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Abstract

Different kinds of triangular decompositions of algebraic varieties are presented.
The main result is an efficient method for obtaining them. Our strategy is based on
a lifting theorem for polynomial computations modulo regular chains.

Introduction

Triangular decompositions are one of the major tools for solving polynomial
systems. For systems of algebraic equations, they provide a convenient way to
describe complex solutions and a step towards decompositions into irreducible
components. Combined with other techniques, they are used for these purposes
by several computer algebra systems such as AXIOM [JS92] or SINGULAR

[GPS98]. For systems of partial differential equations, they provide the only
practicable way for determining a symbolic solution. Moreover, triangulation
methods for the algebraic case apply since Rosenfeld’s Lemma [Ros59] reduces
a differential problem to an algebraic one [BLOP95,BL00,Hub00].

Triangular Decompositions were introduced by Ritt [Rit32] for solving systems
of partial differential equations. They rely on the concept of a characteristic
set of a polynomial ideal, which is a set with a triangular shape and no more
elements than variables. Ritt’s decompositions involved only characteristic sets
of prime ideals [Rit50]. In this case, they have good properties and Theorem
3.2 in [ALM99] shows that a characteristic set of a prime ideal is no harder
to compute than a lexicographical Gröbner basis. We refer also to the work of
Mishra [Mis93] for the complexity of characteristic set computations and the
work of Szántó [Szá99] for the complexity of triangular decompositions.

Following the work of Ritt, Wu [Wu86] provided an algorithm for solving
systems of algebraic equations by means of characteristic sets of not necessarily
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prime ideals. Wu’s method appears to be efficient for geometric problems
where degenerate solutions are not interesting, but his decompositions may
contain inconsistent, and thus redundant, components. See [AM99] for more
details about the redundancies in triangular decompositions.

The consistency problem was solved by Kalkbrener [Kal91] who considered
particular characteristic sets, called regular chains. Theorem 6.1 in [ALM99]
show that the good properties of characteristic sets of prime ideals general-
ize to regular chains. Kalkbrener gave also an algorithm for computing an
unmixed-dimensional decomposition V1 ∪ · · · ∪ Vm of an algebraic variety V ,
where each Vi is given by a regular chain, representing the generic points of
the irreducible components of Vi. However Kalkbrener’s decompositions may
contain redundant components and may not contain the points of V that are
not generic [AM99].

The redundancy problem was solved by Lazard [Laz91] who strengthened the
notion of a regular chain. Without giving a correctness proof, he also proposed
a new method to obtain Wu-like decompositions where all the points, generic
or not, are represented. Following Seidenberg [Sei56] another approach was
given by Wang [Wan93]. By associating a set of inequations to every charac-
teristic set, Wang’s method avoids redundant components but this technique
makes the output sometimes hard to read. By considering special triangular
systems, called simple systems, this last point has been improved by Wang
in [Wan98]. Simple systems are closely related to Lazard regular chains and
Dellière [Del99] showed that simple systems could be used to describe the
triangular systems involved in Dynamic Evaluation [Góm94].

The four methods of Wu, Lazard, Wang and Kalkbrener are compared from
an experimental point of view in [AM99]. It appears that the methods based
on regular chains perform better than the others, and among them Kalk-
brener’s method have better timings. However Kalkbrener’s decompositions
may contain redundant components and are not convenient for algebraic va-
rieties of positive dimension where all the points, generic or not, are needed.
It appears also that the construction of Lazard regular chains may be expen-
sive in positive dimension. Finally it appears that the four methods generate
many redundant intermediate components. Therefore the challenge of provid-
ing an efficient algorithm for controlling the intermediate computations and
for computing triangular decompositions in the sense of Lazard remained.

The algorithm presented in this paper decomposes the variety V by means of
regular chains. All the zeros of V , generic or not, are represented. The com-
ponents are produced in order of decreasing dimension allowing good control
of the redundant intermediate components. Moreover, we show how our algo-
rithm can produce Kalkbrener’s decompositions or Lazard’s regular chains.
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A preliminary implementation (which does not contain most of the improve-
ments given in this paper) is distributed with version 2.2 of AXIOM and
experiments are reported in [AM99]. They show that this implementation is
comparable in performances with that of Kalkbrener, although our method
provides a complete decomposition of V . Moreover we obtain much better
results than with our implementation of Lazard’s method.

Our decomposition strategy is based on a procedure called decompose that
computes the intersection of a hypersurface with a quasi-component (the set
of the generic points associated with a regular chain). More precisely, this
operation computes the quasi-components with maximal dimension contained
in this intersection, and the necessary information in order to obtain those
of lower dimension when they are needed. A top-level procedure manages
the calls to the procedure decompose such that the output quasi-components
are produced in order of decreasing dimension and such that the redundant
quasi-components are removed as soon as possible, by means of an inclusion
test. The procedure decompose itself relies on a procedure for polynomial gcd
computations modulo regular chains that produces a main result and a way
to terminate some degenerated computations when they are needed.

This strategy leads to the following difficulty. Since we proceed in order of
decreasing dimension, we cannot use a top-down elimination process (elim-
inating the greatest variables first) as in Wang’s algorithm or a bottom-up
construction as in Kalkbrener’s algorithm. In fact, we need to perform projec-
tions into some subspace and then reconstructions in the whole space where
the algebraic variety V is to be decomposed. Lazard’s algorithm has to face
the same difficulty but solves it with the strong properties of Lazard regular
chains. General regular chains do not have these properties, this leads us to es-
tablish a lifting theorem for polynomial computations modulo regular chains.
The paper is organized as follows.

Section 1. For the reader’s convenience we review the concept of a regular
chain.

Section 2. We give some fundamental properties of regular chains. They may
be deduced from most text books in commutative algebra. For the reader’s
convenience we give direct proofs, because we have not found any reference
where they are explicit.

Section 3. We introduce the notions needed for the description of our de-
composition process in order of decreasing dimension. Our lifting theorem
concludes this section.

Section 4. We assume that we are given an operation for computing polyno-
mial gcds modulo regular chains and an operation for testing the regularity
of a polynomial w.r.t. a regular chain. Then we state and prove our algo-
rithm decompose for computing the quasi-components of maximal dimension
in the intersection of a hypersurface and a quasi-component.
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Section 5. We show that the assumptions of the previous sections hold and
we prove that the whole decomposition process terminates and is correct.
Our arguments rely only on the properties of regular chains given in [ALM99]
and the basic properties of prime ideals [SZ67].

Section 6. We give several improvements of the algorithms of the previous
sections. We show how to obtain Kalkbrener’s decomposition by means of
our method. Lazard regular chains have two additional properties w.r.t. gen-
eral regular chains: we show to obtain them with our method. Then we
discuss the problem of deciding whether a quasi-component is contained in
another. This question is crucial for removing the redundant intermediate
quasi-components during our decomposition process, and thus in order to
produce decompositions in the sense of Lazard. Finally we explain how our
decomposition process must be conducted in order to remove the redundant
intermediate quasi-components at an early stage.

1 Notations and Basic Definitions

We review in this section the notions related to triangular sets and regular
chains. See [Aub99,ALM99,Mor97] for more details. We shall use some notions
from Commutative Algebra (such as the dimension of an ideal) and refer for
instance to [SZ67] for this subject.

Let k be a field and let x1 < x2 < · · · < xn be n ordered variables. For every
i = 1 · · ·n we define Pi = k[x1, . . . , xi] and we put P0 = k. Let q ∈ Pn be
a non-constant polynomial i.e. q 6∈ k. The leading coefficient and the degree
of p regarded as univariate polynomial in the variable xi will be denoted by
lc(p, xi) and deg(p, xi) respectively. The greatest variable occurring in q is
called the main variable of q and it is denoted by mvar(q). The degree, the
leading coefficient, the (monic) leading monomial, the leading term, and the
reductum of q regarded as a univariate polynomial in mvar(q) are called the
main degree, the initial, the rank, the head and the tail of q; they are denoted
by mdeg(q), init(q), rank(q), head(q) and tail(q) respectively. Hence we have
q = head(q) + tail(q) and head(q) = init(q) rank(q). We call the separant of
q the derivative of q w.r.t. mvar(q). For p ∈ Pn we denote by prem(p, q)
and pquo(p, q) the pseudo-remainder and the pseudo-quotient of p by q as
univariate polynomials in mvar(q). We say that p is smaller than q and we
write p≺q if either p ∈ k and q 6∈ k or both are non-constant polynomials such
that either mvar(p) < mvar(q) or mvar(p) = mvar(q) and mdeg(p) < mdeg(q).
We write p ∼ q if neither p ≺ q nor q ≺ p hold.

Let I be an ideal of Pn. We denote by Ass(I) the set of the prime ideals
associated with I and by

√
I the radical of I. We denote by I : p∞ the

saturated ideal of I w.r.t. p, that is the set of the polynomials q such that there
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exists an integer m ≥ 0 such that pmq ∈ I. Let K be an algebraic closure of
k and let F be a subset of Pn. We denote by I(F ) the ideal generated by F

in Pn and by V(F ) the affine variety associated with F in Kn. If F = ∅ we
define V(F ) = Kn. If F consists of a single element f , then f will also denote
the set F when no confusion is possible. For any W ⊆ Kn we denote by W

the Zariski closure of W w.r.t. k.

A subset T of Pn is called a triangular set if T ∩ k is empty and if for every
t ∈ T and every t′ ∈ T such that t 6= t′ we have mvar(t) 6= mvar(t′). A variable
xi is algebraic w.r.t. T if there exists t ∈ T such that xi = mvar(t). We denote
by alg(T ) the set of the algebraic variables of T . For xi ∈ alg(T ) we denote
by Txi

the polynomial in T whose main variable is xi. We denote by T−

xi
and

T+
xi

the sets of polynomials t ∈ T such that mvar(t) < xi and mvar(t) > xi

respectively. We say that T is purely algebraic if for every variable v occuring
in T there exists t ∈ T such that v = mvar(t). The pseudo-remainder of p

w.r.t. T is denoted by prem(p, T ).

A point ζ ∈ V(T ) is called a regular zero of T if for every t ∈ T the initial of
t does not vanish at ζ . The set of the regular zeros of T is denoted by W(T ).
We denote by Z(F, T ) the intersection of W(T ) and V(F ).

Let i be in the range 0 · · ·n. Assume T ∩ Pi 6= ∅. We denote by sati(T ) the
ideal I(T ∩Pi) : h∞

i of Pi where hi is the product of the initials of T ∩Pi. If
T ∩Pi = ∅ we define sati(T ) = {0}. The saturated ideal of T is the ideal of Pn

denoted by Sat(T ) and defined by Sat(T ) = satn(T ). We denote by dim(T )
the dimension of the ideal Sat(T ). For any triangular set T we have:

W(T ) = V(Sat(T )). (1)

Moreover if W(T ) 6= ∅ then for every i = 0 · · ·n we have:

Ass(Sat(T ) ∩ Pi) = {P ∩ Pi | P ∈ Ass(Sat(T ))}. (2)

We introduce here the reduced form of the polynomial p w.r.t. the ideal I
as the polynomial denoted by red(p, I) and defined as follows. If p ∈ I then
red(p, I) = 0, otherwise if p ∈ k then red(p, I) = p, otherwise if head(p) ∈ I
then red(p, I) = red(tail(p), I), otherwise red(p, I) = red(init(p), I) rank(p)+
red(tail(p), I). It is important to observe that p and red(p, I) are equal modulo
I. We shall use red(p, T ) as a short hand for red(p,Sat(T )).

Let us denote by rank(T ) the set of the rank(t) for t ∈ T . Let S be a second
triangular set. We say that T has smaller rank than S and we write T ≺ S if
there exists v ∈ alg(T ) such that rank( T−

v ) = rank( S−

v ) and either v 6∈ alg(S)
or v ∈ alg(S) and Tv ≺ Sv. We say that T and S have the same rank and we
write T ∼ S if rank(T ) = rank(S). Recall that any sequence of triangular sets
which is strictly decreasing w.r.t. ≺ is finite.
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The polynomial p ∈ Pn is regular w.r.t. (or modulo) the ideal I if for every P ∈
Ass(I) we have p 6∈ P. The polynomial p ∈ Pn is regular w.r.t. the triangular
set T if it is regular w.r.t. Sat(T ). The triangular set T ⊆ Pn is a regular chain
if for any xi ∈ alg(T ) with i ≥ 2 the initial of Txi

is regular w.r.t. sati−1(T ). It
is shown in [Aub99] that T is a regular chain iff for every i = 0 · · ·n we have
sati−1(T ) = Sat(T ) ∩ Pi. Moreover in [Mor97] we show that T is a regular
chain iff for every p ∈ Pn we have p ∈ Sat(T ) ⇐⇒ prem(p, T ) = 0. A
subset W of Kn is a quasi-component if there exists a regular chain T such
that W(T ) = W . It is shown in [Kal91] that if T is a regular chain with r

elements, then W(T ) 6= ∅ and Sat(T ) is unmixed-dimensional with dimension
n− r. Let k be an integer in the range 0 · · ·n− 1. Let p ∈ Pn with p 6∈ k and
mvar(p) = xk+1. Assume that T is a regular chain contained in Pk and that
init(p) is regular w.r.t. T . Then we have:

Sat(T ∪ p) = (I(p) + Sat(T )) : init(p)∞. (3)

See Proposition 4.3.2. of [Aub99]. This property has an immediate and very
useful consequence. Let T ′ be a second regular chain of Pn contained in Pk

such that T ′∪p is a regular chain and Sat(T ) ⊆ Sat(T ′). Relation (3) shows
that we have Sat(T ∪ p) ⊆ Sat(T ′ ∪ p).

The polynomial p is normalized w.r.t. T if either p ∈ k or mvar(p) 6∈ alg(T )
and init(p) is normalized w.r.t. T . The triangular set T is normalized if for
every xi ∈ alg(T ) the polynomial Txi

is normalized w.r.t T−

xi
. Any normalized

triangular set is a regular chain. For the concepts of square-free regular chain
and Lazard triangular set, please see [AM99].

To state our algorithms, we use the syntax of the programming language of the
Computer Algebra System AXIOM [JS92]. In particular we use indentation
for denoting blocks of instructions. However we use # instead of −− to start
a line of comments. Let B = {I1, . . . , Iℓ} be a block of instructions. Assume
that some instruction Ij has the form Bool =⇒ C where Bool evaluates to
a boolean value and C is a block of instructions. Then B is equivalent to:
{I1, . . . , Ij−1, if Bool then C else {Ij+1, . . . , Iℓ}} . Assume now that B is the
block of instructions of a loop. If C consists of the single instruction iterate,
then B is equivalent to: {I1, . . . , Ij−1, if not Bool then {Ij+1, . . . , Iℓ}} .

An instruction return(x) inside a body of a function means: return x and
leave the body. Most of our algorithms return a sequence of values. One way to
implement this is to manage a list S of the output items and to use return(S)
when S is complete. Another approach is to use the concept of a generator
which is supported by Aldor, the AXIOM compiler [BDI+94]. Instead of
inserting each output item s in a list we throw s directly in the flow of output
with the statement output(s) and we use the key-word exit to leave the body.
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2 Properties of Quasi-Components under Factorization

Most of the algorithms described in this paper take a regular chain T as part
of their input and return a sequence T1, . . . , Tℓ of regular chains as part of
their output. We give in this section various relations on regular chains and
quasi-components. More precisely, we study in Lemma 4 and Theorem 7 the
possible splits of the quasi-component W(T ) when a polynomial of T has a
non-trivial factorization. We consider two kinds of relations. The following
definition clarifies this latter point.

Definition 1 Let W, W1, . . . , Wℓ be subsets of the affine space Kn. We say
that the sequence (W1, . . . , Wℓ) is a Kalkbrener split of W and we write

W −→K (W1, . . . , Wℓ)

if W and the union W1∪· · ·∪Wℓ have the same closure w.r.t. Zariski topology.
We say that (W1, . . . , Wℓ) is a Lazard split of W and we write

W −→L (W1, . . . , Wℓ)

if this is a Kalkbrener split of W and if the union W1 ∪ · · · ∪Wℓ contains W .
By convention, if W is empty, the empty sequence is a Lazard split of W .

The terminology follows from the specification of the algorithms of Kalkbrener
[Kal93] and Lazard [Laz91] as they are presented in [AM99]. Let us point out
two useful relations that follow immediately from Definition 1.

Proposition 2 Let W, W1, . . . , Wℓ, W1,1, . . . , W1,n1
, . . . , Wℓ,1, . . . , Wℓ,nℓ

be sub-
sets of Kn such that W −→L (W1, . . . , Wℓ). The following properties hold.

(a) If for every i = 1 · · · ℓ the relation Wi −→L (Wi,1, . . . , Wi,ni
) is satisfied,

then we have:

W −→L (W1,1, . . . , W1,n1
, . . . , Wℓ,1, . . . , Wℓ,nℓ

).

(b) Assume that W is an algebraic variety. Let V be another algebraic variety
such that the relation V ∩ Wi −→L (Wi,1, . . . , Wi,ni

) holds for every i =
1 · · · ℓ. Then we have:

V ∩ W −→L (W1,1, . . . , W1,n1
, . . . , Wℓ,1, . . . , Wℓ,nℓ

).

Observe that relation (a) holds also for Kalkbrener splits. In Section 3 we
will introduce another kind of splits that satisfies a similar property (Proposi-
tion 13) and we will often refer to it as the Composition Property. Of course,
without this nice behavior, a notion of split would have a limited interest.
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Property (b) is crucial for decomposing an algebraic variety into quasi-components
in an incremental manner. We shall explain this in Section 3. Unfortunately
property (b) does not hold for Kalkbrener splits. Indeed, consider a vari-
ety W ⊆ Kn and a regular chain T ⊆ Pn such that W(T ) = W and
W(T ) 6= W hold. Assume that for some t ∈ T the initial h of t satisfies
(W \W(T ))∩V(h) 6= ∅. We have W −→K (W(T )) and W ∩V(h) 6= ∅. How-
ever we have W(T )∩V(h) = ∅. Hence (W(T )∩V(h)) is not a Kalkbrener split
of W ∩V(h). Note that (W(T )) is not a Lazard split of W . In Lemma 4 and
in Theorem 7 we shall give fundamental examples of Kalkbrener and Lazard
splits by means of Definition 3. The proof of Lemma 4 follows easily from the
relations (1), (2) and (3) of Section 1.

Definition 3 Let T, T1, . . . , Tℓ be regular chains in Pn. We say that (T1, . . . , Tℓ)
is a Kalkbrener split (resp. Lazard split) of T if (W(T1), . . . ,W(Tℓ)) is a Kalk-
brener split (resp. Lazard split) of W(T ). We will use the same notations to
denote splits of regular chains as those for splits of subsets of Kn.

Lemma 4 Let T ⊆ Pn be a regular chain. Let t, c ∈ Pn be two non-constant
polynomials such that c is regular w.r.t. T and mvar(c) < mvar(t) holds. Then
T ∪ t is a regular chain if and only if T ∪ c t is a regular chain. Moreover, if
T ∪ t is a regular chain, then the following relations hold:

(a) T ∪ t −→K (T ∪ c t),
(b) T ∪ c t −→L (T ∪ t),
(c) W(T ∪ t) −→L (W(T ∪ c t), Z(c, T ∪ t)).

Roughly speaking, Lemma 4 shows how to split the quasi-component W(T )
under the primitive factorization of t regarded as univariate w.r.t. mvar(t). We
are interested now in the case where t factors into several polynomials with
mvar(t) as main variable. This problem is treated in Theorem 7 which requires
the following preliminary results.

Proposition 5 Let T and U be two regular chains of Pn. Assume that the
radical of Sat(T ) is contained in the radical of Sat(U). Then we have:

(a) dim(U) ≤ dim(T ),
(b) If dim(U) = dim(T ) then every polynomial h regular w.r.t. T is also

regular w.r.t. U .

Proof. Our assumption means that the intersection of the prime ideals associ-
ated with Sat(T ) is contained in the intersection of the prime ideals associated
with Sat(U). Now recall that if a prime ideal contains an intersection of ide-
als then it contains one of them. Therefore every prime ideal associated with
Sat(U) contains a prime ideal associated with Sat(T ). Since the saturated
ideal of a regular chain is unmixed, property (a) is proved. Now assume that
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dim(U) = dim(T ) holds. This implies that every prime ideal associated with
Sat(U) is a prime ideal associated with Sat(T ). So if a polynomial h is regular
w.r.t. T , then it is regular w.r.t. U . 2

Lemma 6 Let T ⊆ Pn be a triangular set. Let a, b, t be non-constant polyno-
mials with the same main variable xk+1 (with k in the range 0 · · ·n − 1). We
denote by ha the initial of a. We assume that the following properties hold:

(i) T ∪ t is a regular chain,
(ii) prem(t, a) ∈ Sat(T ) ∩Pk and b = pquo(t, a),

(iii) ha is regular w.r.t. T .

Then T ∪ a and T ∪ b are regular chains. Moreover we have:

(a) Sat(T ∪ t) ⊆ Sat(T ∪ a),
(b) Sat(T ∪ t) ⊆ Sat(T ∪ b),

(c)
√

Sat(T ∪ t) =
√

Sat(T ∪ a) ∩
√

Sat(T ∪ b).

Proof. Let us fix some notations. We define h = init(t) and hb = init(b).
The fact that the polynomials a, b, t have main variable xk+1 together with
assumption (ii) implies that there exist an integer e ≥ 1 and a polynomial
rt ∈ Sat(T ) ∩ Pk such that: ha

e t = a b + rt.

First we assume that T ⊆ Pk holds. Assumption (iii) implies that T ∪ a is a
regular chain. We prove that T ∪ b is a regular chain too. Observe that the
product ha

e h equals the product ha hb. Since ha and h are regular w.r.t. T ,
then so is hb. Hence T ∪ b is a regular chain. We prove that Sat(T ∪ t) ⊆
Sat(T ∪ a). Let f be in Sat(T ∪ t). Thus prem(f, t) lies in Sat(T ). Then
there exits a non-negative integer e′, a polynomial qf ∈ Pk+1 and a polynomial
rf ∈ Sat(T ) ∩ Pk such that he′ f = qf t + rf . Therefore we have:

ha
e he′ f = qf a b + qf rt + ha

e rf . (4)

This shows that ha
e he′ f ∈ I(a) + Sat(T ) and thus that he′ f ∈ (I(a) +

Sat(T )) : h∞

a . With relation (3) page 6, we obtain he′ f ∈ Sat(T ∪ a). Thus f

lies in Sat(T ∪ a) : h∞. Since h ∈ Pk and since h is regular w.r.t. Sat(T ), it
cannot belong to a prime ideal associated with Sat(T ∪ a) (we are using here
relation (2) page 5). Therefore we have Sat(T ∪ a) : h∞ = Sat(T ∪ a) and
we obtain f ∈ Sat(T ∪ a). Now we prove that f ∈ Sat(T ∪ b). Recall that
we have ha

e h = ha hb. Thus equation 4, after multiplication by h, shows that
ha hb he′ f lies in I(b) + Sat(T ). As above this leads to ha he′ f ∈ Sat(T ∪ b).
Since ha he′ is regular w.r.t. T , we conclude that f ∈ Sat(T ∪ b).

We come back to the general case and assume that T contains at least one
polynomial with main variable greater than xk+1. We define v = xk+1. Let p
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be the polynomial of T+
v with smallest main variable. We know that T−

v ∪ t,
T−

v ∪a, and T−

v ∪b are regular chains such that the saturated ideal of the first
one is contained in the saturated ideals of the other ones. Since they all have
the same dimension, property (b) of Proposition 5 shows that init(p) is regular
w.r.t. T−

v ∪ a and T−

v ∪ b. Hence T−

v ∪ {a, p} and T−

v ∪ {b, p} are regular
chains. Moreover relation (3) page 6 shows that their saturated ideals contain
that of T−

v ∪ {t, p}. Continuing in this manner with the other polynomials
of T+

v , it follows that T ∪ a and T ∪ b are regular chains and that both the
relations (a) and (b) hold. Finally, proving relation (c) is easy. 2

Theorem 7 With the same notations and assumptions as in Lemma 6, the
following properties hold:

(a) T ∪ t −→K (T ∪ a, T ∪ b),
(b) W(T ∪ t) −→L (W(T ∪ a), W(T ∪ b), Z(ha, T ∪ t)).

Proof. Property (a) follows from relation (1) page 5 and property (c) of
Lemma 6. We prove property (b). Using the notations of the proof of Lemma 6,
observe first that the polynomial ha

e t − a b vanishes at any point ζ of the
algebraic variety associated with Sat(T ). Since V(Sat(T )) contains W(T )
we get Z(ha t, T ) = Z(a b, T ). Since the initials of ha

e t and ab are equal, we
deduce: W(T ∪ ha t) = W(T ∪ a b). This can be easily written as:

W(T ∪ ha t) = W(T ∪ hb a) ∪W(T ∪ ha b) (5)

where each triangular set is a regular chain by Lemmas 4 and 6. Now observe
that we have:

W(T ∪ t) = W(T ∪ ha t) ∪ Z(ha, T ∪ t).

Thus with relation (5) and property (a) we obtain:

W(T ∪ t) = W(T ∪ hb a) ∪ W(T ∪ ha b) ∪ Z(ha, T ∪ t)

⊆W(T ∪ a) ∪ W(T ∪ b) ∪ Z(ha, T ∪ t)

⊆W(T ∪ a) ∪ W(T ∪ b) ∪ Z(ha, T ∪ t)

⊆W(T ∪ t).

The theorem is proved. 2

Corollary 8 With the above hypothesis, let (W(T1), . . . ,W(Tℓ)) be a Lazard
split of Z(ha, T ∪ t) then (T ∪ a, T ∪ b, T1, . . . , Tℓ) is a Lazard split of T ∪ t.
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3 Incremental Triangular Decompositions

Let F denote a subset of Pn and let V be its associated algebraic variety in
Kn. Our aim is to decompose V into a finite union of regular chains by solving
each of the following problems:

(K) Compute regular chains T1, . . . , Tℓ such that V −→K (W(T1), . . . ,W(Tℓ)),
(L) Compute regular chains T1, . . . , Tℓ such that V −→L (W(T1), . . . ,W(Tℓ)).

Since V = V , solving each problem leads to a decomposition of V . The former
brings a decomposition into varieties and the latter brings a decomposition into
quasi-components. Clearly, a solution of problem (L) is a solution of problem
(K) but the converse is false. Roughly speaking, a solution of problem (K) gives
only the generic zeros (in the sense of [van91]) of the irreducible components of
V . See for instance [AM99] for several examples. Another interesting feature
of problem (L) is that it can be solved in an incremental manner; this follows
from Proposition 2. So we will concentrate now on problem (L). In Section 6
we shall show how to modify our algorithm for solving problem (L) in order
to get an efficient method for solving problem (K).

The goal of the following three sections will be to describe an operation de-
noted by solve such that solve(F ) computes a Lazard split of V . Proceed-
ing in an incremental manner, we shall reduce the computation of solve(F )
into more elementary computations as follows. Assume that we are given
an operation intersect with the following specification as in [Laz91]. For ev-
ery polynomial p ∈ Pn and every regular chain T ⊆ Pn, the output of
intersect(p, T ) is a sequence (T1, . . . , Td) of regular chains of Pn such that
Z(p, T )−→L (W(T1), . . . ,W(Td)). By using Proposition 2, this operation leads
to the straightforward algorithm.

Algorithm 1

• Input: F a finite set of polynomials of Pn.
• Output: Regular chains T1, . . . , Td such that (W(T1), . . . ,W(Td)) is a Lazard

split of V(F ).
• solve(F ) ==

C := [∅]
# C is a list of regular chains
while F 6= ∅ repeat

choose and remove a polynomial p from F

C ′ := [ ]
for T ∈ C repeat

C ′ := concat(intersect(p, T ), C ′)
C := C ′

return C

11



Assume that F = {p1, . . . , pm} where pi is the i-th polynomial chosen by Al-
gorithm 1. Then observe that the i-th iteration of the while loop computes a
split of Lazard of V(p1, . . . , pi). As pointed out in [Laz91] the order in which
the regular chains are output should be in decreasing dimension. Indeed, if the
quasi-component W(T ) is contained in the quasi-component W(T ′) then we
have dim(T ) ≤ dim(T ′). Hence, assuming that we have an inclusion test for
quasi-components, producing regular chains by decreasing dimension allows us
to remove redundant quasi-components as soon as possible and to control the
number of unnecessary computations. Therefore one would like to compute
first the quasi-components with maximal dimension and to delay the compu-
tation of the others. This leads to the new notion of splits of Definition 11
together with the following concept.

Definition 9 A process of Pn is a pair [F, T ] where F is a subset of Pn

and T is a triangular set of Pn. We say that the process [F1, T1] of Pn has
a lower rank than the process [F2, T2] of Pn and we write [F1, T1]≺ [F2, T2] if
either T1 ≺T2 holds or T1 ∼T2 holds and there exists a polynomial f in F1

with smaller rank w.r.t. ≺ than any polynomial in F2.

If F is empty or if T is not a regular chain, then the process [F, T ] represents
a computation that needs to be done in order to describe Z(F, T ). We will use
processes to represent these computations that we want to delay. To establish
the termination of our algorithm we need the following Proposition 10, whose
proof is straightforward.

Proposition 10 Let S be a sequence of processes in Pn. If S is strictly de-
creasing w.r.t. the ordering ≺, then S is finite.

Definition 11 Let [F1, T1], . . . , [Fd, Td] and [F, T ] be processes of Pn. We say
that the sequence (Z(F1, T1), . . . ,Z(Fd, Td)) is a delayed split of Z(F, T ) and
we write:

Z(F, T ) −→D (Z(F1, T1), . . . ,Z(Fd, Td))

if for every i = 1 · · ·d the following conditions hold:

(D1) [Fi, Ti]≺ [F, T ],
(D2) Z(F, T ) ⊆ Z(F1, T1) ∪ · · · ∪ Z(Fd, Td),
(D3) Sat(T ) ⊆ Sat(Ti),
(D4) Fi 6= ∅ =⇒ F ⊆ Fi,
(D5) Fi = ∅ =⇒ W(Ti) ⊆ V(F ).

If this holds and if for every i = 1 · · ·d the triangular set Ti is a regular chain,
we say that (Z(F1, T1), . . . ,Z(Fd, Td)) is a regular delayed split of Z(F, T ). By
convention, if Z(F, T ) is empty, we say that the empty sequence is a regular
delayed split of Z(F, T ).
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Let [F, T ], [F1, T1], . . . , [Fd, Td] be processes of Pn such that (Z(F1, T1), . . . ,

Z(Fd, Td)) is a delayed split of Z(F, T ). We give first an informal explanation
of Definition 11. Condition (D1) means that each Z(Fi, Ti) is better described
than Z(F, T ). Condition (D2) means that no information is lost. Conditions
(D3) to (D5) mean essentially that the possible extraneous information is
kept under control, as we shall see now. So let us have a closer look at these
three conditions. Condition (D3) implies that each V(Sat(Ti)) is contained in
W(T ). Condition (D4) implies that if Fi is not empty then V(Fi) ⊆ V(F ) and
Z(Fi, Ti) ⊆ W(Ti) ∩ V(F ) hold. Condition (D5) implies that if Fi is empty
then W(Ti) ⊆ V(F ) and again Z(Fi, Ti) ⊆ W(Ti) ∩ V(F ) hold. Therefore
with condition (D2) we obtain:

V(F ) ∩ W(T ) ⊆ Z(F1, T1) ∪ · · · ∪ Z(Fd, Td) ⊆ V(F ) ∩ W(T ).

Observe that Z(F1, T1) ∪ · · · ∪ Z(Fd, Td) may not be contained in the clo-
sure of Z(F, T ) and the sequence (Z(F1, T1), . . . ,Z(Fd, Td)) may be neither a
Kalkbrener split nor a Lazard split of Z(F, T ). It is important to remark that
a Kalkbrener split or a Lazard split may not be a delayed split, obviously
because of condition (D1) but also because of condition (D3). Indeed these
former notions of splits impose only conditions on radicals whereas (D3) is a
condition on ideals. Proposition 12 gives an important example of (regular)
delayed splits. Its proof follows immediately from Lemma 6 and Theorem 7.
Recall that Z(∅, T ) and W(T ) denote the same object.

Proposition 12 With the same notations and assumptions as in Lemma 6,
we have:

W(T ∪ t) −→D (W(T ∪ a), W(T ∪ b), Z(ha, T ∪ t)).

Following the previous discussion, we need to explain why we can use these
splits even though they may lead to extraneous solutions. In fact we shall
see that if the starting point of a cascade of delayed splits is a variety, then
this bad situation never happens. The first step is to show that we have a
composition property similar to property (a) of Proposition 2. This is the goal
of Proposition 13 whose proof is straightforward. The second step is to show
that delayed splits have a nice behavior with algebraic varieties, a property
similar to point (b) of Proposition 2. This will be done in Proposition 14.

Proposition 13 Let [F, T ], [F1, T1], . . . , [Fd, Td], [F1,1, T1,1], . . . , [F1,e, T1,e] be
processes of Pn such that F1 6= ∅. Assume that the following relations hold:

(i) Z(F, T ) −→D (Z(F1, T1), . . . ,Z(Fd, Td)),
(ii) Z(F1, T1) −→D (Z(F1,1, T1,1), . . . ,Z(F1,e, T1,e)).

Then we have:

Z(F, T ) −→D (Z(F1,1, T1,1), . . . ,Z(F1,e, T1,e),Z(F2, T2), . . . ,Z(Fd, Td)).
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Proposition 14 Let F, F1, . . . , Fd, F1,1, . . . , F1,e be subsets of Pn such that
F1 6= ∅. Let T1, . . . , Td, T1,1, . . . , T1,e be triangular sets of Pn. Assume that the
following relations hold:

(i) V(F ) ⊆ Z(F1, T1) ∪ · · · ∪ Z(Fd, Td),
(ii) for every i = 1 · · ·d we have Fi = ∅ =⇒ W(Ti) ⊆ V(F ),

(iii) for every i = 1 · · ·d we have Fi 6= ∅ =⇒ W(Ti) ⊆ V(F \ Fi),
(iv) Z(F1, T1) −→D (Z(F1,1, T1,1), . . . ,Z(F1,e, T1,e)).

Then the properties below hold:

(a) for every j = 1 · · · e we have F1,j = ∅ =⇒ W(T1,j) ⊆ V(F ),
(b) for every j = 1 · · · e we have F1,j 6= ∅ =⇒ W(T1,j) ⊆ V(F \ F1,j),
(c) If F2, . . . , Fd, F1,1, . . . , F1,e are all empty then we have:

V(F ) = ∪d
i=2 W(Ti) ∪ ∪e

j=1W(T1,j).

Proof. Let j be in the range 1 · · · e. We prove property (a). Assume F1,j = ∅.
By condition (D5) we have W(T1,j) ⊆ V(F1). By condition (D3) we have
W(T1,j) ⊆ W(T1). Since F1 6= ∅ by hypothesis (iii) we have W(T1) ⊆ V(F \
F1). Thus W(T1,j) ⊆ V(F1) ∩ V(F \ F1). Therefore W(T1,j) ⊆ V(F ) and
property (a) is proved. Assume now that F1,j 6= ∅ holds. Thus F1 ⊆ F1,j

holds. Since W(T1) ⊆ V(F \F1) and W(T1,j) ⊆ W(T1) hold, we easily obtain
W(T1,j) ⊆ V(F \ F1,j) and property (b) is proved. We prove property (c).
Assume that F2, . . . , Fd, F1,1, . . . , F1,e are empty. By hypothesis (i) and (iv)
the union of all W(Ti,j) and W(Ti) contains V(F ). By hypothesis (ii) and
property (a) the same union is contained in V(F ). Property (c) is proved. 2

Delayed splits involving only processes of the form [∅, T ] play a special role
in the algorithms of Sections 4 and 5. This leads us to Definition 15, Propo-
sition 16 and its Corollary 17 which enhance the results of Section 2.

Definition 15 Let T, T1, . . . , Td be triangular sets of Pn. We say that the
sequence (T1, . . . , Td) is a delayed split of T and we write:

T −→D (T1, . . . , Td)

if either d = 1 and T = Td, or W(T ) −→D (W(T1), . . . ,W(Td)). If this holds
and if for every i = 1 · · · d the triangular set Ti is a regular chain, we say that
(T1, . . . , Td) is a regular delayed split of T . By convention, if W(T ) = ∅ holds,
we say that the empty sequence is a regular delayed split of T .

Proposition 16 Let T, T1, . . . , Td be regular chains of Pn. Let p be a polyno-
mial of Pn regular w.r.t. T and such that (W(T1), . . . ,W(Td)) is a delayed
split of Z(p, T ). Then for every i = 1 · · ·d we have dim(Ti) < dim(T ).
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Proof. Indeed, if we had dim(Ti) = dim(T ), then condition (D3) of delayed
splits together with Proposition 5 shows that p would be regular w.r.t. Ti.
Therefore p would not belong to any prime ideal associated with Sat(Ti).
However condition (D5) of delayed splits implies that p must belong to the
radical of Sat(Ti). A contradiction. 2

Corollary 17 With the same assumptions as in Lemma 6, let T1, . . . , Td be
regular chains of Pn such that Z(ha, T ∪ t) −→D (W(T1), . . . ,W(Td)). Then
we have: T ∪ t −→L (T ∪ a, T ∪ b, T1, . . . , Td). Moreover, for every i = 1 · · ·d
we have dim(Ti) < dim(T ∪ t).

Proposition 18 states a last technical result before presenting our algorithm for
solving problem (L) by means of delayed splits. The proof of this proposition
is straightforward. From now on we assume that we are given an operation
decompose defined below in Specification 1. This leads to Algorithm 2 which
provides an operation solve (as in Algorithm 1) based on delayed splits.

Proposition 18 Let [F, T ], [F1, T1], . . . , [Fd, Td] be processes of Pn such that
F 6= ∅. Let p be a polynomial in F minimal w.r.t. ≺ Assume that (Z(H1, T1),
. . . , Z(Hd, Td)) is a delayed split of Z(p, T ). Then (Z(F ∪ H1, T1), . . . ,Z(F ∪
Hd, Td)) is a delayed split of Z(F, T ).

Specification 1 For any regular chain T ⊆ Pn and any polynomial p ∈ Pn

such that p 6∈ k and p 6∈ Sat(T ) the operation decompose(p, T ) returns a
regular delayed split of Z(p, T ).

Algorithm 2

• Input: F a finite set of polynomials of Pn.
• Output: Regular chains T1, . . . , Td such that (W(T1), . . . ,W(Td)) is a Lazard

split of V(F ).
• solve(F ) ==

R := [[F, ∅]]
# R is a list of processes
while R 6= [ ] repeat

choose and remove a process [F1, U1] from R

F1 = ∅ =⇒ output U1

choose a polynomial p ∈ F1 minimal w.r.t. ≺
G := F1 \ {p}
p := red(p, U1)
p = 0 =⇒ R := cons ([G, U1], R)
p ∈ k =⇒ iterate
for [H, T ] ∈ decompose(p, U1) repeat

R := cons ([F1 ∪ H, T ], R)
exit
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Proposition 19 If every call to the operation decompose satisfies Specifica-
tion 1, then Algorithm 2 terminates and satisfies its specification.

Proof. We denote by Li the i-th iteration of the while loop. Let [F1, U1], . . . ,
[Fr, Ur] be the processes in R before Li. Let T1, . . . , Ts be the regular chains
that have returned via the output statement before Li. Assume that during
Li the process [F1, U1] is chosen and removed from R. We first prove that the
above algorithm terminates. If F1 is empty, note that the number of processes
has decreased after Li. If F1 is not empty and if the polynomial p reduces
to a constant w.r.t. U1, then again the number of processes has decreased.
Thus if the while loop is infinite, the for loop needs to be performed an
infinite number of times. Now assume that the for loop is performed during
Li. Observe that the new processes have smaller rank than [F1, U1] (because of
the choice of p and because of condition (D1) of Definition 11). If the for loop
was performed an infinite number of times, then the successive values of R

could be organized as an ordered tree w.r.t. ≺ with at least one infinite chain.
But this would contradict Proposition 10. Therefore the algorithm terminates.

We check now that the above algorithm is correct. We assume that before Li

the following relations holds:

(Mi) V(F ) ⊆ Z(F1, U1) ∪ · · · ∪ Z(Fr, Ur) ∪ W(T1) ∪ · · · ∪W(Ts),
(mi) W(T1) ∪ · · · ∪W(Ts) ⊆ V(F ),
(Si) for every j = 1 · · · r we have W(Uj) ⊆ V(F \ Fj).

Note that this assumption is clearly satisfied for every i = 1, so we next
prove that this still holds for every i + 1. Assume that F1 is empty. Then
Z(F1, U1) = W(U1). Thus (Mi+1) clearly holds. Now U1 becomes a new output
regular chain. From Si we know that W(U1) ⊆ V(F ). Hence relation (mi+1)
holds. Trivially (Si+1) also holds. So consider now that a polynomial p is
extracted from F1. Assume that p reduces to zero w.r.t. U1. This means that
p ∈ Sat(U1). Hence W(U1) ⊆ V(p) and Z(F1, U1) = Z(F1 \{p}, U1). Thus the
relations (Mi+1), (mi+1) and (Si+1) hold again. Assume now that p reduces
to a non-zero constant. This means that Z(p, U1) = ∅ = Z(F1, U1). Thus
we can delete Z(F1, U1) from (Mi). Then it follows easily that the relations
(Mi+1), (mi+1) and (Si+1) hold. Now assume that the for loop is performed.
The conclusion follows by applying Proposition 18 and then Proposition 14.
Finally we observe that if Li is the last iteration of the while loop, then
Proposition 14 shows that our algorithm returns a Lazard split of V(F ). 2

Remark 20 Let p be in Pn and let T ⊆ Pn be a regular chain. Note that
([∅, T ]) may never be a delayed split of Z(p, T ) because of condition (D1). This
justifies the input specification of decompose(p, T ) (Specification 1) and the
design of Algorithm 2. Observe now that Algorithm 2 can easily be adapted
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in order to implement an operation intersect with the following specification:
for a polynomial p ∈ Pn and a regular chain T ⊆ Pn such that p 6∈ Sat(T ) we
denote by intersect(p, T ) a sequence (T1, . . . , Td) of regular chains in Pn such
that Z(p, T ) −→D (W(T1), . . . ,W(Td)). Indeed, it suffices to replace the line R

:= [[F, ∅]] of Algorithm 2 by R := [{p}, T ]. The termination and the correctness
of intersect(p, T ) result from Propositions 10 and 13 respectively. Note that this
operation intersect has weaker specification than the one of Lazard’s algorithm.
This is because the union of our W(Ti) may not be contained in the closure
of Z(p, T ). However this will never lead us to any trouble (i.e. extraneous
solutions) since we shall always use this operation intersect in the context of
Corollary 17 (to compute a regular delayed split of Z(ha, T ∪ t)).

Algorithm 2 reduces problem (L) to the following task. Given a polynomial
p ∈ Pn and a regular chain T ⊆ Pn such that p 6∈ Sat(T ) compute a regular
delayed split of the intersection Z(p, T ) of the hypersurface V(p) and the
quasi-component W(T ). We will achieve this task in Sections 4 and 5. First
we will show that with additional conditions on p and T , a regular delayed
split of Z(p, T ) can be obtained. Then we will provide a way to replace T by
a regular delayed split (T1, . . . , Td) of T such that p and each Ti satisfy our
additional conditions. In order for this strategy to work we need a composition
property. Proposition 22 will provide the appropriate result after Definition 21.

When computing a regular delayed split of Z(p, T ) we will often be led to con-
sider a projection. More precisely, if p has main variable xk+1, we will consider
Z(p, T ) ∩ Pk+1. Therefore we need a way to lift the resulting computations
from Pk+1 to Pn. This is the goal of Theorem 23, concluding this section.

Definition 21 Given a subset F of Pn and a polynomial p ∈ Pn we define
the subset F ·p of Pn as follows. If F = ∅ then F ·p = ∅ otherwise F ·p = F ∪p.

Proposition 22 Let T, T1, . . . , Td be triangular sets of Pn such that (T1, . . . , Td)
is a delayed split of T . Let p be a polynomial of Pn such that p 6∈ Sat(T ). For
every i = 1 · · ·d let ([Fi,1, Ti,1], . . . , [Fi,ei

, Ti,ei
]) be processes of Pn such that

one of the following conditions holds:

(Ai) p ∈ Sat(Ti), ei = 1, Fi,1 = ∅ and Ti,1 = Ti,
(Bi) p 6∈ Sat(Ti) and Z(qi, Ti) −→D (Z(Fi,1, Ti,1), . . . ,Z(Fi,ei

, Ti,ei
)) where qi is

a non-constant polynomial equal to p modulo Sat(Ti) and with no higher
rank than p w.r.t. ≺.

Then we have:

Z(p, T ) −→D (Z(F1,1 · p, T1,1), . . . ,Z(F1,e1
· p, T1,e1

), . . . ,

Z(Fd,1 · p, Td,1), . . . ,Z(Fd,ed
· p, Td,ed

)).
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Proof. Since (T1, . . . , Td) is a delayed split of T two cases arise: either d = 1
and T = Td hold or W(T ) −→D (W(T1), . . . ,W(Td)) holds. Proving the
proposition in the first case is easy, so we restrict ourselves to the second one.
First, we prove that condition (D1) holds. Let i be in the range 1 · · ·d. We can
assume that assumption (Bi) holds otherwise there is nothing to prove. Since
(W(T1), . . . ,W(Td)) is a delayed split of W(T ), we have Ti ≺T which implies
[p, Ti]≺ [p, T ]. Let j be in the range 1 · · · ei. Since (Z(Fi,1, Ti,1), . . . ,Z(Fi,ei

, Ti,ei
))

is a delayed split of Z(qi, Ti) we have [Fi,j, Ti,j]≺ [qi, Ti]. We need to check that
[Fi,j · p, Ti,j]≺ [p, T ] holds. Two cases arise. If Ti,j ≺Ti, then the result is ob-
vious. If Ti,j ∼ Ti then Fi,j must contain a polynomial smaller w.r.t. ≺ than
qi and the result is clear again since qi has no higher rank than p. Therefore
property (D1) holds. We now prove property (D2). Since (W(T1), . . . ,W(Td))
is a delayed split of W(T ) we have:

W(T ) ⊆ ∪d
i=1 W(Ti). (6)

Since p − qi ∈ Sat(Ti) we have V(p) ∩ W(Ti) = V(qi) ∩ W(Ti), leading to:

V(p) ∩ W(Ti) ⊆ ∪ei

j=1 Z(Fi,j , Ti,j). (7)

In relation (7) we can replace every term Z(Fi,j , Ti,j) such that Fi,j 6= ∅ by
V(p) ∩ Z(Fi,j, Ti,j). Hence relations (6) and (7) lead to (D2). Since Sat(T ) ⊆
Sat(Ti) and Sat(Ti) ⊆ Sat(Ti,j) hold property (D3) is clear. Since Fi,j · p 6= ∅
implies p ∈ Fi,j ·p property (D4) is clear. We prove (D5). We assume Fi,j ·p = ∅
which implies Fi,j = ∅. If (Ai) holds, then we have W(Ti,j) ⊆ V(p) since Ti,j =
Ti and p ∈ Sat(Ti). If (Bi) holds, then we have also W(Ti,j) ⊆ V(qi) because
(D5) holds for the delayed split (Z(Fi,1, Ti,1), . . . ,Z(Fi,ei

, Ti,ei
)) of Z(qi, Ti).

Moreover we have W(Ti,j) ⊆ V(p − qi) since p − qi ∈ Sat(Ti) and Sat(Ti) ⊆
Sat(Ti,j) hold. Thus W(Ti,j) ⊆ V(p) holds in any case, leading to (D5). 2

Theorem 23 (Lifting Theorem) Let k be an integer such that 0 ≤ k < n.
Let C ⊆ Pk and D ⊆ Pn such that C ∪D is a regular chain, the set D is not
empty and D ∩Pk = ∅ holds. Let hC the product of the initials of C. Let F be
a finite subset of Pn. We assume that the following conditions hold:

(i) there exist regular chains C1, . . . , Cd of Pk and finite subsets F1, . . . , Fd

of Pn such that

Z(F, C) −→D (Z(F1, C1), . . . ,Z(Fd, Cd)),

(ii) for every i = 1 · · ·d there exist regular chains Ci,1, . . . Ci,ei
such that

Ci ∪ D −→D (Ci,1, . . . Ci,ei
),

(iii) for every i = 1 · · · d and every j = 1 · · · ei the polynomial hC is regular
w.r.t. Ci,j.
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Then we have:

Z(F, C ∪ D) −→D (Z(F1, C1,1), . . . ,Z(F1, C1,e1
), . . . ,

Z(Fd, Cd,1), . . . ,Z(Fd, Cd,ed
)).

Proof. Let i be in the range 1 · · ·d and j be in 1 · · · ei. First we prove
[Fi, Ci,j]≺ [F, C ∪ D]. From (i) we have [Fi, Ci]≺ [F, C]. From (ii) we have
either Ci,j ∼Ci ∪ D or Ci,j ≺Ci ∪ D. Two cases arise. If Ci ≺C holds then
we have Ci ∪ D≺C ∪ D leading to Ci,j ≺C ∪ D and thus to the desired
relation. Assume now that Ci ∼C holds. This leads to Ci ∪ D∼C ∪ D. If
Ci,j ≺Ci ∪ D we are done again. Otherwise Ci,j ∼C ∪ D holds. Moreover,
Fi must contain a polynomial with smaller rank than any polynomial of F .
Hence [Fi, Ci,j]≺ [F, C ∪ D] holds in any case and property (D1) is proved.
Now we prove property (D2). From (i) we have Z(F, C) ⊆ ∪d

i=1 Z(Fi, Ci).
This leads to Z(F, C ∪D) ⊆ ∪d

i=1 Z(Fi, Ci ∪D). Indeed one can easily check
that W(C ∪D) = W(C)∩W(D) and W(Ci ∪D) = W(Ci)∩W(D) hold for
i = 1 · · ·d. Now, from (ii) we have W(Ci ∪ D) ⊆ ∪ei

j=1 W(Ci,j). Therefore
we obtain

Z(F, C ∪ D) ⊆ ∪d
i=1 ∪ei

j=1 Z(Fi, Ci,j).

Now we prove property (D3). From (i) we have Sat(C) ⊆ Sat(Ci). Assume
that we have Sat(C ∪ D) ⊆ Sat(Ci ∪ D). Then we conclude with (ii) by
using Sat(Ci ∪ D) ⊆ Sat(Ci,j). Note that this shows that Sat(Ci ∪ D) 6= Pn

(since Ci,j is a regular chain). So we check now that we have Sat(C ∪ D) ⊆
Sat(Ci ∪ D) (although Ci ∪ D is not necessarily a regular chain). Let hD

and hCi
be the product of the initials of D and Ci respectively. Let f be in

Sat(C ∪ D). There exists a non-negative integer m, a polynomial fC ∈ I(C)
and a polynomial fD ∈ I(D) such that we have: (hC hD)m f = fC +fD. Since
I(C) ⊆ Sat(C) and Sat(C) ⊆ Sat(Ci) there exists a non-negative integer
m′ and a polynomial fi ∈ I(Ci) such that hCi

m′

fC = fi. We obtain:

hCi

m′

(hC hD)m f = fi + hCi

m′

fD.

This shows that hC
m f ∈ Sat(Ci ∪ D) holds. Now observe that (ii) implies

that the radical of Sat(Ci ∪ D) is equal to the intersection of the radicals
of the Sat(Ci,j). Thus every prime ideal associated with Sat(Ci ∪ D) is a
prime ideal associated with one Sat(Ci,j) (by uniqueness of a minimal pri-
mary decomposition). Hence with (iii) it follows that hC is regular modulo
Sat(Ci ∪ D). Therefore f ∈ Sat(Ci ∪ D) holds and property (D3) is proved.
We remark that property (D4) is clearly satisfied. Finally we prove property
(D5). So we assume Fi = ∅. With (i) this implies W(Ci) ⊆ V(F ). This leads
to W(Ci ∪ D) ⊆ V(F ) and thus to W(Ci ∪ D) ⊆ V(F ). From (ii) we
have Sat(Ci ∪ D) ⊆ Sat(Ci,j) and thus W(Ci,j) ⊆ W(Ci ∪ D) leading to
W(Ci,j) ⊆ V(F ) and proving (D5). 2
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4 Intersecting Hypersurfaces with Quasi-Components

Let T ⊆ Pn be a regular chain and let p ∈ Pn be a polynomial satisfying p 6∈ k
and p 6∈ Sat(T ). The goal of this section is to show how a regular delayed split
of the intersection Z(p, T ) of the hypersurface V(p) and the quasi-component
W(T ) can be obtained. If the main variable of p is not algebraic w.r.t. T , we
will use the following proposition whose proof is straightforward.

Proposition 24 Let T ⊆ Pn be a regular chain and let p ∈ Pn be a poly-
nomial satisfying p 6∈ k and p 6∈ Sat(T ). We assume that mvar(p) is not
algebraic w.r.t. T and we denote by hp the initial of p. Let (T1, . . . , Td) be a
regular delayed split of T ∪ p. Then we have:

Z(p, T ) −→D (Z({hp, p}, T ),W(T1), . . . ,W(Td)).

The above triangular set T ∪ p may not be a regular chain. Hence we need
a procedure for building a regular delayed split (T1, . . . , Td) of T ∪ p. To do
so we assume from now on that we are given an operation regular? defined in
Specification 2. The validity of this assumption will be established in Section 5.
The operation regular? leads to the operation extend defined in Algorithm 3.

Specification 2 For any polynomial f ∈ Pn and any regular chain C ⊆ Pn,
the operation regular?(f, C) returns a regular delayed split (C1, . . . , Cd) of C

such that for every i = 1 · · ·d if red(f, Ci) 6= 0 then f is regular w.r.t. Ci.

Algorithm 3

• Input: a regular chain C contained in Pk, for an integer k in the range
0 · · ·n − 1, and a non-constant p ∈ Pn with mvar(p) = xk+1.

• Output: a regular delayed split of C ∪ p.
• extend(C, p) ==

h := init(p)
Let hC be the product of the initials of C

for D ∈ regular?(h, C) repeat
red(h, D) = 0 =⇒ iterate
dim(D) = dim(C) =⇒ output D ∪ p

for E ∈ regular?(hC h, D) repeat
red(hC h, E) 6= 0 =⇒ output E ∪ p

exit

We will see that each of the algorithms presented in Sections 3, 4 and 5 may
call each other directly or indirectly. In order to establish their termination
and correctness we need to point out on which hypothesis each algorithm calls
another. Proposition 26 states that Algorithm 3 terminates and satisfies its
specification provided that its calls to the operation regular? are valid.
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Hypothesis 25 Let C and p be as in the input specification of Algorithm 3.
We denote by H1(C, p) the following hypothesis: for every regular chain R ⊆
Pn and for every polynomial f ∈ Pn such that [f, R]≺ [p, C] holds, the call
regular?(f, R) satisfies Specification 2.

Proposition 26 Let C and p be as in the input of Algorithm 3. If hypothesis
H1(C, p) holds then Algorithm 3 terminates and satisfies its output specifica-
tion. Moreover Sat(C ∪ p) is the unit ideal iff extend(C, p) is empty.

Proof. We first show that the hypothesis of Proposition 26 applies to every
call to the operation regular? in Algorithm 3. As in Algorithm 3 we denote by h

the initial of p and by hC the product of the initials of C. Since h≺ p we have
[h, C]≺ [p, C]. Thus, since H1(C, p) holds, we can assume that regular?(h, C)
returns a regular delayed split (C1, . . . , Cd, C

′

1, . . . , C
′

e) of C such that for ev-
ery i = 1 · · ·d the polynomial h is regular w.r.t. Ci, and for every j = 1 · · · e the
polynomial h reduces to zero w.r.t. C ′

j. We observe that every regular chain
C ′

1, . . . , C
′

e is discarded. Then the regular chains C1, . . . , Cd are separated
in two groups: those satisfying dim(Ci) = dim(C) and the others. We denote
D1, . . . , Da the former ones and D′

1, . . . , D
′

b the latter ones. The algorithm re-
turns D1∪p, . . . , Da∪p and calls regular?(hC h, D) for every D = D′

1, . . . , D
′

b.
By Definition 15 we have either D′

i ∼C or D′

i ≺C for i = 1 · · · b. Thus for ev-
ery D = D′

1, . . . , D
′

b the call regular?(hC h, D) satisfies Specification 2. There-
fore every call to regular? of Algorithm 3 satisfies Specification 2 and every
returned set is a regular chain. Moreover, Algorithm 3 terminates. We prove
now that all these returned sets form a delayed split of the input C ∪ p.

Checking properties (D1), (D4) and (D5) is easy. We prove (D2). By Specifi-
cation 2 and Definition 15 the union of the quasi-components of C ′

1, . . . , C
′

e,
D1, . . . , Da, D′

1,1, . . . , D
′

b,cb
contains W(C). Since either h or hC is zero mod-

ulo the saturated ideal of every discarded regular chain, the quasi-component
W(C ∪ p) is contained in the union of the quasi-components of the returned
regular chains. This proves property (D2). Now we prove (D3). Observe that
hC is regular w.r.t. every returned regular chain. Indeed this holds for D1 ∪
p, . . . , Da ∪ p by Proposition 5. This holds also for the regular chains D′

i,j ∪ p

such that red(hC h, D′

i,j) 6= 0. by Specification 2. Therefore Theorem 23 ap-
plies. This proves (D3). Observe that if Algorithm 3 does not return any regu-
lar chain, then W(C) ⊆ V(h) holds. Hence we have W(C∪p) = ∅, leading to
Sat(C ∪ p) = Pn. On the contrary, if Algorithm 3 returns at least one regular
chain R, then Sat(C ∪ p) ⊆ Sat(R) holds showing that Sat(C ∪ p) 6= Pn. 2

Algorithm 4 generalizes the operation extend to the case where its second argu-
ment is a triangular set. This will provide us the tool for lifting computations
in the context of Theorem 23. Proposition 28 states that Algorithm 4 termi-
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nates and satisfies its specification, provided that its calls to the operation
regular? are valid. Proposition 28 follows from Proposition 26 and its proof is
not reported here.

Algorithm 4

• Input: C and D as in the statement of Theorem 23 and let p be the element
of D with smallest main variable.

• Output: a regular delayed split of C ∪ D.
• extend(C, D) ==

D+ := D \ p

for E ∈ extend(C, p) repeat
D+ = ∅ =⇒ output E

for F ∈ extend(E, D+) repeat output F

exit

Hypothesis 27 Let T ⊆ Pn be a triangular set and let m be an integer in
the range 1 · · ·m. We denote by H2(T, m) the following hypothesis: for every
regular chain R ⊆ Pm−1 and for every polynomial f ∈ Pm−1 such that R has
no higher rank than T−

xm
, the call regular?(f, R) satisfies Specification 2.

Proposition 28 Let C and D be as in the input of Algorithm 4. Let m be
the smallest index such that C ∪ D ⊆ Pm holds. If hypothesis H2(C ∪ D, m)
holds then Algorithm 4 terminates and satisfies its output specification. More-
over Sat(C ∪ D) is the unit ideal of Pn iff extend(C, D) does not return any
regular chain. In addition, for any regular chain R returned by extend(C, D)
the product of the initials of C ∪ D is regular w.r.t. R.

When the hypothesis of Proposition 28 is satisfied, we have an algorithm to
compute a delayed split of Z(p, T ) in the context of Proposition 24. So we
consider now the case where the main variable of p is algebraic w.r.t. T . The
following concept will be our main tool in this new context.

Definition 29 Let T ⊆ Pn be a regular chain. Let k be an integer in the
range 0 · · ·n − 1. Let p and t be two non-constant polynomials in Pn with
main variable xk+1 such that the initial of p is regular w.r.t. T and T ∪ t is a
regular chain. Let g be a polynomial in Pk+1. We say that g is a regular gcd
of the polynomials p and t modulo T if the following conditions hold:

(G1) the leading coefficient of g as a univariate polynomial in Pk[xk+1] is reg-
ular w.r.t. T ,

(G2) there exist polynomials u, v ∈ Pk+1 such that ut + vp − g ∈ Sat(T )∩Pk,
(G3) if g 6∈ k and mvar(g) = xk+1 then both t and p lye in Sat((T ∩Pk) ∪ g).

If g is not constant and has main variable xk+1, then we say that g is a non-
trivial regular gcd of p and t modulo T .
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Remark 30 Let T, p, t, g be as in Definition 29 such that g is a regular gcd
of t and p modulo T . We point out three obvious remarks that are used quite
often in practice. First observe that condition (G1) implies g 6= 0. Secondly,
condition (G2) shows that if g ∈ k holds then we have Z({p, t}, T ) = ∅.
Lastly, condition (G3) implies: rank(g) = rank(t) =⇒ p ∈ Sat(T ∪ t). We
prove this statement. We define h = init(t) and hg = init(g). There exist
non-negative integers e and e′, polynomials qt, qf ∈ Pk+1 and polynomials

rt, rf ∈ Sat(T ) ∩ Pk such that hg
et = qtg + rt and hg

e′p = qpg + rp. This

leads to qthg
e′p = qphg

et + qtrp − qprt. Since mdeg(t) = mdeg(g) the relation
hg

et = qtg + rt shows that qt ∈ Pk holds, which leads to hg
eht = qthg. Thus

qthg
e′ is regular w.r.t. T ∩ Pk. It follows with relation (3) p. 6 that p lies in

Sat((T ∩ Pk) ∪ t). Therefore p ∈ Sat(T ∪ t). This last property shows that if
mvar(g) = xk+1 and p 6∈ Sat(T ∪ t) hold then we have mdeg(g) < mdeg(t).
Indeed mdeg(g) > mdeg(t) and (G3) implies prem(t, T ) = 0 contradicting the
fact that h is regular w.r.t. T .

Lemma 31 Let T, p, t, g be as in Definition 29. Assume that p 6∈ Sat(T ∪ t)
and that g is a non-trivial regular gcd of t and p modulo T . Let hg be the initial
of g and q be the pseudo-quotient of t by g. Then T ∪ q is a regular chain with
mvar(q) = xk+1. Moreover we have:

(1) W(T ∪ g) ⊆ Z({p, t}, T ),
(2) Z(p, T ∪ q) \ V(hg) ⊆ W(T ∪ g).

Proof. By assumption we have mvar(g) = xk+1. Since p 6∈ Sat(T ∪ t) holds,
Remark 30 implies mdeg(g) < mdeg(t). Hence mvar(q) = xk+1 holds. Since
the initial of t is regular w.r.t. T , conditions (G1) and (G3) allows us to apply
Theorem 7 and we deduce that T ∪g and T ∪ q are regular chains. Now, let us
prove (1). Condition (G3) implies p ∈ Sat(T ∪ g) and t ∈ Sat(T ∪ g). Thus we
have V(p)∩V(t) ⊇ W(T ∪ g), proving (1). We prove (2). From condition (G2)
there exist polynomials u, v ∈ Pk+1 and a polynomial r′ ∈ Sat(T ) such that
g = ut + vp + r′. From condition (G3), there exists a polynomial r′′ ∈ Sat(T )
and a non-negative integer m such that hg

m t = qg + r′′. Thus we have:

hg
m g = u(qg + r′′) + hg

m(vp + r′).

Since W(T ) ⊆ V(Sat(T )) any point ζ of Z(p, T ∪ q) cancels the right hand
side of the above equality and thus belongs to V(hg g), leading to (2). 2

Theorem 32 Let T, p, t, g be as in Definition 29. Assume that p 6∈ Sat(T ∪ t)
and that g is a non-trivial regular gcd of t and p modulo T . Let hg be the initial
of g. Then we have:

Z(p, T ∪ t) −→D (W(T ∪ g), Z({hg, p}, T ∪ t)). (8)
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Proof. Let us prove that properties (D1) to (D5) of Definition 11 hold. Recall
that our assumptions imply mvar(g) = mvar(t) and mdeg(g) < mdeg(t). Since
g≺ t and hg ≺ p hold each of the processes [∅, T ∪ g] and [{hg, p}, T ∪ t] has
smaller rank than the process [{p}, T ∪ t]. This proves (D1). As in Lemma 31
let q be the pseudo-quotient of t w.r.t. g. From Theorem 7 we know that T ∪ g

and T ∪ q are regular chains. Moreover we have:

Z(p, T ∪ t) ⊆ W(T ∪ g) ∪ Z(p, T ∪ q) ∪ Z({hg, p}, T ∪ t).

Indeed Relation (1) of Lemma 31 shows that Z(p, T ∪ g) = W(T ∪ g). Ob-
serve that all the points of Z(p, T ∪ t) that cancel hg are already captured by
Z({hg, p}, T ∪ t) and we replace the term Z(p, T ∪ q) by Z(p, T ∪ q)\V(hg) in
the above union. Hence with relation (2) of Lemma 31 we obtain (D2). Prop-
erty (D3) follows from Lemma 6 and properties (D4) and (D5) are clear. 2

We will show in Section 5 that there exists an operation called lastSubResul-
tant, denoted for short by lsr and defined in Specification 3. The operation
lsr together with Theorems 23 and 32 leads us to a first algorithm for the
operation decompose in a restricted case, given below in Algorithm 5. This
specialized decompose takes three arguments whereas the general one (Algo-
rithm 7) will only have two, Proposition 34 states that Algorithm 5 terminates
and satisfies its specifications provided that its call to regular? and lsr are valid.

Specification 3 Let k be an integer in the range 0 · · ·n − 1. Let T ⊆ Pk

be a regular chain. Let p1, p2 ∈ Pk+1 be non-constant polynomials such that
mvar(p1) = mvar(p2) = xk+1 and mdeg(p1) ≥ mdeg(p2) hold. Assume that
init(p1) and init(p2) are regular w.r.t. T . The operation lsr(p1, p2, T ) returns
a sequence of processes ([g1, C1], . . . [gd, Cd], [∅, D1], . . . [∅, De]) of Pn where
C1, . . . , Cd, D1, . . . , De are regular chains of Pk and g1, . . . , gd are polynomials
of Pk+1 satisfying the following conditions:

(L1) T −→D (C1, . . . , Cd, D1, . . . , De),
(L2) for every i = 1 · · ·d the polynomial gi is a regular gcd of p1 and p2 modulo

Ci and we have dim(Ci) = dim(T ),
(L3) for every j = 1 · · · e we have dim(Dj) < dim(T ).

Algorithm 5

• Input: T, p, t, g be as in Definition 29 such that p 6∈ Sat(T ∪ t) and define
v = mvar(p).

• Output: a regular delayed split of Z(p, T ∪ t).
• decompose(p, T, t) ==

Let h−

v be the product of the initials of T−

v

if mdeg(p) < mdeg(t) then (p1, p2) := (t, p) else (p1, p2) := (p, t)
for [G, C] ∈ lsr(p1, p2, T−

v ) repeat
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G = ∅ =⇒
for D ∈ extend(C, T+

v ∪ h−

v t) repeat output [p, D]
{g} := G

g ∈ k =⇒ iterate
mvar(g) < v =⇒ output [{g, p}, C ∪ t ∪ T+

v ]
mdeg(g) = mdeg(t) =⇒ output [∅, C ∪ t ∪ T+

v ]
output [∅, C ∪ g ∪ T+

v ]
output [{init(g), p}, C ∪ t ∪ T+

v ]
exit

Hypothesis 33 Let T ⊆ Pn be a triangular set and let m be an integer in
the range 1 · · ·n. We denote by H3(T, m) the following hypothesis: for every
regular chain R ⊆ Pm−1 with no higher rank than T−

xm
, every call to lsr with

R as third argument satisfies Specification 3.

Proposition 34 Let T, p, t be as in the input of Algorithm 5. Let m be the
smallest index such that T ∪ t ⊆ Pm holds. If hypothesis H2(T ∪ t, m) and
H3(T ∪ t, m) hold then Algorithm 5 terminates and satisfies its specifica-
tion. Moreover for every process [F, R] returned by decompose(p, T, t) such
that dim(R) < dim(T ∪ t) holds we have F 6= ∅.

Proof. We assume that H2(T ∪ t, m) and H3(T ∪ t, m) hold. Let h be the
initial of t. First we prove that the calls to the operations lsr and extend

satisfy Specification 3 and the specifications of Algorithm 4 respectively. This
implies immediately that Algorithm 5 terminates. Since T−

v ⊆ Pm−1 holds
the call lsr(p1, p2, T−

v ) satisfies Specification 3. Hence every regular chain C

computed by lsr(p1, p2, T−

v ) has no higher rank than T−

v . By Proposition 28 it
follows that extend(C, T+

v ∪ h−

v t) returns a regular delayed split (D1, . . . , De)
of C ∪ T+

v ∪ h−

v t such that h−

v h is regular modulo Di for every i = 1 · · · e.
This proves our claim. Now we show that Algorithm 5 is correct. First we
assume T+

v = ∅. We claim that in this case Algorithm 5 returns a regular
delayed split of Z(p, T ∪ h−

v t). To see this let (C1, . . . , Cd, C
′

1, . . . , C
′

e) be the
regular delayed split of T−

v returned by lsr(p1, p2, T−

v ) such that for every
i = 1 · · ·d we have dim(Ci) < dim( T−

v ) and for every j = 1 · · · e we have
dim(C ′

j) = dim( T−

v ). Note that the second for loop computes for i = 1 · · ·d
a regular delayed split (possibly empty) of Ci ∪ h−

v t. By Proposition 5, for
j = 1 · · · e the triangular set C ′

j ∪ h−

v t is a regular chain. Then, by applying
the formulas of Remark 30 and Theorem 32 we complete easily the proof of
our claim. We return now to the case where T+

v may not be empty. Since h−

v h

is regular w.r.t. every returned set, it suffices to apply Theorem 23. 2

We are now ready to state an algorithm for the operation decompose in the
general case. It consists essentially in a preparation phase by means of the
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operation regularizeInitial defined in Algorithm 6 so that we can apply either
Proposition 24 (the non-algebraic case) or Proposition 34 (the algebraic case).

Algorithm 6

• Input: f ∈ Pn a polynomial and C ⊆ Pn a regular chain.
• Output: a regular delayed split (C1, . . . , Cd) of C such that the polynomial

red(f, Ci) is either null or regular w.r.t. Ci, for every i = 1 · · ·d.
• regularizeInitial(f, C) ==

f := red(f, C)
R := [[f, C]]
# R is a list of processes
while R 6= [ ] repeat

choose and remove a process [f, C] from R

f ∈ k =⇒ output C

for D ∈ regular?(init(f), C) repeat
red(init(f), D) 6= 0 =⇒ output D

R := cons([red(tail(f), D), D])
exit

Proposition 35 Let C and f be as in the input of Algorithm 6. If hypothesis
H1(C, f) holds then Algorithm 6 terminates and satisfies its specification.

Algorithm 7

• Input: T regular chain of Pn and p ∈ Pn such that p 6∈ k and p 6∈ Sat(T ).
• Output: a regular delayed split of Z(p, T ).
• decompose(p, T ) ==

for C ∈ regularizeInitial(p, T ) repeat
f := red(p, C)
f = 0 =⇒ output [∅, C]
f ∈ k =⇒ iterate
v := mvar(f)
v 6∈ alg(C) =⇒

output [{init(f), p}, C]
for D ∈ extend( C−

v ∪ f, C+
v ) repeat output [∅, D]

for [F, E] ∈ decompose(f, C−

v ∪ C+
v , Cv) repeat output [F · p, E]

exit

Proposition 36 Let T and p be as in the input specification of Algorithm 7.
Let m be the smallest index such that T ⊆ Pm holds. If hypothesis H1(T, p),
H2(T, m) and H3(T, m) hold then Algorithm 7 terminates and satisfies its
specification. Moreover for every process [F, R] returned by decompose(p, T )
such that dim(R) < dim(T ∪ t) holds we have F 6= ∅.
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Proof. We assume that H1(T, p), H2(T, m) and H3(T, m) hold. Since H1(T, p)
holds, it follows from Proposition 35 that regularizeInitial(p, T ) returns a reg-
ular delayed split of T . We claim that for each regular chain C produced by
regularizeInitial(p, T ) the corresponding iteration of the for loop returns either
C or a regular delayed split of Z(p, C). Therefore the correctness of the whole
algorithm follows from Proposition 22. Let us prove this claim. So let C be a
regular chain produced by regularizeInitial(p, T ). Recall that C has not higher
rank than T . As in Algorithm 7 we put f = red(p, C). If f = 0 or f ∈ k,
the conclusion is clear. Let v = mvar(f). Note that init(f) is regular w.r.t. C.
Moreover C−

v has not higher rank than T−

v . First assume that v 6∈ alg(C).
Since H2(T, m) holds we can apply Proposition 28. Then the conclusion follows
from Proposition 24. Now Assume v ∈ alg(C). Since H2(T, m) and H3(T, m)
hold we can apply Proposition 34. This proves our above claim. Finally we
observe that the last statement of Proposition 34 is clear. 2

5 Computations Modulo Regular Chains

The goal of this section is to establish algorithms for the operations regular?

and lastSubResultant introduced in Specifications 2 and 3 respectively. For the
latter operation we will rely on subresultant theory. We start this section by
a brief review of this subject and refer to [Loo82,Duc00] for more details.

Let A be an integral domain. For p1 ∈ A[X] with p1 6= 0 we denote by
lc(p1) and deg(p1) the leading coefficient and the degree of p1. If deg(p1) > 0,
for p2 ∈ A[X] we denote by prem(p1, p2) the pseudo-remainder of p1 by p2.
From now on we assume that p1 and p2 have positive degrees d1 and d2 such
that d1 ≥ d2. Recall that for j = 0 · · ·d2 the j-th subresultant Sj of p1 and
p2 lies in A[X] and that it is either null or satisfies deg(Sj) ≤ j; we say
that Sj is regular if deg(Sj) = j. Let S be a non-zero subresultant of p1 and
p2 with degree d < d2. From the Block Structure Theorem of subresultants
[Loo82] there exist at most two subresultants with the same degree d: that
with biggest index is denoted by S+ and that with smallest index is denoted
by S−. Moreover S− is regular. We denote by S< (resp. S>) the non-zero
subresultant Sk with biggest (resp. smallest) index k whose degree is strictly
less (resp. greater) than d. The non-zero subresultant of p1 and p2 with smallest
index is denoted by lsr(p1, p2) and called the last-subresultant of p1 and p2. If
Sℓ is the last-subresultant of p1 and p2, the subresultant S+

ℓ is denoted by
srgcd(p1, p2) and called the subresultant-gcd of p1 and p2. If lsr(p1, p2) has
degree zero, then it is the resultant of p1 and p2. We will use the following
fact. The polynomial lsr(p1, p2) lies in the ideal generated by p1 and p2 in
A[X]. Moreover p1 and p2 reduces to zero w.r.t. lsr(p1, p2) by pseudo-division.
Let S be a non-zero subresultant of p1 and p2 with degree d < d2 and such
that S = S+. If S> has degree d2 we define s = lc(p1)

δ where δ = d1 − d2
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otherwise we define s = lc(S>). The Block Structure Theorem implies the
following properties. First, one can compute the subresultant S− from S>, S+

and s. Secondly, one can compute the subresultant S< from S>, S+, S− and
s. This allows us to define a next-subresultant operation denoted by nsr and
defined by nsr(S>, S+, s) = S− and nsr(S>, S+, S−, s) = S<. We will use the
following facts. Computing nsr(p1, p2, s) only requires multiplications by lc(p2)
and exact divisions by s. The only exact divisions involved in nsr(p1, p2, p3, s)
are by lc(p1), lc(p2) and s. Finally lsr(p1, p2) can be computed as follows:

Algorithm 8

• Input: p1, p2 ∈ A[X] with deg(p1) ≥ deg(p2) > 0.
• Output: The last-subresultant of p1 and p2.
• lsr(p1, p2) ==

δ := deg(p1) − deg(p2)

s := lc(p2)
δ

(p1, p2) := (p2, prem(p1,−p2))
repeat

p2 = 0 =⇒ return p1

p3 := nsr(p1, p2, s)
deg(p3) = 0 =⇒ return p3

(p1, p2) := (p3, nsr(p1, p2, p3, s))
s := lc(p1)

Let T , p1, p2 and k be as in Specification 3. Let a = p1 and b = p2. Assume
that H2(T, k + 1) holds. We shall adapt Algorithm 8 in order to compute
lsr(p1, p2, T ). We proceed by induction on the rank of the process [{p1, p2}, T ].

A first step is modify in Algorithm 8 as follows. First, we replace the test
p2 = 0 by red(p2, T ) = 0. Secondly, we insert between the first and the second
lines of the repeat loop the following: if lc(p2, v) is not regular w.r.t. T then
error. Indeed, since H2(T, k+1) holds we can check whether lc(p2, v) is regular
or not w.r.t. T . Assume now that this modified algorithm terminates without
producing an error. Then we return either [p1, T ] (if red(p2, T ) = 0 holds) or
[p3, T ] (if deg(p3, v) = 0). Observe that these returned values satisfy property
(G1) of Definition 29. Indeed, the leading coefficients w.r.t. v of the successive
subresultants have been proved to be regular w.r.t. T . For the same reason
every exact division performed by the algorithm is well defined modulo Sat(T ).
Now observe that the fact that lsr(p1, p2) lies in the ideal generated by p1 and p2

comes from a manipulation of determinants (that only requires commutativity
for the coefficient ring). Therefore, even if Sat(T ) is not prime, our returned
values satisfy property (G2). Finally property (G3) holds because lsr(p1, p2)
pseudo-divides p1 and p2, provided that this pseudo-division is well defined,
which is the case. It follows that we have proved Algorithm 9 in the case where
at each iteration either lc(p2, v) is regular w.r.t. T or p2 is null modulo Sat(T ).
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Algorithm 9

• Input: see Specification 3.
• Output: see Specification 3.
• lsr(p1, p2, T ) ==

v := mvar(p1)
δ := mdeg(p1) − mdeg(p2)

s := init(p2)
δ

(p1, p2) := (p2, prem(p1,−p2))
R := [T ]
repeat

R′ := [ ]
for C ∈ R repeat

for D ∈ regularizeInitial(p2 v, C) repeat
dim(D) < dim(C) =⇒ output [∅, D]
red(p2, D) = 0 =⇒ output [p1, D]
red(lc(p2, v), D) 6= 0 =⇒ R′ := cons(D, R′)
deg(red(p2, D), v) = 0 =⇒ output [red(p2, D), D]
for [G, E] ∈ lsr(p1, red(p2, D), D) repeat output [G, E]

R′ = [ ] =⇒ exit
p3 := nsr(p1, p2, s)
deg(p3, v) = 0 =⇒

for C ∈ R′ repeat output [p3, C]
exit

(p1, p2) := (p3, nsr(p1, p2, p3, s))
s := init(p1)
R := R′

The variable R of Algorithm 9 is a list of regular chains whose initial value is
[T ]. Then the call regularizeInitial(p2 v, C) may split C and lead to new cases.
Some of these cases are treated directly inside the second for loop, possibly
by means of a recursive call to lsr. The others are delayed by inserting the
corresponding regular chains into R. Observe that the multiplication of p2 by
v = xk+1 in the call regularizeInitial(p2 v, C) is just a trick in order to avoid the
distinction between the cases deg(p2, v) = 0 and deg(p2, v) > 0. Because of the
composition property of Proposition 22 we only need to check the second for
loop. Once this is done we will have proved Proposition 37. For every regular
chain D returned by regularizeInitial(p2 v, C) five cases arise.

(1) dim(D) < dim(C). We return [∅, D] as expected in Specification 3.
(2) red(p2, D) = 0. We return [p1, D]. Indeed, since dim(D) = dim(C), all our

arguments for the Algorithm 8 with error apply.
(3) red(lc(p2, v), D) 6= 0. Since dim(D) = dim(C), we can continue the com-

putations as if they were started w.r.t. D.
(4) deg(red(p2, D), v) = 0. Since dim(D) = dim(C), we could have followed
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the computations as if they were started w.r.t. D. Since red(p2, D) is
regular w.r.t. D and has degree 0 w.r.t. v, we return [red(p2, D), D].

(5) red(lc(p2, v), D) = 0 but deg(red(p2, D), v) > 0. This implies that init(p2)
reduces to zero w.r.t. D. Therefore our induction hypothesis applies. Since
init(p1) is regular w.r.t. D, the recursive call lsr(p1, red(p2, D), D) is valid.
Since each regular subresultant S of the input polynomials a and b lies
in the ideal they generate, each value returned by lsr(p1, red(p2, D), D) is
a correct result for the starting call lsr(a, b, T ).

Proposition 37 Let T , p1, p2 be as above. If H2(T, k + 1) holds then Algo-
rithm 9 terminates and satisfies its specification. Moreover H3(T, k+1) holds.

Let p ∈ Pn be a polynomial and T ⊆ Pn be a regular chain. Let m be the
smallest integer in the range 1 · · ·n such that T ⊆ Pm holds. We assume
that H1(T, p) and H2(T, m) hold. We shall prove that regular?(p, T ) defined
in Algorithm 10 below satisfies its output specification.

Since H1(T, p) holds Proposition 35 applies. Hence regularizeInitial(p, T ) re-
turns a regular delayed split (C1, . . . , Cd) of T such that either red(p, Ci) lies
in k or its initial is regular w.r.t. Ci. By Proposition 22 it suffices to prove that
for every C = C1, . . . , Cd the corresponding iteration of the for loop satisfies
the output specification of regular?(p, C). The case where red(p, C) lies in k or
its main variable variable v is not algebraic w.r.t. C is easy to check. So we
assume that v ∈ alg(C) holds. Since H2(T, m) holds Proposition 37 applies.
In particular the call lsr(p1, p2, C−

v ) generates a regular delayed split of C−

v .

For each of the above cases, if there is a recursive call to regular? we show that
it satisfies its output specification (i.e. using hypothesis H1(T, p)) otherwise
we show that the desired result is obtained directly without any recursive call.

(1) G = ∅. Since H2(T, m) holds, extend(D, ht ∪ C+
v ) returns a regular de-

layed split of D ∪ ht ∪ C+
v , by Proposition 28. Each regular chain E of

this split has no higher rank than D∪ ht∪ C+
v . Moreover we have either

D≺ C−

v or D∼ C−

v . But the latter would imply dim(D) = dim( C−

v ), a
contradiction with G = ∅. Since C = C−

v ∪ t ∪ C+
v , we obtain E ≺C.

With hypothesis H1(T, p), since C has no higher rank than T , it follows
that the recursive call regular?(q, E) is valid. Note that in order to apply
Theorem 23 the multiplication by h in extend(D, ht ∪ C+

v ) is needed.
(2) (g ∈ k) or (mvar(g) < v). Recall that we have Sat(D) ⊆ Sat( C−

v ). Since
dim(D) = dim( C−

v ) holds, D ∪ t ∪ C+
v is a regular chain. Since p equals

red(p, C) modulo Sat(C), this equality holds also modulo Sat(D ∪ t).
Then, by condition (G2) of Definition 29, there exist polynomials u, u ∈
Pk+1 such that up = vt + g holds modulo Sat(D). Now, by condition
(G1), the polynomial g is regular w.r.t. D and thus w.r.t. D∪ t. It follows
that p is regular w.r.t. D ∪ t ∪ C+

v and that this regular chain must be
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returned. Observe that h is regular w.r.t the output regular chain.
(3) mvar(g) = xk+1 and mdeg(g) = mdeg(t). By Remark 30 we have p ∈

Sat(D ∪ t). Thus D ∪ t ∪ C+
v must be returned by the algorithm.

(4) mvar(g) = xk+1 and mdeg(g) 6= mdeg(t). We have mdeg(g) < mdeg(t), by
Remark 30. Hence we apply Theorem 7 and its Corollary 8. We use the
operation intersect specified in Remark 20 and consequently the opera-
tion decompose from Specification 1. By Theorem 7 the sets D∪ g ∪ C+

v

and D ∪ f ∪ C+
v are regular chains. Moreover, the polynomial h is reg-

ular w.r.t. them. By condition (G3), the polynomial p reduces to zero
w.r.t. D ∪ g ∪ C+

v and this set must be returned by the algorithm. Since
D ∪ f ∪ C+

v ≺C. holds, the recursive call regular?(q, D ∪ f ∪ C+
v ) is

valid. We put hg = init(g). Since H2(T, k + 1) holds, Proposition 36 ap-
plies. Hence intersect(hg , D ∪ t ∪ C+

v ) returns a delayed split of Z(hg, D∪
t ∪ C+

v ) consisting of regular chains. Let E be one of them. By Proposi-
tion 16, since hg is regular w.r.t. D∪ t ∪ C+

v , we have dim(E) < dim(C).
Hence E ≺C holds and the last recursive call is valid too.

Algorithm 10

• Input: T regular chain of Pn and p ∈ Pn.
• Output: a regular delayed split (T1, . . . Td) of T such that if red(p, Ti) 6= 0

then p is regular w.r.t. Ti, for every i = 1 · · ·d.
• regular?(p, T ) ==

for C ∈ regularizeInitial(p, T ) repeat
q := red(p, C)
q ∈ k =⇒ output C

v := mvar(q)
v 6∈ alg(C) =⇒ output C

t := Cv

if mdeg(t) ≤ mdeg(q) then (p1, p2) := (q, t) else (p1, p2) := (t, q)
Let h be the product of the initials of C−

v

for [G, D] ∈ lsr(p1, p2, C−

v ) repeat
G = ∅ =⇒

for E ∈ extend(D, ht ∪ C+
v ) repeat

for H ∈ regular?(q, E) repeat output H

{g} := G

(g ∈ k) or (mvar(g) < v) =⇒ output D ∪ t ∪ C+
v

mdeg(g) = mdeg(t) =⇒ output D ∪ t ∪ C+
v

f := pquo(t, g)
output D ∪ g ∪ C+

v

for E ∈ regular?(q, D ∪ f ∪ C+
v ) repeat output E

for E ∈ intersect(init(g), D ∪ t ∪ C+
v ) repeat

for H ∈ regular?(q, E) repeat output H

exit
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Theorem 38 Alorithm 10 terminates and satisfies its specification.

Proof. Following the above discussion, the only remaining point to prove
is that Algorithm 10 terminates. Let us consider the ordered tree T of the
recursive calls to regular? (possibly via the other operations) required to com-
pute regular?(p, T ). We know if H1(T, p) and H2(T, m) hold then regular?(p, T )
can be computed. Hence for each recursive call regular?(p′, T ′) we have either
[p′, T ′] ≺ [p, T ] or the greatest variable occuring in T ′ is strictly smaller than
that of T . Hence T is finite. Finally it is easy to check than when no call to
regular? is needed, each of our algorithms satisfies its specification. 2

Corollary 39 Algorithms 2, 3, 4, 6, 5, 7, and 9 terminate and satisfy their
specifications.

6 Improvements

We give several improvements for the algorithms of the previous sections. Then
we show how to use them for producing decompositions into normalized and
square-free regular chains, and for removing redundant quasi-components. In
particular we explain how to compute the decompositions of Lazard’s algo-
rithm [Laz91]. Finally we adapt our algorithms in order to compute efficiently
the decompositions of Kalkbrener [Kal91].

Clearly, the operation regular? is called intensively by our algorithms. Let
p ∈ Pn be a polynomial and T ⊆ Pn be a regular chain. Here are some
tricks in order to speed up the computation of regular?(p, T ) and to reduce
the number of recursive calls. First, if p is normalized w.r.t. T or if Sat(T )
is a prime ideal then regular?(p, T ) is simply (T ). Consider now the call to
intersect in our Algorithm 10. Let hg be the initial of g. Assume that T is
purely algebraic. Assume also that every variable occuring in hg is algebraic
w.r.t. D ∪ t ∪ C+

v . Then Z(hg, D∪ t ∪ C+
v ) is necessarily empty, by virtue of

Proposition 16. This trick applies very often in practice and provides a great
speed up. Consider now the case where the previous trick does not work.
Let ht and hq be the initials of t and q. Let γ be the gcd of ht and hq as
multivariate polynomials of Pk. Assume that g is the subresultant-gcd of t

and q regarded as univariate polynomials in xk+1. Then hg divides γg and
again Z(hg, D ∪ t ∪ C+

v ) is necessarily empty. This is a very powerful trick.

We give now some tricks in order to improve the operation lsr. Let p1, p2, and
T be as Algorithm 9. If T is purely algebraic and if the coefficients of p1 and
p2 (regarded as univariate polynomials) are algebraic w.r.t. T , then we can
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use the algorithm given in [MR95]. Furthermore, if Sat(T ) is prime, we can
use a modular algorithm for computing polynomial gcds [LM89,Enc94].

Several of our algorithms are simpler if their input polynomials or regular
chains are normalized. Let T ⊆ Pn be a regular chain. If the polynomial
p ∈ Pn is normalized w.r.t. T then regularizeInitial(p, T ) returns simply (T ).
In the same way, if p ∈ Pn is normalized w.r.t. T (and mvar(p) is greater than
any variable of T ) then extend(p, T ) returns simply (T ∪ p).

We explain now how we compute a delayed split of T by means of normalized
regular chains. We proceed by induction on the rank of the greatest variable
occuring in T . Assume that T writes N ∪ t where N is a normalized regular
chain and t is a polynomial regular w.r.t. N with main variable greater than
any variable of N . By repeated calls to the operation lsr, computing the Bézout
coefficients given by property (G2) of Definition 29, we can compute a sequence
of processes ([q1, M1], . . . , [qe, Me]) with the following properties. First (M1 ∪
t, . . . , Me ∪ t) is a regular delayed split of N ∪ t where each Mi is normalized.
Secondly, each polynomial red(qi t, Mi) is not constant, normalized w.r.t. Mi

and has the same rank as t. Clearly every set Mi∪ red(qi t, Mi) is a normalized
regular chain and is part of the desired delayed split of N ∪ t. In order to
apply formula (c) of Lemma 4 we need to compute intersect(qi, Mi) for every
i = 1 · · · e, obtaining regular chains Mi,j. Then we call extend(Mi,j , t) since
t may not be regular w.r.t. Mi,j and obtain regular chains Mi,j,l to which
we apply recursively our normalization procedure. The whole normalization
procedure terminates since the call intersect(qi, Mi) returns regular chains Mi,j

such that dim(Mi,j) < dim(Mi) holds. Indeed qi is regular w.r.t. Mi.

Several of our algorithms are also simpler if the input regular chain T is
square-free. In this case, Sat(T ) is radical. See Proposition V.1 in [Mor97].
This has several advantages. First, this is crucial for deciding whether a quasi-
component is contained in another as we shall below. Secondly, this clearly
reduces the size of the computed objects and increases the legibility of the
output. Lastly, this allows an improvement of Algorithm 10 as follows. Assume
that we are considering the case mvar(g) = mvar(t) and mdeg(g) < mdeg(t) in
Algorithm 10. If t is known to be square-free w.r.t. D, then the polynomials
g and f are relatively prime modulo Sat(D). Recall that p reduces to zero
modulo D ∪ g. Then p must be regular w.r.t. D ∪ f . Hence we can avoid
the second recursive call in Algorithm 10 and return directly D ∪ f ∪ C+

v .
The production of square-free regular chains is similar to that of normalized
triangular sets and we do not detail this point.

Let T1 and T2 be two regular chains of Pn. We want to decide whether
W(T1) ⊆ W(T2) holds. If T1 and T2 are square-free normalized triangular
sets, one can use the procedure subQuasiComponent? of [Mor97]. We discuss
here the general case, for which we provide several criteria. Indeed we do
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not know a decision algorithm in the general case. However these criteria are
powerful enough in practice, especially if T1 and T2 are square-free. Let h2

be the product of the initials of T2. If h2 ∈ k then W(T2) = V(T2). Thus
W(T1) ⊆ W(T2) and W(T1) ⊆ W(T2) are equivalent. Thus if T2 ⊆ Sat(T1)
holds, we can answer yes otherwise we cannot conclude. Clearly, the chain
T1 should better be square-free. If h2 6∈ k then we need to add another con-
dition. First we can test intersect(h2, T1) = ∅ (together with T2 ⊆ Sat(T1))
and answer yes if this holds. Secondly we can refine this idea by computing
regular?(h2, T1) = (R1, . . . , Rd). Then, for every Ri such that red(h2, Ri) 6= 0
and such that intersect(h2, Ri) 6= ∅ together with T2 ⊆ Sat(Ri) we answer yes.

A direct application of our procedures to decide whether a quasi-component
is contained in another is the management of the processes. This task has to
be realized by Algorithm 2. We use its notations. Recall that the idea is to
produce the regular chains in the output of solve(F ) in order of decreasing
dimension such that the redundant quasi-components can be removed as soon
as possible. Hence, among all the processes in R one must chose a process
[F1, U1] such that dim(U1) is maximal. Then we must refine this choice by
avoiding the process [F1, U1] such that F1 contains polynomials which have
been proved to be regular w.r.t. U1. When decompose(p, U1) has returned
a delayed split of Z(p, U1) we must perform several cleanings. First, for a
given process [F1, U1], we can remove from F1 any polynomial f such that
red(f, U1) = 0 holds. Indeed any regular chain C generated by this process
satisfies Sat(U1) ⊆ Sat(C) and thus red(f, C) = 0. Secondly, we can remove
from R every process [F1, U1] such that there exists a computed regular chain
R (part of the output) satisfying Z(F1, U1) ⊆ W(R). Lastly, we can compare
the processes of R between them. All these cleanings leave the loop invariants
of the proof of Proposition 19 unchanged.

It follows that we have provided all the tools in order to compute a Lazard
split of V(F ) by means of Lazard’s sets (i.e. square-free normalized triangular
sets) such no output quasi-component is contained in another one.

If Algorithm 2 is used for computing a Kalkbrener split of a given algebraic
variety V(F ), redundant components may appear. More precisely this split
may contain two regular chains T and T ′ such that W(T ) ⊆ W(T ′) holds,
even if W(T ) ⊆ W(T ′) does not hold. This is essentially due to Theorem 7.
Here are some tricks to reduce these redundancies in a significant manner.

Since the height of the saturated ideal of a regular chain equals the number
of its elements, we can delete any process [F1, T1] of Algorithm 2 such that
T1 contains more elements than the input system F . In fact we can do more
as follows. Let T be a regular chain containing as many elements as F . Let
p be in Pn and [Fi, Ti] be a process returned by decompose(p, T ) such that
Fi 6= ∅ holds. Then we can discard [Fi, Ti] from the output of decompose(p, T ).
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Indeed there exists fi ∈ Fi such that fi is regular w.r.t. Ti. Observe also that
during the computation of decompose(p, T ) we should never perform the case
G = ∅ in Algorithm 5 and the case v 6∈ alg(C) in Algorithm 7, since they will
generate regular chains D such that dim(D) < dim(T ). See Table 6 in [AM99]
for experimental results.
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thesis, Université de Limoges, 1994.

[GPS98] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular vers. 1.2 User
Manual. In Reports On Computer Algebra, number 21. Centre for Computer
Algebra, University of Kaiserslautern, June 1998.
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