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One of the main successes of the computer algebra community in the last 30 years has been the discovery
of algorithms, called modular methods, that allow to keep the swell of the intermediate expressions under
control. Without these methods, many applications of computer algebra would not be possible and the
impact of computer algebra in scientific computing would be severely limited. Amongst the computer
algebra systems which have emerged in the 70’s and 80’s, Maple and its developers have played an essential
role in this area.

Another major advance in symbolic computation is the development of implementation techniques for
asymptotically fast (FFT-based) polynomial arithmetic. Computer algebra systems and libraries initiated
in the 90’s, such as Magma and NTL, have been key actors in this effort.

In this extended abstract, we present modpn, a Maple library dedicated to fast arithmetic for multi-
variate polynomials over finite fields. The main objective of modpn is to provide highly efficient routines for
supporting the implementation of modular methods in Maple.

We start by illustrating the impact of fast polynomial arithmetic on a simple modular method by com-
paring its implementations in Maple with classical arithmetic and with the modpn library. Then, we discuss
the design of modpn. Finally, we provide an experimental comparison.

1 The impact of fast polynomial arithmetic

To illustrate the speed-up that fast polynomial arithmetic can provide we use a basic example: the solving
of a bivariate polynomial system. We give a brief sketch of the algorithm of [LMR08].

Let F1, F2 ∈ K[X1, X2] be two bivariate polynomials over a prime field K. For simplicity, we make three
genericity assumptions which are easy to relax:

1. F1 and F2 have positive degree with respect to X2,

2. the zero set V (F1, F2) ⊂ K
2

is non-empty and finite (where K is an algebraic closure of K),

3. no point in V (F1, F2) cancels the GCD of the leading coefficients of F1 and F2 with respect to X2.

Then the algorithm below, ModularGenericSolve2(F1, F2), computes a triangular decomposition of V (F1, F2).

Input: F1, F2 as above

Output: regular chains (A1, B1), . . . , (Ae, Be) in K[X1, x2] such that V (F1, F2) =
⋃e

i=1
V (Ai, Bi).

ModularGenericSolve2(F1, F2) ==
(1) Compute the subresultant chain of F1, F2

(2) Let R1 be the resultant of F1, F2 with respect to X2

(3) i := 1
(4) while R1 6∈ K repeat

(5) Let Sj ∈ src(F1, F2) regular with j ≥ i minimum
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(6) if lc(Sj , X2) ≡ 0 mod R1

then j := i + 1; goto (5)
(7) G := gcd(R1, lc(Sj , X2))
(8) if G ∈ K

then output (R1, Sj); exit

(9) output (R1 quo G, Sj)
(10) R1 := G; j := i + 1

In Step (1) we compute the subresultant chain of F1, F2 in the following lazy fashion:

1. Let B be a bound for the degree of R1, for instance B = 2 d1d2 where d1 := max(deg(Fi, X1)) and
d2 := max(deg(Fi, X2)). We evaluate F1 and F2 at B + 1 different values of X1, say x0, . . . , xB, such
that none of these specializations cancels lc(F1, X2) or lc(F2, X2).

2. For each i = 0, . . . , B, we compute the subresultant chain of F1(X1 = xi, X2) and F2(X1 = xi, X2).

3. We interpolate the resultant R1 and do not interpolate any other subresultant in src(F1, F2).

In Step (5) we consider the regular subresultant Sj of F1, F2 with minimum index j greater than or equal
to i. We view Sj as a “candidate GCD” of F1, F2 modulo R1 and we interpolate its leading coefficient
with respect to X2. The correctness of this algorithm follows from the block structure theorem and the
specialization property of subresultants [GCL92].

We have realized two implementations of this modular algorithm. One is based on classical polynomial
arithmetic and is written entirely in Maple whereas the other one relies on fast polynomial arithmetic
provided by our C low-level routines. Figure 1 below corresponds to experiments with the former imple-
mentation and Figure 2 with the latter. In each case, the comparison is made versus the Triangularize

command of the RegularChains library [LMX05]. Note that, over finite fields, the Triangularize command
does not use any modular algorithms or fast arithmetic.
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Figure 1: ModularGenericSolve2 vs. Triangularize in Z/pZ[X1, X2], pure Maple code

The implementation of ModularGenericSolve2 compared in Figure 1 to Triangularize is written purely
in Maple; both functions rely on Maple built-in DAG polynomials. The input systems are random and
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d1 d2 Nsols LexGB FastTriade Triangularize

10 10 50 0.280 0.044 1.276
15 15 100 1.892 0.104 16.181
20 20 150 6.224 0.208 54.183
25 25 200 15.041 4.936 115.479
15 15 100 1.868 0.100 7.492
20 20 200 14.544 0.308 47.683
25 25 300 49.763 1.268 282.249
30 30 400 123.932 1.152 907.649
20 20 150 6.176 0.188 17.105
25 25 300 50.631 1.852 117.195
30 30 450 171.746 1.341 575.647
35 35 600 445.040 7.260 2082.158
25 25 200 14.969 0.564 40.202
30 30 400 124.680 2.132 238.287
35 35 600 441.416 2.300 1164.244

Figure 2: ModularGenericSolve2 using modpn vs. Triangularize in Z/pZ[X1, X2]

dense; the horizontal axes correspond to the partial degrees d1 and d2. We observe that for input systems
of about 400 solutions the speed-up is about 10.

In Figure 2, ModularGenericSolve2 is renamed FastTriade and relies on the modpn library. We also provide
the timings for the command Groebner:-Basis using the plex terms order, since this produces the same
output as ModularGenericSolve2, and Triangularize on our input systems. The invoked Gröbner basis
computation consists of a degree basis (computed by the Maple code implementation of the F4 Algorithm)
followed by a change basis (computed by the Maple code implementation of the FGLM Algorithm). We
observe that for input systems of about 400 solutions the speed-up between ModularGenericSolve2 is now
about 100.

2 The design of modpn

We designed and implemented a Maple library called modpn, which provides fast arithmetic for the polyno-
mial ring Z/pZ[X1, . . . , Xn], where p is a prime number; currently this library only supports machine word
size prime.

Overview. modpn is a platform which supports general polynomial computations, and especially modular
algorithms for triangular decomposition. The high performance of modpn relies on our C package reported
in [Li05, FLMS06, LM06, LMS07], together with other new functionalities, such as fast interpolation, tri-
angular Hensel lifting and subresultant chains computations. In addition, modpn also integrates Maple

Recursive Dense (RecDen) polynomial arithmetic package for supporting dense polynomial operations. The
calling to C and RecDen routines is transparent to the Maple users.

With the support of modpn, we have implemented in Maple a high level algorithm for polynomial system
solving: regular GCD computations and their special case of bivariate systems, as presented in [LMR08].
The performance of our bivariate is satisfactory and reported in Section 3.

Challenges and solutions. Creating a highly efficient library is one of the most important and challenging
components for this work. The difficulties result from the following aspects.

First, we mix Maple code with C code. Maple users may call external C routines using the ExternalCal-
ling package. However, the developers need to implement efficient data type converters to transform the
Maple level data representation into C level and vice versa. This task was all the more demanding as we
used two Maple polynomial encodings and designed another three at C level.
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Figure 3: The polynomial data representations.

Second, the C level operations themselves form a complex setup: the top level functions, such as triangular
Hensel lifting and subresultant-based methods, rely on interpolation and fast arithmetic modulo a triangular
set, which themselves eventually rest on FFT/TFT-based polynomial arithmetic such as fast multiplication
and division.

Finally, removing the bottlenecks in the mixed code and identifying cut-offs between different methods
is a quite subtle and time-consuming task.

In the following subsections we will report on some technical aspects of the code integration and imple-
mentation methods for several core algorithms supported by modpn.

2.1 Code integration in Modpn

In [LMS07], we have described how to integrate our C package into AXIOM. Basically, we linked C code
directly into the AXIOM kernel to make new functionalities available in the AXIOM interpreter. However,
having no access to the Maple kernel, the only way to use external C code is to rely on the Maple

ExternalCallingpackage. The Maple level data structures such as DAG’s and trees have to be transformed
and passed to C level, and vice versa. This step needs to be designed carefully to avoid producing bottlenecks.
Moreover, the use of multiple data encodings in our library makes the code integration much harder.

Indeed, we use five polynomial encodings in our implementation, showed in Figure 3. The Maple-Dag

and Maple-Recursive-Dense polynomials are Maple built-in types; the C-Dag, C-Cube and C-2-Vector

polynomials are written in C. Each encoding is adapted to certain applications; we switch between different
representations at run-time.

Maple polynomials. Maple polynomial objects by default are encoded as Directed Acyclic Graphs (DAG’s).
To use built-in Maple packages such as RegularChains we need such a Maple-Dag representation. On the
other hand, we rely on the Maple RecDen package for several operations which are not implemented yet in
our C package.

C polynomials. The C-Cube polynomials are our data representation for dense polynomials, already used
in [LMS07]. Each polynomial is encoded by a multidimensional array holding all its coefficients (hence the
name), whose dimensions are given in advance. This encoding is suitable for dense triangular set arithmetic
and FFT/TFT based methods.

We also implemented a C-Dag polynomial representation, mainly to support Hensel lifting techniques.
The C-Dag polynomials are encoded in the adjacency-list representation; each node contains a 32-bit header
word for keeping the type, id, visiting history, and liveness information.

To make data conversion to RecDen more efficient, we finally designed a so-called C-2-Vector encoding,
described below.

Conversions. In Figure 3, directed edges describe the conversions we use. Edges 1 and 2 are the conversions
between Maple-Dag and RecDen polynomials; they are provided by the RecDen package. We implemented
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the other conversion functions in Maple and C: conversions between C representations are of course written
in C; conversions between the two languages involve two-sided operations (preparing the data on one side,
decoding it on the other side).

Edge 3 stands for the conversion from Maple-Dag to C-Dag. Maple-Dag polynomials are traversed and
packed into an array; this array is passed to and unpacked at the C-level, where common sub-expressions
are identified using a hash table.

As mentioned before, the C-Cube is the canonical data representation in our fast polynomial arithmetic
package; edges 4-9 serve the purpose of communicating between this format and RecDen. Edges 4 and 5
are in theory sufficient for this task. However, the C-Cube polynomials are in dense encoding, including all
leading zeros up to some pre-fixed degree bound. This is the appropriate data structure for most operations
modulo triangular sets; however, this raises the issue of converting all useless zeros back to Maple.

To make these conversions more efficient, we used our so-called C-2-Vector encoding, which essentially
matches RecDen encoding, together with edges 6-9. Roughly, a multivariate polynomial is represented by
a tree structure; each sub-tree is a coefficient polynomial. Precisely, in the C-2-Vector encoding, we use
one vector to encode the degrees of all sub-trees in their main variables, and another vector to hold the
coefficients, using the same traversal order. Thus, to locate a coefficient, we use the degree vector for finding
indices. This encoding avoids to use any C pointer, so it can be directly passed back from C to Maple and
decoded as a RecDen polynomial in a straightforward manner.

2.2 The Modpn Maple level

modpn appears to the users a pure Maple library. However, each modpn polynomial contains a RecDen

encoding, a C encoding, or both. The philosophy of this design is still based on our long-term strategy:
implementing the efficiency-critical operations in C and more abstract algorithms in higher level languages.
When using modpn library, Maple-Dag polynomials will be converted into modpn polynomials. The computa-
tion of modpn will be selectively conducted by either RecDen or our C code up, depending on the application.
Then, the output of modpn can be converted back to Maple-Dag by another function call.

2.3 The Modpn C level

The basic framework of our C implementation was described in [FLMS06, LMS07]: it consists of fast finite
field arithmetic, FFT/TFT based univariate/multivariate polynomial arithmetic and computation modulo a
triangular set, such as normal form, inversion and gcd. In this paper, we implemented higher-level algorithms
on top of our previous code: interpolation, Hensel lifting and subresultant chains.

Triangular Hensel lifting. We implemented the Hensel lifting of a regular chain [Sch03] since this is a
fundamental operation for polynomial system solving. The solver presented in [DJMS08] is based on this
operation and is implemented in the RegularChains library. For simplicity, our recall of the specifications
of the Hensel lifting operation is limited to regular chains consisting of two polynomials in three variables.

Let X1 < X2 < X3 be ordered variables and let F1, F2 be in K[X1, X2, X3]. Let K(X1) be the field
of univariate rational functions with coefficients in K. We denote by K(X1)[X2, X3] the ring of bivariate
polynomials in X2 and X3 with coefficients in K(X1). Let π be the projection on the X1-axis. For x1 ∈ K,
we denote by Φx1

the evaluation map from K[X1, X2, X3] to K[X2, X3] that replaces X1 with x1. We make
two assumptions on F1, F2. First, the ideal 〈F1, F2〉, generated by F1 and F2 in K(X1)[X2, X3], is radical.
Secondly, there exists a triangular set T = {T2, T3} in K(X1)[X2, X3] such that T and F1, F2 generate the
same ideal in K(X1)[X2, X3]. Under these assumptions, the following holds: for all x1 ∈ K, if x1 cancels no
denominator in T , then the fiber V (F1, F2) ∩ π−1(x1) satisfies

V (F1, F2) ∩ π−1(x1) = V (Φx1
(T2), Φx1

(T3)).

We are ready to specify the Hensel lifting operation. Let x1 be in K. Let N2(X2), N3(X2, X3) be a triangular
set in K[X2, X3], monic in its main variables, and with N3 reduced with respect to N2, such that we have

V (Φx1
(F1), Φx1

(F2)) = V (N2, N3).
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We assume that the Jacobian matrix of Φx1
(F1), Φx1

(F2) is invertible modulo the ideal 〈N2, N3〉. Then,
the Hensel lifting operation applied to F1, F2, N2, N3, x1 returns the triangular set T . Using a translation if
necessary, we assume that x1 is zero. This simplifies the rest of the presentation.

The Hensel lifting algorithm progressively recovers the dependency of T on the variable X1. At the
beginning of the kth step, the coefficients of T are known modulo 〈Xℓ−1

1
〉, with ℓ = 2k; at the end of this

step, they are known modulo 〈Xℓ
1
〉. Most of the work consists in reducing the input system and its Jacobian

matrix modulo 〈Xℓ
1
, N2, N3〉, followed by some linear algebra, still modulo 〈Xℓ

1
, N2, N3〉.

To reduce F1, F2 modulo 〈Xℓ
1
, N2, N3〉, we rely on our DAG representation. We start from X1, X2, X3,

which are known modulo 〈Xℓ
1
, N2, N3〉; then, we follow step-by-step the DAG for F1, F2, and perform each

operation (addition, multiplication) modulo 〈Xℓ
1
, N2, N3〉. A “visiting history” bit is kept in the headword

for each node to avoid multiple visits; a “liveness” bit is used for nullifying a dead node.
To reduce the Jacobian matrix of F1, F2, we proceed similarly. We used the plain (direct) automatic

differentiation mode to obtain a DAG for this matrix, as using the reverse mode does not pay off for square
systems such as ours. Then, this matrix is inverted using standard Gaussian elimination.

In this process, modular multiplication is by far the most expensive operation, justifying the need for the
FFT / TFT based multiplication algorithms presented in [LMS07]. The other operations are relatively cheap:
rational reconstruction uses extended Euclidean algorithm (we found that even a quadratic implementation
did not create a bottleneck); the stop criterion is a reduction in dimension zero, much cheaper than all other
operations.

Evaluation and interpolation. Our second operation is the implementation of fast multivariate evaluation
and interpolation on multidimensional rectangular grid (which thus reduces to tensored versions of univariate
evaluation / interpolation). When having primitive roots of unity in the base field, and when these roots of
unity are not “degenerate cases” for the problem at hand (e.g., do not cancel some leading terms, etc), we
use multidimensional DFT/TFT to perform evaluation and interpolation at those roots. For more general
cases, we use the algorithms based on subproduct-tree techniques [GG99, Chap. 10]. To optimize the cache
locality, before performing evaluation / interpolation, we transpose the data of our C-cube polynomials, such
that every single evaluation / interpolation pass will go through a block of contiguous memory.

3 Experimental results

We describe in this section a series of experiments for the various algorithms mentioned before. Our com-
parison platforms are Maple 11 and Magma V2.14-8 [BCP97]; all tests are done on a Pentium 4 CPU,
2.80GHz, with 2 GB memory. All timings are in seconds. For all our tests, the base field is Z/pZ, with
p = 962592769 (with one exception, see below).

Bivariate systems solving. We extend our comparison of bivariate system solvers to Magma. As above,
we consider random dense, thus generic, systems. Experimentation with non-generic, and in particular
non-equiprojectable systems will be reported in another paper. We choose partial degrees d1 (in X1) and
d2 (in X2); the input polynomials have support X i

1
Xj

2
, with i ≤ d1 and j ≤ d2, and random coefficients.

Such random systems are in Shape Lemma position: no splitting occurs, and the output has the form
T1(X1), T2(X1, X2), where deg(T1, X1) = d1d2 and deg(T2, X2) = 1.

In Table 1 an overview of the running time of many solvers. In Maple, we compare the Basis and Solve

commands of the Groebner package to the Triangularize command of the RegularChains package and
our code. In Magma, we use the GroebnerBasis and TriangularDecomposition commands; the columns
in the table follow this order. Gröbner bases are computed for lexicographic orders.

Maple uses the FGb software for Gröbner basis computations over some finite fields. However, our large
Fourier base field is not handled by FGb; hence, our Basis experiments are done modulo p′ = 65521, for
which FGb can be used. This limited set of experiment already shows that our code performs quite well. To
be fair, we add that for Maple’s Basis computation, most of the time is spent in basis conversion, which is
interpreted Maple code: for the largest example, the FGb time was 0.97 sec.

We refine these first results by comparing in Figure 4 our solver with Magma’s triangular decomposition
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d1 d2 Maple Magma

Basis Solve Trig us GB Trig

11 2 0.3 37 12 0.1 0.03 0.03
11 5 3 306 62 0.13 0.11 0.12
11 8 18 1028 122 0.16 0.32 0.32
11 11 27 2525 256 0.2 0.61 0.66

Table 1: Generic bivariate systems: all solvers

for larger degrees. It quickly appears that our code performs better; for the largest examples (having about
5700 solutions), the ratio is about 460/7.
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Figure 4: Generic bivariate systems: Magma vs. us.

Triangular Hensel Lifting. We conclude with testing our implementation of the Hensel lifting algorithm for
a regular chain. As opposed to the previous problem, there is not a distributed package to which we could
compare; hence, our reference tests are run with the original Magma implementation presented in [Sch03].
The underlying algorithms are the same; only implementations differ.

We generated trivariate systems (F1, F2) in K[X1, X2, X3]. Seeing X1 as a free variable, these systems
admit a Gröbner basis of the form T2(X1, X2), T3(X1, X2, X3) in K(X1)[X2, X3]. In our experiments, we set
deg(T3, X3) to 2 or 4. This was achieved by generating random sparse systems f1, f2, and taking

F1 =

k−1∏

j=0

f1(X1, X2, ω
jX3), F2 =

k−1∏

j=0

f2(X1, X2, ω
jX3),

with ω = −1 or
√
−1, and correspondingly k = 2 or 4. These systems were generated by Maple and

kept in unexpanded form, so that both lifting implementations could benefit from their low complexity of
evaluation. We show in Figure 5 and 6 the results obtained for the cases deg(T3, X3) = 2 and deg(T3, X3) = 4,
respectively. For the largest examples, the ratio in our favor is 21032/3206 ≈ 6.5.

4 Conclusion

To our knowledge, modpn is the first library making FFT/TFT-based multivariate arithmetic available to
Maple end users. As illustrated in this short report, this can improve the implementation of modular algo-
rithms in a spectacular manner. We are currently re-implementing the core operations of the RegularChains
library by means of such algorithms creating opportunities for using the modpn library.
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