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Abstract

We discuss changing the variable ordering for a regular chain in positive dimension. This
quite general question has applications going from implicitization problems to the symbolic
resolution of some systems of differential algebraic equations.

We propose a modular method, reducing the problem to dimension zero and using Newton-
Hensel lifting techniques. The problems raised by the choice of the specialization points, the lack
of the (crucial) information of what are the free and algebraic variables for the new ordering, and
the efficiency regarding the other methods are discussed. Strong hypotheses (but not unusual)
for the initial regular chain are required. Change of ordering in dimension zero is taken as a
subroutine.

Introduction

Lexicographic orders on polynomial rings are useful tools. Even if computing Gröbner bases for such
orders is difficult, these Gröbner bases are well suited to answer fast and easily to many problems.
Lexicographic orders are also a key component to define regular chains (see Definition 0.2 and [3]),
which are well established objects for polynomial system solving [16, 14, 15].

Suppose that we are given a regular chain as input, as well as a target order on the variables;
we are interested in converting symbolically this input into a new regular chain with respect to the
target order, while describing the same solutions. This is required by many applications, ranging
from implicitization problems to invariant theory, as in the following example.

Example. Consider the polynomials P in Q[X1, X2] such that P (X1, X2) = P (−X1,−X2). Invari-
ant theory tells us that any such polynomial can be written as a polynomial in X2

1 , X2
2 (the primary

invariants π1 and π2) and X1X2 (the secondary invariant σ); natural questions to ask are whether
such a representation is unique, and how to perform the rewriting. This can be done by getting
an expression of X1 and X2 in function of π1 and π2, hence by changing the order of the following
system from π1 > π2 > σ > X1 > X2 to X2 > X1 > σ > π1 > π2. Given
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In this form, we observe the relation σ2 = π1π2 between our basic invariants, which establishes that
the representation cannot be unique. Furthermore, the new form of the system can be used as a set
of rewriting rules, so as to obtain a canonical form for any invariant polynomial.
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Main results. To state our results, we will make the following assumption:

(H) the input is a regular chain whose saturated ideal is prime.

Without this assumption, one may need several regular chains to describe our output; observe that
the example above, and more generally, implicitization problems, satisfy this assumption.

Theorem 0.1. Let K be a perfect field, let C be a regular chain in K[X] = K[X1, . . . , Xn], satisfying

assumption H, and let < be an order on the variables X. Suppose that the polynomials in C can be

evaluated in L operations, and that the saturated ideal of C has dimension r and degree δ. There

exists an algorithm that computes a regular chain C′ for the order <, that admits the same saturated

ideal as C, and with the following features.

The complexity is polynomial in L, δ, n, and in the number
(

r+δ

δ

)

of monomials in r variables of

degree at most δ. The algorithm chooses O(n) random values in K. Let d be the maximum degree

of the polynomials in C, and suppose that all random choices are done in a finite set Γ ⊂ K, with

the uniform distribution. Then the probability of failure is at most 2n(3dn + n2)d2n/|Γ|.

Previous work. In this paper, we focus on the case of positive dimension. There already exist
many algorithms to perform the change of order in this context, see for instance [7, 4, 19]. Further,
for the implicitization problem, which is an important application of change of order, there exist
many specialized algorithms, relying on some form of resultant formalism or homological algebra
techniques, see for instance [6, 2, 8] and the numerous references therein.

Our specificity is the use of modular methods, reducing as much as possible the positive-dimensional
problems to zero-dimensional ones, following the philosophy of [12]. To do so, we rely on a few well-
identified subroutines, such as change of order in dimension zero, and Newton-Hensel lifting to go
back to positive dimension. Hence, most of the implementation effort is transferred to these central
subroutines. Accordingly, though we do not do it for lack of space, one can state the complexity of
our algorithm in terms of the cost of these subroutines only.

Overview of the algorithm

Definitions and first properties. Let K be a perfect field, let X be a set of n variables. Given
a total order ≺ on X, every non-constant polynomial in K[X] can be viewed as univariate in its
greatest variable; then, its initial is its leading coefficient.

Definition 0.2. Let C = C1, . . . , Cs be in K[X] with respective (pairwise distinct) main variables
Xi1 ≺ · · · ≺ Xis

. For all 1 ≤ i ≤ s the saturated ideal of C1, . . . , Ci is the ideal 〈C1, . . . , Ci〉 :
(h1 · · ·hi)

∞ where hi is the initial of Ci. Then, the set C is a regular chain if for all 2 ≤ i ≤ s the
initial hi is regular modulo the saturated ideal of C1, . . . , Ci−1.

The main variables of the polynomials in C are its algebraic variables; the other variables are

free. For y ∈ K
n−s

, the specialization of C at y is obtained by evaluating the free variables at y in
C. For a generic value of y, it is a zero-dimensional regular chain in K[Xi1 , . . . , Xis

].
Many concepts used below are relevant from matroid theory. A matroid [20] is a combinato-

rial structure that captures the notion of independence (generalizing linear independence in vector
spaces), and studies its combinatorial properties; it thus relates to notions of linear and algebraic
independence, but also independence in graph theory.

Definition 0.3. A matroid M over a finite set X is given by a non-empty family B(M) of subsets
of X with the same cardinality r and satisfying the exchange property: for all e, f ∈ B(M), for every
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v ∈ e − f there exists w ∈ f − e such that e − v + w ∈ B(M) holds. The elements of B(M) are
called the bases of M and r is its rank. The family of the X− e, for all e ∈ B, is the set of the bases
of a matroid M∗ called the dual matroid of M .

As an example used below, consider a matrix A over K, and suppose that the columns of A
are indexed by X. Let B(A) be the set of all Z ⊆ X such that: (1) the columns of Z are linearly
independent and (2) Z is maximal for inclusion. Then, the elements of B(A) are the bases of a
matroid over X, which we call the linear matroid generated by A over K.

Let now V ⊂ K
n

be an irreducible algebraic variety defined over K, and let P ⊂ K[X] be its
defining ideal. Let r be the dimension of V , with 0 < r < n, and define s = n− r. To such a variety,
one can associate the matroid of the so-called “maximal sets of free variables”.

Definition 0.4. Let B(X) be the family of all Y ⊆ X such that P ∩K[Y] equals 〈0〉, and such
that Y is maximal for inclusion. The family B(X) is the collection of the bases of a matroid on X

of rank r, denoted byMcoord(V ) (the coordinate matroid of V ).

This result shows how bases ofMcoord(V ) are related to the descriptions of V by regular chains.

Theorem 0.5. Let Y be a subset of X of cardinal r. Then, Y is a basis of Mcoord(V ) if and only

if there exists a regular chain C in K[X] having P as saturated ideal and Y as free variables.

Overview of the algorithm. Suppose now that we are given a regular chain C0 having P
as saturated ideal. Assuming that the variables of X are ordered by a target order <, we aim at
computing a regular chain for the target order, that has P as saturated ideal.

Our algorithm relies on the “specialize and lift” paradigm, in the following form. If C is any
regular chain having P as saturated ideal, given a specialization c of C, one can reconstruct C

itself by applying the Newton-Hensel operator [12, 13, 18] to c and C0. Thus, we will first aim at
computing a specialization of the output regular chain, starting from a specialization of the input
one. As intermediate steps, we will consider a sequence of regular chains C0, . . . ,Cℓ, where Cℓ is
our output. At step i, the regular chain Ci+1 is obtained from the current one Ci by exchanging the
roles of two suitably chosen variables: a formerly algebraic variable vi becomes free, and conversely,
a formerly free variable wi becomes algebraic. As above, these regular chains will be handled only
through specializations ci.

As mentioned above, knowing a specialization cℓ of Cℓ, the output Cℓ can be recovered by
Newton-Hensel lifting. Until this last step, we will work only with varieties of dimension zero or
one; this is the key to keeping the complexity under control.

Algorithmic details. The algorithm is divided into two steps. First, we determine the sequences
of variables vi, wi. Let Z1,Z2 be two distinct bases of the dual matroid M∗

coord(V ) of Mcoord(V ).
We write Z1 <lex Z2 if the largest element of (Z1 − Z2)∪ (Z2 − Z1) is in Z2.

Theorem 0.6. Let C′ be a regular chain for the ordering <, having P as saturated ideal in K[X].
The set of the main variables of C′ is the maximum basis of M∗

coord
(V ) for the ordering <lex.

The matroidM∗

coord
(V ) is not easily accessible a priori. The following theorem, mostly a trans-

lation of the Jacobian criterion, shows how to solve this problem by linearization. Let Jac(C0) be
the Jacobian matrix of C0; then, the columns of Jac(C0) are indexed by the variables of X.

Theorem 0.7. There is an non-empty open subset V ′ ⊂ V such that for any x ∈ V ′, the linear

matroid on X, over the field K, defined by the specialization of Jac(C0) at x equals M∗

coord
(V ).
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Let Z0 be the algebraic variables of C0, and let y be a random point in Kr. Specializing C0

at y, we obtain a zero-dimensional regular chain c0 in K[Z0]. Let next J0 be the matrix obtained
by specializing Jac(C0) at y. Using Theorem 0.7, and working modulo c0, we can use J0 to test
linear independence in M∗

coord(V ). Then, we will compute two sequences v1, . . . , vℓ and w1, . . . , wℓ

satisfying the following requirements: the elements of the sequence (Zi)i=0,...,ℓ defined by Zi =
Zi−1 + vi −wi are inM∗

coord
(V ), and satisfy Zi+1 >lex Zi. The exchange property shows that Zℓ is

indeed the maximal element in M∗

coord(V ); Theorem 0.6 shows that Zℓ are the algebraic variables
of our output regular chain.

It remains to do the change of variables at the level of regular chains. At step i, knowing a
specialization ci of Ci, we will compute a specialization ci+1 of Ci+1 through the following steps.
First, we change the order of the variables in ci, putting wi as least variable. Since ci has dimension
zero, this can be done using several algorithms [4, 7, 11, 17]. Then, we lift the free variable vi using
the Newton-Hensel operator, obtaining a one-dimensional regular chain c′i+1. Finally, we specialize
wi at a random value in c′i+1, obtaining ci+1, back in dimension zero.

Complexity and error probability analysis. We give only a sketch of the complexity analysis,
using the notation of Theorem 0.1. The first part (determining the vi and wi) consists in linear
algebra operations modulo the zero-dimensional regular chain c0; its complexity is thus polynomial
in n and δ. The second part (computing the ci) uses change of order in dimension zero, and Newton-
Hensel lifting for a single variable at a time; its complexity is linear in the complexity of evaluation
L of C0, and polynomial in n and δ.

The last part in the algorithm recovers the r-dimensional regular chain Cℓ from its specialization
cℓ; here, the complexity becomes polynomial in the number of monomials that can appear in Cℓ,
inducing a polynomial dependence in

(

r+δ
δ

)

. Observe that using the straight-line program encoding
for the output, we could make this cost polynomial in δ. However, actual implementations use the
dense encoding, with the cost given above.

Random choices are made to find the initial specialization point y, the specialization values for
the variables wi, and in the stopping criterion for the Newton-Hensel operator. Keeping track of all
possible degeneracies leads to the bound in Theorem 0.1, which allows us to get the result with a
probability as close to 1 as wanted. The proof relies on bounds of the size of coefficients of triangular
sets [10], and on Bézout’s theorem. The value reported in Theorem 0.1 essentially grows like d3n;
we are currently investigating the question to reduce this dependence to d2n.

Worked example. We can describe the main steps of our algorithm in the previous simple example;
all specialization values will be 1. Here, Z0 is the set of algebraic variables {π1, π2, σ}. Through
linear algebra, we determine the variables that we will have to change, (v1 = X2, w1 = π2) and
(v2 = X1, w2 = π1), leading to the dual bases Z1 = {π1, X2, σ} and Z2 = {X1, X2, σ}. Then, at the
level of the regular chains themselves, the following operations take place.
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Step 1.

π2 = 1
π1 = 1
σ = 1

variables π2, π1, σ
with X1 ← 1, X2 ← 1

σ = 1
π1 = 1
π2 = 1

variables σ, π1, π2

with X1 ← 1, X2 ← 1

σ = X2

π1 = 1
π2 = X

2

2

variables σ, π1, π2, X2

with X1 ← 1

Change of order

Dimension zero

Lift X2

Step 2.

σ = X2

π1 = 1
X

2

2 = 1

Specialization π2 ← 1

variables σ, π1, X2

with X1 ← 1, π2 ← 1

X2 = σ

σ
2 = 1

π1 = 1

variables X2, σ, π1

with X1 ← 1, π2 ← 1

X2 = σ

X1

σ
2 = X

2

1

π1 = X
2

1

variables X2, σ, π1, X1

with π2 ← 1

Change of order

Dimension zero

Lift X1

Step 3.

X2 = σ

X1

σ
2 = 1

X
2

1 = 1

variables X2, σ, X1

with π1 ← 1, π2 ← 1

X2 = σX1

X
2

1 = 1
σ

2 = 1

variables X2, X1, σ
with π1 ← 1, π2 ← 1

X2 = σX1

π1

X
2

1 = π1

σ
2 = π1π2

variables X2, X1, σ, π1, π2

Change of order

Dimension zero

Lift π1, π2

Specialization π1 ← 1

Conclusion. This work extends the scope of modular methods to the problem of change of ordering.
For this first insight, the strong primality hypothesis was required, but our results may open ways
to a less restrictive situation. A first implementation has been achieved in Maple’s RegularChains
library [15]; a better-tuned implementation and comparative results are works in progress.
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