
Solving Polynomial Systems Symbolically and in
Parallel

Marc Moreno Maza & Yuzhen Xie,
ORCCA, University of Western Ontario, London, Ontario, Canada

{moreno, yxie}@orcca.on.ca

October 10, 2006

Abstract

We discuss the parallelization of algorithms
for solving polynomial systems symbolically.
We introduce acomponent-levelparalleliza-
tion: our objective is to develop a parallel
solver for which the number of processors in
use depends on theintrinsic complexityof the
input system, that is on geometry of its solu-
tion set. This approach creates new opportu-
nities for parallel execution of polynomial sys-
tem solvers, in addition to the classical ones at
the level of polynomial reduction.

We have developed a parallel framework
by extending the ALDOR programming lan-
guage to support multi-processed parallelism
targeting symmetric multiprocessor machines.
This allowed us to realize a symbolic poly-
nomial system solver with a component-level
parallelization. Our experimentation demon-
strates good performance gain with respect to
the comparable sequential solver.

1 Introduction

Solving systems of algebraic or differential
non-linear polynomials is one of the funda-
mental problems in mathematical sciences. It
has been studied for centuries and has stim-
ulated many research developments. Algo-
rithmic solutions can be classified into three
categories: numeric, symbolic and hybrid
numeric-symbolic. The choice for one of them
depends on the characteristics of the system of
equations to solve; for instance, it depends on
whether the coefficients are known exactly or
are approximations obtained from experimen-
tal measurements. This choice depends also on
the expected answers, which could be a com-
plete description of all the solutions, or only
the real solutions, or just one solution among
all of them.

Symbolic solvers are powerful tools in sci-
entific computing: they are well suited for
problems where the desired output must be ex-
act and they have been applied successfully in
areas like digital signal processing, robotics,
theoretical physics, cryptology with many im-
portant outcomes. See [17] for an overview
of these applications. The implementation of

1

symbolic methods is, however, a highly dif-
ficult task. Indeed, they are extremely time
consuming when applied to large examples.
Moreover, intermediate expressions can grow
to enormous size and may halt the computa-
tions, even if the result is of moderate size.

Since the discovery of Gröbner bases [8], the
algorithmic advances in symbolic polynomial
system solving have made possible to tackle
many classical problems that were previously
out of reach. However, algorithmic progress
is still desirable, for instance when solving
symbolically a large system of algebraic non-
linear equations. For such a system, in par-
ticular if its solution set consists of geomet-
ric components of different dimension (points,
curves, surfaces, etc) it is necessary to com-
bine Gröbner bases with decomposition tech-
niques. Ideally, one would like each of the
different components to be produced by an in-
dependent processor, or set of processors. In
practice, the input polynomial system, which is
hiding those components, requires some trans-
formations in order to split the computations
into subsystems and, then, lead to the desired
components. The efficiency of this approach
depends on its ability to detect and exploit ge-
ometrical information during the solving pro-
cess. Its implementation, which naturally must
involve parallel symbolic computations, is yet
another challenge.

Several symbolic algorithms provide a de-
composition of the solution set of any system
of algebraic equations into components (which
may be irreducible or with weaker properties):
primary decomposition [16, 29], comprehen-
sive Gröbner bases [33] triangular decomposi-
tions [34, 21, 22, 26, 31] and others. These
algorithms tend to split the input polynomial
system into subsystems and, therefore, seem
to be natural candidates for acomponent-level

parallelization.

Unfortunately, such a parallelization is very
likely to be unsuccessful, bringing no practi-
cal speed-up w.r.t. comparable sequential im-
plementations of the same algorithms. Indeed,
even if computations split into sub-problems
which can be processed concurrently, the com-
puting resources consumption of the corre-
sponding tasks are extremely irregular. Even
worse: for input polynomial systems with
coefficients in the fieldQ of rational num-
bers, a single heavy task may dominate the
whole solving process, leading essentially to
no opportunities for component-level parallel
execution. This phenomenon follows from
the following observation. For most poly-
nomial systems with coefficients inQ that
arise in theory or in practice, see for instance
www.SymbolicData.org, the solution set
can be described by a single component! The
theoretical justification is given by the cel-
ebratedShape Lemma[5] for systems with
finitely many solutions, and, for instance, by
the results of [10] for systems with infinitely
many solutions. This phenomenon, however,
can be overcome for polynomial systems with
coefficients modulo a prime number. Indeed,
the probabilityqn for a monic uniformly ran-
dom univariate polynomial of degreen to be ir-
reducible modulo a prime numberp with pn ≥
16 satisfies1/2n ≤ qn ≤ 1/n [15]; hence a
polynomial of large degree irreducible overQ

is likely to factor modulop.

We show, in this paper, how to achieve a
successful component-level parallelization for
polynomial systems including for the case of
rational number coefficients. Among the al-
gorithms that decompose the solution set of
a polynomial system into components, we
consider one computing triangular decompo-
sitions, calledTriade. It has been introduced

2

in [27] and has been implemented in the AL-
DOR language [2] and in the computer algebra
systems AXIOM [20] and MAPLE [25] as the
RegularChains library [23]. The first rea-
son for this choice is that, triangular decompo-
sitions of polynomial systems with coefficients
in Q can be reduced to triangular decomposi-
tions of polynomial systems modulo a prime
number [12]. The second and main reason is
that theTriade algorithm can generate the (in-
termediate or output) components by decreas-
ing order of dimension. As we show in Sec-
tion 2, this allows to execute concurrently the
tasks that are the most resources demanding,
leading to successfully component-level paral-
lel execution.

Our objective is to develop a parallel solver
for which the number of processors in use de-
pends on theintrinsic complexityof the input
system, that is on geometry of its solution set.
We do not aim at replacing the previous ap-
proaches for parallelizing algorithms. On the
contrary, we aim at adding an extra level of
parallelism.

The parallelization of two other algo-
rithms for solving polynomial systems sym-
bolically have already been actively studied.
First, Buchberger’s algorithm for computing
Gröbner bases, see for instance [6, 9, 11, 3,
24]. Second, the Characteristic Set Method of
Wu [34], see [1, 35, 36]. In all these works, the
parallelized operation is polynomial reduction
(or simplification). More precisely, given two
polynomial setsA and B (with some condi-
tions onA andB, depending on the algorithm)
the reductions of the elements ofA by those of
B are executed in parallel.

TheTriade algorithm also has apolynomial
simplification levelwhich relies on polynomial
GCDs and resultants. The parallelization of
such computations is reported in [28, 19]. The

addition of this second level to theTriade al-
gorithm is work in progress.

We have realized a preliminary implementa-
tion in the ALDOR programing language. We
use multi-processed parallelism, with interpro-
cess communication through shared memory
segments. ALDOR has been designed to ex-
press the extremely rich and complex variety
of structures and algorithms in computer alge-
bra, with a focus on high-performance com-
puting. However, ALDOR had no mechanism
for parallel execution adapted to our needs. In
Section 3 we explain how we have enhanced
theBasicMath library [18] for achieving our
goals. We also report on our experiments on a
SMP machine.

2 Component-level paral-
lelization

2.1 Incremental solving

Incremental solving is the first idea behind
the Triade algorithm for computing triangu-
lar decompositions of polynomial systems. Let
us give an example before formal definitions.
Consider the polynomial system






f1 = 0
f2 = 0
f3 = 0

where







f1 = x2 + y + z − 1
f2 = x + y2 + z − 1
f3 = x + y + z2 − 1

and the variable orderx > y > z. SolvingF
incrementally means solving successively the
subsystems:f1 = 0, thenf1 = f2 = 0 and
finally f1 = f2 = f3 = 0. The polynomialf1 is
irreducible, thus solvingf1 = 0 just produces
f1 as output. Solvingf1 = f2 = 0 leads to
eliminatex and produces

{

x + y2 + z = 1
y4 + (2z − 2)y2 + y − z + z2 = 0

.

3

This output systemT has a triangular shape,
and other algebraic properties: it can be seen
as asolved system. Solvingf1 = f2 = f3 = 0
leads to compute the common solutions ofT
andf3. To do so, one eliminatesx in f3 ob-
taining a second polynomial iny and z only.
The resultant [15] of these two bivariate poly-
nomials is a univariate polynomial inz, from
which the rest of the computations are easily
carried out, bringing the following output:







x + y = 1
y2 − y = 0

z = 0






2x + z2 = 1
2y + z2 = 1

z3 + z2 − 3z = −1.

There are two components, since two solution
points have a nullz-coordinate, whereas there
is only one solution point for each rootz of
z3 + z2 − 3z = −1.

We introduce now the necessary formalism
for presenting the properties of theTriade that
are favorable to its parallelization. The in-
volved notions of a regular chain and a quasi-
component can be found in [4] and are recalled
in the Appendix for the reader’s convenience.

Let K be a field andX = x1 < · · · < xn

be ordered variables. For a subsetF ⊂ K[X],
we denote byV (F) the zero set ofF in the
affine spaceK

n

whereK is an algebraic clo-
sure ofK. For a subsetW ⊂ K

n

, we de-
note byW the Zariski closureof W w.r.t. K.
For a regular chainT ⊂ K[X], we denote by
W (T) its quasi-component, bySat(T) its sat-
urated ideal, and, forF ⊂ K[X], we denote by
Z(F, T) the intersectionV (F)∩ W (T).

Definition 1 We call ataskany couple[F, T]
where F ⊂ K[X] is a polynomial set and
T ⊂ K[X] is a regular chain. The task[F, T]

is solvedif F is empty, otherwise it isunsolved.
By solvinga task, we mean computing regular
chainsT1, . . . , Tℓ such that we have:

V (F)∩W (T) ⊆ ∪e

i=1
W (Ti) ⊆ V (F)∩W (T).

In particular, for an input polynomial systemF
the Triade algorithm computes regular chains
T1, . . . , Tℓ such that we have:

V (F) = ∪ℓ

i=1
W (Ti).

Informally, this means that the algorithm pro-
duces a decomposition of the zero set of the
input (unsolved) systemF into zero sets of
solvedsystems. Indeed, due to its triangular
shape, one can view a regular chain as a solved
system. (This generalizes the idea that a trian-
gular linear system of equations can be seen as
a system in a solved form.)

2.2 Solving by decreasing order of
dimension

Solving by decreasing order of dimension is
the second idea behind theTriade algorithm.
Again we use a simple example to motivate
this strategy:







f1 = x − 2 + (y − 1)2

f2 = (x − 1)(y − 1) + (x − 2)y
f3 = (x − 1)z

Factorizingf3 leads to two sub-systems:

S1 :

{

y = 0
x = 1

and S2







x − 1 + y2 − 2y = 0
(2y − 1)x + 1 − 3y = 0
z = 0

The sub-systemS1 is solved. Continuing with
theS2 leads finally to







z = 0
y = 0
x = 1

,







z = 0
y = 1
x = 2

and







z = 0
2y = 3
4x = 7

4

Observe that the leftmost solution point is a
special case of the sub-systemS1. Hence, we
have exhibited aredundant component. All al-
gorithms computing decompositions of poly-
nomial systems have to face this difficulty. In
the Triade algorithm, this is approached by
generating the output quasi-components (or,
equivalently, regular chains) by decreasing or-
der of dimension. This allows to remove the
redundant components at an early stage of the
computations. Indeed, if the quasi-component
W (T1) is contained in the quasi-component
W (T2), then dimension ofT2 is less or equal
to that ofT1, that is|T1| ≤ |T2| holds, see [27]
for details.

Generating quasi-components by decreasing
order of dimension leads to difficulty. Due to
the incremental solving paradigm, the “basic
routine” of theTriade algorithm is the compu-
tation of intersections of the formZ({p}, T)
(for a polynomialp and a regular chainT).
Such an intersection may consist of compo-
nents of different dimensions, as shown by our
second example (the sub-systemS1 has dimen-
sion 1 and the sub-systemS2 has dimension 0).

Resolving this conflict of interest between
incremental solving and solving by decreasing
of order of dimension is achieved by a form of
lazy evaluation, formalized below.

2.3 Lazy evaluation

Definition 2 The tasks [F1, T1], . . . , [Fd, Td]
form a delayed splitof the task[F, T] and we
write [F, T] 7−→D [F1, T1], . . . , [Fd, Td] if the
following five properties together hold:

(D1) Z(Fi, Ti)≺Z(F, T),

(D2) Z(F, T) ⊆ Z(F1, T1) ∪ · · · ∪ Z(Fd, Td),

(D3) Sat(T) ⊆ Sat(Ti),

(D4) Fi 6= ∅ =⇒ F ⊆ Fi,

(D5) Fi = ∅ =⇒ W (Ti) ⊆ V (F).

Property(D1) means that each “output” task
[Fi, Ti] is more solvedthan the “input” one
[F, T] (in a sense that we do not precise here
and which is based on Ritt-Wu ordering for
characteristic sets [26]). Properties(D2) to
(D5) imply:

V (F)∩W (T) ⊆ ∪d

i=1
Z(Fi, Ti) ⊆ V (F)∩W (T).

Proposition 1 tells us that delayed splits can be
“composed”:

Proposition 1 If the tasks [F1, T1], [F2, T2]
form a delayed split of the task[F, T] and the
tasks[F11, T11], [F12, T12] form a delayed split
of the task[F1, T1], then we have

[F, T] 7−→D [F11, T11], [F12, T12], [F2, T2].

Proposition 1 allows us to show that solving
the task[F, T] reduces to solving tasks

• of the form [t, T] whereT∪{t} is a tri-
angular set, but not necessarily a regular
chain, or

• of the form [{p}, T∪{t}] wherep, t are
non-constant polynomials with the same
main variablev and such that bothT∪{t}
andT∪{t} are regular chains.

By means of polynomial GCDs and resultants,
one can design

• an operationextend(t, T) producing a
delayed split of the above task[p, T] and,

• an operationdecompose(p, T ∪ t) pro-
ducing a delayed split of the above task
[{p}, T∪{t}].

5

Each of these operations satisfies the following
key property: for every output task[Fi, Ti] we
haveFi = ∅ ⇐⇒ |Ti| = |T∪{t}. Hence,
the output tasks[Fi, Ti] of these operations are
solved, i.e. Fi = ∅ if only and if the dimen-
sion ofTi equals that of the inputT∪{t}. This
implies that for each[Fi, Ti] satisfying|Ti| >
|T∪{t}, the setFi is not empty, and, thus, the
task[Fi, Ti] is not solved. Therefore, the opera-
tionsextend(t, T) anddecompose(p, T ∪ t)
solve ‘completely” in the cases where the di-
mension of the regular chainsTi remain that
of T∪{t} and solve ‘lazily” (and, in fact, post-
pone the computations) in the others.

2.4 Component-level paralleliza-
tion

We sketch now a procedure solving an input
task [F, T] and generating all computed regu-
lar chains (final or intermediate) by decreasing
order of dimension. This procedure uses three
global variables

• a listU consisting of all unsolved tasks,

• a listS consisting of solved tasks and,

• an integerH which is the current size of
the regular chains being computed.

Initially U = [[F, T]], S is the empty list and
H = |T |. Our procedure can be sketched as
follows

(1) Let V be the list of all tasks[F ′, T ′] in U
with |T ′| = H.

(2) Let V ′ be the list of all tasks[F ′, T ′] in V
to which the operationdecompose ap-
plies.

(3) If V ′ 6= ∅, then applydecompose once
to its elements, update the listsU andS,
and go to(1).

(4) If V ′ = ∅, then applyextend to each el-
ement inV , update the listsU andS, re-
placeH by H + 1 and go to(1).

All steps from(1) to (4) lead naturally to paral-
lel execution. This procedure is also different
from Algorithm 2 in [26], which was meant to
be executed sequentially.

Generating regular chains by decreasing size
has at least two benefits. First, as mentioned
above, it allows to detect redundant compo-
nents (by means of an inclusion test) Second, it
forces the algorithm to delay the computations
in lower dimension toward the end of the solv-
ing process, which increases the opportuni-
ties for parallelization and load balancing. In-
deed, when computingdecompose(p, T ∪ t)
the larger is|T |, the more expensive are cal-
culations moduloSat(T). See for instance the
complexity results in [13].

2.5 Combing with modular meth-
ods

Since it is a decomposition algorithm, theTri-
ade has the potential of parallelization. How-
ever, as mentioned in the Introduction, a naive
implementation may not be successful with
systems over the fieldQ of rational numbers.
However, the situation changes for polyno-
mial systems with coefficients modulo a prime
number. For the 9 examples (all well-known
problems from [30]) used in the experiments
reported below:

• only one of them has more than one reg-
ular chain in its triangular decomposition

6

over Q, (2) but all of them splits in sev-
eral components when solving modulo a
prime number.

For each system, the prime that we use islarge
enoughsuch that the triangular decomposition
overQ can be lifted from the modular one, by
means of the techniques introduced in [12]. In
addition, for each system, the lifting step con-
sumes much less resources (time and space)
than the modular triangular decomposition, as
reported in [12].

For each of these systems, Table 1 gives: (1)
the numbern of variables; (2) the maximum
total degreed of a monomial; (3) the prime
numberp used for the computation of its mod-
ular triangular decomposition. In [12], formu-
las for choosingp are given fromn, d and other
quantities which can be read easily from the in-
put system.

For each of these systems, Table 1 gives two
lists where thei-th item corresponds to thei-th
componentTi in the triangular decomposition
of the system modulop. The number of solu-
tions ofTi is found in the first list whereas the
output size ofTi is found in the second.

Sys Name n d p

1 eco6 6 3 105761
2 Weispfenning-94 3 5 7433
3 Issac97 4 2 1549
4 dessin-2 10 2 358079
5 eco7 7 3 387799
6 Methan61 10 2 450367
7 Reimer-4 4 5 55313
8 Uteshev-Bikker 4 3 7841
9 gametwo5 5 4 159223

Table 1: Features of the polynomial systems

Sys NumSolutions Size

1 [1,1,2,4,4,4] [56,57,721,1205,1293,1283]
2 [2,2,9,35,3,3] [100,99,282,1048,134,135]
3 [4,7,3,2] [561,749,458,334]
4 [1,1,6,12,22] [98,98,885,1100,1448]
5 [1,1,1,1,4,2, [67,72,73,76,4776,2603,

4,4,4,4,4,2] 4770,4755,4770,4751,4764,2601]
6 [1,1,1,3,18,3] [109,105,106,961,2307,957]
7 [1,1,1,1,4,4,24] [35,35,35,35,350,352,868]
8 [1,1,1,1,2,30] [16,27,32,27,472,2006]
9 [14,19,11] [2811,2987,2700]

Table 2: Analysis of the solution sets

One can observe that for each system, the
number of solutions and size are rather well
balanced between components. This suggests
that combining the modular algorithm of [12]
and the properties of theTriade algorithm
should lead to successful component-level par-
allelization.

3 Implementation

In the previous section, we showed how to cre-
ate rich opportunities for a component-level
parallel execution, with load balancing. How-
ever, another big challenge remains: the imple-
mentation. First of all, solving non-linear poly-
nomial systems symbolically by way of tri-
angular decompositions involves sophisticated
algorithms and complex mathematical struc-
tures. This requires a very high-level pro-
gramming language. In addition, this lan-
guage should be suitable for high performance
computing, and permits efficient implementa-
tion of fast polynomial arithmetic, as discussed
in [14]. Secondly, our parallel scheme in-
cludes dynamic task management and heavy
data communication along with intensive com-
putations. Therefore, the parallel architecture
that we run on will significantly influence the
implementation scheme and its overall perfor-
mance.

To meet these challenges effectively, we
have developed a parallel framework based on

7

symmetric multiprocessor architecture (SMP
and multi-core) by extending the ALDOR

programming language to support multi-
processed parallelism. We have realized a pre-
liminary implementation of the algorithm pre-
sented in Section 2. Tests on benchmark sys-
tems have shown a promising performance im-
provement with respect to the comparable se-
quential solver.

3.1 A framework for parallel sym-
bolic computations

We choose the ALDOR programming language
and symmetric multiprocessor machines (SMP
and multi-core) to build our parallel program-
ming model. In our first attempt a multi-
processed parallel framework using ALDOR

targeting SMPs and multi-cores has been es-
tablished.

ALDOR has been designed to express the ex-
tremely rich and complex variety of structures
and algorithms in computer algebra with fo-
cuses on interoperability with other languages
and high-performance computing. This lan-
guage has a two-level object model ofcate-
goriesanddomains, that is similar tointerfaces
andclassesin Java. They provide a type sys-
tem that allows the programmer the flexibility
to extend or build on existing types, or create
new categories and domains, as is usually re-
quired in algebra.

In addition, an ALDOR program can be com-
piled into: stand-alone executable programs;
object libraries in native operating system for-
mats (which can be linked with one another,
or with C or Fortran code to form application
programs); portable byte code libraries; and C
or Lisp source [7]. Aggressive code optimiza-
tions by techniques such as program special-
ization, cross-file procedural integration and

data structure elimination, are performed at in-
termediate stages of compilation [32]. This
produces code that is comparable to hand-
optimized C.

For these reasons a sequential implementa-
tion of the Triade algorithm in ALDOR has
been developed together with theBasicMath
library for high performance computing. Many
of the categories, domains and packages of this
sequential implementation (polynomial arith-
metic, polynomial GCD and resultant compu-
tation, inclusion test for components) can be
reused or extended for our purpose. These pro-
vide us qualified support for realizing a prelim-
inary implementation of the parallel algorithm
in a reasonable period of time.

Our implementation aims at efficiently using
multiprocessors with shared memory to gain
best practical efficiency. Indeed, they will have
significant effects to reduce the parallel over-
head for applications like ours, involving dy-
namic task management and heavy data com-
munication among the processors.

Before our work, however, like many other
computer algebra systems, ALDOR program-
ming language did not have any support for
parallel programming, not to mention MPI
binding, or OpenMP binding. Fortunately, an
ALDOR program can be compiled into stand-
alone executable programs. This allows us to
build separated executable modules to run as
independent parallel processes. ALDOR also
has a primerexec(), for initiating a program
P from within a programQ. Unlikefork() in
C, where a program can be executed in a child
process, which is an identical copy of the par-
ent process, programsP andQ do not have any
relationships. In another word, they are exe-
cuted as two independent processes. Anyhow,
these give us the basic functionalities for dy-
namic task management.

8

Now comes the challenge of establishing in-
terprocess communication (IPC) in ALDOR,
which is critical for all parallel program-
ming environment. We rely onshared mem-
ory segmentsfor System V IPC and develop
a domain calledSharedMemorySegment
in ALDOR, based on the interoperability of
ALDOR with the C programing language.
The SharedMemorySegment domain has
methods for creating a segment and connecting
to it, attaching i.e. getting a pointer to the seg-
ment, reading and writing, and detaching from
and deleting the segment. An element of the
domainSharedMemorySegment can be ei-
ther a string or a primitive array of machine in-
tegers.

There are mainly two advantages to use
shared memory segment for interprocess data
communication in ALDOR. One is that it is an
efficient way for System V IPC. Secondly it is
suitable for large data communication. For a
given operating system, the maximum size of
the memory that is available for shared mem-
ory segments is set by default, but it can be
modified. It is also worth to point out that
our domainSharedMemorySegment was
designed to handle only primitive data types
(strings, primitive arrays of machine integers)
in ALDOR. This provides a unified way of in-
terprocess data communication between AL-
DOR processes. Of course, this is not a lim-
itation since an object of any other type can
always be converted into a primitive array of
machine integers.

Another difficult issue for data communica-
tion through this heterogeneous environment
is the many complex data types in our pro-
gram. For example, sparse multivariate poly-
nomial and dense multivariate polynomial are
all valid types in our program in ALDOR. In
our package, aTriade task (see Definition 1)

is a list of lists of polynomials with special
properties (including the list of variables and
the ring characteristic). It can be described by
[F, T], where,F is a list of unsolved polyno-
mials; and,T is a list of polynomials forming
a regular chain.

To achieve effective data communication,
we convert a dense multivariate polynomial
into a primitive array of machine integers via a
univariate polynomial by means of Kronecker
substitution [15]. We convert a sparse multi-
variate polynomial into a distributed multivari-
ate polynomial, which is represented by a tree
of terms, where a term is an exponent vector
together with a coefficient; next we traverse
this tree to get a primitive array of machine in-
tegers. This latter representation is more com-
pact and occupies less memory space than the
former one.

3.2 Implementation scheme and
synchronization

Another main concern is the concurrency (syn-
chronization) control for multiprocessing in
ALDOR, since there was no such mechanisms
before. For our component-level parallel solv-
ing reported in Section 2, we apply a “process
farm” parallel scheme consisting of aManager
process andworker processes initiated by the
Manager when needed. A worker executes ei-
ther adecompose or aextend operation (see
the previous section for these operations) and
then terminates itself. The Manager distributes
tasks to and collects results from the worker
processes. This allows the Manager to perform
the removal of the redundant components. The
Manager maintains a task table and assigns a
unique ID to each of the tasks generated by the
workers.

Between the Manager and a worker process,

9

task_tag_itask_i result_tag_i result_i

Manager

Worker

write

write
write

read/free
read/free

read/free
read/free

write

Synchronizing Manager with a worker

data communication is synchronized by four
shared memory segments defined by a proto-
col related to the task ID. Let the task ID be
i. The four segments are named astask i,
task tag i, result tag i, andresult i respec-
tively. The main strategy is described in the
above picture. At a time the Manager process
selects tasks with highest priority for process-
ing. Let tasks withID of i, j, k be chosen.
The manager first writes the task withID = i
into a shared memory segment namedtask i,
then writes the size of this task (the length of
the integer array) into another segment named
task tag i. Now it launches a worker and
passes the valuei (the task ID) as a command
line argument to the worker process. Continu-
ally, the Manager process will do the same to
task j and taskk. Then for tasksi, j, k, the
Manager will check in turn their result tag seg-
ments namedresult tag i, result tag j and
result tag k. If there is a result in any one of
the result tag segments, for instancej, it will
read the size of the result for taskj from this
segment namedresult tag j, and free it. Now
the Manager knows the result of taskj is re-
turned and its size, then it will read the result
for task j from the segment namedresult j,
and free this shared memory segment at the
end. The same operation will be done to both
taski and taskk.

When a worker is launched, it will get the

task ID from the command line argument. Let
this ID be m. By the protocol, the worker
will know the names of the four shared mem-
ory segments to work with, and the order and
permission to access them. It will first read
the size of the task from the shared memory
segment namedtask tag m, and then read the
task from the segment namedtask m. Now it
can free the above two segments. When fin-
ishing thedecomposeoperation on this task,
the worker will write first the result into the
segment namedresult m, then the size of the
result into the segment namedresult tag m.
Then, it terminates by itself.

3.3 Experimentation

We realized a preliminary implementation of
our component-level parallel solving of non-
linear polynomial systems symbolically based
on the above framework. Our experimenta-
tion was done on a symmetric multiproces-
sor, AuthenticAMD with four CPUs (AMD
Opteron(tm) Processor 850, 2390MHz) and
32-bit 8 GB total memory. The version of
Linux we are running is Fedora Core release
3. The maximum amount of memory that can
be allocated for shared memory is 33 MB.

The polynomial systems that are used in this
experimentation are taken from [30]. For each
system,n denotes the number of variables,d is
the total degree of the polynomial system andp
is the prime number used in both the sequential
and the parallel solving.

We report in the following figures
three examples, namely: gametwo5,
Uteshev-Bikker, and Fateman. For
each of them: (1) we plot the number of
processes acting at a time during the whole
solving procedure, and (2) we show the
average number of these processes.

10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180

[N
um

be
r

of
 P

ro
ce

ss
es

]

gametwo5 (n=5, d=4, p=159223): Time [s]

Number of Processes vs Time [s]
Average

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250

[N
um

be
r

of
 P

ro
ce

ss
es

]

Uteshev-Bikker (n=4, d=3, p=7841): Time [s]

Number of Processes vs Time [s]
Average

Although the speed-up ratio we gained is be-
tween 1.5 and 2 by comparing with the sequen-
tial implementation in ALDOR, this is very
promising for such a component-level parallel
execution, where truly expensive tasks can be
processed in parallel. It is noticed that the av-
erage number of processes in the entire solving
procedure is about 3.

4 Discussion and conclusion

We introduce a component-level parallel algo-
rithm for solving non-linear polynomial sys-
tems symbolically by way of triangular decom-
positions. This algorithm employs techniques
of solving by decreasing order of dimension,
lazy evaluation, and modular methods to ob-
tain rich parallel opportunities and load balanc-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

[N
um

be
r

of
 P

ro
ce

ss
es

]

Fateman (n=4, d=5, p=9001): Time [s]

Number of Processes vs Time [s]
Average

ing. We have developed a parallel framework
by extending the ALDOR programming lan-
guage to support multi-processed parallelism
targeting symmetric multiprocessor machines.
This framework can benefit to other algo-
rithms in adapting to the new parallel architec-
tures, such as SMPs and multi-cores. Our ex-
perimentation demonstrates good performance
gain with respect to the comparable sequential
solver. We are currently scaling to a 64 bits
128-processor SMP in Canada’s Shared Hier-
archical Academic Research Computing Net-
work (SHARCNET).

Through this work we have noticed that the
heavy overhead from dynamic process man-
agement and data communication is a bottle-
neck for an efficient parallel execution. In fact,
this is a big challenge for parallel symbolic
computations in general. Our next objective is
to build threads in ALDOR to support multi-
threaded parallelism for symbolic computa-
tions targeting SMP and multi-cores. Threads
of the same process have much less over-
head and synchronize data much quicker. The
emerging multiprocessor machines (SMPs and
multi-cores) fully support thread-level paral-
lelism. In particular, these multi-cores with di-
rect connect architecture will greatly improve
the performance of our solver if we use multi-

11

threaded parallelism. The ALDOR’s interop-
erability with C and the machine resources
provides a feasible way to construct ALDOR

threads. Special concerns will be on the effec-
tive means to handle the generic types for AL-
DOR threads, such as polynomial data types, so
that we can hide their internal complexity and
provide an ease-of-use framework for general
users.

In addition, we have recognized that we
can gain higher scalability and more paral-
lel opportunities by applying medium and fine
grained parallelization for polynomial arith-
metic such as multiplication, GCD/resultant,
and factorization involved in each task. Paral-
lel arithmetic for univariate polynomials over
fields is well-developed. We need to extend
these methods to multivariate case over more
general domains with potential of automatic
case discussion.

5 Appendix

Let K be a field andX = x1 < · · · < xn be
ordered variables. LetK be an algebraically
closed field containingK. UsuallyK = Q, the
field of rational numbers andK = C, the field
of complex numbers.

For a non-constant polynomialp ∈ K[X],
the main variableof p, denoted bymvar(p),
is the greatest variable ofp; the initial of p,
denoted byinit(p) is the leading coefficient of
p w.r.t. mvar(p). For example, forp1 =
(2x1 − 1)x2

2 − 3x1x2 + x2, mvar(p1) = x2,
andinit(p1) = 2x1 − 1.

Let F ⊂ K[X] be any set of polynomi-
als with coefficients inK and variables inX.
We denote by〈F 〉 the ideal generated byF in
K[X] and by

√

〈F 〉 its radical. We denote by
V (F) thezero setor algebraic varietyof F in

the affine spaceK
n

, that is the set of the com-
mon zeros of the polynomials ofF .

It is important to observe that not every sub-
set of K

n

is the zero set of some subset of
K[X]. Hence, the following topological notion
plays a central role. For a subsetW ⊂ K

n

, we
denote byW the Zariski closureof W w.r.t.
K, that is simply the intersection of theV (F)
containingW , for all F ⊂ K[X].

Let I be a proper ideal ofK[X]. We say that
a polynomialp ∈ K[X] is regularmoduloI if
p is neither null moduloI, nor a zero-divisor
moduloI.

Let h ∈ K[X]. We denote byI : h∞ the
set of the polynomialsp such that there exists
a non-negative integere such thathe p belongs
to I. Informally, an element ofI : h∞ can
be seen as a fraction with numerator inI and
whose denominator is a power ofh.

Let T = t1, . . . , ts be non-constant poly-
nomials in K[X] with respective (pairwise
distinct) main variablesmvar(t1) < · · · <
mvar(ts). Thesaturated idealof T is defined
by

Sat(T) = 〈T 〉 : hT
∞,

wherehT is the product of the initials of the
polynomials ofT .

Thequasi-componentof T is the of the zero-
setV (T) consisting of all the points that do not
cancel any of the initials of the polynomials of
T . In other words, theW (T) is the system of
equations and inequations:

t1 = 0, . . . , ts = 0, h1 6= 0, . . . , hs 6= 0

wherehi is the initial ofti for i = 1 · · · s. The
subsetW (T) is not necessarily the zero set of
some subset ofK[X]. With K = Q, n = 2
andT = {x1x2}, the quasi-component ofT
consists of the complex line minus the origin.

12

We have the following important property,
which realizes a bridge between the “alge-
braic” notion of a saturated ideal and the “ge-
ometric” notion of a quasi-component. It is,
in fact, a consequence of Hilbert’s theorem of
zeros:

W (T) = V (Sat(T)).

We can now define the two central concepts
in the theory of triangular decompositions.

Definition 3 the setT is a regular chainif for
all i = 2 · · · s the initial of ti is regular modulo
the saturated ideal oft1, . . . , ti−1.

Definition 4 Let F ⊂ K[X] be a polynomial
set. A setC1, . . . , Cs of regular chains inK[X]

V (F) =
⋃

1≤i≤s

W (Ci).

As an example, we consider the polynomial
systemF below with two polynomials and
with ordered variablesx > y > a > b > c >
d > e > f :

{

ax + cy − e = 0
bx + dy − f = 0

The polynomial setT below is a regular chain
such that we haveW (T) ⊂ V (T). This inclu-
sion can be checked by substituing the expres-
sions ofx andy given byT into F .

{

bx + dy − f
(da − cb) y − fa + eb

This substitution would require the initialsb
andda − cb to be non-zero. The solutions of
F for which one of these initials vanishes are
given by the regular chains (as one can check
again by substitution). Together withT , the
eleven regular chains below form a triangular
decomposition ofF .

{

bx + dy − f
(da − cb) y − fa + eb

,







ax + cy − e
dy − f
b

,







bx + dy − f
da − cb
fc − ed

,















dy − f
a
b
fc − ed

,















bx − f
fa − eb
c
d

,















ax + cy − e
b
d
f

,















bx + dy
da − cb
e
f

,























cy − e
a
b
d
f

,























y
a
b
e
f

,























x
c
d
e
f

,































a
b
c
d
e
f

.

References

[1] I. A. Ajwa. Parallel Algorithms and
Implementations for the Gröbner Bases
Algorithm and the Characteristic Set
Method. PhD thesis, Kent State Univer-
sity, Kent, Ohio, 1998.

[2] aldor.org. TheAldor compiler web site.
University of Western Ontario, Canada,
2002.

[3] G. Attardi and C. Traverso. Strategy-
accurate parallel Buchberger algorithms.
Journal of Symbolic Computation,
21(4):411–425, 1996.

[4] P. Aubry, D. Lazard, and M. Moreno
Maza. On the theories of triangular sets.
J. Symb. Comp., 28(1-2):105–124, 1999.

13

[5] E. Becker, T. Mora, M. G. Marinari, and
C. Traverso. The shape of the shape
lemma. InProc. of the international sym-
posium on Symbolic and algebraic com-
putation, pages 129–133, New York, NY,
USA, 1994. ACM Press.

[6] R. Bradford. A parallelization of the
buchberger algorithm. InProc. of the in-
ternational symposium on Symbolic and
algebraic computation, New York, NY,
USA, 1990. ACM Press.

[7] Peter A. Broadbery, Samuel S. Doo-
ley, Pietro Iglio, Scott C. Morisson,
Jonathan M. Steinbach, Robert S. Sutor,
and Stephen M. Watt.AXIOM Library
Compiler User Guide. NAG, The Numer-
ical Algorithms Group Limited, Oxford,
United Kingdom, 1st edition, November
1994. AXIOM is a registred trade mark
of NAG.

[8] B. Buchberger. Ein Algorithmus zum
Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimension-
alen Polynomideal. PhD thesis, Univer-
sity of Innsbruck, 1965.

[9] R. Bündgen, M. Göbel, and W. Küchlin.
A fine-grained parallel completion pro-
cedure. InISSAC ’94: Proceedings of
the international symposium on Symbolic
and algebraic computation, pages 269–
277, New York, NY, USA, 1994. ACM
Press.

[10] L. Busé and C. D’Andrea. On the ir-
reducibility of multivariate subresultants.
C. R. Math. Acad. Sci. Paris, 338(4):287–
290, 2004.

[11] S. Chakrabarti and K. Yelick. Dis-
tributed data structures and algorithms

for Gröbner basis computation.LISP
AND SYMBOLIC COMPUTATION: An
International Journal, 7:147–172, 1994.

[12] X. Dahan, M. Moreno Maza,́E. Schost,
W. Wu, and Y. Xie. Lifting techniques for
triangular decompositions. InISSAC’05,
pages 108–115. ACM Press, 2005.

[13] X. Dahan, M. Moreno Maza,́E. Schost,
and Y. Xie. On the complexity of the D5
principle. InProc. ofTransgressive Com-
puting 2006, Granada, Spain, 2006.

[14] A. Filatei, X. Li, M. Moreno Maza, and
É Schost. Implementation techniques for
fast polynomial arithmetic in a high-level
programming environment. InProc. IS-
SAC’06. ACM Press, 2006.

[15] J. von zur Gathen and J. Gerhard.Mod-
ern Computer Algebra. Cambridge Uni-
versity Press, 1999.

[16] P. Gianni, B. Trager, and G. Zacharias.
Gröbner Bases and Primary Decompo-
sition Of Polynomial Ideals. J. Symb.
Comp., 6:149–167, 1988.

[17] J. Grabmeier, E. Kaltofen, and
V. Weispfenning, editors. Computer
Algebra Handbook. Springer, 2003.

[18] The Computational Mathematics
Group. The basicmath library.
NAG Ltd, Oxford, UK, 1998.
http://www.nag.co.uk/projects/FRISCO.html.

[19] H. Hong and H. W. Loidl. Parallel com-
putation of modular multivariate polyno-
mial resultants on a shared memory ma-
chine. In B. Buchberger and J. Volk-
ert, editors,Proc. of CONPAR 94–VAPP

14

VI, Springer LNCS 854., pages 325–336.
Springer Verlag, September 1994.

[20] R. D. Jenks and R. S. Sutor.AXIOM, The
Scientific Computation System. Springer-
Verlag, 1992. AXIOM is a trade mark of
NAG Ltd, Oxford UK.

[21] M. Kalkbrener. A generalized euclidean
algorithm for computing triangular repre-
sentations of algebraic varieties.J. Symb.
Comp., 15:143–167, 1993.

[22] D. Lazard. A new method for solving
algebraic systems of positive dimension.
Discr. App. Math, 33:147–160, 1991.

[23] F. Lemaire, M. Moreno Maza, and Y. Xie.
TheRegularChains library. InMaple
10, Maplesoft, Canada, 2005. Software.

[24] A. Leykin. On parallel computation of
Gröbner bases. InICPP Workshops,
pages 160–164, 2004.

[25] Maplesoft. Maple 10.
http://www.maplesoft.com/, 2005.

[26] M. Moreno Maza. On triangular decom-
positions of algebraic varieties. Technical
Report TR 4/99, NAG Ltd, Oxford, UK,
1999. Presented at the MEGA-2000 Con-
ference, Bath, England.

[27] M. Moreno Maza. On triangular decom-
positions of algebraic varieties. Technical
Report TR 4/99, NAG Ltd, Oxford, UK,
1999. http://www.csd.uwo.ca/∼moreno.

[28] M. O. Rayes, P. S. Wang, and K. We-
ber. Parallelization of the sparse modular
gcd algorithm for multivariate polynomi-
als on shared memory multiprocessors.
In Proc. of the international symposium

on Symbolic and algebraic computation,
pages 66–73, New York, NY, USA, 1994.
ACM Press.

[29] T. Shimoyama and K. Yokoyama. Lo-
calization and primary decomposition of
polynomial ideals. J. Symb. Comput.,
22(3):247–277, 1996.

[30] The SymbolicData Project.
http://www.SymbolicData.org, 2000–
2006.

[31] D. M. Wang. Elimination Methods.
Springer, Wein, New York, 2000.

[32] Stephen M. Watt, Peter A. Broadbery,
Samuel S. Dooley, Pietro Iglio, Scott C.
Morrison, Jonathan M. Steinbach, and
Robert S. Sutor. A first report on the a#
compiler. InISSAC ’94: Proceedings of
the international symposium on Symbolic
and algebraic computation, New York,
NY, USA, 1994. ACM Press.

[33] V. Weispfenning. Canonical comprehen-
sive grobner bases. InISSAC 2002, pages
270–276. ACM Press, 2002.

[34] W. T. Wu. A zero structure theorem for
polynomial equations solving.MM Re-
search Preprints, 1:2–12, 1987.

[35] Y.W. Wu, W.D. Liao, D.D. Lin, and P.S.
Wang. Local and remote user interface
for ELIMINO through OMEI. Technical
report, Kent State University, Kent, Ohio,
2003. http://icm.mcs.kent.edu/reports/.

[36] Y.W. Wu, G.W. Yang, H. Yang, W.M.
Zheng, and D.D. Lin. A distributed com-
puting model for wu’s method.Journal
of Software (in Chinese), 16(3), 2005.

15

