Since h ∈ D, we have ZR(h = 0) ⊆ ∂0 ∪ ∂1,
which implies that ZR(h = 0) can be rewritten as

ZR(h = 0)∩ ((∂0 \ ∂1) ·∪ (∂1 \ ∂0) ·∪ (∂0 ∩ ∂1)).

By Lemma 8, we have ∂0 ∩ ∂1 ⊆ ZR(
∏

f∈B f = 0), which implies that ZR(D
h
6=)∩ ∂0 ∩ ∂1 = ∅ holds. Let

Sh be ZR(h = 0) ∩ ZR(D
h
6=). Then Sh can be rewritten as (ZR(h = 0) ∩ ZR(D

h
6=) ∩ (∂0 \ ∂1)) ·∪ (ZR(h =

0) ∩ ZR(D
h
6=) ∩ (∂1 \ ∂0)).

Intersecting both sides of relation (a) of Lemma 9 with ZR(Qi), we obtain ZR(D
h
6=)∩ZR(Qi) ⊆ Gi, which

implies that ZR(D
h
6=)∩ ∂i ⊆ Gi holds. Therefore, we have Sh ⊆ G0 ∪G1.

Since ZR(Q̃i

h
) ⊆ ZR(D

h
6=), we have ZR(h = 0)∩ZR(Q̃i

h
) ⊆ Sh. By Proposition 7, we have Si ⊆ ZR(h =

0)∩ZR(Q̃i

h
). Therefore, we also have Si ⊆ Sh. Finally, we deduce the desired conclusion by combining the

inclusions Si ∩Gi = ∅, Si ⊆ Sh, and Sh ⊆ G0 ∪G1. 2

Corollary 3. We have ZR(Q̃1

h
)∩ZR(Q̃0

h
) = S0 ·∪S1.
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Proof. We can rewrite ZR(Q̃1

h
)∩ZR(Q̃0

h
) as the disjoint union (S1 ∩G0) ·∪ (S0 ∩G1) ·∪ (S1 ∩S0) ·∪ (G0 ∩G1).

By Proposition 6, we haveG0 ∩G1 = ∅. Together with Lemma 10, we have ZR(Q̃1

h
)∩ZR(Q̃0

h
) = S0 ·∪S1. 2

Next, we prove Theorem 7.

Proof. By Lemma 9, we first observe that ZR(Q̃0

h
) ∪ ZR(Q̃1

h
) = ZR(D

h
6=) holds. We now prove four impli-

cations, which establish the theorem.

(i) ⇒ (ii): By Corollary 3, we have S0 = S1 = ∅ and ZR(Q̃i

h
) = Gi (i = 0, 1). Then the conclusion follows

from Proposition 6.
(ii) ⇒ (i): We proceed by contradiction. Assume (i) does not hold. There exists u ∈ ZR(D

h
6=), such that

both Q̃0

h
(u) and Q̃1

h
(u) are true. This is a contradiction to (ii).

(ii) ⇒ (iii): This follows from Lemma 6.

(iii) ⇒ (ii): On one hand, each connected component of ZR(Q̃1

h
) is open; thus, it contains at least one

connected component of ZR(Q1) as subset. On the other hand, each connected component of ZR(Q̃1

h
) is

a subset of a connected component of ZR(B 6=0). So (ii) follows by Lemma 2.
2

Example 12 (A simple example where relaxation enlarges the zero set). Consider

Q0 := (xy − 1 < 0 ∧ x 6= 0) ∨ (xy − 1 > 0 ∧ x > 0), Q1 := (xy − 1 > 0 ∧ x < 0).

Let D := {xy− 1, x}. It is easy to verify that Q0, Q1, D satisfy the assumptions in Theorem 7. Observe that

Q̃0

x
= (xy − 1 < 0) ∨ (xy − 1 > 0 ∧ x ≥ 0), Q̃1

x
= (xy − 1 > 0 ∧ x ≤ 0)

and ZR(Q̃0

x
)∩ZR(Q̃1

x
) = ∅ hold. Moreover, we have ZR(Q̃1

x
) = ZR(Q1) and ZR(Q̃0

x
)\ZR(Q0) = ZR(xy−1 <

0 ∧ x = 0) 6= ∅. Thus the “relaxed set” ZR(Q̃0

x
) is larger than ZR(Q0).

Example 13 (An example based on a parametric system study). Consider the semi-algebraic system

S := {x2 + y − a = 0, y2 + x− b = 0}

with parameters a, b. The polynomial

p := 256a3 − 288ab+ 27 + 256b3 − 256a2b2

is a border polynomial of S. Our goal is to compute the conditions on parameters (a, b) such that S will
specialize to have real solutions, provided that p 6= 0 holds.

Denote by q the polynomial ab− 9
16 . Figure 3 illustrates the curves p = 0 and q = 0 in the (a, b)-plane. As

a first step, one may obtain a “partial solution”: provided that q 6= 0, a 6= 0, and p 6= 0 all hold, the system
S has real solutions if and only if the quantifier free formula

Q1 := ((a > 0 ∧ p > 0) ∨ (p < 0 ∧ q > 0)) ∧ (a 6= 0 ∧ q 6= 0 ∧ p 6= 0)

holds. Let Q0 be the quantifier free formula such that, provided that q 6= 0, a 6= 0, and p 6= 0 all hold, the
system S has no real solutions if and only if Q0 holds.

To get a complete answer, we need to consider the parameter values concealing q, p and a. The relaxation
technique can help with studying the parameters annulling p and a here (for those that annul q, we can not
use relaxation).

Consider the quantifier free formula Q̃1

p
. Note that the set ZR(Q̃1

p
) is still open, since ZR(Q̃1

p
) ∩

ZR(Q̃0

p
) = ∅ holds and Theorem 7 applies; note also that ZR(Q̃1

p
) \ ZR(Q1) is not empty. Moreover,
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Fig. 3. The curves p = 0 and q = 0 in red and blue, respectively.

we deduce that provided that q 6= 0, a 6= 0, the system S has real solutions if and only if the quantifier free

formula Q̃1

p
holds. Similar computation can be carried out for the parameter values canceling a.

Finally, we obtain the following complete answer: Provided that q 6= 0 holds, the system S has real
solutions if and only if the following quantifier free formula holds:

(a ≥ 0 ∧ p ≥ 0 ∧ q 6= 0) ∨ (p ≤ 0 ∧ q > 0).

4.3. Experimentation

In this section, we report on experimenting with the relaxation technique implied by the results of Sec-
tion 4.2. To this end, we have added an option to the RealTriangularize command in order to take advantage of
Theorem 7. When a recursive call occurs in the conditions described in the discussion preceding Section 4.1,
we test whether Condition (i) of Theorem 7 holds or not. If it does, we deduce from Condition (ii) that the
recursive call can be avoided. With this enhancement, the RealTriangularize command possesses two options,
both available in Maple 16.
• One controls the scheme of the algorithm which can be either recursive or incremental, as presented
respectively in our papers [6] and [7].

• The other controls whether or not Theorem 7 is applied. Note that applying Theorem 7 implies testing
Condition (i) which may have some non-negligible computational cost.

Our experimentation was conducted with Maple 16 on a machine with Intel Core 2 Quad CPU (2.40GHz)
and 3.0Gb RAM memory. The time-out is set at 3600 seconds. The memory usage is limited to 60% of the
RAM memory. In Table 1, RTD denotes RealTriangularize. The subscripts re and inc denote respectively the
recursive and incremental schemes of RealTriangularize’s algorithm. The suffixes +relax and −relax denote
respectively applying and not applying relaxation techniques, that is, Theorem 7. For each algorithm option,
the left column records the time (in seconds) while the right one records the number of components in the
output. NA means the computation does not finish in the resource (time or memory) limit.
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Table 1 The timing and number of components in the output with or without relaxation

sys RTD|re−relax RTD|re+relax RTD|inc−relax RTD|inc+relax

8-3-config-Li 418.6 203 410.6 203 30.5 47 30.4 47

dgp6 65.17 20 64.37 20 47.73 19 47.43 19

Leykin-1 4.9 28 4.9 28 6.5 19 6.5 19

L 14.9 69 14.9 69 2.6 19 2.6 19

Mehta0 1294 21 713.6 15 1558 20 998.9 15

EdgeSquare 247.7 116 725.3 91 116.8 43 629.4 33

Enneper 6.1 18 5.4 13 4.9 17 4.9 12

IBVP 14.1 8 16.8 4 2.5 8 7.6 4

MPV89 2.7 6 2.4 5 2.1 7 2.1 6

SEIT NA NA 1411 1 NA NA NA NA

Solotareff-4b 3223 3 3222 3 3424 3 3424 3

Xia 223.7 12 224.8 10 21.4 9 20.5 8

Lanconelli 1.1 7 1.1 7 1.0 7 1.0 7

MacLane 17.4 79 17.3 79 5.8 27 5.8 27

MontesS12 197.8 163 197.4 163 49.9 85 49.7 85

MontesS14 3.4 23 3.4 23 2.8 15 2.9 15

Pappus 750.5 409 748.2 409 29.1 119 29.0 119

Wang168 7.0 16 7.1 16 3.4 11 3.5 11

xia-issac07-1 2.7 13 4.4 11 2.2 12 4.2 10

For the system Metha0, with the relaxation techniques, both timing and the number of components in
the output are reduced. For the system SEIT, with the help of the relaxation techniques, RTD|re can now
solve it within half an hour, while RTD is not successful with its other options. For the systems Enneper,
IBVP, MPV89, Xia and xia-issac07-1, relaxation techniques help reducing the number of components in the
output with a slight time overhead.

5. Conclusion

The notion of an effective boundary provides a novel framework for solving parametric polynomial systems
and semi-algebraic systems via triangular decomposition methods. For the purpose of designing decomposi-
tion algorithm, this new tool overcomes some of the weaknesses of the related notions of border polynomial
and discriminant variety. We are currently working on taking advantage of effective boundaries within the
algorithms presented in our recent papers [6, 7].

The technique of relaxation is another new tool for improving the practical efficiency of those decompo-
sition algorithms and others, such as real root classification. Motivated by the idea of avoiding redundant
computations, this technique achieves this goal on various problems presented in this paper, leading some
time to more compact output or to reduced computing time or to both. We are currently investigating other
criteria serving the same goal.
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