
On the complexity of the D5 principle

Xavier Dahan Marc Moreno Maza Éric Schost Yuzhen Xie

March 17, 2006

Abstract

The D5 Principle was introduced in 1985 by Jean Della Dora, Claire Dicrescenzo
and Dominique Duval in their celebrated note “About a new method for computing
in algebraic number fields”. This innovative approach automatizes reasoning based on
case discussion and is also known as “Dynamic Evaluation”. Applications of the D5
Principle have been made in Algebra, Computer Algebra, Geometry and Logic.

Many algorithms for solving polynomial systems symbolically need to perform stan-
dard operations, such as GCD computations, over coefficient rings that are direct prod-
ucts of fields rather than fields. We show in this paper how asymptotically fast algo-
rithms for polynomials over fields can be adapted to this more general context, thanks
to the D5 Principle.

1 Introduction

The standard approach for computing with an algebraic number is through the data of
its irreducible minimal polynomial over some base field k. However, in typical tasks such
as polynomial system solving, involving many algebraic numbers of high degree, following
this approach will require using probably costly factorization algorithms. Jean Della Dora,
Claire Dicrescenzo and Dominique Duval introduced “Dynamic Evaluation” techniques (also
termed “D5 Principle”) as a means to compute with algebraic numbers, while avoiding
factorization. Roughly speaking, this approach leads one to compute over direct products
of field extensions of k, instead of only field extensions.

Applications of Dynamic Evaluation have been made by many authors: González-López
and Recio (1993), Gómez D́ıaz (1994), Duval (1994), Lombardi (2003) and others. Many
algorithms for polynomial system solving rely on this philosophy; see, for instance, the work
of Lazard (1992), Kalkbrener (1993), Dellière (1999), Moreno Maza (2000), Mora (2003).
Boulier et al. (2006).

This work is aiming at filling the lack of complexity results for this approach. The
addition and multiplication over a direct product of fields are easily proved to be quasi-
linear (in a natural complexity measure). As for the inversion, it has to be replaced by
quasi-inversion: following the D5 philosophy, meeting zero-divisors in the computation will
lead to splitting the direct product of fields into a family thereof. It is much more tricky to
prove quasi-linear complexity estimate for quasi-inversion, because the algorithm relies on

1

other algorithms, for which such an estimate has to be proved: the GCD and the splitting
algorithms.

Every triangular set T encodes a direct product of fields K(T) and a triangular decompo-
sition of T describes a decomposition of K(T) into such direct products. These fundamental
notions are defined hereafter. In what follows, we assume that the base field k is perfect.

Definition 1.1. A triangular set T is a family of n-variate polynomials over k:

T = (T1(X1) , T2(X1,X2) , . . . , Tn(X1, . . . ,Xn)) ,

which forms a reduced Gröbner basis for the lexicographic order induced by Xn > · · · > X1,
and such that the ideal 〈T 〉 generated by T in k[X1, . . . ,Xn] is radical.

If T is a triangular set, the residue class ring K(T) := k[X1, . . . ,Xn]/〈T 〉 is a direct prod-
uct of fields. Hence, our questions can be basically rephrased as studying the complexity of
operations (addition, multiplication, quasi-inversion) modulo triangular sets. The following
notation helps us quantify these algorithms.

Definition 1.2. We denote by degi(T) the degree of Ti in Xi, for all 1 ≤ i ≤ n, and by
deg(T) the product deg1(T) · · · degn(T). We call it the degree of T .

Observe that 〈T 〉 is zero-dimensional and that for all 1 ≤ i ≤ n, the set (T1 . . . , Ti) is a
triangular set of k[X1, . . . ,Xi]. The zero-set of T in the affine space A

n(k̄) has a particular
feature: it is equiprojectable (Aubry and Valibouze, 2000; Dahan and Schost, 2004); besides,
its cardinality equals deg(T).

Definition 1.3. A triangular decomposition of a zero-dimensional radical ideal I ⊂ k[X1,
. . . ,Xn] is a family T = T 1, . . . , T e of triangular sets, such that I = 〈T 1〉 ∩ · · · ∩ 〈T e〉 and
〈T i〉+ 〈T j〉 = 〈1〉 for all i 6= j. A triangular decomposition T′ of I refines another decompo-
sition T if for every T ∈ T there exists a (necessarily unique) subset decomp(T,T′) ⊆ T′

which is a triangular decomposition of 〈T 〉.

Let T be a triangular set, let T = T 1, . . . , T e be a triangular decomposition of 〈T 〉, and
define K(T) := K(T 1)×· · ·×K(T e). Then by the Chinese remainder theorem, K(T) ≃ K(T).
Now let T′ be a refinement of T. For each triangular set T i in T, denote by U i,1, . . . , U i,ei

the triangular sets in decomp(T i,T′). We have the following e isomorphism:

φi : K(T i) ≃ K(U i,1) × · · · × K(U i,ei), (1)

which extend to the following e isomorphisms, where y is a new variable.

Φi : K(T i)[y] ≃ K(U i,1)[y] × · · · × K(U i,ei)[y]. (2)

Definition 1.4. For h = (h1, . . . , he) ∈ K(T 1)[y] × · · · × K(T e)[y], we call split of h with
respect to T and T′, and write split(h,T,T′) the vector (Φ1(h1), . . . ,Φe(he)).

Note that if g ∈ K(T)[y], then we have split(g, {T},T′) = split(split(g, {T},T),T′). More-
over, we define split(g,T) = split(g, {T},T).

We now introduce a fundamental notion, that of non-critical decompositions. It is
motivated by the following remark. Let T = T 1, . . . , T e be a family of triangular sets, with
T j = (T j

1 , T j
2 , . . . , T j

n). For 1 ≤ i ≤ n, we write T j
≤i = T j

1 , T j
2 , . . . , T j

i and define the family
T≤i by:

T≤i = {T j
≤i | j ≤ e } (with no repetition allowed).

Even if T is a triangular decomposition of a 0-dimensional radical ideal I ⊂ k[X1, . . . ,Xn],
T≤i is not necessarily a triangular decomposition of I ∩ k[X1, . . . ,Xi]. Indeed, with n = 2
and e = 2, consider T 1 = ((X1 − 1)(X1 − 2),X2) and T 2 = ((X1 − 1)(X1 − 3),X2 − 1). The
family T = T 1, T 2 is a triangular decomposition of the ideal I = 〈T 1〉 ∩ 〈T 2〉. However, the
family of triangular sets T≤1 is not a triangular decomposition since 〈T 1

1 〉+〈T 2
1 〉 = 〈X1−1〉.

Definition 1.5. Let T be a triangular set in k[X1, . . . ,Xn]. Two polynomials a, b ∈ K(T)[y]
are coprime if the ideal 〈a, b〉 ⊂ K(T)[y] equals 〈1〉.

Definition 1.6. Let T 6= T ′ be two triangular sets. The least integer ℓ such that Tℓ 6= T ′
ℓ

is called the level of the pair {T, T ′}. The pair {T, T ′} is critical if Tℓ and T ′
ℓ are not

relatively prime in k[X1, . . . ,Xℓ−1]/〈T1, . . . , Tℓ−1〉[Xℓ]. A triangular decomposition T of
〈T 〉 is non-critical if T has no critical pairs, otherwise it is said to be critical.

The pair {T 1, T 2} in the above example has level 1 and is critical. Consider U1,1 =
(X1 − 1,X2), U1,2 = (X1 − 2,X2), U2,1 = (X1 − 1,X2 − 1) and U2,2 = (X1 − 3,X2 − 1).
Observe that T′ = {U1,1, U1,2, U2,1, U2,2} is a non-critical triangular decomposition of I
refining {T 1, T 2} and that T′

≤1 is a triangular decomposition I ∩ k[X1,X2].

This notion of critical pair is fundamental. In fact, fast algorithms for the innocuous
splitting operations Φi of Equation (2) are not guaranteed for critical decompositions, as
shown in the following extension of the previous example. Consider a third triangular set
T 3 = ((X1 − 2)(X1 − 3),X2 + X1 − 3). One checks that U = {T 1, T 2, T 3} is a triangular
decomposition of T = ((X1−1)(X1−2)(X1−3),X2(X2−1)). However, splitting an element
p from {T} to U requires to compute

p mod (X1 − 1)(X1 − 2), p mod (X1 − 1)(X1 − 3), p mod (X1 − 2)(X1 − 3),

whence some redundancies. In general, these redundancies prevent the splitting compu-
tation from being quasi-linear w.r.t. deg(T). But if the triangular decomposition is non-
critical, then there is no more redundancy, and the complexity of splitting p can be hoped
to be quasi-linear.

Removing critical pairs of a critical triangular decomposition in order to be able to
split fast requires to delete the common factors between the polynomials involved in the
decomposition. To do it fast, (in quasi-linear time) the coprime factorization, or gcd-free
basis computation, algorithm is used. Of course to implement this algorithm over a direct
product of fields, one first need to be able to compute GCDs over such a product in quasi-
linear time.

Since K(T) is a direct product of fields, any pair of univariate polynomials f, g ∈ K(T)[y]
admit a GCD h in K(T)[y], in the sense that the ideals 〈f, g〉 and 〈h〉 coincide, see Moreno
Maza and Rioboo (1995). However, even if f, g are both monic, there may not exist a monic
polynomial h in K(T)[y] such that 〈f, g〉 = 〈h〉 holds. Consider for instance f = y + a+1

2
(assuming that 2 is invertible in k) and g = y + 1 where a ∈ K(T) satisfies a2 = a, a 6= 0
and a 6= 1. GCDs with non-invertible leading coefficients are of limited practical interest;
this leads us to the following definition.

Definition 1.7. Let f, g be in K(T)[y]. An extended greatest common divisor (XGCD) of
f and g is a sequence ((hi, ui, vi, T

i), 1 ≤ i ≤ e), where T = T 1, . . . , T e is a non-critical
decomposition of T and for all 1 ≤ i ≤ e, hi, ui, vi are polynomials in K(T i)[y], such that
the following holds. Let f1, . . . , fe = split(f, {T},T) and g1, . . . , ge = split(g, {T},T); then
for 1 ≤ i ≤ e, we have:

• hi is monic or null,

• the inequalities deg ui < deg gi and deg vi < deg fi hold,

• the equalities 〈fi, gi〉 = 〈hi〉 and hi = uifi + vigi hold.

One easily checks that such XGCDs exists, and can be computed, for instance by ap-
plying the D5 Principle to the Euclidean algorithm. In order to divide f by g in K(T)[y],
we need to check whether the leading coefficient of g is invertible. For this purpose, the
following notion is convenient.

Definition 1.8. A quasi-inverse of an element f ∈ K(T) is a sequence of couples ((ui, T
i), 1 ≤

i ≤ e) where T = T 1, . . . , T e is a non-critical decomposition of T and ui is an element of
K(T i) for all 1 ≤ i ≤ e, such that the following holds. Let f1, . . . , fe = split(f, {T},T);
then for 1 ≤ i ≤ e we have either fi = ui = 0, or fiui = 1.

To compute GCDs in quasi-linear time over a direct product of fields, we adapt the
Half-GCD techniques (Yap, 1993) in Section 4 and explain why its complexity is preserved.
This requires a careful inductive process that we summarize in this paper.

• We first need complexity estimates for multiplication modulo a triangular set and
splitting w.r.t. triangular decompositions. This is done in Section 3.

• Assuming that multiplications and quasi-inverse computations can be computed fast
in K(T), and assuming fast non-critical refining for triangular decompositions of T ,
we obtain in Section 4 a fast algorithm for computing GCDs in K(T)[y]. Note that
Langemyr (1991) states that GCD’s over products of fields can be computed in quasi-
linear time, but with no proof.

• Assuming that GCDs can be computed fast in K(T1, . . . , Tn−1)[Xn], we present fast
algorithms for quasi-inverses in K(T) (Section 5), coprime factorization for polynomi-
als in K(T1, . . . , Tn−1)[Xn] (Section 6) and refining a triangular decomposition T of
T into a non-critical one (Section 7).

These are the basic blocks for our inductive process, which yields our main results:

Theorem 1.9. For any ε > 0, there exists Aε > 0 such that addition, multiplication and
quasi-inversion in K(T) can be computed in An

ε deg(T)1+ε operations in k.

Theorem 1.10. There exists G > 0, and for any ε > 0, there exists Aε > 0, such that one
can compute an extended greatest common divisor of polynomials in K(T)[y], with degree at
most d, using at most GAn

ε d1+ε deg(T)1+ε operations in k.

Due to space constraints, it is not possible to give all details of our algorithms in this
paper. Hence, some algorithms like GCD receive a detailed treatment, while we have to be
more sketchy on other ones.

2 Complexity notions

We start by recalling basic results for operations on univariate polynomials.

Definition 2.1. A multiplication time is a map M : N → R such that:

• For any ring R, polynomials of degree less than d in R[X] can be multiplied in at
most M(d) operations (+,×) in R.

• For any d ≤ d′, the inequalities M(d)
d

≤ M(d′)
d′

and M(dd′) ≤ M(d)M(d′) hold.

Note that in particular the inequalities M(d) ≥ d and M(d) + M(d′) ≤ M(d + d′)
holds for all d, d′. The following result is due to Cantor and Kaltofen (1991), follow-
ing the work of Schönhage and Strassen: There exists c ∈ R such that the function
d 7→ c d logp(d) logp logp(d) is a multiplication time. In what follows, the function logp
is defined by logp(x) = 2 log2(max{2, x}): this function turns out to be more convenient
than the classical logarithm for handling inequalities.

Fast polynomial multiplication is the basis of many other fast algorithms: Euclidean
division, computation of the subproduct tree (see Chapter 10 in von zur Gathen and Gerhard
(1999)), and multiple remaindering.

Proposition 2.2. There exists a constant C ≥ 1 such that the following holds over any
ring R. Let M be a multiplication time. Then:

1. Dividing in R[X] a polynomial of degree less than 2d by a monic polynomial of degree
at most d requires at most 5M(d) + O(d) ≤ C M(d) operations (+,×) in R.

2. Let F be a monic polynomial of degree d in R[X]. Then additions and multiplications
in R[X]/F requires at most 6M(d) + O(d) ≤ C M(d) operations (+,×) in R.

3. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees d.
Then one can compute the subproduct tree associated to F1, . . . , Fs using at most
M(d) logp(d) operations (+,×) in R.

4. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees d.
Then given A in R[X] of degree less than d, one can compute A mod F1, . . . , A mod Fs

within 11M(d) logp(d) + O(d logp(d)) ≤ C M(d) logp(d) operations (+,×) in R.

5. Assume that R is a field. Then, given two polynomials in R[X] of degree at most
d, computing their monic GCD and their Bézout coefficients can be done in no more
than 33M(d) logp(d) + O(d logp(d)) ≤ C M(d) logp(d) operations (+,×, /) in R.

6. Assume that R is a field and that F is a monic squarefree polynomial in R[X] of degree
d. Then, computing a quasi-inverse modulo F of a polynomial G ∈ R[X] of degree less
than d can be done in no more than 71M(d) logp(d) + O(d logp(d)) ≤ C M(d) logp(d)
operations (+,×, /) in R.

Proof. The first point is proved in Theorem 9.6 of (von zur Gathen and Gerhard,
1999) and implies the second one. The third and fourth points are proved in Lemma 10.4
and Theorem 10.15 of the same book. The fifth point is reported in Theorem 11.5 of that
book (with a better constant), and is a particular case of Section 4 of this article. If F has
no multiple factors in R[X], a quasi-inverse of G modulo F can be obtained by at most
two extended GCD computations and one division with entries of degree at most d. Using
estimates for the GCD leads to the result claimed in point 6.

We now define our key complexity notion, arithmetic time for triangular sets.

Definition 2.3. An arithmetic time is a function T 7→ An(T) with real positive values and
defined over all triangular sets in k[X1, . . . ,Xn] such that the following conditions hold

(E0) For every triangular decomposition T = T 1, . . . , T e of T , we have An(T 1) + · · · +
An(T e) ≤ An(T).

(E1) Every addition or multiplication in K(T) can be done in at most An(T) operations
in k.

(E2) Every quasi-inverse in K(T) can be computed in at most An(T) operations in k.

(E3) Given a triangular decomposition T of T , one can compute a non-critical triangular
decomposition T′ which refines T, in at most An(T) operations in k.

(E4) For every α ∈ K(T) and every non-critical triangular decomposition T of T , one can
compute split(α, {T},T) in at most An(T) operations in k.

Our main goal in this paper is then to give estimates for arithmetic times. This is done
through an inductive proof; the following proposition gives such a result for the base case,
triangular sets in one variable.

Proposition 2.4. If n = 1, then T ∈ k[X1] 7→ C M(deg T) logp(deg T) is an arithmetic
time.

Proof. A triangular set in one variable is simply a squarefree monic polynomial in
k[X1]. Hence, (E1), (E2) and (E4) respectively follow from points 2, 6 and 4 in Proposi-
tion 2.2. Property (E0) is clear. Since n = 1, all triangular decompositions are non-critical,
and (E3) follows.

3 Basic complexity results: multiplication and splitting

This section is devoted to give first complexity results for triangular sets: we give upper
bounds on the cost of multiplication, and splitting. In general, we do not know how to
perform this last operation in quasi-linear time; however, when the decomposition is non-
critical, quasi-linearity can be reached.

Proposition 3.1. Let M be a multiplication function, and let C be the constant from
Proposition 2.2. Let T be a triangular set in k[X1, . . . ,Xn]. Then:

• Additions and multiplications modulo T can be done in at most Cn
∏

i≤n M(degi T)
operations in k.

• If T is a non-critical decomposition of T , then for any h in K(T), split(h, {T},T) can
be computed in at most n Cn

∏

i≤n M(degi T) logp(degi T) operations in k.

Proof. The first part of the proposition is easy to deal with: the case of additions is
obvious, using the inequality M(d) ≥ d; as to multiplication, an easy induction using point
(1) in Proposition 2.2 gives the result. The end of the proof uses point (4) in Proposition 2.2;
the non-critical assumption is then used through the following lemma.

Lemma 3.2. Consider a non-critical decomposition T of the triangular set T = (T1, . . . , Tn).
Write T≤n−1 = {U1, . . . , U s}, and, for all i ≤ s, denote by T i,1, . . . , T i,ei the triangu-
lar sets in T such that T i,j ∩ k[X1, . . . ,Xn−1] = U i (thus T is the set of all T i,j, with
i ≤ s and j ≤ ei). Then T≤n−1 is a non-critical decomposition of the triangular set
(T1, . . . , Tn−1). Moreover, for all i ≤ s, we have:

∑

j≤ei

degn T i,j = degn T.

As an illustration, consider again, for n = 2, the triangular sets

T 1 = ((X1 − 1)(X1 − 2), X2)
T 2 = ((X1 − 1)(X1 − 3), X2 − 1)

and T 3 = ((X1 − 2)(X1 − 3), X2 + X1 − 3).

These triangular sets form a critical decomposition T of the ideal 〈T 1〉 ∩ 〈T 2〉 ∩ 〈T 3〉, which
is also generated by T = ((X1 − 1)(X1 − 2)(X1 − 3),X2(X2 − 1)).

Here, T≤1 is given by {U1, U2, U3} = {(X1−1)(X1−2), (X1−1)(X1−3), (X1−1)(X1−
3)}, so that s = 3. Take for instance U1 = (X1 − 1)(X1 − 2); then we have e1 = 1 and
T 1,e1 = T 1. Note then that deg2 T 1,e1 = 1 differs from deg2 T = 2, so the conclusion of the
previous lemma is indeed violated.

4 Fast GCD computations modulo a triangular set

GCDs of univariate polynomials over a field can be computed in quasi-linear time by means
of the Half-GCD algorithm (Brent et al., 1980; Yap, 1993). We show how to adapt this
technique over the direct product of fields K(T) and how to preserve its complexity class.
Throughout this section, we consider T 7→ An(T) an arithmetic time for triangular sets in
k[X1, . . . ,Xn].

Proposition 4.1. For all a, b ∈ K(T)[y] with deg a, deg b ≤ d, one can compute an extended
greatest common divisor of a and b in O(M(d)log(d))An(T) operations in k.

We prove this result by describing our GCD algorithm over the direct product of fields
K(T) and its complexity estimate. We start with two auxiliary algorithms.

Monic forms. Any polynomial over field can be made monic by division through its
leading coefficient. Over a product of fields, this division may induce splittings. We now
study this issue.

Definition 4.2. A monic form of f ∈ K(T)[y] is a sequence of quadruples ((ui, vi,mi, Ti),
1 ≤ i ≤ e), where T = T 1, . . . , T e is a non-critical decomposition of T , ui, vi are in K(T i)
and mi is in K(T i)[y] for all 1 ≤ i ≤ e, and such that the following holds.

Let f1, . . . , fe = split(f, {T},T). Denote by lc(fi) the leading coefficient of fi. Then,
for all 1 ≤ i ≤ e we have ui = lc(fi), and mi = vifi, and either ui = vi = 0 or uivi = 1.

Observe that for all 1 ≤ i ≤ e, the polynomial mi is monic or null.

The following algorithm shows how to compute a monic form. This function uses a
procedure quasiInverse(f ,T). This procedure takes as input a triangular decomposition
T = T 1, . . . , T e of T and a sequence f = f1, . . . , fe in K(T 1)[y]× · · · ×K(T e)[y] and returns
a sequence (((fij , T

ij), 1 ≤ j ≤ ei), 1 ≤ i ≤ e) where ((fij , T
ij), 1 ≤ j ≤ ei) is a quasi-inverse

of fi modulo T i and such that (T ij , 1 ≤ j ≤ ei, 1 ≤ i ≤ e) is a non-critical refinement of T.
Its complexity is studied in Section 5.

The number at the end of a line, multiplied by An(T), gives an upper bound for the
total time spent at this line. Therefore, the following algorithm computes a monic form of
f in at most (8d + 6)An(T) operations in k.

monic(f, T) ==
1 T := {T}
2 v := (0)
3 g := f
4 while g 6= 0 repeat

4.1 u := split(lc(g), {T},T) [d + 1]
4.2 (w,T′) := quasiInverse(u,T) [3d + 3]
4.3 v := split(v,T,T′) [d + 1]
4.4 for 1 ≤ i ≤ #v repeat

4.4.1 if vi = 0 then vi := wi [d + 1]
4.5 T := T′

4.6 g := g − leadingTerm(g)
5 f := split(f, {T},T) [d]
6 u := lc(f)
7 m := v · f [d]
8 return ((ui, vi,mi, T

i), 1 ≤ i ≤ #T)

Division with monic remainder. The previous notion can then be used to compute
Euclidean divisions, producing monic remainders: they will be required in our fast Euclidean
algorithm for XGCDs.

Definition 4.3. Let f, g ∈ K(T)[y] with g monic. A division with monic remainder of
f by g is a sequence of tuples ((gi, qi, vi, ui, ri, T

i), 1 ≤ i ≤ e) such that T = T 1, . . . , T e

is a non-critical decomposition of T , and, for all 1 ≤ i ≤ e, we have ui, vi ∈ K(T i) and
gi, qi, ri,∈ K(T i)[y], and such that the following holds.

Let f1, . . . , fe = split(f, {T},T) and g1, . . . , ge = split(g, {T},T). Then, for all 1 ≤ i ≤
e, the polynomial ri is null or monic, we have either ui = vi = 0 or uivi = 1, and the
polynomials qi and uiri are the quotient and remainder of fi by gi in K(T i)[y].

The following algorithm computes a division with monic remainder of f by g and requires
at most (5M(d) + O(d))An(T) operations in k. We write (q, r) = div(f, g) for the quotient
and the remainder in the (standard) division with remainder in K(T)[y].

mdiv(f, g, T) ==
1 (q, r) := div(f, g) [5M(d) + O(d)]
2 ((ui, vi, ri, T

i), 1 ≤ i ≤ #T) := monic(r, T) [8d − 2]
3 (qi, 1 ≤ i ≤ #T) := split(q, {T},T) [d + 1]
4 (gi, 1 ≤ i ≤ #T) := split(g, {T},T) [d]
5 return ((gi, qi, ui, vi, T

i), 1 ≤ i ≤ #T)

We are now ready to generalize the Half-Gcd method as exposed in Yap (1993). We
introduce the following operations. For a, b ∈ K(T)[y] with 0 < deg b < deg a = d, each of
the algorithms Mgcd(a, b, T) and Mhgcd(a, b, T) returns a sequence ((M1, T

1), . . . , (Me, T
e))

where

(s1) T = T 1, . . . , T e is a non-critical triangular decomposition of T ,

(s2) Mi is a square matrix of order 2 with coefficients in K(T i)[y],

such that, if we define (a1, . . . , ae) = split(a, {T},T) and (b1, . . . , be) = split(b, {T},T),
then, for all 1 ≤ i ≤ e, defining (ti, si) = (ai, bi)

tMi, we have

(s3) in the case of Mgcd, the polynomial ti is a GCD of ai, bi and si = 0 holds,

(s′3) in the case of Mhgcd, the ideals 〈ti, si〉 and 〈ai, bi〉 of K(T i)[y] are identical, and deg si <
⌈d/2⌉ ≤ deg ti holds.

The algorithm below implements Mgcd(a, b, T), and is an extension of the analogue
algorithm known over fields. Observe that if the input triangular set T is not decomposed
during the algorithm, in particular if K(T) is a field, then the algorithm yields generators
of the ideal 〈a, b〉. If T is decomposed, then the lines from 5 to 7.3.1 guarantee that
Mgcd(a, b, T) generates a non-critical triangular decomposition of T .

Mgcd(a, b, T) ==
0 G := []; T := [];
1 ((Mi, T

i), 1 ≤ i ≤ e) := Mhgcd(a, b, T) [H(d)]
2 (a1, . . . , ae) := split(a, (T i, 1 ≤ i ≤ e)) [O(d)]
3 (b1, . . . , be) := split(b, (T i, 1 ≤ i ≤ e)) [O(d)]
4 for i in 1 · · · e repeat

4.1 (ti, si) := (ai, bi)
tMi [4M(d) + O(d)]

4.2 if si = 0 then

4.2.1 G := G, (Mi, T
i)

4.2.2 T := T, T i

4.3 ((sij , qij, rij , uij , vij , T
ij), 1 ≤ j ≤ ei) := mdiv(ti, si) [52M(d) + O(d)]

4.4 (Mij , 1 ≤ j ≤ ei) := split(Mi, (T
ij , 1 ≤ j ≤ ei)) [O(d)]

4.5 for j in 1 · · · ei repeat

4.5.1 Mij :=

(

0 1
vij −qijvij

)

Mij [2M(d) + O(d)]

4.5.2 if rij = 0 then

4.5.2.1 G := G, (Mij , T
i)

4.5.2.2 T := T, T ij

4.5.3 ((Nijk, T
ijk), 1 ≤ k ≤ eij) := Mgcd(sij, rij , T

ij) [G(d/2)]
4.5.4 (Mijk, 1 ≤ k ≤ eij) := split(Mij , (T

ijk, 1 ≤ k ≤ eij)) [O(d)]
4.5.5 for k in 1 · · · eij repeat

4.5.5.1 Mijk := NijkMijk [8M(d) + O(d)]
4.5.5.2 G := G, (Mijk, T ijk)
4.5.5.3 T := T, T ijk

5 T′ := removeCriticalPairs(T) [1]
6 Res := []
7 for (M,T) ∈ G repeat

7.1 U := decomp(T,T′)
7.2 (Mℓ, 1 ≤ ℓ ≤ #U) := split(M, {T},U) [O(d)]
7.3 for 1 ≤ ℓ ≤ #U do

7.3.1 Res := Res, (Mi, U
i)

8 return Res

The Half-GCD algorithm can be adapted to K(T)[y] (not reported here due to space
consideration) leading to an implementation of Mhgcd(a, b, T). It has a structure very similar

to Mgcd(a, b, T), see (Yap, 1993) for details in the case the coefficients lie in a field.
Now, we give running time estimates for Mhgcd(a, b, T) and Mgcd(a, b, T). For 0 <

deg b < deg a = d, we denote by G(d) and H(d) respective upper bounds for the running time
of Mgcd(a, b) and Mhgcd(a, b), in the sense that both operations can be done in respective
times G(d)An(T) and H(d)An(T).

The number at the end of an above line, multiplied by An(T), gives an upper bound
of the running time of this line. These estimates follow from the super-linearity of the
arithmetic time for triangular sets, the running time estimates of the operation mdiv(f, g, T)
and classical degree bounds for the intermediate polynomials in the Extended Euclidean
Algorithms; see for instance Chapter 3 in (von zur Gathen and Gerhard, 1999). Therefore,
counting precisely the degrees appearing, we have: G(d) ≤ G(d/2) + H(d) + (33/2)M(d) +
O(d). The operation Mhgcd(a, b, T) makes two recursive calls with input polynomials of
degree at most d/2, leading to H(d) ≤ 2H(d/2) + (33/2)M(d) + O(d). The superlinearity
of M implies

H(d) ≤
33

2
M(d) log d + O(d log d) and G(d) ≤ 2H(d) + 2M(d) + O(d).

This leads to the result reported in Proposition 4.1.
We conclude with a specification of a function used in the remaining sections. For

a triangular decomposition T = T 1, . . . , T e of T , two sequences f = f1, . . . , fe and g =
g1, . . . , ge of polynomials in K(T 1)[y], . . . , K(T e)[y], the operation xgcd(f ,g,T) returns a
sequence (((gij , uij , vij , T

ij), 1 ≤ j ≤ ei), 1 ≤ i ≤ e) where ((gij , uij , vij , T
ij), 1 ≤ j ≤ ei) is

an extended greatest common divisor of fi and gi and such that (T ij , 1 ≤ j ≤ ei, 1 ≤ i ≤ e)
is a non-critical refinement of T.

Proposition 4.1 implies that if f1, . . . , fe, g1, . . . , ge have degree at most d then xgcd(f ,g,T)
runs in at most O(M(d)log(d))An(T) operations in k.

5 Fast computation of quasi-inverses

Throughout this section, we consider an arithmetic time An−1 for triangular sets in n − 1
variables. We explain how a quasi-inverse can be computed fast with the algorithms split,
xgcd, and removeCriticalPairs.

Proposition 5.1. Let T = (T1, . . . , Tn) be a triangular set with degi(T) = di for all
1 ≤ i ≤ n. Let f be in K(T). Then one can compute a quasi-inverse of f modulo T
in O

(

M(dn) log(dn)
)

An−1(T<n) operations in k.

We consider first the case where f is a non-constant polynomial and its degree w.r.t. Xn is
positive and less than dn. We give the algorithm, followed by the necessary explanations.
Here, the quantity at the end a line, once multiplied by An−1(T<n), gives the total amount
of time spent at this line. Af the end of this section, we briefly discuss the other cases to
be considered for f .

quasiInversen(f, T) ==
1 ((gi, ui, vi, T

i
<n), 1 ≤ i ≤ e) := xgcd(f, Tn, T<n)

[

O
(

M(dn) log(dn)
)]

2 (T i
n, . . . , T e

n) := split(Tn, {T<n}, {T
1
<n, . . . , T e

<n}) [O(dn)]
3 (fi, . . . , fe) := split(f, {T<n}, {T

1
<n, . . . , T e

<n}) [O(dn)]

4 T := {}; C := {}; result := {};
5 for i = 1 . . . e do

5.1 if deg(gi) = 0 then

5.1.1 C := C, (ui, T
i
<n ∪ T i

n); T := T, T i
<n ∪ T i

n

5.2 else if deg(gi) > 0 then

5.2.1 C := C, (0, T i
<n ∪ gi); T := T, T i

<n ∪ gi

5.2.2 qi := quotient(T i
n, gi) [5M(dn) + O(dn)]

5.2.3 ((gij , uij , vij , T
ij
<n), 1 ≤ j ≤ ei) := xgcd(fi, qi, T

i
<n)

5.2.4 (T i1
n , . . . , T iei

n) := split(qi, {T
i
<n}, {T

i1
<n, . . . , T iei

<n}) [O(dn)]
5.2.5 for j = 1 . . . ei do

5.2.5.1 C := C, (uij , T
ij
<n ∪ T ij

n); T := T, T ij
<n ∪ T ij

n

6 T′
<n

:= removeCriticalPairs(T<n) O(1)
7 for (u, S) ∈ C do

7.1 (R1, . . . , Rl) := decomp(S<n,T′
<n

)
7.2 (S1

n, . . . , Sl
n) := split(Sn, {S<n}, {R

1, . . . , Rl}) [O(dn)]
7.3 (u1, . . . , ul) := split(u, {S<n}, {R

1, . . . , Rl}) [O(dn)]
7.4 result := result, ((uk, Rk ∪ Sk

n), 1 ≤ k ≤ l)
8 return result

We first calculate an extended greatest common divisor of f and Tn modulo the triangu-
lar set T<n = (T1, . . . , Tn−1). This induces a non-critical decomposition {T 1

<n, . . . , T e
<n} of

T<n. For further operations, we compute the images of Tn and f over this decomposition.
Let 1 ≤ i ≤ e. If the value of gi is 1, then ui is the inverse of f modulo {T i

<n ∪ T i
n}.

Otherwise, deg gi > 0, and the computation needs to be split into two branches.
In one branch, at line 5.2.1, we build the triangular set {T i

<n ∪ gi}, modulo which f
reduces to zero. In the other branch, starting from line 5.2.2, we build the triangular set as
{T i

<n∪qi}, modulo which f is invertible. Indeed since the triangular set {T i
<n∪qi} generates

a radical ideal, T i
n is squarefree modulo {T i

<n}, and gcd(f, qi) must be 1 modulo {T i
<n ∪ qi}.

Therefore we can simply use the xgcd (step 5.2.3) once to compute the quasi-inverse of f
modulo {T i

<n ∪ qi}.
After collecting all the quasi-inverses, we remove the critical pairs in the new family of

triangular sets. Since no critical pairs are created at level n in the previous computation,
the removal of critical pairs needs only to perform below level n. At the end, we split the
inverses and the top polynomials w.r.t the last non-critical decomposition.

We also need quasi-inverse computations in two other different situations. One is when
f may not have the same main variable as the triangular set T . We need also to compute

the quasi-inverses in the sense of quasiInverse(f ,T) introduced in Section 4 where T =
T 1, . . . , T e is a triangular decomposition of T , and f = f1, . . . , fe is a sequence of polynomials
in k[X1, . . . ,Xn]. They are simply built on top of the quasiInversen(f, T), with additional
splits and removal of critical pairs.

The dominant cost is the two xgcd calls. Therefore, in each situation, the total cost is
bounded by O

(

M(dn) log(dn)
)

An−1(T<n).

6 Coprime factorization

We present in this section a quasi-linear time algorithm for coprime factorization of univari-
ate polynomials over a field. Other fast algorithms for this problem are given by (Gautier
and Roch, 1997), with a concern for parallel efficiency, and in (Bernstein, 2005), in a wider
setting, but with a slightly worse computation time.

Due to space consideration, we present our algorithm only for polynomials over a field k;
however, it adapts over a direct product of fields, following the ideas presented in Section 4.
We will use this tool in Section 7 for computing non-critical refinements of a triangular
decomposition (see the example in the introduction for a motivation of this idea).

Definition 6.1. Let A = a1, . . . , as be squarefree polynomials in k[x]. Some polynomials
b1, . . . , bt in k[x] are a gcd-free basis of the set A if gcd(bi, bj) = 1 for i 6= j, each ai can
be written (necessarily uniquely) as a product of some of the bj , and each bj divides one
of the ai. The associated coprime factorization of A consists in the factorization of all
polynomials ai in terms of the polynomials b1, . . . , bt.

Proposition 6.2. Let d be the sum of the degrees of A = a1, . . . , as. Then a coprime
factorization of A can be computed in O(M(d) logp(d)3) operations in k.

For brevity’s sake, we will only prove how to compute a gcd-free basis of A, assuming without
loss of generality that all ai have positive degree. Deducing the coprime factorization of A
involves some additional bookkeeping operations, keeping track of divisibility relations; it
induces no new arithmetic operations, and thus has no consequence on complexity.

The subproduct tree. The subproduct tree is a useful construction to devise fast algo-
rithms with univariate polynomials, in particular the coprime factorization. We review this
notion briefly and refer to (von zur Gathen and Gerhard, 1999) for more details.

Let m1, . . . ,mr be monic, non-constant, polynomials in k[x]. The subproduct tree Sub

associated to m1, . . . ,mr is defined as follows. If r = 1, then Sub is a single node, labeled
by the polynomial m1. Else, let r′ = ⌈r/2⌉, and let Sub1 and Sub2 be the trees associated
to m1, . . . ,mr′ and mr′+1, . . . ,mr respectively. Let p1 and p2 be the polynomials at the
roots of Sub1 and Sub2. Then Sub is the tree whose root is labeled by the product p1p2

and has children Sub1 and Sub2. A row of the tree consists in all nodes lying at some given
distance from the root. The depth of the tree is the number of its non-empty rows. Let
d =

∑r
i=1 deg(mi); then the sum of the degrees of the polynomials on any row of the tree

is at most d, and its depth is at most logp(d).

We now define some subroutines required for our gcd-free basis algorithm, starting by the
computation of multiple gcd’s. Recall that the cost at given any line in our pseudo-code
denotes the total time spent at this line; for simplicity, in what follows, we omit the O()
in the complexity estimates attached to the pseudo-code.

Multiple gcd’s. The first algorithm takes as input p and (a1, . . . , ae) in k[x], and outputs
the sequence of all gcd(p, ai). The idea of this algorithm is to first reduce p modulo all
ai using fast simultaneous reduction, and then take the gcd’s of all remainders with the
polynomials ai (see also Exercise 11.4 in (von zur Gathen and Gerhard, 1999)).

We make the assumption that all ai are non-constant in the pseudo-code below, so as
to apply the results of Proposition 2.2. To cover the general case, it suffices to introduce
a wrapper function, that strips the input sequence (a1, . . . , ae) from its constant entries,
and produces 1 as corresponding gcd’s; this function induces no additional arithmetic cost.
Finally, we write d =

∑e
i=1 deg ai.

multiGcd(p, (a1, . . . , ae)) ==
1 if deg p ≥ d then p := p mod (a1 · · · ae) [M(deg p) + M(d) logp(d)]
2 (q1, . . . , qe) := (p mod a1, . . . , p mod ae) [M(d) logp(d)]
3 return (gcd(q1, a1), . . . , gcd(qe, ae))

[
∑

i M(deg ai) logp(deg ai)
]

The cost of lines 1 and 2 follows from Proposition 2.2. The function d 7→ M(d) logp(d) is
super-additive, so the complexity at line 3 fits in O(M(d) logp(d)). Hence, the total cost of
this algorithm is in O(M(deg p) + M(d) logp(d)).

Pairs of gcd’s. The next step is to compute several pairs of gcd’s. On input, we take
two families of polynomials (a1, . . . , ae) and (b1, . . . , bs), where all ai (resp. all bi) are
squarefree and pairwise coprime. The following algorithm computes all gcd(ai, bj). As
above, we suppose that all ai are non-constant; to cover the general case, it suffices to
introduce a wrapper function, with arithmetic cost 0, that removes each constant ai from
the input, and adds the appropriate sequence (1, . . . , 1) in the output. Here, we write
d = max(

∑

i deg ai,
∑

j deg bj).

pairsOfGcd((a1, . . . , ae), (b1, . . . , bs)) ==
1 Build a subproduct tree Sub(a1, . . . , ae) and let f = RootOf(Sub) [M(d) logp(d)]
2 Label the root of Sub by multiGcd(f, {b1, . . . , bs}) [M(d) logp(d)]
3 for every node N ∈ Sub, going top-down do

3.1 if N is not a leaf and has label g then

3.1.1 f1 := leftChild(N); f2 := rightChild(N);
3.1.2 Label f1 by multiGcd(f1,g) [M(d) logp(d)2]
3.1.3 Label f2 by multiGcd(f2,g) [M(d) logp(d)2]

This algorithm computes the gcd’s of (b1, . . . , bs) with all polynomials in the subproduct
tree associated with (a1, . . . , ae); the requested output can be found at the leaves of the tree.
To give the complexity of this algorithm, one proves that the total number of operations
along each row is in O(M(d) logp(d)), whence a total cost in O(M(d) logp(d)2).

A special case of gcd-free basis. The input of our third subroutine are sequences of
polynomials (a1, . . . , ae) and (b1, . . . , bs), where all ai (resp. all bi) are squarefree and pair-
wise coprime. We compute a gcd-free basis of (a1, . . . , ae, b1, . . . , bs); this is done by comput-
ing all gcd(ai, bj), as well as the quotients δi = ai/

∏

j gcd(ai, bj) and γj = bj/
∏

i gcd(ai, bj).
We denote by removeConstants(L) a subroutine that removes all constant polynomials

from a sequence L (such a function requires no arithmetic operation, so its cost is zero in
our model). In the complexity analysis, we still write d = max(

∑

i deg ai,
∑

j deg bj).

gcdFreeBasisSpecialCase((a1, . . . , ae), (b1, . . . , bs)) ==
1 (gi,j)1≤i≤e,1≤j≤s := pairsOfGcd((a1, . . . , ae), (b1, . . . , bs)) [M(d) logp(d)2]
2 for j in 1 . . . s do

2.1 Lj := removeConstants(g1,j , . . . , ge,j)
2.2 βj :=

∏

ℓ∈Lj
ℓ [M(d) logp(d)]

2.3 γj := bj quo βj [M(d)]
3 for i in 1 . . . e do

3.1 Li := removeConstants(gi,1, . . . , gi,s)
3.2 αi :=

∏

ℓ∈Li
ℓ [M(d) logp(d)]

3.3 δi := ai quo αi [M(d)]
4 return removeConstants(g1,1, . . . , gi,j , . . . , ge,s, γ1, . . . , γs, δ1, . . . , δe)

The validity of this algorithm is easily checked. The estimates for the cost of lines 2.2, 2.3,
3.2 and 3.3 come for the cost necessary to build a subproduct tree and perform Euclidean
division, together with the fact that βj (resp. αi) divides bj (resp. ai). The total cost is
thus in O(M(d) logp(d)2).

Gcd-free basis. We can finally give our algorithm for gcd-free basis. As input, we take
squarefree, non-constant polynomials a1, . . . , ae, and write d =

∑

i≤e deg ai. We need a
construction close to the subproduct tree: we form a binary tree Sub

′ whose nodes will be
labeled by sequences of polynomials. Initially the leaves contain the sequences of length 1
(a1), . . . , (ae), and all other nodes are empty. Then, we go up the tree; at a node N , we use
the previous subroutine to compute a gcd-free basis of the sequences labeling the children
of N .

gcdFreeBasis({a1, . . . , ae}) ==
1 Build the tree Sub

′(a1, . . . , ae)
2 for every node N ∈ Sub

′ and from bottom-up repeat

2.1 if N is not a leaf then

2.1.1 f1 := leftChild(N) ; f2 := rightChild(N)
2.1.2 Label N by gcdFreeBasisSpecialCase(f1, f2) [M(d) logp(d)3]
3 return the label of RootOf(Sub

′)

The total number of operations at a node N of the subset tree is O(M(dN) logp(dN)2),
where dN is sum of the degrees of the polynomials lying at the two children of N . Summing
over all nodes, using the tree structure, the total cost is seen to be in O(M(d) logp(d)3)
operations, as claimed.

7 Removing critical pairs

We next show how to remove critical pairs. This is an inductive process, whose complexity
is estimated in the following proposition and its corollary.

We need to extend the notion of “refining” introduced previously. Extending Defini-
tion 1.3, we say that a family of triangular sets T′ refines another family T if for every
T ∈ T, there exists a subset of T′ that forms a triangular decomposition of 〈T 〉. Note the
difference with the initial definition: we do not impose that the family T forms a triangu-
lar decomposition of some ideal I. In particular, the triangular sets in T do not have to
generate coprime ideals.

Proposition 7.1. There exists a constant K such that the following holds. Let A1, . . . ,An−1

be arithmetic times for triangular sets in 1, . . . , n − 1 variables.
Let T be a triangular set in n variables, and let U be a triangular decomposition of 〈T 〉.

Then for all j = 1, . . . , n, the following holds: given U≤j, one can compute a non-critical
triangular decomposition W of T≤j that refines U≤j using aj operations in k, where aj

satisfies the recurrence inequalities a0 = 0 and for j = 0, . . . , n − 1,

aj+1 ≤ 2aj + KM(dj+1 · · · dn) logp(dj+1 · · · dn)3Aj(T≤j),

and where dj = degj T for j = 1, . . . , n.

Before discussing the proof of this assertion, let us give an immediate corollary, which
follows by a direct induction.

Corollary 7.2. Given a triangular decomposition U of 〈T 〉, one can compute a non-critical
triangular decomposition W of 〈T 〉 that refines U in time

K
(

2n−1
M(d1 · · · dn) logp(d1 · · · dn)3 + · · · + M(dn) logp(dn)3An−1(T≤n−1)

)

.

Proof. We only sketch the proof of the proposition. Let thus j be in 0, . . . , n− 1 and
let U = U1, . . . , U e be a triangular decomposition of 〈T 〉; we aim at removing the critical
pairs in U≤j+1. Let V be obtained by removing the critical pairs in U≤j. Thus, V consists
in triangular sets in k[X1, . . . ,Xj], and has no critical pair.

Let us fix i ≤ e, and write U i = (U i
1, . . . , U

i
n). By definition, there exists a subset

Vi = V i,1, . . . , V i,ei of V which forms a non-critical decomposition of (U i
1, . . . , U

i
j). Our

next step is to compute

U i,1
j+1, . . . , U

i,ei

j+1 = split(U i
j+1, (U

i
1, . . . , U

i
j),Vi).

Consider now a triangular set V in V. There may be several subsets Vi such that V ∈ Vi.
Let SV ⊂ {1, . . . , e} be the set of corresponding indices; thus, for any i ∈ SV , there exists
ℓ(i) in 1, . . . , ei such that V = V i,eℓ(i) . We will then compute a coprime factorization of all

polynomials U
i,eℓ(i)

j+1 in K(V)[Xj+1], for i ∈ SV , and for all V .
This process will refine the family V, creating possibly new critical pairs: we get rid of

these critical pairs, obtaining a decomposition W. It finally suffices to split all polynomials

in the coprime factorization obtained before from V to W to conclude. The cost estimates
then takes into account the cost for the two calls to the same process in j variables, hence
the term 2aj , and the cost for coprime factorization and splitting. Studying the degrees of
the polynomials involved, this cost can be bounded by

KM(dj+1 · · · dn) logp(dj+1 · · · dn)3Aj(T≤j)

for some constant K, according to the results in the last section.

8 Concluding the proof

All ingredients are now present to give the proof of the following result, which readily implies
the main theorems stated in the introduction.

Theorem 8.1. There exists a constant L such that, writing

An(d1, . . . , dn) = Ln
∏

i≤n

M(di) logp(di)
3,

the function T 7→ An(deg1 T, . . . ,degn T) is an arithmetic time for triangular sets in n
variables, for all n.

Proof. The proof requires to check that taking L big enough, all conditions defining
arithmetic times are satisfied. We do it by induction on n; the case n = 1 is settled by
Proposition 2.4, taking L larger than the constant C in that proposition, and using the fact
that logp(x) ≥ 1 for all x.

Let us now consider index n; we can thus assume that the function Aj is an arithmetic
time for triangular sets in j variables, for j = 1, . . . , n−1. Then, at index n, condition (E0)
makes no difficulty, using the super-additivity of the function M. Addition and multiplica-
tion (condition (E1)) and splitting (condition (E4)) follow from Proposition 3.1, again as
soon as the condition L ≥ C holds. The computation of quasi-inverses (condition (E2)) is
taken care of by Proposition 5.1, using our induction assumption on A, as soon as L is large
enough to compensate the constant factor hidden in the O() estimate of that proposition.

The cost for removing critical pairs is given in the previous section. In view of Corol-
lary 7.2, and using the condition M(dd′) ≤ M(d)M(d′), after a few simplifications, to satisfy
condition (E3), L must satisfy the inequality

K(2n−1 + 2n−2L + · · · + Ln−1) ≤ Ln,

where K is the constant introduced in Corollary 7.2. This is the case for L large enough:
L ≥ K + 2 suffices.

References

Aubry, P., Valibouze, A., 2000. Using Galois ideals for computing relative resolvents. Journal
of Symbolic Computation 30 (6), 635–651.

Bernstein, D. J., 2005. Factoring into coprimes in essentially linear time. Journal of Algo-
rithms 54 (1), 1–30.

Boulier, F., Lemaire, F., Moreno Maza, M., 2006. Well known theorems on triangular
systems and the D5 Principle. In: TC’2006. University of Granada, Spain.

Brent, R., Gustavson, F., Yun, D., 1980. Fast solution of Toeplitz systems of equations and
computations of Padé approximants. Journal of Algorithms 1, 259–295.

Cantor, D., Kaltofen, E., 1991. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica 28, 693–701.

Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y., 2005. Lifting techniques for
triangular decomposition. In: ISSAC’05. ACM press, pp. 108–115.

Dahan, X., Schost, É., 2004. Sharp estimates for triangular sets. In: ISSAC’04. ACM Press,
pp. 103–110.

Della Dora, J., Discrescenzo, C., Duval, D., 1985. About a new method method for comput-
ing in algebraic number fields. In EUROCAL 85 Vol. 2. Vol. 204 of LNCS. Springer-Verlag.

Dellière, S., 1999. Triangularisation de systèmes constructibles. Application à l’évaluation
dynamique. Ph.D. Thesis, Université de Limoges.

Duval, D., 1994. Algebraic numbers: an example of dynamic evaluation. Journal of Symbolic
Computation 18 (5), 429–446.

von zur Gathen, J., Gerhard, J., 1999. Modern Computer Algebra. Cambridge University
Press.

Gautier, T., Roch, J.-L., 1997. NC2 computation of gcd-free basis and application to parallel
algebraic numbers computation. In: PASCO ’97. ACM Press, pp. 31–37.

Gómez D́ıaz, T., 1994. Quelques applications de l’évaluation dynamique. Ph.D. Thesis,
Université de Limoges.

González-López, M., Recio, T., 1993. The ROMIN inverse geometric model and the dynamic
evaluation method. In: Cohen, A. M. (Ed.), Proc. of the 1991 SCAFI Seminar, Computer
Algebra in Industry. Wiley.

Kalkbrener, M., 1993. A generalized Euclidean algorithm for computing triangular repre-
sentations of algebraic varieties. Journal of Symbolic Computation 15 (2), 143–167.

Langemyr, L., 1991. Algorithms for a multiple algebraic extension. In: Effective methods
in algebraic geometry (Castiglioncello, 1990). Birkhäuser Boston, pp. 235–248.

Lazard, D., 1992. Solving zero-dimensional algebraic systems. Journal of Symbolic Compu-
tation 13 (2), 117–132.

Lombardi, H., 2006. Structures algébriques dynamiques, espaces topologiques sans points
et programme de Hilbert, Annals of Pure and Applied Logic 137, 256–290.

Mora, T., 2003. Solving Polynomial Equation Systems I. The Kronecker-Duval Philosophy.
No. 88 in Encyclopedia of Mathematics and its Applications. Cambridge University Press.

Moreno Maza, M., 2000. On triangular decompositions of algebraic varieties. Tech.
Rep. 4/99, NAG, UK, Presented at the MEGA-2000 Conference, Bath, UK,
http://www.csd.uwo.ca/∼moreno.

Moreno Maza, M., Rioboo, R., 1995. Polynomial gcd computations over towers of algebraic
extensions. In: AAECC-11. Vol. 948 of LNCS, Springer-Verlag, pp. 365–382.

Yap, C., 1993. Fundamental Problems in Algorithmic Algebra. Princeton University Press.

Xavier Dahan
LIX, École polytechnique 91128 Palaiseau, France

dahan@lix.polytechnique.fr

Marc Moreno Maza
ORCCA, University of Western Ontario (UWO) London, Ontario, Canada

moreno@orcca.on.ca

Éric Schost
LIX, École polytechnique 91128 Palaiseau, France

schost@lix.polytechnique.fr

Yuzhen Xie
ORCCA, University of Western Ontario (UWO) London, Ontario, Canada

yxie@orcca.on.ca

