

Proceedings of PASCO 2010: Parallel Symbolic Computation 2010

Editors: Marc Moreno Maza and Jean-Louis Roch

c©PASCO 2010

ISBN 978-1-4503-0067-4/10/0007

Foreword to the PASCO 2010 Conference

The International Workshop on Parallel and Symbolic Computation (PASCO)
is a series of workshops dedicated to the promotion and advancement of parallel
algorithms and software in all areas of symbolic mathematical computation. The
pervasive ubiquity of parallel architectures and memory hierarchy has led to the
emergence of a new quest for parallel mathematical algorithms and software ca-
pable of exploiting the various levels of parallelism: from hardware acceleration
technologies (multicore and multi-processor system on chip, GPGPU, FPGA)
to cluster and global computing platforms. To push up the limits of symbolic
and algebraic computations, beyond the optimization of the application itself,
the effective use of a large number of resources (memory and specialized com-
puting units) is expected to enhance the performance multi-criteria objectives:
time, energy consumption, resource usage, reliability. In this context, the design
and the implementation of mathematical algorithms with provable and adaptive
performances is a major challenge.

Earlier meetings in the PASCO series include PASCO’94 (Linz, Austria),
PASCO’97 (Maui, U.S.A.), PASCO’07 (London, Canada). PASCO 2010 is
affiliated with the 2010 International Symposium on Symbolic and Algebraic
Computation (ISSAC) in Munich, Germany. Immediately prior to the ISSAC
2010 meeting, PASCO is held in Grenoble, France.

The workshop PASCO 2010 is a three-day event including invited presen-
tations and tutorials, contributed research papers and a programming contest.
The call for papers solicited contributions from areas including:
• Design and analysis of parallel algorithms for computer algebra
• Practical parallel implementation of symbolic or symbolic-numeric algo-

rithms
• High-performance software tools and libraries for computer algebra
• Applications of high-performance computer algebra
• Distributed data-structures for computer algebra
• Hardware acceleration technologies (multi-cores, GPUs, FPGAs) applied

to computer algebra
• Cache complexity and cache-oblivious algorithms for computer algebra
• Compile-time and run-time techniques for automating optimization and

platform adaptation of computer algebra algorithms
In response, 27 submissions (full papers and extended abstracts) were received,
The program committee collected 88 referee reports. After careful consideration,
21 submissions were accepted for presentation and inclusion in the proceedings.
In addition, we are grateful that the majority of the invited speakers contributed
full papers as well.

i

We are grateful to all who contributed to the success of our meeting:

• the invited speakers and their co-authors:
Claude-Pierre Jeannerod (France) Hervé Knochel (France)
Christophe Mouilleron (France) Christophe Monat (France)
Jean-Michel Muller (France) Erich L. Kaltofen (USA)
Guillaume Revy (France) Stephen Lewin-Berlin (USA)
Christian Bertin (France) Jeremy R. Johnson (USA)
Jingyan Jourdan-Lu (France) Daniel Kunkle (USA)

• the authors of full papers and extended abstracts;

• the members of the program committee:
Daniel Augot (France) Anton Leykin (USA)
Jean-Claude Bajard (France) Gennadi Malaschonok (Russia)
Olivier Beaumont (France) Michael Monagan (Canada)
Bruce Char (USA) Winfried Neun (Germany)
Gene Cooperman (USA) Clément Pernet (France)
Gabriel Dos Reis (USA) Nicolas Pinto (USA)
Jean-Christophe Dubacq (France) Manuel Prieto-Matias (Spain)
Jean-Guillaume Dumas (France) Markus Pueschel (USA)
Jean-Charles Faugère (France) Nathalie Revol (France)
Matteo Frigo (USA) David Saunders (USA)
Thierry Gautier (France) Éric Schost (Canada)
Pascal Giorgi (France) Wolfgang Schreiner (Austria)
Stef Graillat (France) Arne Storjohann (Canada)
Jeremy Johnson (USA) Sivan Toledo (Israel)
Erich Kaltofen (USA) Gilles Villard (France)
Herbert Kuchen (Germany) Yuzhen Xie (Canada)
Philippe Langlois (France) Kazuhiro Yokoyama (Japan)

• the local organizers, all from Grenoble University or the INRIA Grenoble:
Daniel Cordeiro Clément Pernet
Jean-Guillaume Dumas Christian Séguy
Thierry Gautier Ahlem Zammit-Boubaker
Daniele Herzog

• the anonymous reviewers;

• the supporting organizations:
ACM SIGSAM University Joseph Fourier
INRIA Grenoble Institute of Technology
CNRS LIG and LJK
Grenoble University ENSIMAG.

Marc Moreno Maza London
Jean-Louis Roch Grenoble

July 4, 2010

ii

Contents

Invited Talks

Techniques and tools for implementing IEEE 754 floating-point arithmetic on
VLIW integer processors 1
Christian Bertin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Hervé
Knochel, Christophe Monat, Christophe Mouilleron, Jean-Michel Muller,
Guillaume Revy

15 years after DSC and WLSS2: what parallel computations I do today 10
Erich Kaltofen

Exploiting Multicore Systems with Cilk 18
Steve Lewin-Berlin

Automatic Performance Tuning 20
Jeremy Johnson

Roomy: A System for Space Limited Computations 22
Daniel Kunkle

Contributed Papers

Generic design of Chinese remaindering schemes 26
Jean-Guillaume Dumas, Thierry Gautier, Jean-Louis Roch

A complete modular resultant algorithm targeted for realization on graphics
hardware 35
Pavel Emeliyanenko

Parallel operations of sparse polynomials on multicores - I. Multiplication and
Poisson bracket 44
Mickaël Gastineau

Parallel Computation of the Minimal Elements of a Poset 53
Charles E. Leiserson, Liyun Li, Marc Moreno Maza, Yuzhen Xie

Parallel Disk-Based Computation for Large, Monolithic Binary Decision Dia-
grams 63
Daniel Kunkle, Vlad Slavici, Gene Cooperman

Parallel arithmetic encryption for high-bandwidth communications on multi-
core/GPGPU platforms 73
Ludovic Jacquin, Vincent Roca, Jean-Louis Roch, Mohamed Al Ali

Exact Sparse Matrix-Vector Multiplication on GPUs and Multicore Architec-
tures 80
Brice Boyer, Jean-Guillaume Dumas, Pascal Giorgi

Parallel Gaussian Elimination for Gröbner bases computations in finite fields 89
Jean-Charles Faugere, Sylvain Lachartre

A Quantitative Study of Reductions in Algebraic Libraries 98
Yue Li, Gabriel Dos Reis

Parallel Sparse Polynomial Division Using Heaps 105
Roman Pearce, Michael Monagan

A high-performance algorithm for calculating cyclotomic polynomials 112
Andrew Arnold, Michael Monagan

Accuracy Versus Time: A Case Study with Summation Algorithms 121
Philippe Langlois, Matthieu Martel, Laurent Thévenoux

Polynomial Homotopies on Multicore Workstations 131
Jan Verschelde, Genady Yoffe

Parallel computations in modular group algebras 141
Alexander Konovalov, Steve Linton

Cache-Oblivious Polygon Indecomposability Testing 150
Fatima K. Abu Salem

On Sparse Polynomial Interpolation over Finite Fields 160
Seyed Mohammad Mahdi Javadi, Michael Monagan

Contributed Extended Abstracts

SPIRAL-Generated Modular FFTs 169
Lingchuan Meng, Jeremy Johnson, Franz Franchetti, Yevgen Voronenko,
Marc Moreno Maza, Yuzhen Xie

High performance linear algebra using interval arithmetic 171
Hong Diep Nguyen, Nathalie Revol

Parallel Computation of Determinants of Matrices with Polynomial Entries for
robust control design 173
Kinji Kimura, Hirokazu Anai

Cache Friendly Sparse Matrix-vector Multiplication 175
Sardar Anisul Haque, Shahadat Hossain, Marc Moreno Maza

Parallelising the computational algebra system GAP 177
Reimer Behrends, Alexander Konovalov, Steve Linton, Frank Lübeck, Max
Neunhöffer

iv

Techniques and tools for implementing
IEEE 754 floating-point arithmetic

on VLIW integer processors

Claude-Pierre Jeannerod,
∗

Christophe

Mouilleron,
†

Jean-Michel Muller,
‡

Guillaume Revy
§

Laboratoire LIP (CNRS, ENS de Lyon, INRIA,
UCBL), Université de Lyon, France

Email: firstname.lastname@ens-lyon.fr

Christian Bertin, Jingyan Jourdan-Lu,
¶

Hervé Knochel, Christophe Monat,
STMicroelectronics

Compilation Expertise Center, Grenoble, France

Email: firstname.lastname@st.com

ABSTRACT
Recently, some high-performance IEEE 754 single precision
floating-point software has been designed, which aims at best
exploiting some features (integer arithmetic, parallelism) of
the STMicroelectronics ST200 Very Long Instruction Word
(VLIW) processor. We review here the techniques and soft-
ware tools used or developed for this design and its imple-
mentation, and how they allowed very high instruction-level
parallelism (ILP) exposure. Those key points include a hi-
erarchical description of function evaluation algorithms, the
exploitation of the standard encoding of floating-point data,
the automatic generation of fast and accurate polynomial
evaluation schemes, and some compiler optimizations.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—standards; G.1.0 [Numerical Analysis]: General—
computer arithmetic, parallel algorithms; G.4 [Mathematical
Software]: algorithm design and analysis, parallel and vec-
tor implementations; D.3.4 [Programming Languages]:
Processors—code generation, compilers

∗INRIA.†ENS de Lyon.
‡CNRS.
§With LIP and ENS de Lyon when this work has been
done, but now a member of ParLab within EECS Depart-
ment at the University of California at Berkeley. E-mail:
grevy@eecs.berkeley.edu
¶Also a member of LIP. Email: lujingyan@gmail.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

General Terms
Algorithms, Design, Performance, Reliability

Keywords
binary floating-point arithmetic, correct rounding, IEEE 754,
polynomial evaluation, instruction-level parallelism, C soft-
ware implementation, code generation, VLIW processor

1. INTRODUCTION
Although binary floating-point arithmetic has been stan-

dardized since over two decades and is widely used in media-
intensive applications, not all embedded media processors
have floating-point hardware. An example is the ST231, a
4-way VLIW processor from the STMicroelectronics ST200
family whose native arithmetic consists exclusively of 32-bit
integer arithmetic. Consequently, for such so-called integer
processors floating-point arithmetic must be implemented
entirely in software.

Various software implementations of the IEEE 754 stan-
dard [1] for binary floating-point arithmetic already exist,
such as the SoftFloat package [16]. SoftFloat is written in
portable C and could thus be compiled for the ST231 us-
ing the ST200 C compiler. While being entirely satisfactory
in terms of correctness, such a reference library may fail
to exploit some key features of the given target, thus offer-
ing standard floating-point support at a possibly prohibitive
cost. For example, for the five basic arithmetic operations
(addition, subtraction, multiplication, division, and square
root) in single precision and with rounding ’to nearest even’,
we get the following latencies (measured in number of clock
cycles):

+ − × /
√

48 cycles 49 cycles 31 cycles 177 cycles 95 cycles

This motivated the study of how to exploit the various
features of the ST231, and resulted in the design and im-
plementation of improved C software for floating-point func-
tionalities gathered in a library called FLIP [14].1 Compared
1The earliest report on this study is [4] and the latest release,
FLIP 1.0, is available from http://flip.gforge.inria.fr/
and delivered under the CeCILL-v2 license.

1

to SoftFloat, this alternative implementation of IEEE 754
arithmetic allows to obtain speed-ups from 1.5x to 5.2x, the
new latencies being as follows (see [38, p. 4]):

+ − × /
√

26 cycles 26 cycles 21 cycles 34 cycles 23 cycles

This study has shown further that similar speed-ups hold
not only for rounding to nearest but in fact for all rounding
modes and, perhaps more interestingly, that supporting so-
called subnormal numbers (the tiny floating-point numbers
that make gradual underflow possible) has an extra-cost of
only a few cycles. Also, square root is now almost as fast
as multiplication, and even slightly faster than addition. Fi-
nally, the code size (number of assembly instructions) has
been reduced by a factor ranging between 1.2 and 4.2 de-
pending on the operator.

To achieve such performances required the combination of
various techniques and tools. The main techniques used are
a careful exploitation of some nice features of the IEEE stan-
dard, a novel algorithmic approach to increase ILP exposure
in function evaluation, as well as some compiler optimiza-
tions. The software tools used to assist the design and its
validation are Gappa, Sollya, and CGPE. The goal of this
paper is to review such techniques and tools through a few
examples, showing how they can help expose more ILP while
keeping code size small and allowing for the validation of the
resulting codes. Although the optimizations we present here
have been done for the ST231, most of them could still be
useful when implementing IEEE floating-point arithmetic on
other VLIW integer processors.

The paper is organized as follows. Section 2 provides
some reminders about the IEEE 754 floating-point standard
(Section 2.1), the architecture of the ST231 processor (Sec-
tion 2.2), and the associated compiler (Section 2.3). In Sec-
tion 3 we provide a high-level description of typical floating-
point arithmetic implementations, which already allows to
expose a great deal of ILP and to identify the most critical
subtasks. We then detail three optimization examples: Sec-
tion 4 presents two ways of taking advantage of the encoding
of floating-point data prescribed by the IEEE 754 standard;
Section 5 shows how some automatically-generated parallel
polynomial evaluation schemes allow for even higher ILP ex-
posure and can be used to accelerate the most critical part
of the implementation; Section 6 details an example of op-
timization done at the compiler level. We conclude in Sec-
tion 7 with some remarks on the validation of the optimized
codes thus produced.

2. BACKGROUND

2.1 IEEE 754 floating-point arithmetic
Floating-point arithmetic is defined rigorously by the IEEE

754 standard [1, 2], whose initial motivation was to make
it possible to “write portable software and prove that it
worked” [25]. We simply recall some important features of
this standard and refer to [6, 17, 34, 35] for in-depth descrip-
tions.

The data specified by this standard consist of finite num-
bers, signed infinities, and quiet or signaling Not-a-Numbers
(NaNs). This standard also defines several formats charac-
terized by the values of three integers: the radix β, the pre-
cision p, and the maximal exponent emax. Although β can

be either 2 or 10, we shall restrict here to binary formats,
for which β = 2 and where emax has the form

emax = 2w−1 − 1

for some positive integer w; in our implementation examples
we shall restrict further to the binary32 format (formerly
called single precision), for which p = 24 and emax = 127 =
27 − 1.

For a given format, finite numbers have the form

x = (−1)sx ·mx · 2ex , (1)

where

• sx ∈ {0, 1};
• ex ∈ {emin, . . . , emax} with emin = 1− emax;

• mx = Mx·21−p withMx an integer such that 0 ≤Mx <
2p if ex = emin, and 2p−1 ≤Mx < 2p if ex > emin.

The number x in (1) is called subnormal if 0 < |x| < 2emin ,
and normal if |x| ≥ 2emin . In particular, one may check that
x is subnormal if and only if ex = emin and 1 ≤Mx < 2p−1.
Subnormals are a key feature of the IEEE 754 standard, as
they allow for gradual rather than abrupt underflow [26].
Another important feature of the above definition of x is
that it gives two signed zeros, +0 and −0.

Every floating-point datum x can be represented by its
standard encoding into a k-bit integer

X =

k−1X
i=0

Xi2
i, (2)

where k = p+ w. When x is a finite number, the bits Xi of
X must be interpreted as follows:

[Xk−1 · · ·X0] = [sign|biased exponent| {z }
w bits

| trailing significand| {z }
p−1 bits

],

where the sign bit equals sx, the biased exponent equals
ex +emax for x normal, and 0 for x subnormal, and where the
trailing significand contains the fraction bits of mx. When
x is infinite or NaN, special values of X are used, having
in particular all the bits of the biased exponent field set to
one. In our case, the input and output of the implemented
operators correspond to this encoding for k = 32. We will
see in Section 4 how to take advantage of the nice properties
of this encoding to optimize implementations.

Correct rounding is of course another key feature of the
IEEE 754 standard: it means that the result to return is
the one which would have been produced by first using in-
finite precision and unbounded exponent range, and then
rounding to the target format according to a given round-
ing direction. The 2008 revision of the standard [2] defines
five rounding directions, the default being ‘to nearest even.’
Correct rounding has been mandatory for the five basic op-
erations since 1985 [1]. Since 2008, this requirement has
been extended to several operations and most notably the
fused multiply-add (FMA); it is also now recommended that
elementary functions (exp, cos, ...) be implemented with
correct rounding.

Finally, five exception flags must be set after each opera-
tion, thus offering a diagnostic of specific behaviors: division
by zero, overflow, underflow, inexactness, and non validity of
an operation. Although such flags can be very useful when
debugging applications, they have not been implemented yet
in our context.

2

2.2 ST200 VLIW architecture
The ST200 is a 4-way VLIW family of cores dedicated

to high performance media processing. It was originally de-
signed by Fisher at HPLabs and further developed by STMi-
croelectronics for use as an IP block in their Systems On
Chip (SOCs), such as the 710x family of High Definition TV
(HDTV) decoders, where several instances of that core are
used for audio and video processing. (We refer to [13] for a
comprehensive study of VLIW architectures.)

The flagship processor of this family is the ST231, which
has specific architectural features and specific instructions
that turn out to be key to support floating-point emulation.

The execution model of the ST200 is the one of a classical
VLIW machine where several instructions are grouped in a
bundle and execute all at once, with a significant departure
from that principle: when a register read-after-write (RAW)
dependency is not fulfilled due to the latency of one instruc-
tion, the core waits until the result is available for reading.
The most important benefit of that feature is that it achieves
a very simple form of code compression, avoiding the usage
of ’nop’ operations that could otherwise be necessary to wait
until a result is available.

The ST200 has 64 32-bit general-purpose integer registers
and 8 1-bit predicate registers. It has no status flag or simi-
lar mechanism: all conditions are computed explicitly either
in integer or boolean registers. Boolean registers are then
used as predicates for branching instructions, or for specific
instructions like addition with carry, or the ’select’ instruc-
tion that chooses a value among two according to a boolean
predicate value. This large set of registers implies that in
practice, for the 32-bit code that we consider here, the reg-
ister pressure is low, and every value can be computed and
kept in a register.

The ST200 arithmetic-logic units (ALUs) are replicated
for every execution lane available, except for some instruc-
tions requiring a relatively large silicon surface to be imple-
mented: for instance four adders are available, meaning that
a bundle can execute up to four simultaneous additions, but
only two multipliers are implemented, restricting the num-
ber of simultaneous multiplications. These ALUs are fully
pipelined, and all arithmetic operations have a one cycle la-
tency except the multipliers which have a three cycle latency.

Most ST200 arithmetic instructions can have a 9-bit signed
immediate argument, and a specific extension mechanism en-
ables any instruction to have a 32-bit immediate argument
by using an extra lane in a bundle. Though this reduces
available instruction parallelism, it is an effective mecha-
nism to build large constants, avoiding any access through
the data memory, as we will see further.

The two previous features—two pipelined multipliers avail-
able along with long immediate operands—are key for effi-
cient polynomial evaluation; see Section 5.

In addition to the usual operations, the ALUs also imple-
ment several specific one-cycle instructions dedicated to code
optimization: leading zero count (which is key to subnormal
numbers support), computation of minimum and maximum,
arbitrary left and right shifts, and combined shift and add.

The core accesses the memory system through two sepa-
rated L1 caches: a 32-Kbyte 4-way associative data cache
(D-cache), and a 32-Kbyte direct-mapped instruction cache
(I-cache).

The direct mapped organization of the I-cache creates a
specific difficulty to obtain good and reproducible perfor-

mance, since its caching performance is very sensitive to the
code layout, due to conflict misses. This has been addressed
by post link time optimizations [15] that are either driven
by heuristics or by actual code profile.

Note also that in the code presented in this article, the
choice was made not to use any in-memory table, to avoid
any access through the D-cache side of the system, because
a cold miss entails a significant performance hit and the
prefetch mechanism cannot be efficient on these types of ran-
dom accesses.

Finally, we conclude this section with a remark about la-
tency and throughput. For instance, on IA64, Markstein [27]
takes care to devise two variants of the emulated floating-
point operators, one optimized for latency, one optimized
for throughput, that are selected by compiler switches. This
makes sense for ’open code generation,’ where the operator
low-level instructions are emitted directly by the compiler in
the instruction stream and not available as library runtime
support. This is made possible by the fact that the IA64 has
a rich instruction set, that enables emulation of complex op-
erations in a few instructions. This technique enables further
optimization and scheduling by the compiler, at the cost of
a higher code size. On the contrary for the ST200 where em-
ulation of floating-point operations entails a significant code
size, our operators are available only in their library variant,
thus optimizing for latency is the criteria of choice.

2.3 ST200 VLIW compiler
The ST200 compiler is based on the Open64 technology,2

open-sourced by SGI in 2001, and then further developed
by STMicroelectronics and more generally by the Open64
community.

The Open64 compiler has been re-targeted to support dif-
ferent variants of the ST200 family of cores by a dedicated
tool, called the Machine Description System (MDS), provid-
ing an automatic flow from the architectural description of
the architecture to the compiler and other binary utilities.

Though the compiler has been developed in the begin-
ning to achieve very high performance on embedded media
C code, it has been further developed and is able to compile a
fully functional Linux distribution, including C++ graphics
applications based on WebKit.

It is organized as follows: the gcc-4.2.0 based front-end
translates C/C++ source code into a first high level target
independent representation called WHIRL, that is further
lowered and optimized by the middle-end, including WOPT
(WHIRL global Optimizer, based on SSA representations)
and optionally LNO (Loop Nest Optimizer). It is then trans-
lated in a low-level target dependent representation called
CGIR for code generation, including code selection, low level
loop transformations, if-conversion, scheduling, and register
allocation.

In addition the compiler is able to work in a specific Inter-
procedural Analysis (IPA) and Interprocedural Optimization
(IPO) mode where the compiler builds a representation for
a whole program, and optimizes it globally by global propa-
gation, inlining, code cloning, and other optimizations.

Several additions have been done by STMicroelectronics
to achieve high performance goals for the ST200 target:

• A dedicated Linear Assembly Optimizer (LAO) is in
charge at the CGIR level of software pipelining, pre-

2http://www.open64.net

3

pass and post-pass scheduling. It embeds a nearly opti-
mal scheduler based on an Integer Linear Programming
(ILP) formulation of the pipelining problem [3]. As the
problem instances are very large, a large neighborhood
search heuristic is applied as described in [11] and the
ILP problem is further solved by an embedded GLPK
(GNU Linear Programming Kit) solver.

• A specific if-conversion phase, designed to transform
control flow into ’select’ operations [7].

• Some additions to the CGIR ’Extended Block Opti-
mizer’ (EBO), including a dedicated ’Range Analysis’
and ’Range Propagation’ phase.

• A proved and efficient out-of-SSA translation phase,
including coalescing improvements [5].

Besides efficient code selection, register allocation, and in-
struction scheduling, the key optimizations contributing to
the generation of the low-latency floating-point software are
mostly the if-conversion optimization, and to a lesser extent
the range analysis framework.

Note also that a compiler intrinsic (builtin clz) is used to
select the specific ’count leading zero’ instruction: this is a
small restriction to portability since this builtin is supported
in any gcc compiler.

3. HIGH LEVEL DESCRIPTIONS
As recalled in Section 2.1, IEEE 754 floating-point data

can be either numbers or NaNs, finite or infinite, subnormal
or normal, etc. Such a diversity typically entails many par-
ticular cases, and considering each of them separately may
slow down both the implementation process and the result-
ing code.

In order to make the implementation process less cum-
bersome, a first step can be to systematically define which
operands should be considered as special cases. This means
to exhibit a sufficient condition Cspec on the input such that
the IEEE result belongs to, say, {NaN,±∞,±0}. (For NaNs,
this condition should be necessary as well.) Then it remains
to perform the following three independent tasks:

(T1) Handle generic cases (inputs for which Cspec is false);

(T2) Handle special cases;

(T3) Evaluate the condition Cspec.

The output is produced by selecting the result of either T1 or
T2, depending on the result of T3. These three tasks define
our highest-level description of an operator implementation.
At this level, ILP exposure is clear. To reduce the overall la-
tency, we optimize T1 first, and then only optimize both T2
and T3 (in particular by reusing as much as we can the in-
termediate quantities used for T1). This is motivated by the
fact that task T1 is the one where actual numerical com-
putations, and especially rounding, take place. Thus, for
most operators it can be expected that T1 will dominate the
costs, and even allow for both T2 and T3 to be performed
meanwhile.

The next level of description corresponds to a more de-
tailed view of task T1. Handling generic input typically
involves a range reduction step, an evaluation step on the
reduced range, and a reconstruction step [33]. For example,

for a unary real-valued operator f , the exact value of f at
floating-point number x can always be written

f(x) = ±` · 2d,

for some real number ` ∈ [1, 2) and some integer d. Here `
will in general have the form ` = F (s, t, . . .), where F is a
function either equal to f or closely related to it, and where
s, t, . . . are parameters that encode both range reduction and
reconstruction. In our case, s can be a real, non-rational
number and t lies in a range smaller than that of x, like [0, 1].
Now assume for simplicity that d ≥ emin. (The general case
can be handled in a similar way at the expense of suitable
scalings.) The correctly-rounded result to be returned has
the form

r = ±RNp(`) · 2d, (3)

where RNp means rounding ’to nearest even’ in precision p.
Task T1 can then be decomposed into three independent

sub-tasks: compute the sign sr of r, the integer d, and the
floating-point number RNp(`). Although ` < 2, its rounded
value RNp(`) can be as large as 2. Again, ILP exposure is
explicit at the level within task T1.

For the operators considered here, the most difficult of the
three sub-tasks is the computation of RNp(`). Classically,
this sub-task can itself be decomposed into three steps [12],
yielding a third level of description: given f and x,

• compute (possibly approximate) values for s, t, ...;

• deduce from F , s, and t a “good enough”
approximation v to `; (?)

• deduce RNp(`) be applying to v a suitable correction.

Unlike the two previous levels, this level has steps which
are fully sequential. The good news, however, is that the
computation of v allows many algorithmic choices, some of
them leading to very high ILP exposure; see Section 5.

When the binary expansion (1.`1`2 · · ·)2 of ` is finite, as
is the case for the addition and multiplication operators,
correction is done via computing explicitly a rounding bit B
such that

RNp(`) = (1.`1 . . . `p−1)2 +B · 21−p. (4)

When the expansion of ` can be infinite, as for square
root or division, the situation is more complicated but one
can proceed by correcting “one-sided truncated approxima-
tions” [12, 20, 21]. With u the truncated value of v after p
bits, the correction to apply is now based on whether u ≥ `
or not. For functions like square root or reciprocal, this
predicate can be computed exactly by means of their inverse
functions. (Note however that this kind of decision problem
is much more involved for elementary functions (exp, cos,
...) because of the “tablemaker’s dilemma” [33].)

The computation of B or the evaluation of u ≥ ` can in
general be simplified when the function f to be implemented
has properties like

` cannot be exactly halfway between two consecutive
floating-point numbers.

Therefore, in order to get simpler and thus potentially faster
rounding procedures, a thorough study of the properties of
f in floating-point arithmetic can be necessary. Properties
like the one above have been derived in [18, 22] for some
commonly used algebraic functions.

4

4. EXPLOITING STANDARD ENCODINGS
The standard encoding of floating-point data into k-bit in-

tegers X as in (2) has several interesting properties, and es-
pecially a well-known ordering property (see for example [34,
p. 330]). The two examples below show how such properties
of the standard encodings of the operand(s) and the result
can be exploited to optimize floating-point implementations.

First, the standard encoding can be used to obtain explicit
and ready-to-implement formulas for evaluating the condi-
tion Cspec (task T3). Consider for example the square root
operator x 7→ √x. Its IEEE 754 specification implies that

Cspec = (x = ±0) ∨ (x < 0) ∨ (x = ±∞) ∨ (x is NaN).

A possible implementation of this predicate would thus con-
sist in checking on X if x = ±0, and so on. However, the
following more compact expression was shown in [20]:

Cspec =
h
(X − 1) mod 2k ≥ 2k−1 − 2p−1 − 1

i
, (5)

where the notation [S] means 1 if the statement S is true,
and 0 otherwise. For the binary32 format, this amounts
to comparing (X − 1) mod 232 to the constant value 231 −
223− 1. Since on ST231 integer addition is done modulo 232

the above formula can thus be immediately implemented as
shown in the C fragment below:

Cspec = (X - 1) >= 0x7F7FFFFF;

In this case, exploiting the standard encoding allows us to
filter out all special cases (task T3) in only 2 cycles and 2
instructions. A similar filter can be designed for addition,
multiplication, and division. The overhead due to the fact
that these are binary operators is quite reasonable: only 1
more cycle and 3 more instructions are used (see [34, §10]).

As a second example, let us now see how one can exploit
the standard encoding at the end of task T1, when packing
the result. Let

n = RNp(`) = (1.n1 . . . np−1)2.

For r as in (3), once we have computed its sign sr as well
as n and d, it remains to set up the k-bit integer R that
corresponds to the standard encoding of r. One could have
concatenated sr with a biased value

D = d+ emax

of d and with the fraction bits of n, but removing the leading
1 in n would have increased the critical path. To avoid this,
it has been shown in [20] that one may prefer to compute
D−1 instead of D (at no extra cost since it suffices to modify
the value of the bias) and then deduce R as

R =
`
sr · 2k−1 + (D − 1) · 2p−1´+ n · 2p−1. (6)

Since the latency of n is in general higher than that of sr

and D−1, the evaluation order indicated by the parentheses
in (6) may reduce the overall latency of R. Note also that
the exponent field is automatically increased by 1 in the
case where n = 2. In particular, when n = 2 and D − 1 =
2emax − 1 then the returned value of R is the encoding of
±∞, which means that overflow due to rounding is handled
transparently thanks to the standard encoding.

Finally, in the cases where n is computed via adding the
rounding bit B as in (4), since getting B is the most expen-
sive step, one may rewrite (6) with the following evaluation

order:

R =
“`
sr · 2k−1 + (D − 1) · 2p−1´+ L

”
+B, (7)

with L the integer given by L = (1.`1 . . . `p−1)2 · 2p−1.

5. PARALLEL POLYNOMIAL EVALUATION
When implementing operators like floating-point square

root or division, the trickiest part is to write the code com-
puting the approximation v to the real number `; see (?) in
Section 3. The goal here is to achieve the lowest possible la-
tency while being“accurate enough”(in a sense made precise
in [20], for example −2−p < `− v ≤ 0).

Recall from Section 2.2 that the ST231 can issue up to
four integer additions (A + B) mod 232 (latency of 1 cy-
cle), up to two multiplications bAB/232c (latency of 3 cy-
cles, pipelined), and that these arithmetic instructions can
have 32-bit immediate arguments. These features allow us
to consider several methods, such as

• variants of Newton-Raphson and Goldschmidt itera-
tive methods based on low-degree polynomial evalua-
tion followed by 1 or 2 iterations [23, 36];

• methods based on evaluating piecewise, univariate poly-
nomial approximants [19];

• methods based on the evaluation of a single bivariate
polynomial [20, 21, 24, 38].

So far the highest ILP exposure and the smallest latencies
have been obtained using the third approach: v is obtained
by evaluating a very special bivariate polynomial P (s, t) that
approximates ` “well enough” and has the form

P (s, t) = 2−p−1 + s · a(t), a(t) =

dX
i=0

ait
i.

For example, for the square root design introduced in [20],
the degree d equals 8 and the coefficients ai are such that
a0 = 1 and, for 1 ≤ i ≤ 8, ai = (−1)i+1Ai · 2−31 with Ai a
32-bit positive integer. These numbers as well as a rigorous
upper bound on the approximation error entailed by using
P (s, t) instead of the true square root function have been
produced by the software tool Sollya [9].

Once the polynomial P (s, t) is given, it remains to choose
an evaluation scheme that will be fast on ST231 and to
bound the rounding errors and check the absence of overflow.
Rounding errors come from the fact that each multiplication
does not give the full 64-bit product AB but only its highest
part bAB/232c. For a given evaluation order, this analysis
of rounding errors and overflows can be done automatically
using the tool Gappa [29, 30, 10].

Because of distributivity and associativity, the number µd

of all possible evaluation orders of P (s, t) grows extremely
fast with the degree d. The first values have been computed
recently [31] and, in the above example of square root where
d = 8, one has

µ8 = 1055157310305502607244946 ≈ 1024

different schemes. Among all these schemes, we want one
having the lowest latency while satisfying a prescribed round-
ing error bound.

Since exhaustive search is out of reach, heuristics have
been used instead, leading to the design of a tool called

5

CGPE (Code Generation for Polynomial Evaluation) [37,
38]. CGPE currently implements some heuristics allowing to
quickly produce evaluation schemes (in the form of portable
C code) that are accurate enough and have reduced latency
(and a reduced number of multiplications) on a target like
the ST231. It also computes lower bounds on the latency,
which made it possible to conclude in our cases (square root,
division) that the retained schemes are optimal (square root)
or 1 cycle from the optimal (division). The accuracy/over-
flow certificates are produced by Gappa.

As an example, we show in Figure 1 and Listing 1 the
scheme that CGPE has found in the case of square root and
the corresponding C code it has generated. Its latency on

13

12

11

10

9

8

7

6

5

4

3

2

1

0x20

S

A0

T A1

r0

r1

r2

r3

S

T T

r4

r5

A2

T A3

r6

r7

A4

r8

r9

r10

r11

T

r12

r13

A5

T A6

r14

r15

A7

T A8

r16

r17

r18

r19

r20

r21

Figure 1: Generated evaluation scheme for square
root using the bivariate polynomial approach of [20].

ST231 is of 13 cycles, which matches the computed lower
bound. For comparison, Horner’s rule, which is fully se-
quential, takes 36 cycles on ST231. Interestingly, the 13-
cycle scheme uses only 4 more multiplications compared to
Horner’s rule (which is known to be the evaluation order
minimizing the number of multiplications [8]).

Finally, it should be noted that the combination of the
three tools Sollya, CGPE, and Gappa allows us to tackle
more functions than just square root and division, and sev-
eral other implementations have been [24, 38] or are cur-
rently being written using them.

6. COMPILER OPTIMIZATION
As we have seen in Section 2.3, the compiler is key to gen-

erate efficient target code. As many techniques are classical
or have been described elsewhere (see for example [32]), we
will focus on describing the ’Range Analysis’ framework, and
show a motivating case for its use in a specific optimization
linked with the code generation for floating-point support.

Listing 1: Generated C code for the scheme of Fig. 1.
uint32_t r0 = mul(T, 0x3ffffafc);
uint32_t r1 = 0x80000007 + r0;
uint32_t r2 = mul(S, r1);
uint32_t r3 = 0x00000020 + r2;
uint32_t r4 = mul(T, T);
uint32_t r5 = mul(S, r4);
uint32_t r6 = mul(T, 0x07f9a6be);
uint32_t r7 = 0x0fff6f59 - r6;
uint32_t r8 = mul(r4, 0x04db72ce);
uint32_t r9 = r7 + r8;
uint32_t r10 = mul(r5, r9);
uint32_t r11 = r3 - r10;
uint32_t r12 = mul(T, r4);
uint32_t r13 = mul(r12 , r5);
uint32_t r14 = mul(T, 0x0198e4c7);
uint32_t r15 = 0x0304d2f4 - r14;
uint32_t r16 = mul(T, 0x0019b4c0);
uint32_t r17 = 0x0093fa25 - r16;
uint32_t r18 = mul(r4, r17);
uint32_t r19 = r15 + r18;
uint32_t r20 = mul(r13 , r19);
uint32_t r21 = r11 + r20;

Range analysis is a variant of the analysis used by con-
stant propagation algorithm [39] operating on SSA where
we bound the value (possibly) taken by any variable with a
value (range) in a lattice.

We will briefly give an overview of this constant propaga-
tion algorithm.

For constant propagation the lattice contains, in addition
to initial constant values, the following specific values:

• > meaning that the variable is unvisited,

• ⊥ meaning that the value is unknown.

The algorithm proceeds by visiting instructions and low-
ering the lattice values on the variables according to the
following meet (u) rules, as more information is discovered,
until a fixed-point is reached:

any u > = any
any u ⊥ = ⊥
c1 u c1 = c1
c1 u c2 = ⊥ if c1 6= c2

In its simplest form, the range analysis uses an extension
of the constant propagation lattice: the lattice represents
the ranges of possible values of a variable, the meet rules
are an extension of constant propagation, and the constant
propagation algorithm can be used almost unchanged.

With [x, y] used here to represent the range of integer val-
ues between x and y, the following rule replaces the constant
rule:

[x1, y1] u [x2, y2] = [min(x1, x2),max(y1, y2)]

A whole family of range analyzes can be defined with
slightly different range lattices: for instance analyzes oper-
ating on used bit values. In all cases the framework remains
the same, only the lattice implementation changes.

It is also useful to have a backward analysis, using the
same lattices as for the forward analysis but visiting the
instructions backward. This enables for instance the com-
putation of ranges of values needed by the use of a variable,
useful to remove useless sign extensions.

6

In the Open64 compiler, these analyzes are split into generic
and target specific parts. First target specific parts are used
to handle unusual, target specific instructions (for instance
the ST200 clz instruction creates values in the [0, 32] range
regardless of its input). Then target independent part acts
on generic instruction types based on standard Open64 com-
piler predicates.

After the range analysis has assigned a value range to each
variable, this information is used by the Range Propagation
phase to perform various code improvements, that are first
target specific, then generic.

For the ST200, the target specific parts include:

• re-selection of specific instructions, such as lower pre-
cision multiplication;

• generalized constant folding (cases leading to constant
results whereas operands are not constant);

• long to short immediate transformations;

• shift-or transformations using the shift-add ST200 in-
struction;

• non-wrapping subtract to zero;

• constant result cases for special multiplications.

The generic parts generally tend to create dead code that
is further removed by later phases:

• constant propagation (if the variable is found in the
range [x, x]);

• removal of unnecessary sign/zero extensions;

• removal of unnecessary min/max instructions.

Range propagation is indeed very similar to a ’peepholing’
transformation, where the knowledge of ranges on operands
of operations enables more powerful and precise transforma-
tions.

One interesting example that we implemented in the com-
piler is the following, an oversimplified piece of code that we
generated for emulating the single precision floating-point
division:

1 inline
2 uint32_t minu(uint32_t a, uint32_t b)
3 { return a < b ? a : b ; }
4
5 uint32_t test5r(uint32_t x, uint32_t y,
6 int32_t z) {
7 int32_t C,u;
8 if(z>3) u = 6; else u = 1;
9 C = minu(y,2);

10 return x >> (u+C);
11 }

On the ST200, the right shift expression line 10, x >>
(u + C) (or similarly with a left shift), can be transformed
into (x >> C) >> u, which improves the parallelism by re-
laxing the data dependency on u, provided that the following
conditions hold:

u ∈ [0, 31], C ∈ [0, 31], u+ C ∈ [0, 31].

This transformation is done in the target specific part of the
range analysis, since obviously we can enable it only when
can prove the preconditions.

Then, instead of x >> (u + C) that incurs the following
computations:

[1] computation of u
[2] tmp = u+ C
[3] x >> tmp

we get a potentially better use of ILP (|| here means “in
parallel with”):

[1] tmp = x >> C || computation of u
[2] tmp >> u

For instance, the above test5r function now takes 3 cycles
instead of 4 with this optimization.

7. CONCLUDING REMARKS
Let us conclude with remarks on the validation of the nu-

merical quality of the codes produced by the techniques and
tools presented so far. Validating a floating-point implemen-
tation that claims to be IEEE 754 compliant is often tricky.
For the binary32 format, for which every data can take 232

different values, exhaustive testing is limited to univariate
functions. For example, the square root code of FLIP can
be compiled with Gcc under Linux and compared exhaus-
tively against the square root functions of GNU C (glibc3)
or GNU MPFR4 within a few minutes.

However, this is not possible anymore for bivariate func-
tions like +, −, ×, /. To get higher confidence, a first way is
to use some existing test programs for IEEE floating-point
arithmetic like the TestFloat package [16] and, for division
in particular, the Extremal Rounding Tests Set [28].

A second, complementary way is to get higher confidence,
already at the design stage, in the algorithms used for each
subtask of the high-level descriptions of Section 3. The tech-
niques and tools that have been reviewed make this possible
as follows:

• for the most regular parts of the computation (i.e.,
parallel polynomial evaluation schemes), we rely on the
automatic error analysis functionalities offered by tools
like Sollya and Gappa;

• for other subtasks (like special-value filtering and han-
dling, rounding algorithms, computation of the sign
and exponent of the result), we rely on proof-and-paper
analysis written in terms of the parameters p, k, ... of
the format. Typical examples are the symbolic expres-
sions in (5), (6), and (7).

Our experience with the implementation of floating-point
arithmetic shows that this kind of symbolic analysis can be
really helpful to produce algorithms and codes that are not
only faster but also a priori safer. Furthermore, establishing
properties parameterized by the format should allow to scale
easily from, say, binary32 to binary64 implementations. A
future direction in this area could be to automate the deriva-
tion of such symbolic properties. Another direction is about
automatic numerical error analysis: although CGPE pro-
duces C codes for polynomial evaluation that have a guar-
anteed accuracy, we have no guarantee that compilation will
preserve the order of evaluation, thus potentially spoiling the
accuracy and so the correctness of the whole implementation.

3http://www.gnu.org/software/libc/
4http://www.mpfr.org/mpfr-current/

7

Therefore, another direction is to explore the possibility of
certifying numerical accuracy not only at the C level but also
at the assembly level.

8. ACKNOWLEDGMENTS
This research was supported by “Pôle de compétitivité

mondial”Minalogic (Sceptre Project) and by the ANR project
EVA-Flo. This research effort is going on with an enlarged
scope in the Mediacom project, which is part of the French
government NANO-2012 R&D funding program.

9. REFERENCES
[1] IEEE standard for floating-point arithmetic. IEEE

Std. 754-1985, 1985.

[2] IEEE standard for floating-point arithmetic. IEEE
Std. 754-2008, pp.1-58, August 2008.

[3] C. Artigues, S. Demassey, and E. Neron.
Resource-Constrained Project Scheduling: Models,
Algorithms, Extensions and Applications. ISTE, 2008.

[4] C. Bertin, N. Brisebarre, B. D. de Dinechin, C.-P.
Jeannerod, C. Monat, J.-M. Muller, S. K. Raina, and
A. Tisserand. A Floating-point Library for Integer
Processors. In Proceedings of SPIE 49th Annual
Meeting International Symposium on Optical Science
and Technology, Denver, volume 5559, pages 101–111.
SPIE, Aug. 2004.

[5] B. Boissinot, A. Darte, B. Dupont de Dinechin,
C. Guillon, and F. Rastello. Revisiting out-of-SSA
translation for correctness, code quality, and efficiency.
In International Symposium on Code Generation and
Optimization (CGO’09), pages 114–125. IEEE
Computer Society Press, Mar. 2009.

[6] R. Brent and P. Zimmermann. Modern Computer
Arithmetic. Mar. 2010. Version 0.5.1.

[7] C. Bruel. If-conversion for embedded VLIW
architectures. International Journal of Embedded
Systems, 4(1):2–16, 2009.

[8] B. Bürgisser, C. Clausen, and M. Shokrollahi.
Algebraic Complexity Theory, volume 315 of
Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1997.

[9] S. Chevillard and C. Lauter. Sollya. Available at
http://sollya.gforge.inria.fr/.

[10] M. Daumas and G. Melquiond. Certification of bounds
on expressions involving rounded operators.
Transactions on Mathematical Software, 37(1), 2009.

[11] B. Dupont de Dinechin. Time-Indexed Formulations
and a Large Neighborhood Search for the
Resource-Constrained Modulo Scheduling Problem. In
P. Baptiste, G. Kendall, A. Munier-Kordon, and
F. Sourd, editors, 3rd Multidisciplinary International
Scheduling conference: Theory and Applications
(MISTA), 2007.
http://www.cri.ensmp.fr/classement/2007.html.

[12] M. D. Ercegovac and T. Lang. Digital Arithmetic.
Morgan Kaufmann, 2004.

[13] J. A. Fisher, P. Faraboschi, and C. Young. Embedded
Computing: A VLIW Approach to Architecture,
Compilers and Tools. Morgan Kaufmann, 2005.

[14] FLIP (Floating-point Library for Integer Processors).
Available at http://flip.gforge.inria.fr/.

[15] C. Guillon, F. Rastello, T. Bidault, and F. Bouchez.
Procedure placement using temporal-ordering
information: dealing with code size expansion. Journal
of Embedded Computing, 1(4):437–459, 2005.

[16] J. Hauser. The SoftFloat and TestFloat Packages.
Available at http://www.jhauser.us/arithmetic/.

[17] N. J. Higham. Accuracy and Stability of Numerical
Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition,
2002.

[18] C. Iordache and D. W. Matula. On infinitely precise
rounding for division, square root, reciprocal and
square root reciprocal. In I. Koren and P. Kornerup,
editors, Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 233–240, Adelaide,
Australia, 1999.

[19] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy.
Faster floating-point square root for integer processors.
In IEEE Symposium on Industrial Embedded Systems
(SIES’07), Lisbon, Portugal, July 2007.

[20] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy.
Computing floating-point square roots via bivariate
polynomial evaluation. Technical Report RR2008-38,
Laboratoire de l’Informatique du Parallélisme (LIP),
46, allée d’Italie, F-69364 Lyon cedex 07, France,
October 2008.

[21] C.-P. Jeannerod, H. Knochel, C. Monat, G. Revy, and
G. Villard. A new binary floating-point division
algorithm and its software implementation on the
ST231 processor. In Proceedings of the 19th IEEE
Symposium on Computer Arithmetic (ARITH’19),
Portland, Oregon, USA, June 2009.

[22] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and
A. Panhaleux. Midpoints and exact points of some
algebraic functions in floating-point arithmetic.
Technical Report RR2009-26, LIP, Aug. 2009.

[23] C.-P. Jeannerod, S. K. Raina, and A. Tisserand.
High-radix floating-point division algorithms for
embedded VLIW integer processors. In 17th World
Congress on Scientific Computation, Applied
Mathematics and Simulation IMACS, Paris, France,
July 2005.

[24] C.-P. Jeannerod and G. Revy. Optimizing
correctly-rounded reciprocal square roots for
embedded VLIW cores. In Asilomar’09: Proceedings of
the 43rd Asilomar Conference on Signals, Systems,
and Computers, Washington, DC, USA, 2009. IEEE
Computer Society.

[25] W. Kahan. IEEE 754: An interview with William
Kahan. Computer, 31(3):114–115, Mar. 1998.

[26] W. Kahan. A brief tutorial on gradual underflow.
Available as a PDF file at http:

//www.cs.berkeley.edu/~wkahan/ARITH_17U.pdf,
July 2005.

[27] P. Markstein. IA-64 and Elementary Functions: Speed
and Precision. Hewlett-Packard Professional Books.
Prentice-Hall, Englewood Cliffs, NJ, 2000.

[28] D. W. Matula and L. D. McFearin. Extremal rounding
test sets. Available at
http://engr.smu.edu/~matula/extremal.html.

[29] G. Melquiond. Gappa - génération automatique de
preuves de propriétés arithmétiques. Available at

8

http://lipforge.ens-lyon.fr/www/gappa/.

[30] G. Melquiond. De l’arithmétique d’intervalles à la

certification de programmes. PhD thesis, École
normale supérieure de Lyon, France, November 2006.

[31] C. Mouilleron. Sequences A173157 and A169608. The
On-line Encyclopedia of Integer Sequences (OEIS),
February 2010. Available at http:

//www.research.att.com/~njas/sequences/A173157.

[32] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[33] J.-M. Muller. Elementary functions: algorithms and
implementation. Birkhäuser, second edition, 2006.

[34] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P.
Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser Boston, 2010.

[35] M. L. Overton. Numerical computing with IEEE
floating point arithmetic. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2001.

[36] S.-K. Raina. FLIP: a Floating-point Library for

Integer Processors. PhD thesis, École normale
supérieure de Lyon, France, September 2006.

[37] G. Revy. CGPE - Code Generation for Polynomial
Evaluation. Available at
http://cgpe.gforge.inria.fr/.

[38] G. Revy. Implementation of binary floating-point
arithmetic on embedded integer processors: polynomial
evaluation-based algorithms and certified code
generation. PhD thesis, Université de Lyon - École
Normale Supérieure de Lyon, France, December 2009.

[39] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM Trans.
Program. Lang. Syst., 13(2):181–210, 1991.

9

Fifteen years after DSC and WLSS2
What parallel computations I do today*

[Invited Lecture at PASCO 2010]

Erich L. Kaltofen
Dept. of Mathematics, North Carolina State University

Raleigh, North Carolina 27695-8205,USA

kaltofen@math.ncsu.edu
http://www.kaltofen.us

ABSTRACT
A second wave of parallel and distributed computing re-
search is rolling in. Today’s multicore/multiprocessor
computers facilitate everyone’s parallel execution. In
the mid 1990s, manufactures of expensive main-frame
parallel computers faltered and computer science focused
on the Internet and the computing grid. After a ten year
hiatus, the Parallel Symbolic Computation Conference
(PASCO) is awakening with new vigor.

I shall look back on the highlights of my own research
on theoretical and practical aspects of parallel and dis-
tributed symbolic computation, and forward to what is
to come by example of several current projects. An im-
portant technique in symbolic computation is the eval-
uation/interpolation paradigm, and multivariate sparse
polynomial parallel interpolation constitutes a keystone
operation, for which we present a new algorithm. Sev-
eral embarrassingly parallel searches for special polyno-
mials and exact sum-of-squares certificates have exposed
issues in even today’s multiprocessor architectures. So-
lutions are in both software and hardware. Finally, we
propose the paradigm of interactive symbolic supercom-
puting, a symbolic computation environment analog of
the STAR-P Matlab platform.

Categories and Subject Descriptors: I.1.2 [Sym-
bolic and Algebraic Manipulation]: Algorithms; D.1.3
[Programming Techniques]: Parallel Programming

General Terms: algorithms, experimentation

Keywords: multiprocessor, multicore, memory bus con-
tention, sparse interpolation, supersparse interpolation,
parallel search, Lehmer’s problem, single factor coeffi-
cient bound, interactive supercomputing

∗
This material is based on work supported in part by the Na-

tional Science Foundation under Grants CCF-0830347 and DMS-
0532140.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$5.00.

1. INTRODUCTION

1.1 A brief history of my research in
parallel symbolic computation

In Fall 1982 as a newly minted Ph.D. hired by the
theoretical computer science group at the University of
Toronto, I was drawn into parallel computation. I shall
briefly give an account of my research in parallel and dis-
tributed symbolic computation. The new parallel com-
plexity class NC had been described by Stephen Cook
(see [7]) and exact linear algebra problems were shown
within it [5], in fact within uniform log-squared circuit
depth. Since I worked on the problem of multivariate
polynomial factorization, my first parallel result was on
factoring polynomials over the complex numbers [24].
Because the integer GCD problem and the more general
lattice basis reduction problem were (and are today) not
known to be within NC, the factorization of the defin-
ing polynomial for the field of definition of the complex
factor coefficients had to be delayed until zero divisors
appeared. Absolute irreducibility testing, however, was
placed cleanly in NC.∗ Independently, at the same time
delayed factorization was used in sequential polynomial
computation and called the D5 principle [12].

Work on polynomial matrix canonical forms with M.
S. Krishnamoorthy and B. D. Saunders followed [29,
30], introducing random scalar matrix preconditioners
for Smith form computation. Our general purpose algo-
rithm for parallelizing straight-line programs for polyno-
mials [47] and rational functions [25, Section 8] also in-
creases the amount of total work of the parallel algebraic
circuit, but our randomized algorithm for exact parallel
linear system solving [37, 38], based on Wiedemann’s
algorithm [53], at last was processor-efficient, i.e., had
only a poly-log factor more total work. No such solution
is known today for Toeplitz systems or other structured
systems (cf. [39]—a PASCO 1994 paper).

What was already apparent in the early 1990s, NC
or even processor-efficient poly-logarithmic time algo-
rithms are unrealizable on parallel computers: one does
not have O(n3) processors for symbolic computation

∗
My paper [24] in its conclusion poses the problem of approx-

imate polynomial factorization, which we only could solve 19
years later [17, 36].

10

tasks, and that without communication latency, for large
n. Our 1991 implementation of a systolic polynomial
GCD algorithm [6] on our own MasPar (“Massively Par-
allel”) computer was slower then the sequential code on
a top end workstation. The Thinking Machines Corpo-
ration filed for bankruptcy in 1994 and bit-wise paral-
lelism disappeared. As far as I can judge, circuits of
poly-logarithmic depth are only realized, on chip, for
basic arithmetic operations such as look-ahead addition
or Wallace-tree multiplication, which can be exploited
for packed modular arithmetic with small moduli [15].
However, I still read today, in papers on exponential
sequential algorithms in real algebraic geometry, for ex-
ample, of “parallel polynomial-time” solutions. Those
algorithms are not realizable.

The black box model for polynomials [40] and the par-
allel reconstruction algorithm via sparse interpolation
seemed much more practicable—embarrassingly paral-
lel. Thus in 1990 we began developing a run-time sup-
port tool, DSC (Distributed Symbolic Computation) [10,
8]. Several features in DSC seem unsupported in com-
monly used distributed run-time support tools, such as
MPI/PVM. DSC could automatically distribute source
code, produced possibly by the black box polynomial
algorithms, to be compiled remotely before execution.
There was a (weak) encryption protocol implemented to
prevent malicious compilation requests on the remote
computers. In today’s world-wide hacker-attack envi-
ronment our protocol no longer can meet required secu-
rity standards. A second feature tried to model proces-
sor loads via time-series models and selectively choose
computers with predicted short process queues [49]. We
worked with the assumption that DSC was the only dae-
mon process making such predictions on the LAN, as
multiple such forecasters would possible select the same
target computer. It appears to me that some of the in-
stabilities in today’s stock markets may be the result of
similarly interfering prediction programs.

In the end, even my own Ph.D. students switched
from our home made DSC to MPI, and our sparse mul-
tivariate polynomial interpolation algorithm in FoxBox
is implemented with MPI [9, Section 2.8]. MPI was
supported on a parallel computer available to us, the
IBM SP-2. Our second application is the block Wiede-
mann algorithm [27] and Austin Lobo’s implementa-
tion for entries in Z2 [45, 34, 35]. Lobo called his li-
brary WLSS (pronounced WiLiSyS—Wiedemann’s Lin-
ear System Solver) and the SP-2 implementation WLSS2,
on which systems arising from the RSA factoring chal-
lenged could be solved. Parallel symbolic computation
had finally become reality. Those papers with Lobo
should become, quite unpredictably, my last ones on the
subject for 15 years, until this paper.

The second PASCO conference [21], for which I chaired
the program committee. was held in Maui, Hawaii, be-
fore ISSAC 1997. Hoon Hong, the general chair, had
broadened the subject to parallel automatic theorem
proving. There were still several (strong) NC papers.
Laurent Bernardin reported on a “massively” parallel
implementation of Maple [4]. In contrast, Gaston Gonnet
in his 2010 talk at Jo60, the conference in honor of
Joachim von zur Gathen’s 60th birthday, speculated that

Maple’s success was due in part that parallelism was not
pursued in the early years.

On the other hand, Jean-Louis Roch, who attended
our workshop “Parallel Algebraic Computation” at Cor-
nell University in 1992 [55], with Thierry Gautier and
others fully embraced parallelism and built several gen-
eral purpose APIs and run-time systems: Athapascan-1
and Kaapi. The multicore multithreaded architectures
of today make data parallel programming far beyond
vector processing a reality. In 2007 Marc Moreno Maza
single-handedly has revived the PASCO conference se-
ries. In his own symbolic computation research Moreno
Maza systematically deploys parallel APIs, he also uses
Cilk. A renaissance has begun. One paper at PASCO
2007 started at exactly the same place where we had left
off: a parallel block Wiedemann algorithm [14].

1.2 Overview of results
We describe three separate topics. In Section 2 we

investigate the important problem of sparse polynomial
interpolation. Interpolation constitutes the reconstruc-
tion phase when computing by homomorphic images.
The Ben-Or/Tiwari [3] breaks the sequentiality of Zip-
pel’s algorithm [54], but term exponent vectors need to
be recovered from modular images. We give a method
based on the discrete logarithm algorithm modulo primes
p with smooth multiplicative orders p − 1. Our algo-
rithm can handle very large degrees, i.e., supersparse
inputs [28], and thus allows for Kronecker substitution
from many to a single variable.

In Section 3, we report on our year-long computer
search for polynomials with large single factor coeffi-
cient bounds and small Mahler measure. Our search
was successfully executed on multiprocessor MacPros.
A second search, for sum-of-squares lower bound cer-
tificates in Rump’s model problem [33, 43], for which
each process requires several GBs of memory, was less
successful on the older multiprocessor MacPros due to
memory bus contention. Intel’s new “Nehalem” archi-
tecture somewhat mitigates those issues.

In Section 4 we introduce the paradigm of interactive
symbolic supercomputing.

2. SUPERSPARSE POLYNOMIAL
INTERPOLATION

2.1 Term recovery by discrete logarithms
In [9, Section 4.1], as stated above, we implemented a

modification of Zippel’s [54] variable-by-variable multi-
variate sparse polynomial interpolation algorithm with
modular coefficient arithmetic. The individual black
box evaluation in each iteration are carried out in paral-
lel, but the algorithm increases sequentially the number
of variables in the interpolants. The algorithm works
with relatively small moduli, and our subsequent hy-
bridization [32] of the Zippel and Ben-Or/Tiwari [3] has
further reduced the size of the required moduli.

An alternative that interpolates all variables in a sin-
gle pass but requires a large modulus is already de-
scribed in [26]. First, the multivariate interpolation
problem for a black box polynomial f(x1, . . . , xn) ∈

11

Q[x1, . . . , xn] is reduced to a univariate problem by Kro-

necker substitution F (y) = f(y, yd1+1, y(d1+1)(d2+1), . . .),
where dj is an upper bound on the degree of the black
box polynomial in the variable xj , which either is in-
put or determined by a Monte Carlo method [40, Sec-
tion 2, Step 1]. Each non-zero term x

ei,1
1 · · ·xei,n

n in f is
mapped to yEi in F , where

Ei =
X

j

“
ei,j

Y
1≤k≤j−1

(dk + 1)
”
.

One interpolates F (y) and recovers from the terms yEi

and the bounds dj all ei,j .
The modulus p is then selected as a prime such that

p− 1 > maxi Ei and that p− 1 is a smooth integer, i.e.,
has a factorization into small primes q1 · · · ql = p − 1,
where q1 = 2. The prime p also must not divide any
denominator in the rational coefficients of f , for which
the black box call modulo p will throw an exception.
For primes with smooth p − 1 there is a fast discrete
logarithm algorithm [48] and primitive roots g ∈ Zp are
quickly constructed, for example by random sampling
and testing. Such primes are quite numerous and easy to
compute due to a conjectured effective version of Dirich-
let’s theorem: µ Q+1 is prime for µ = O((log Q)2) [20].
For instance,

37084 = max
m≤12800

(argmin
µ≥1

(µ2m + 1 is prime)).

The values ak = F (gk), k = 0, 1, 2, . . . are linearly
generated by the minimal polynomial

Λ(z) =
“ tY

i=1

(z − gEi) mod p
”
,

where t is the number of non-zero terms [3]. First, the
ak mod p are computed in parallel via the black box for
f for the needed k, and then the generator is deter-
mined (see Section 2.2 below). With the early termina-
tion strategy the number of terms t and Λ can be com-
puted from 2t+1 sequence elements ak by a Monte Carlo
algorithm that uses a random g [32]. Second, the poly-
nomial Λ(z) is factored into linear factors over Zp. The
factorization is a simple variant of Zassenhaus’s method:
The GCD(Λ(z + r), z(p−1)/2 − 1) for a random residue
r splits off about half of the factors. The first division
(z(p−1)/2 − 1) mod Λ(z + r) can utilize the factorization
of p − 1 or simply use repeated squaring, all modulo
Λ(z + r). The two factors of approximately degree t/2
are handled recursively and in parallel. Third, from
the linear factors z − gEi mod p the Ei are computed
in parallel with Pohlig’s and Hellman’s discrete loga-
rithm algorithm. Fourth, the term coefficients are com-
puted from the ak by solving a transposed Vandermonde
system [31, Section 5], which essentially constitutes the
fine-grain parallel operations of univariate polynomial
(tree) multiplication and multipoint evaluation. Fifth,
the rational coefficients are determined from the modu-
lar images by rational vector recovery [41, Section 4].

A drawback of the above algorithm is the need for a
large prime modulus, and this was our reason for imple-
menting Zippel’s interpolation algorithm in FoxBox in
1996. Recently, discrete logs modulo word-sized primes

could be utilized to recover the term exponents ei,j [23].
We briefly mentioned our idea in an unpublished manu-
script on sparse rational function interpolation in 1988
[26], without realizing that the algorithm was actually
polynomial in log(deg f) under Heath-Brown’s conjec-
ture. Algorithms for such supersparse (lacunary) inputs
are today a rich research subject, and an unconditional
polynomial-time supersparse interpolation algorithm is
given in [18]. Supersparse interpolation of shifted uni-
variate polynomials is described in [19], and the difficult
problem of supersparse rational function interpolation
is solved for a fixed number of terms in [44]. All al-
gorithms have highly speeded parallel variants, which
hopefully will become commonly available in symbolic
computation systems in the near future.

2.2 Scalar generators via block generators
In Section 2.1, a scalar linear generator was needed

for a linearly generated sequence ak. The classical solu-
tion is to deploy the Berlekamp/Massey algorithm [46].
As the new values ak trickle in, the algorithm can in a
concurrent thread iteratively update the current gener-
ator candidate. As a specialization of the extended Eu-
clidean algorithm [13] or a specialization of the σ-basis
algorithm [2, 32], the classical algorithm seems hard to
parallelize, even in a fine-grain shared memory model.

An alternative is to employ the matrix Berlekamp/
Massey algorithm [11, 42] for purpose of computing a
scalar linear generator. We shall describe the idea by ex-
ample. Suppose the degree of the scalar linear recursion
is t = 18. The scalar Berlekamp/Massey algorithm de-
termines the minimal linear generator Λ(z) from the 2t
sequence elements a0, . . . , a35. Instead, we use a block-
ing factor of b = 2 and consider the sequence of 2 × 2
matrices »

ai a9+i

a9+i a18+i

–
, i = 0, 1, . . . , 18. (1)

Each entry in (1) is linearly generated by Λ, so the scalar
generator of the matrix sequence is also Λ. Instead,
we compute the minimal right matrix generator. The
(infinite) block Hankel matrix266666664

a0 a9 a1 a10 . . .
a9 a18 a10 a19 . . .

a1 a10 a2 a11 . . .
a10 a19 a11 a20 . . .
...

...
...

...
. . .

377777775
(2)

has rank t = 18, which is achieved at the (t/b)× (t/b) =
9×9 blocks (dimensions 18×18), because a row and col-
umn permutation transforms the block Hankel matrix
into the scalar Hankel matrix which has exactly rank t
(cf. [27, Proof of Proposition 3]). Therefore the 2×2 ma-
trix generator polynomial Γ(z) has degree 9, whose de-
terminant is Λ(z). The latter follows because the highest
degree invariant factor of Γ(z) is the scalar linear gen-
erator [42, Theorem 2] and the degree deg(detΓ) = t
because the determinantal degree equals the rank of (2).

The method uses b−1 more scalar sequence elements,
but Γ(z) is found after 2 t/b + 1 matrix sequence ele-

12

ments. The block algorithm seems to have greater local-
ity as the polynomials are of lower degree. It requires,
however, the computation of det(Γ) via interpolation,
and therefore may not be competitive with the classical
scalar Berlekamp/algorithm for parallel supersparse in-
terpolation, unlike the block Wiedemann linear system
solver, where the computation of ak depends on ak−1.
But one could think of a black box polynomial where
F (gk) is derived with the help of F (gk−1).

3. MULTIPLE PROCESSORS/CORES–
SINGLE MEMORY BUS

In Summer and Fall 2007 we acquired 2 newly Intel-
based Apple MacPros with multiple CPUs and mul-
tiple cores, on which we installed Ubuntu Linux. At
that time we pursued two large computations: first the
search for polynomials with large single factor coeffi-
cient bounds [33, Remark 4] and the related search for
polynomials with small Mahler measure (Lehmer’s prob-
lem), and second the search for exact SOS certificates in
Rump’s model problem [33, Section 3.2]. Both searches
are embarrassingly parallel and we launched multiple
command-line Maple 11 and later Maple 12 processes
in Linux detachable “screen”s to achieve full processor
utilization.

Our search throughout the year of 2008 for pseudo-
cyclotomic polynomials, for which we also used an older
Apple G5, yielded no new polynomials. For the record,
our own largest single factor bound is given by the irre-
ducible integer polynomial

F (z) = a37z
37 +

36X
i=0

ai(z
74−i + zi) with

a0 = 137244374035256035, a1 = 6484943836830415168,
a2 = 153193531709959141908,
a3 = 2411607507200802424907,
a4 = 28452979385641079841504,
a5 = 268288753013473830301366,
a6 = 2105372123573295644409420,
a7 = 14138714883963898462151808,
a8 = 82921677184320004630302040,
a9 = 431329478501438585427465254,

a10 = 2014156747639672791329597498,
a11 = 8526069501131479222465282376,
a12 = 32979342592280651952625919221,
a13 = 117343525840400678593760923162,
a14 = 386220797646892832924725343578,
a15 = 1181540655003118732221772208453,
a16 = 3373539469466421210816098963801,
a17 = 9021882900472427122636284167235,
a18 = 22669166923589015905675502095077,
a19 = 53664552516356435243212903922539,
a20 = 119977087506448109730882947309906,
a21 = 253858560921214782055361032381920,
a22 = 509315086548136054993905167906615,
a23 = 970529828476535410874212141091985,
a24 = 1759154390161310454823643987118589,
a25 = 3036998343927337089144845248619604,
a26 = 4999639546259331050695892101743471,
a27 = 7856622081008872596932525992122154,
a28 = 11795932815522505668032581481982119,

a29 = 16934616571889545324916521185499766,
a30 = 23263087926382581409159452491840837,
a31 = 30596272432934117736562047551265003,
a32 = 38547804638104808779028751533424518,
a33 = 46541915513845439185592821100345340,
a34 = 53870405856198473740160765586055008,
a35 = 59790381075274084971155248471629182,
a36 = 63645538749721902787135528353527656,
a37 = 64984262804935950161468248039123157,

where ‖F (z)‖∞ = ‖F (−z)‖∞ = a37 and ‖F (z)·F (−z)‖∞
= 18920209630100132696430504439191918. Thus the
single factor coefficient growth is

‖F (z)‖∞
‖F (z)F (−z)‖∞ > 3.43464813.

The polynomial was constructed from the minimizers
in Rump’s model problem and we believed it to be the
largest single factor bound known as David Boyd’s con-
struction only yielded ratios below 3. When presenting
our bounds in Summer 2008, John Abbott showed us
polynomials with much lower degree and coefficient size.
His subsequent paper [1] contains an irreducible F with
deg(F) = 20, ‖F‖∞ = 495, and ‖F (z) F (−z)‖∞ = 36.
Differences between nearby polynomials with large sin-
gle (reducible) factor coefficient bounds yield pseudo-
cyclic polynomials. Michael Mossinghoff’s web site lists
the top 100 non-cyclotomic irreducible polynomials with
a small Mahler measure, the first being Lehmer’s [http://
www.cecm.sfu.ca/∼mjm/Lehmer/]. In Figure 1 we list
how many times we have discovered each of the top 50
polynomials, mostly those of high sparsity. Unfortu-
nately, the search yielded no new polynomials, perhaps
because we used relatively low degree minimizing poly-
nomials.

In terms of parallel execution, in our Lehmer polyno-
mials search we achieved a very good utilization of all
available 16 cores. The same, surprisingly, was not true
for our second search for sum-of-squares certificates for
lower bounds in Rump’s model problem [43, Section 3].
The main difference is that each SOS searche required
a substantial amount of memory, about 5GB, due to
the size of the arising matrices in the Newton optimiz-
ers. As Table 2 in [43] indicates, for n = 17 one com-
mand line Maple process required almost twice the time
per iteration for a lesser lower bound, that because we
executed it concurrently with second such independent
command line Maple process since we had sufficient real
memory for both. Reminiscent to parallel computing 15
years ago, the slowdown was caused by contention on
the memory bus, which may be considered a hardware
logic fault. Figure 2 depicts the 2007 MacPro, 4 cores
with each L1 I cache: 32K, L1 D cache: 32K, L2 cache:
4096K, with one of the memory cards pulled out. In con-
trast, Figure 3 shows our new Intel “Nehalem” MacPro,
16 cores with each L1 I cache: 32K, L1 D cache: 32K,
L2 cache: 256K, L3 cache: 8192K, and with the 32GB
memory card and its massive dual controllers pulled out.
Both cabinets have the same size. Note the large gray
multipin interface at the bottom of the Nehalem card,
which lies sideways on the cabinet. We could verify that
for at least 2 processes the memory contention problem
was solved.

13

Figure 1: Michael Mossinghoff’s Top 50 pseudo-cyclotomic polynomials

MM’s deg Mahler measure count
1. 10 1.176280818260 2248
2. 18 1.188368147508 —
3. 14 1.200026523987 1
4. 18 1.201396186235 8804
5. 14 1.202616743689 105
6. 22 1.205019854225 10
7. 28 1.207950028412 —
8. 20 1.212824180989 4
9. 20 1.214995700776 —

10. 10 1.216391661138 198
11. 20 1.218396362520 1598
12. 24 1.218855150304 —
13. 24 1.219057507826 —
14. 18 1.219446875941 —
15. 18 1.219720859040 —
16. 34 1.220287441693 —
17. 38 1.223447381419 —
18. 26 1.223777454948 —
19. 16 1.224278907222 1779
20. 18 1.225503424104 35
21. 30 1.225619851977 —
22. 30 1.225810532354 —
23. 26 1.226092894512 17
24. 36 1.226493301473 —
25. 20 1.226993758166 194

MM’s deg Mahler measure count
26. 12 1.227785558695 77
27. 30 1.228140772740 —
28. 36 1.229482810173 —
29. 22 1.229566456617 1
30. 34 1.229999039697 —
31. 38 1.230263271363 —
32. 42 1.230295468643 —
33. 10 1.230391434407 27995
34. 46 1.230743009076 —
35. 18 1.231342769993 —
36. 48 1.232202952743 —
37. 20 1.232613548593 133
38. 28 1.232628775929 —
39. 38 1.233672001767 —
40. 52 1.234348374876 —
41. 24 1.234443834873 —
42. 26 1.234500336789 —
43. 16 1.235256705642 72
44. 46 1.235496042193 —
45. 22 1.235664580390 —
46. 42 1.235761099712 —
47. 32 1.236083368052 —
48. 32 1.236198469859 —
49. 32 1.236227922245 —
50. 40 1.236249557349 —

Figure 2: Dual processor dual core Xeon 3.0GH/7GB
2007 MacPro

In addition, the authors of [16] report avoidance of
bus contention by using Google’s cached heap alloca-
tion scheme TCmalloc. Perhaps symbolic computation
system vendors should also offer software compiled with
such malloc schemes. We shall add that we also tried to
tune the Maple garbage collection parameters.

Marc Moreno Maza has inquired with Maplesoft in
response to our remarks, and a problem area seems to
be the memory management strategy of Maple’s garbage
collector in a setting of parallel independent processes.

Figure 3: Quad processor quad core Xeon 2.67GH/
32GB 2009 Intel Nehalem MacPro

4. INTERACTIVE SYMBOLIC
SUPERCOMPUTING

During my sabbatical at MIT in Spring 2006, with
Alan Edelman we have investigated the use of generic-
ity to create interfaces from symbolic computation plat-
forms to Star-P servers [22] and other parallel imple-
mentations.

Laptops and desktops do not have hundreds of pro-
cessors and large clusters of computers are housed in
labs. The Internet makes it possible to access such high
performance computers and networks from almost ev-
erywhere. The idea of interactive supercomputing is to

14

place the data and computations of a Matlab or Math-
ematica/Maple/SAGE [52] session remotely on such a
compute server and control the session from the local
GUI interactively in such a way that the supercomputing
session is indistinguishable from what would be a locally
run session.

Alan Edelman’s solution in Matlab is to overload the
“*” operator and pseudo-postmultiply any value by a
global variable p of a special type so that the resulting
type is a reference to the remote storage. The relevant
Matlab functions are then overloaded so that any ar-
guments of the Star-P type delegate execution of the
function to the remote supercomputer on the remote
data.

In Figure 4 we give a code fragment how Maple’s
LinearAlgebra package could be overloaded for a spe-
cial Star-P type. We anticipate to experiment with links
to parallel implementations of the LinBox exact linear
algebra library as soon as they are available. We add
that the INTER*CTIVE supercomputing company was
recently acquired by Microsoft. Note that SAGE’s phi-
losophy is to place its user interface above the symbolic
computation system, while Star-P places the interface
underneath it.

Acknowledgments: I thank Jean-Guillaume Dumas
for sharing with me his experience with the memory bus
contention problem and TCmalloc, and Marc Moreno
Maza for his reviewing comments.

5. REFERENCES
[1] Abbott, J. Bounds on factors in Z[x].

Mathematics Research Repository abs/0904.3057
(2009). URL: http://arxiv.org/abs/0904.3057.

[2] Beckermann, B., and Labahn, G. A uniform
approach for fast computation of matrix-type
Padé approximants. SIAM J. Matrix Anal. Applic.
15, 3 (July 1994), 804–823.

[3] Ben-Or, M., and Tiwari, P. A deterministic
algorithm for sparse multivariate polynomial
interpolation. In Proc. Twentieth Annual ACM
Symp. Theory Comput. (New York, N.Y., 1988),
ACM Press, pp. 301–309.

[4] Bernardin, L. Maple on a massively parallel,
distributed memory machine. In Hitz and
Kaltofen [21], pp. 217–222.

[5] Borodin, A., von zur Gathen, J., and
Hopcroft, J. E. Fast parallel matrix and GCD
computations. Inf. Control 52 (1982), 241–256.

[6] Brent, R. P., and Kung, H. T. Systolic VLSI
arrays for linear-time GCD computation. In Proc.
VLSI ’83 (1983), pp. 145–154.

[7] Cook, S. A. A taxonomy of problems with fast
parallel algorithms. Inf. Control 64 (1985), 2–22.

[8] Dı́az, A., Hitz, M., Kaltofen, E., Lobo, A.,
and Valente, T. Process scheduling in DSC and
the large sparse linear systems challenge. J.
Symbolic Comput. 19, 1–3 (1995), 269–282. URL:
EKbib/95/DHKLV95.pdf.

[9] Dı́az, A., and Kaltofen, E. FoxBox a system
for manipulating symbolic objects in black box

representation. In Proc. 1998 Internat. Symp.
Symbolic Algebraic Comput. (ISSAC’98) (New
York, N. Y., 1998), O. Gloor, Ed., ACM Press,
pp. 30–37. URL: EKbib/98/DiKa98.pdf.

[10] Dı́az, A., Kaltofen, E., Schmitz, K., and
Valente, T. DSC A system for distributed
symbolic computation. In Proc. 1991 Internat.
Symp. Symbolic Algebraic Comput. (ISSAC’91)
(New York, N. Y., 1991), S. M. Watt, Ed., ACM
Press, pp. 323–332. URL:
EKbib/91/DKSV91.ps.gz.

[11] Dickinson, B. W., Morf, M., and Kailath, T.
A minimal realization algorithm for matrix
sequences. IEEE Trans. Automatic Control
AC-19, 1 (Feb. 1974), 31–38.

[12] Dicrescenzo, C., and Duval, D. Le système D5
de calcul formel avec des nombres algébriques.
Univ. Grenoble, 1987, Doctoral Thesis by
Dominique Duval, Chapter 1. Jean Della-Dora
(Thesis Adisor).

[13] Dornstetter, J. L. On the equivalence between
Berlekamp’s and Euclid’s algorithms. IEEE Trans.
Inf. Theory it-33, 3 (1987), 428–431.

[14] Dumas, J.-G., Elbaz-Vincent, P., Giorgi, P.,
and Urbanska, A. Parallel computation of the
rank of large sparse matrices from algebraic
K-theory. In PASCO’07 Proc. 2007 Internat.
Workshop on Parallel Symbolic Comput. (2007),
pp. 43–52.

[15] Dumas, J.-G., Fousse, L., and Salvy, B.
Simultaneous modular reduction and Kronecker
substitution for small finite fields. J. Symbolic
Comput. to appear (2010).

[16] Dumas, J.-G., Gautier, T., and Roch, J.-L.
Generic design of Chinese remaindering schemes.
In PASCO’10 Proc. 2010 Internat. Workshop on
Parallel Symbolic Comput. (New York, N. Y.,
2010), M. Moreno Maza and J.-L. Roch, Eds.,
ACM.

[17] Gao, S., Kaltofen, E., May, J. P., Yang, Z.,
and Zhi, L. Approximate factorization of
multivariate polynomials via differential equations.
In ISSAC 2004 Proc. 2004 Internat. Symp.
Symbolic Algebraic Comput. (New York, N. Y.,
2004), J. Gutierrez, Ed., ACM Press, pp. 167–174.
ACM SIGSAM’s ISSAC 2004 Distinguished
Student Author Award (May and Yang). URL:
EKbib/04/GKMYZ04.pdf.

[18] Garg, S., and Schost, Éric. Interpolation of
polynomials given by straight-line programs.
Theoretical Computer Science 410, 27-29 (2009),
2659 – 2662.

[19] Giesbrecht, M., and Roche, D. S.
Interpolation of shifted-lacunary polynomials.
Computing Research Repository abs/0810.5685
(2008). URL: http://arxiv.org/abs/0810.5685.

[20] Heath-Brown, D. R. Almost-primes in
arithmetic progressions and short intervals. Math.
Proc. Camb. Phil. Soc. 83 (1978), 357–375.

15

Figure 4: Overloading a Maple package procedure

> LAstarp:=module()

> export RandomMatrix;

> local __RandomMatrix;

> unprotect(LinearAlgebra:-RandomMatrix);

> __RandomMatrix := eval(LinearAlgebra:-RandomMatrix);

> LinearAlgebra:-RandomMatrix:=proc()

> if type(args[1],string) then RETURN("Calling starp with " || args);

> else RETURN(__RandomMatrix(args));

> fi;

> end; # RandomMatrix

> end; # LAstarp

LAstarp := module() local __RandomMatrix; export RandomMatrix; end module

> LinearAlgebra:-RandomMatrix(2,2,generator=0..1.0);

[0.913375856139019393 0.905791937075619225]

[]

[0.126986816293506055 0.814723686393178936]

> LinearAlgebra:-RandomMatrix("overloading");

"Calling starp with overloading"

[21] Hitz, M., and Kaltofen, E., Eds. Proc. Second
Internat. Symp. Parallel Symbolic Comput.
PASCO ’97 (New York, N. Y., 1997), ACM Press.

[22] INTER*CTIVE supercomputing. Star-P
overview. Web page, 2008. URL http://www.
interactivesupercomputing.com/.

[23] Javadi, S. M. M., and Monagan, M. On sparse
polynomial interpolation over finite fields.
Manuscript, 2010.

[24] Kaltofen, E. Fast parallel absolute irreducibility
testing. J. Symbolic Comput. 1, 1 (1985), 57–67.
Misprint corrections: J. Symbolic Comput. vol. 9,
p. 320 (1989). URL: EKbib/85/Ka85 jsc.pdf.

[25] Kaltofen, E. Greatest common divisors of
polynomials given by straight-line programs. J.
ACM 35, 1 (1988), 231–264. URL:
EKbib/88/Ka88 jacm.pdf.

[26] Kaltofen, E. Unpublished article fragment,
1988. URL http://www.math.ncsu.edu/∼kaltofen/
bibliography/88/Ka88 ratint.pdf.

[27] Kaltofen, E. Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of
sparse linear systems. Math. Comput. 64, 210
(1995), 777–806. URL:
EKbib/95/Ka95 mathcomp.pdf.

[28] Kaltofen, E., and Koiran, P. Finding small
degree factors of multivariate supersparse
(lacunary) polynomials over algebraic number
fields. In ISSAC MMVI Proc. 2006 Internat.
Symp. Symbolic Algebraic Comput. (New York, N.
Y., 2006), J.-G. Dumas, Ed., ACM Press,
pp. 162–168. URL: EKbib/06/KaKoi06.pdf.

[29] Kaltofen, E., Krishnamoorthy, M. S., and
Saunders, B. D. Fast parallel computation of
Hermite and Smith forms of polynomial matrices.
SIAM J. Alg. Discrete Math. 8 (1987), 683–690.
URL: EKbib/87/KKS87.pdf.

[30] Kaltofen, E., Krishnamoorthy, M. S., and
Saunders, B. D. Parallel algorithms for matrix

normal forms. Linear Algebra and Applications
136 (1990), 189–208. URL: EKbib/90/KKS90.pdf.

[31] Kaltofen, E., and Lakshman Yagati.
Improved sparse multivariate polynomial
interpolation algorithms. In Symbolic Algebraic
Comput. Internat. Symp. ISSAC ’88 Proc.
(Heidelberg, Germany, 1988), P. Gianni, Ed.,
vol. 358 of Lect. Notes Comput. Sci., Springer
Verlag, pp. 467–474. URL: EKbib/88/KaLa88.pdf.

[32] Kaltofen, E., and Lee, W. Early termination
in sparse interpolation algorithms. J. Symbolic
Comput. 36, 3–4 (2003), 365–400. Special issue
Internat. Symp. Symbolic Algebraic Comput.
(ISSAC 2002). Guest editors: M. Giusti & L. M.
Pardo. URL: EKbib/03/KL03.pdf.

[33] Kaltofen, E., Li, B., Yang, Z., and Zhi, L.
Exact certification of global optimality of
approximate factorizations via rationalizing
sums-of-squares with floating point scalars. In
ISSAC 2008 (New York, N. Y., 2008), D. Jeffrey,
Ed., ACM Press, pp. 155–163. URL:
EKbib/08/KLYZ08.pdf.

[34] Kaltofen, E., and Lobo, A. Distributed
matrix-free solution of large sparse linear systems
over finite fields. In Proc. High Performance
Computing ’96 (San Diego, CA, 1996), A. M.
Tentner, Ed., Society for Computer Simulation,
Simulation Councils, Inc., pp. 244–247. Journal
version in [35]. URL: EKbib/96/KaLo96 hpc.pdf.

[35] Kaltofen, E., and Lobo, A. Distributed
matrix-free solution of large sparse linear systems
over finite fields. Algorithmica 24, 3–4 (July–Aug.
1999), 331–348. Special Issue on “Coarse Grained
Parallel Algorithms”. URL:
EKbib/99/KaLo99.pdf.

[36] Kaltofen, E., May, J., Yang, Z., and Zhi, L.
Approximate factorization of multivariate
polynomials using singular value decomposition. J.
Symbolic Comput. 43, 5 (2008), 359–376. URL:

16

EKbib/07/KMYZ07.pdf.

[37] Kaltofen, E., and Pan, V. Processor efficient
parallel solution of linear systems over an abstract
field. In Proc. SPAA ’91 3rd Ann. ACM Symp.
Parallel Algor. Architecture (New York, N.Y.,
1991), ACM Press, pp. 180–191. URL:
EKbib/91/KaPa91.pdf.

[38] Kaltofen, E., and Pan, V. Processor-efficient
parallel solution of linear systems II: the positive
characteristic and singular cases. In Proc. 33rd
Annual Symp. Foundations of Comp. Sci. (Los
Alamitos, California, 1992), IEEE Computer
Society Press, pp. 714–723. URL:
EKbib/92/KaPa92.pdf.

[39] Kaltofen, E., and Pan, V. Parallel solution of
Toeplitz and Toeplitz-like linear systems over
fields of small positive characteristic. In Proc.
First Internat. Symp. Parallel Symbolic Comput.
PASCO ’94 (Singapore, 1994), H. Hong, Ed.,
World Scientific Publishing Co., pp. 225–233.
URL: EKbib/94/KaPa94.pdf.

[40] Kaltofen, E., and Trager, B. Computing with
polynomials given by black boxes for their
evaluations: Greatest common divisors,
factorization, separation of numerators and
denominators. J. Symbolic Comput. 9, 3 (1990),
301–320. URL: EKbib/90/KaTr90.pdf.

[41] Kaltofen, E., and Yang, Z. On exact and
approximate interpolation of sparse rational
functions. In ISSAC 2007 Proc. 2007 Internat.
Symp. Symbolic Algebraic Comput. (New York, N.
Y., 2007), C. W. Brown, Ed., ACM Press,
pp. 203–210. URL: EKbib/07/KaYa07.pdf.

[42] Kaltofen, E., and Yuhasz, G. On the matrix
Berlekamp-Massey algorithm, Dec. 2006.
Manuscript, 29 pages. Submitted.

[43] Kaltofen, E. L., Li, B., Yang, Z., and Zhi, L.
Exact certification in global polynomial
optimization via sums-of-squares of rational
functions with rational coefficients, Jan. 2009.
Accepted for publication in J. Symbolic Comput.
URL: EKbib/09/KLYZ09.pdf.

[44] Kaltofen, E. L., and Nehring, M. Supersparse
black box rational function interpolation, Jan.

2010. Manuscript, 23 pages.

[45] Lobo, A. A. Matrix-Free Linear System Solving
and Applications to Symbolic Computation. PhD
thesis, Rensselaer Polytechnic Instit., Troy, New
York, Dec. 1995.

[46] Massey, J. L. Shift-register synthesis and BCH
decoding. IEEE Trans. Inf. Theory it-15 (1969),
122–127.

[47] Miller, G. L., Ramachandran, V., and
Kaltofen, E. Efficient parallel evaluation of
straight-line code and arithmetic circuits. SIAM J.
Comput. 17, 4 (1988), 687–695. URL:
EKbib/88/MRK88.pdf.

[48] Pohlig, C. P., and Hellman, M. E. An
improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE
Trans. Inf. Theory it-24 (1978), 106–110.

[49] Samadani, M., and Kaltofen, E. Prediction
based task scheduling in distributed computing. In
Proc. 14th Annual ACM Symp. Principles Distrib.
Comput. (New York, N. Y., 1995), ACM Press,
p. 261. Brief announcement of [51, 50].

[50] Samadani, M., and Kaltofen, E. On
distributed scheduling using load prediction from
past information. Unpublished paper, 1996.

[51] Samadani, M., and Kaltofen, E. Prediction
based task scheduling in distributed computing. In
Languages, Compilers and Run-Time Systems for
Scalable Computers (Boston, 1996), B. K.
Szymanski and B. Sinharoy, Eds., Kluwer
Academic Publ., pp. 317–320. Poster session paper
of [50]. URL: EKbib/95/SaKa95 poster.ps.gz.

[52] Stein, W., et al. SAGE: Open Source
mathematics software. Web page, Feb. 2008. URL
http://www.sagemath.org.

[53] Wiedemann, D. Solving sparse linear equations
over finite fields. IEEE Trans. Inf. Theory it-32
(1986), 54–62.

[54] Zippel, R. Interpolating polynomials from their
values. J. Symbolic Comput. 9, 3 (1990), 375–403.

[55] Zippel, R. E., Ed. Proc. 2nd Internat. Workshop
on Computer Algebra and Parallelism (Heidelberg,
Germany, 1992), vol. 584 of Lect. Notes Comput.
Sci., Springer Verlag.

17

Exploiting Multicore Systems with Cilk

[Extended Abstract]

Stephen Lewin-Berlin
Quanta Research Cambridge

One Kendall Square B2201, Cambridge, MA 02139

Categories and Subject Descriptors
D.3.2 [Software]: Programming Languages

General Terms
Languages

Keywords
Cilk, Spawn, Sync, Hyperobject

1. INTRODUCTION
The increasing prevalence of multicore processors has led

to a renewed interest in parallel programming. Cilk is a
language extension to C and C++ designed to simplify pro-
gramming shared-memory multiprocessor systems. The work-
stealing scheduler in Cilk is provably efficient and maintains
well-defined space bounds. [1, 2] A deterministic program
(that is, a race-free Cilk program that uses no lock con-
structs) maintains serial semantics, and such a Cilk program
running on P processors will use no more than P times the
stack space required by the corresponding serial program.

In Cilk, parallelism is expressed using three keywords:
cilk_spawn, cilk_sync, and cilk_for. These keywords
describe the logical parallel structure of the program, and
leave it to the runtime system to dynamically schedule the
parallel work onto the available processors. A cilk_spawn

indicates that the “spawned” routine is allowed (but not re-
quired) to run in parallel with the continuation of the rou-
tine. A cilk_sync creates a barrier, requiring all spawned
routines in the syntactic scope of the current procedure to
return before execution continues beyond the sync. An im-
plicit cilk_sync exists at the end of each procedure. The
cilk_for keyword indicates a parallel loop, allowing the it-
erations of the loop to run in parallel.

The work-stealing scheduler in the runtime system adapts
well to dynamic conditions, creating a parallel model that
allows for composability of parallel Cilk modules without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

performance degradation or increased system resource de-
mands regardless of the number of available processors.

Cilk programs retain a property that we call “serializabil-
ity”. That is, if the cilk_spawn and cilk_sync keywords
are removed, and cilk_for replaced by the standard “for”
keyword, the resulting program has the same semantics as
the Cilk program. We call this the “serialization” of the Cilk
program.

Cilk programs do not require multiple processors to run,
and the execution of a Cilk program on a single processor
is equivalent to the execution of the serialization. Cilk key-
words introduce minimal overhead, allowing the serialization
to run nearly as fast as the execution of single-processor par-
allel program.

The strict fork-join nature of Cilk permits a structured
analysis of the parallel performance of a Cilk program, and
a performance model based on “work” and “span” has been
developed. The “Cilkview” tool [4] has been developed to
analyze and display the parallel performance and to predict
how a Cilk program will scale to run on multiple processors.

Typically, the most difficult aspect of debugging parallel
programs is to identify and resolve race conditions. The
“Cilkscreen” tool identifies race conditions exposed in the
dynamic execution of a Cilk program. Several techniques
exist to resolve such race conditions, including a new data
construct that we call “hyperobjects” [3].

In this talk, I will provide a brief introduction to Cilk pro-
gramming, describing the use of the Cilk keywords and ad-
dressing performance implications of various programming
strategies. I will explain the work/span performance model,
and show how the Cilkview tool can be used to identify per-
formance bottlenecks and to predict how performance will
scale.

I will also describe a kind of hyperobject that we call a
“reducer” and explain how reducers are implemented in the
Cilk runtime system. I will show several examples of reduc-
ers and illustrate how reducers can be used to write lock-
free deterministic programs whose output would otherwise
be schedule dependent.

The version of the Cilk system described in this talk is
the commercially released Cilk++ system developed by Cilk
Arts between 2006 and 2009. In August of 2009, Cilk Arts
was acquired by Intel Corporation.

2. REFERENCES
[1] Robert D. Blumofe and Charles E. Leiserson.

Space-efficient scheduling of multithreaded
computations. In STOC ‘93: Proceedings of the
twenty-fifth annual ACM symposium on Theory of

18

computing, pages 362–371, New York, NY, USA, 1993.
ACM.

[2] Robert D. Blumofe and Charles E. Leiserson.
Scheduling multithreaded computations by work
stealing. J. ACM, 46(5):720–748, 1999.

[3] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and
Stephen Lewin-Berlin. Reducers and other cilk++
hyperobjects. In SPAA ‘09: Proceedings of the
twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 79–90, New York,
NY, USA, 2009. ACM.

[4] Charles Leiserson Yuxiong He and William Leiserson.
The cilkview scalability analyzer. In SPAA ‘10:
Proceedings of the twenty-second annual symposium on
Parallelism in algorithms and architectures, New York,
NY, USA, 2010. ACM.

19

Automated Performance Tuning

[Extended Abstract]

Jeremy R. Johnson
Computer Science Dept.

Drexel University
Philadelphia, PA, USA

jjohnson@cs.drexel.edu

ABSTRACT
This tutorial presents automated techniques for implement-
ing and optimizing numeric and symbolic libraries on mod-
ern computing platforms including SSE, multicore, and GPU.
Obtaining high performance requires effective use of the mem-
ory hierarchy, short vector instructions, and multiple cores.
Highly tuned implementations are difficult to obtain and are
platform dependent. For example, Intel Core i7 980 XE has
a peak floating point performance of over 100 GFLOPS and
the NVIDIA Tesla C870 has a peak floating point perfor-
mance of over 500 GFLOPS, however, achieving close to
peak performance on such platforms is extremely difficult.
Consequently, automated techniques are now being used to
tune and adapt high performance libraries such as ATLAS
(math-atlas.sourceforge.net), PLASMA (icl.cs.utk.
edu/plasma) and MAGMA (icl.cs.utk.edu/magma) for den-
se linear algebra, OSKI (bebop.cs.berkeley.edu/oski) for
sparse linear algebra, FFTW (www.fftw.org) for the fast
Fourier transform (FFT), and SPIRAL (www.spiral.net)
for wide class of digital signal processing (DSP) algorithms.
Intel currently uses SPIRAL to generate parts of their MKL
and IPP libraries.

Categories and Subject Descriptors
D.1.2 [Software]: Programming Techniques, Automatic Pro-
gramming; G.4 [Mathematics of Computing]: Mathe-
matical Software, Efficiency; I.1.3 [Computing Method-
ologies]: Symbolic and Algebraic Manipulation, Languages
and Systems

General Terms
Algorithms, Performance

Keywords
Code generation and optimization, high-performance com-
puting, vectorization, parallelism, autotuning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010 Grenoble, France
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

1. INTRODUCTION
The first part of the tutorial will review implementation

techniques from high-performance computing [1] including
SSE, multicore, and GPU processors and survey techniques
for automated performance tuning of linear algebra [3, 12]
and FFT kernels [7, 11]. The second part of the tutorial
presents a detailed case study using the Walsh-Hadamard
transform, a simple DSP transform related to the FFT[8],
and uses symbolic formula manipulation to optimize code.

2. WALSH-HADAMARD TRANSFORM
The Walsh–Hadamard Transform is the matrix–vector prod-

uct y = WHTN · x where, N = 2n,

WHTN =

nO
i=1

WHT2 =

nz }| {
WHT2 ⊗ · · · ⊗WHT2, (1)

WHT2 =

»
1 1
1 −1

–
, (2)

and ⊗ is the Kronecker product. A large class of algorithms
for computing the WHT can be derived by factoring the
WHT matrix into a product of sparse structured matrices.

Let N = N1 · · ·Nt, where Ni = 2ni , then

WHTN =

tY
i=1

`
IN1···Ni−1 ⊗WHTNi ⊗ INi+1···Nt

´
. (3)

Two special cases of Equation 3 correspond to the standard
recursive and iterative algorithms

WHT2n = (WHT2 ⊗ I2n−1)(I2⊗WHT2n−1), (4)

WHT2n =

nY
i=1

(I2i−1 ⊗WHT2 ⊗ I2n−i). (5)

3. AUTOTUNING
Let xNb,s denote the vector access pattern [xb, xb+s, . . . , xb+(N−1)s].

Then the evaluation of WHTN · x using Equation 3 can be
expressed as a triply nested loop

R = N, S = 1

for i = 1, . . . , t

R = R/Ni

for j = 0, . . . , R− 1

for k = 0, . . . , S − 1

xNi
jNiS+k,S = WHTNi · xNi

jNiS+k,S

S = S ·Ni, (6)

20

where WHTNi is an algorithm for computing smaller size
transforms. The computation of each WHTNi can be evalu-
ated recursively in the same fashion or directly with unrolled
code. Implementations are tuned to a given platform, trad-
ing off iteration, recursion, straight-line code and different
memory access patterns, by intelligently searching over the
space of formulas.

4. VECTORIZATION
Vectorized implementations of the WHT are obtained

through the observation that formulas of the form A ⊗ Iν
can be interpreted as vector operations on vectors of length
ν [10, 6]. For example, y = (WHT2 ⊗ I2)x, corresponds to
a vector add and subtract

y2
0 = x2

0 + x2
2

y2
2 = x2

0 − x2
2

The key challange is to convert formulas into this form while
maintaining efficient memory access patterns. For example,
using properties of the tensor product and stride permuta-
tions Equation 4 can be manipulated into the vector form
with ν = 2.

WHTN = (WHT2 ⊗ IN/2)(I2⊗WHTN/2)

= ((WHT2 ⊗ IN/4)⊗ I2)LN2 (WHTN/2 ⊗ I2)LNN/2

= ((WHT2 ⊗ IN/4)⊗ I2)

(L
N/2
2 ⊗ I2)(IN/4⊗L4

2)

(WHTN/2 ⊗ I2)

(IN/4⊗L4
2)(L

N/2

N/4 ⊗ I2).

5. PARALLELIZATION
Formula manipulation techniques can be used to obtain

load-balanced shared memory parallel implementations with-
out false sharing [10, 2, 5, 4]. For example, assuming p pro-
cessors and cache line of size µ

WHTN = (WHTR ⊗WHTS)

= ((LRpR ⊗ IS/pµ)⊗ Iµ)

(Ip⊗(WHTR ⊗ IS/p)

((LRpp ⊗ IS/pµ)⊗ Iµ)

(Ip⊗(IR/p⊗WHTS)

consists of parallel operations Ip⊗A and permutations that
move entire cache blocks. Similar techniques extend to dis-
tributed memory and streaming computations [10, 9].

6. REFERENCES
[1] S. Chellappa, F. Franchetti, and M. Püschel. How to

write fast numerical code: A small introduction. In
Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE), volume
5235 of Lecture Notes in Computer Science, pages
196–259. Springer, 2008.

[2] K. Chen and J. R. Johnson. A prototypical
self-optimizing package for parallel implementation of
fast signal transforms. In IPDPS ‘02: Proceedings of
the 16th International Parallel and Distributed
Processing Symposium, page 36, Washington, DC,
USA, 2002. IEEE Computer Society.

[3] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. Vuduc, C. Whaley, and K. Yelick. Self
adapting linear algebra algorithms and software. In
Proceedings of the IEEE, Special Issue on Program
Generation, Optimization, and Platform Adaptation,
volume 92, pages 293–312, 2005.

[4] F. Franchetti, M. Püschel, Y. Voronenko,
S. Chellappa, and J. M. F. Moura. Discrete Fourier
transform on multicore. IEEE Signal Processing
Magazine, special issue on Signal Processing on
Platforms with Multiple Cores, 26(6):90–102, 2009.

[5] F. Franchetti, Y. Voronenko, and M. Püschel. FFT
program generation for shared memory: Smp and
multicore. In SC ‘06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 115,
New York, NY, USA, 2006. ACM.

[6] F. Franchetti, Y. Voronenko, and M. Püschel. A
rewriting system for the vectorization of signal
transforms. In VECPAR ‘06: Proceedings of the 7th
international conference on High performance
computing for computational science, pages 363–377,
Berlin, Heidelberg, 2007. Springer-Verlag.

[7] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. In Proceedings of the
IEEE, Special Issue on Program Generation,
Optimization, and Platform Adaptation, volume 92,
pages 216–231, 2005.

[8] J. Johnson and M. Püschel. In search of the optimal
Walsh-Hadamard transform. In ICASSP ‘00:
Proceedings of the Acoustics, Speech, and Signal
Processing, 2000. on IEEE International Conference,
pages 3347–3350, Washington, DC, USA, 2000. IEEE
Computer Society.

[9] J. R. Johnson and K. Chen. A self-adapting
distributed memory package for fast signal transforms.
In IPDPS ‘04: Proceedings of the 16th International
Parallel and Distributed Processing Symposium,
page 44, Washington, DC, USA, 2004. IEEE
Computer Society.

[10] J. R. Johnson, R. W. Johnson, D. Rodriguez, and
R. Tolimieri. A methodology for designing, modifying,
and implementing Fourier transform algorithms on
various architectures. Circuits, Systems, and Signal
Processing, 9(4):449–500, 1990.

[11] M. Püschel, J. M. F. Moura, D. Padua J. R. Johnson,
M. M. Veloso, B. W. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. Spiral: Code generation for DSP
transforms. In Proceedings of the IEEE, Special Issue
on Program Generation, Optimization, and Platform
Adaptation, volume 92, pages 232–275, 2005.

[12] K. Yotov, G. Ren X. Li, M. J. Garzaran, D. Padua K.
Pingali., and P. Stodghill. Is search really necessary to
generate high-performance BLAS. In Proceedings of
the IEEE, Special Issue on Program Generation,
Optimization, and Platform Adaptation, volume 92,
pages 358–386, 2005.

21

Roomy: A System for Space Limited Computations

Daniel Kunkle
Northeastern University

360 Huntington Ave.
Boston, Massachusetts 02115

kunkle@ccs.neu.edu

ABSTRACT
There are numerous examples of problems in symbolic al-
gebra in which the required storage grows far beyond the
limitations even of the distributed RAM of a cluster. Often
this limitation determines how large a problem one can solve
in practice. Roomy provides a minimally invasive system to
modify the code for such a computation, in order to use the
local disks of a cluster or a SAN as a transparent extension
of RAM.

Roomy is implemented as a C/C++ library. It provides
some simple data structures (arrays, unordered lists, and
hash tables). Some typical programming constructs that
one might employ in Roomy are: map, reduce, duplicate
elimination, chain reduction, pair reduction, and breadth-
first search. All aspects of parallelism and remote I/O are
hidden within the Roomy library.

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language Constructs and Features —
Dynamic storage management; E.1 [Data Structures]: Dis-
tributed data structures

General Terms: Algorithms, Languages

Keywords: parallel, disk-based, programming model, open
source library

1. INTRODUCTION
This paper provides a brief introduction to Roomy [1], a

new programming model and open source library for parallel
disk-based computation. The primary purpose of Roomy is
to solve space limited problems without significantly increas-
ing hardware costs or radically altering existing algorithms
and data structures.

Roomy uses disks as the main working memory of a com-
putation, instead of RAM. These disks can be disks attached
to a single shared-memory system, a storage area network
(SAN), or the locally attached disks of a compute cluster.
Particularly in the case of using the local disks of a cluster,
disks are often underutilized and can provide several order of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

magnitude more working memory than RAM for essentially
no extra cost.

There are two fundamental challenges in using disk-based
storage as main memory:

Bandwidth: roughly, the bandwidth of a single disk
is 50 times less than that of a single RAM subsystem
(100 MB/s versus 5 GB/s). The solution is to use
many disks in parallel, achieving an aggregate band-
width comparable to RAM.

Latency: even worse than bandwidth, the latency of
disk is many orders of magnitude worse than RAM.
The solution is to avoid latency penalties by using
streaming data access, instead of costly random ac-
cess.

Roomy hides from the programmer both the complexity
inherent in parallelism and the techniques needed to con-
vert random access patterns into streaming access patterns.
In doing so, the programming model presented to the user
closely resembles that of traditional RAM-based serial com-
putation.

Some previous work that provided a foundation for the
development of Roomy include: the use of parallel disks
to prove that 26 moves suffice to solve Rubik’s Cube [2];
and disk-based methods for enumerating large implicit state
spaces [4, 5]. The largest Roomy-based project to date is a
package for manipulating large binary decision diagrams [3],
which appears in the same proceedings as this paper, and
includes an experimental analysis of the package.

The rest of this paper briefly describes the data structures
provided by Roomy, some example programming constructs
that can be implemented using Roomy, and some general
performance considerations. Complete documentation, and
instructions for obtaining the Roomy open source library,
can be found on the Web at roomy.sourceforge.net.

2. ROOMY DATA STRUCTURES
Roomy data structures are transparently distributed across

many disks, and the operations on these data structures are
transparently parallelized across the many compute nodes of
a cluster. Currently, there are three Roomy data structures:

RoomyArray: a fixed size, indexed array of elements
(elements can be as small as one bit).

RoomyHashTable: a dynamically sized structure map-
ping keys to values.

22

RoomyList: a dynamically sized, unordered list of ele-
ments.

There are two types of Roomy operations: delayed and
immediate. If an operation requires random access, it is
delayed. Otherwise, it is performed immediately. To initi-
ate the processing of delayed operations for a given Roomy
data structure, the programmer makes an explicit call to
synchronize that data structure. By delaying random ac-
cess operations they can be collected and performed more
efficiently in batch.

Table 1 describes some of the basic Roomy operations.
Some operations are specific to one type of Roomy data
structure, while others apply to all three. The operations
are also identified as either immediate (I) or delayed (D).

For performance reasons, it is often best to use a Roomy-

Array or RoomyHashTable instead of a RoomyList, where
possible. Computations using RoomyLists are often domi-
nated by the time to sort the list and any delayed opera-
tions. RoomyArrays and RoomyHashTables avoid sorting by
organizing data into buckets, based on indices or keys.

3. PROGRAMMING CONSTRUCTS
Because Roomy provides data structures and operations

similar to traditional programming models, many common
programming constructs can be implemented in Roomy with-
out significant modification. The one major difference is in
the use of delayed random operations. To ensure efficient
computation, it is important to maximize the number of de-
layed random operations issued before they are executed (by
calling sync on the data structure).

Below are Roomy implementations of six programming
constructs: map, reduce, set operations, chain reduction,
pair reduction, and breadth-first search. Both map and re-
duce are primitive operations in Roomy. The others are
built using Roomy primitives.

First, note that the code given here uses a simplified syn-
tax. For example, the doUpdate method from the chain
reduction programming construct below would be imple-
mented in Roomy as:

void doUpdate (uint64 loca l Index , void∗ l oca lVa l ,
void∗ remoteVal) {

∗(i n t ∗) l o ca lVa l =
∗(i n t ∗) l o ca lVa l + ∗(i n t ∗) remoteVal ;

}

The simplified version given here eliminates the type cast-
ing, and appears as:

i n t doUpdate (i n t l oca l Index , i n t loca lVa l ,
i n t remoteVal) {

re turn l o ca lVa l + remoteVal ;
}

A future C++ version of Roomy is planned that would
use templates to make the simplified version legal code.

See the online Roomy documentation and API [1] for the
exact syntax and function definitions.

Map.
The map operator applies a user-defined function to every

element of a Roomy data structure. As an example, the fol-
lowing converts a RoomyArray into a RoomyHashTable, with
array indices as keys and the associated elements as values.

RoomyArray ra ; // elements of type T
RoomyHashTable rht ; // pairs of type (int , T)

// Function to map over RoomyArray ra .
void makePair (i n t i , T element) {

RoomyHashTable insert (rht , i , e lement) ;
}

// Perform map, then complete delayed in s e r t s
RoomyArray map(ra , makePair) ;
RoomyHashTable sync (rht) ;

Reduce.
The reduce operator produces a result based on a com-

bination of all elements in a data structure. It requires two
user-defined functions. The first combines a partially com-
puted result and an element of the list. The second combines
two partially computed results. The order of reductions is
not guaranteed. Hence, these functions must be associative
and commutative, or else the result is undefined.

As an example, the following computes the sum of squares
of the elements in a RoomyList.

RoomyList r l ; // elements of type in t

// Function to add square of an element to sum.
i n t mergeElt (i n t sum , i n t element) {

re turn sum + element ∗ element ;
}

// Function to compute sum of two pa r t i a l answers .
i n t mergeResults (i n t sum1 , i n t sum2) {

re turn sum1 + sum2 ;
}

i n t sum =
RoomyList reduce (r l , mergeElt , mergeResults) ;

The type of the result does not necessarily have to be the
same as the type of the elements in the list, as it is in this
case. For example, the result could be the k largest elements
of the list.

Set Operations.
Roomy can support certain set operations through the

use of a RoomyList. Some of these operations (particularly
intersection) are sub-optimal when built using the current
set of primitives. Future work is planned to add a native
RoomySet data structure.

A RoomyList can be converted to a set by removing du-
plicates.

RoomyList A; // can contain dup l i ca t e elements
RoomyList removeDupes (A) ; // now a se t

Performing set union, A = A ∪B, is also simple.

RoomyList A, B;
RoomyList addAll (A, B) ;
RoomyList removeDupes (A) ;

Set difference, A = A−B, is performed by using just the
removeAll operation, assuming A and B are already sets.

RoomyList A, B;
RoomyList removeAll (A, B) ;

Finally, set intersection is implemented as a union, fol-
lowed set differences: C = (A+B)− (A−B)− (B−A). Set
intersection may become a Roomy primitive in the future.

23

Table 1: Some basic Roomy operations. If an operation is specific to one type of data structure, it is listed
under RoomyArray, RoomyHashTable, or RoomyList. Otherwise, it is listed as “common to all”. Also, the type of
each operation is given as either immediate (I) or delayed (D).

Data Structure Name Type Description

RoomyArray access D apply a user-defined function to an element
update D update an element using a user-defined function

RoomyHashTable insert D insert a given (key, value) pair in the table
remove D given a key, remove the corresponding (key, value) pair from the table
access D given a key, apply a user-defined function to the corresponding value
update D given a key, update a the corresponding value using a user-defined function

RoomyList add D add a single element to the list
remove D remove all occurrences of a single element from the list
addAll I adds all elements from one list to another
removeAll I removes all elements in one list from another
removeDupes I removes duplicate elements from a list

Common to all sync I process all outstanding delayed operations for the data structure
size I returns the number of elements in the data structure
map I applies a user-defined function to each element
reduce I applies a user-defined function to each element and returns a value (e.g. the

ten largest elements of the list)
predicateCount I returns the number of elements that satisfy a given property (Note: this

does not require a separate scan, the count is kept current as the data is
modified)

// input s e t s
RoomyList A, B;
// i n i t i a l l y empty s e t s
RoomyList AandB , AminusB , BminusA , C;

// create three temporary s e t s
RoomyList addAll (AandB , A) ;
RoomyList addAll (AandB , B) ;
RoomyList removeDupes (AandB) ;
RoomyList addAll (AminusB , A) ;
RoomyList removeAll (AminusB , B) ;
RoomyList addAll (BminusA , B) ;
RoomyList removeAll (BminusA , A) ;

// compute in t e r s e c t i on
RoomyList addAll (C, AandB) ;
RoomyList removeAll (C, AminusB) ;
RoomyList removeAll (C, BminusA) ;

Chain Reduction.
Chain reduction combines each element in a sequence with

the element after it. In this example, we compute the fol-
lowing function for an array of integers a of length N

f o r i = 1 to N−1
a [i] = a [i] + a [i −1]

where all array elements on the right-hand side are accessed
before updating any array elements on the left-hand side.

In the following code, val_i represents a[i] and
val_iMinus1 represents a[i-1].

RoomyArray ra ; // array of ints , l eng th N

// Function to complete updates
i n t doUpdate (i n t i , i n t v a l i , i n t va l iMinus1) {

re turn v a l i + va l iMinus1 ;
}

// Function to be mapped over ra , i s sue s updates
void ca l lUpdate (i n t iMinus1 , i n t va l iMinus1) {

i n t i = iMinus1 + 1 ;
i f i < N

RoomyArray update (
ra , i , va l iMinus1 , doUpdate) ;

}

RoomyArray map(ra , ca l lUpdate) ; // i s sue updates
RoomyArray sync (ra) ; // complete updates

The computation is deterministic. The new array values
are based only on the old array values because Roomy guar-
antees that none of the delayed update operations are exe-
cuted until sync is called. The code above is implemented
internally through a traditional scatter-gather operation.

Parallel Prefix.
The chain reduction programming construct can also be

used as the basis for a parallel prefix computation. At a
high level, the parallel prefix computation is defined as

f o r (k = 1 ; k < N; k = k ∗ 2)
i f i−k >= 0

a [i] = a [i] + a [i−k] ;

Pair Reduction.
Pair reduction applies a function to each pair of elements

in a collection. For an array a of length N, pair reduction is
defined as

f o r i = 0 to N−1
f o r j = 0 to N−1

f (a [i] , a [j]) ;

The following example inserts each pair of elements from
a RoomyArray into a RoomyList. The variable outerVal rep-
resents a[i] and the variable innerVal represents a[j].

RoomyArray ra ; // array of int , l eng th N
RoomyList r l ; // l i s t containing Pair (int , in t)

// Access function , adds a pair to the l i s t
void doAccess (i n t innerIndex , i n t innerVal ,

i n t outerVal) {

24

RoomyList add (
r l , new Pair (innerVal , outerVal)) ;

}

// Map function , sends access to a l l other e l t s
void c a l lAc c e s s (i n t outerIndex , i n t outerVal) {

f o r inner Index = 0 to N−1
RoomyArray access (

ra , innerIndex , outerVal , doAccess) ;
}

RoomyArray map(ra , c a l lAc c e s s) ;
RoomyArray sync (ra) ; // perform delayed accesses
RoomyList sync (r l) ; // perform delayed adds

One can think of the RoomyArray_map method as the outer
loop, the callAccess method as the inner loop, and the
doAccess method as the function being applied to each pair
of elements.

Breadth-first Search.
Breadth-first search enumerates all of the elements of a

graph, exploring elements closer to the starting point first.
In this case, the graph is implicit, defined by a starting el-
ement and a generating function that returns the neighbors
of a given element.

// L i s t s for a l l e l t s , current , and next l e v e l
RoomyList∗ a l l = RoomyList make (”a l lLev ” , e l t S i z e) ;
RoomyList∗ cur = RoomyList make (” l ev0 ” , e l t S i z e) ;
RoomyList∗ next = RoomyList make (” l ev1 ” , e l t S i z e) ;

// Function to produce next l e v e l from current
void genNext (T e l t) {

/∗ User−def ined code to compute neighbors . . . ∗/
f o r nbr in ne ighbors

RoomyList add (next , nbr) ;
}

// Add s t a r t element
RoomyList add (a l l , s t a r tE l t) ;
RoomyList add (cur , s t a r tE l t) ;

// Generate l e v e l s un t i l no new s t a t e s are found
whi le (RoomyList s ize (cur)) {

// generate next l e v e l from current
RoomyList map (cur , genNext) ;
RoomyList sync (next) ;

// de tec t dup l i ca t e s within next l e v e l
RoomyList removeDupes (next) ;

// de tec t dup l i ca t e s from previous l e v e l s
RoomyList removeAll (next , a l l) ;

// record new elements
RoomyList addAll (a l l , next) ;

// ro ta te l e v e l s
RoomyList destroy (cur) ;
cur = next ;
next = RoomyList make (levName , e l t S i z e) ;

}

One of the initial tests of Roomy was to use breadth-first
search to solve the pancake sorting problem. Pancake sorting
operates using a sequence of prefix reversals (reversing the
order of the first k elements of the sequence). The sequence
can be thought of as a stack of pancakes of varying sizes,
with the prefix reversal corresponding to flipping the top
k pancakes. The goal of the computation is to determine
the number of reversals required to sort any sequence of
length n.

Using Roomy, the entire application took less than one day
of programming and less than 200 lines of code. Breadth-
first search was implemented using a RoomyArray, similar to

the RoomyList-based version presented above. It was able to
solve the 13-pancake problem in 70 minutes using the locally
attached disks of a 30 node cluster.

Three different solutions to the pancake sorting problem,
each using one of the three Roomy data structures, is avail-
able in the Roomy online documentation [1].

4. PERFORMANCE CONSIDERATIONS
Parallelism: It is anticipated that most applications will

use one Roomy process per compute node. In some cases,
however, disk bandwidth may not be fully utilized by a single
process. In this case, each compute node can start several
Roomy processes. Alternatively, the user application itself
can be multi-threaded, as long as a single thread issues all
Roomy operations. A future version of Roomy is planned
that provides full multi-threading support.

Maximum data structure size: The maximum size
of a Roomy data structure is limited only by the aggregate
available disk space. The use of load balancing techniques
ensures that each Roomy process stores approximately the
same amount of data. In cases where compute nodes have
significantly different amounts of free space, aggregate space
can be increased by starting additional Roomy processes on
those nodes with more space.

Choice of data structure: Roomy uses two primary
methods for converting random access patterns into stream-
ing access: buckets and sorting. The bucket-based method
is used by RoomyArrays and RoomyHashTables. This method
splits the data structure into RAM-sized chunks, and co-
locates delayed operations with the corresponding chunk.
The sorting method is used by RoomyLists, where there is no
index or key that can be used to define buckets. In this case,
both the list and the delayed operations are maintained in
a sorted order. Because the cost of sorting often dominates
the running time of RoomyList-based programs, it is rec-
ommended that a RoomyArray or RoomyHashTable be used
instead, where possible.

5. ACKNOWLEDGMENTS
Many thanks to Gene Cooperman and Vlad Slavici, whose

input has greatly improved both Roomy and this paper.

6. REFERENCES
[1] Daniel Kunkle. Roomy: A C/C++ library for parallel

disk-based computation, 2010.
http://roomy.sourceforge.net/.

[2] Daniel Kunkle and Gene Cooperman. Harnessing
parallel disks to solve Rubik’s cube. Journal of
Symbolic Computation, 44(7):872–890, 2009.

[3] Daniel Kunkle, Vlad Slavici, and Gene Cooperman.
Parallel disk-based computation for large, monolithic
binary decision diagrams. In Parallel Symbolic
Computation (PASCO ’10). ACM Press, 2010.

[4] Eric Robinson. Large Implicit State Space Enumeration:
Overcoming Memory and Disk Limitations. PhD thesis,
Northeastern University, Boston, MA, 2008.

[5] Eric Robinson, Daniel Kunkle, and Gene Cooperman.
A comparative analysis of parallel disk-based methods
for enumerating implicit graphs. In Parallel Symbolic
Computation (PASCO ’07), pages 78–87. ACM Press,
2007.

25

Generic design of Chinese remaindering schemes

Jean-Guillaume Dumas
∗

Université de Grenoble
Laboratoire Jean Kuntzmann,

umr CNRS 5224, BP 53X,
F38041 Grenoble, France.

Jean-Guillaume.Dumas@imag.fr

Thierry Gautier
†

Jean-Louis Roch
Université de Grenoble

Laboratoire LIG
51, av. Jean Kuntzmann,

F38330 Montbonnot, France.
Thierry.Gautier@inrialpes.fr,JLRoch@imag.fr

ABSTRACT
We propose a generic design for Chinese remainder algo-
rithms. A Chinese remainder computation consists in recon-
structing an integer value from its residues modulo coprime
integers. We also propose an efficient linear data structure,
a radix ladder, for the intermediate storage and computa-
tions. Our design is structured into three main modules:
a black box residue computation in charge of computing
each residue; a Chinese remaindering controller in charge
of launching the computation and of the termination deci-
sion; an integer builder in charge of the reconstruction com-
putation. We show that this design enables many different
forms of Chinese remaindering (for example deterministic,
early terminated, distributed, etc.); easy comparisons be-
tween these forms and user-transparent parallelism at differ-
ent parallel grains.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods; I.1.2 [Computing
Methodologies]: Symbolic and Algebraic Manipulation—
Algorithms; G.4 [Mathematics of Computing]: Mathe-
matical Software—Algorithm design and analysis

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Chinese remainder; generic design; early termination; radix
ladder; parallel modular arithmetic.

∗Part of this work was done while the first author was visit-
ing the Claude Shannon Institute and the University College
Dublin, Ireland, under a CNRS grant.
†Part of this work was done while the second author was
visiting the ArTeCS group of the University Complutense,
Madrid, Spain.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

1. INTRODUCTION
Modular methods are largely used in computer algebra to

reduce the cost of coefficient growth of the integer, rational
or polynomial coefficients. Chinese remaindering (or inter-
polation) can be used to recover the large coefficients from
their modular evaluations by reconstructing an integer value
from its residues modulo coprime integers.

LinBox1[9] is an exact linear algebra library providing
some of the most efficient methods for linear systems over
arbitrary precision integers.

For instance, to compute the determinant of a large dense
matrix over the integers one can use linear algebra over word
size finite fields [10] and then use a combination of system
solving and Chinese remaindering to lift the result [13].

The Frobenius normal form and the characteristic polyno-
mial of a matrix can be used to test two matrices for simi-
larity [25]. The Smith normal form of an integer matrix is
useful, for example, in the computation of homology groups
and its computation can be done via the integer minimal
polynomial [12]. In both cases, the polynomials are com-
puted first modulo several prime numbers and then recon-
structed via Chinese remaindering using precise bounds on
the integer coefficients of the integer characteristic or mini-
mal polynomials [18, 8].

A first approach is to use deterministic remaindering using
a priori bounds on the reconstructed output. An alternative
is to terminate the reconstruction early when the actual in-
teger result is smaller than the estimated bound [14, 12, 20].
If the reconstruction stabilizes for some modular iterations,
the computation is stopped and gives the correct answer
with high probability. Early termination can also be used
in a deterministic way, e.g. for integer polynomial factor-
ization, when the norms of the reconstructed output satisfy
some inequality. In probabilistic and deterministic early, the
computational complexity becomes output-sensitive.

We propose in section 2 a linear space data structure en-
abling fast computation of Chinese reconstruction, alterna-
tive to subproduct trees. In section 3 we structure the design
of a generic pattern of Chinese remaindering into three main
modules: a black box residue computation in charge of com-
puting each residue; a Chinese remaindering controller in
charge of launching the computation and of the termination
decision; an integer builder in charge of the reconstruction
computation. We show in section 4 that this design enables
many different forms of Chinese remaindering (determinis-
tic, early terminated, distributed, etc.) and easy compar-
isons between these forms. Finally, in section 5 we provide

1http://linalg.org

26

an easy and efficient user-transparent parallelism at differ-
ent parallel grains using this design. Any parallel paradigm
can be implemented, provided that it fulfills the defined con-
troller interface. We use Kaapi2[16] to show the efficiency of
our approach on distributed/shared architectures and com-
pare it to OpenMP3.

2. RADIX LADDER: LINEAR STRUCTURE
FOR FAST CHINESE REMAINDERING

2.1 Generic reconstruction
We are given a black box function which computes the

evaluation of an integer R modulo any number m (often a
prime number).

To reconstructR, we must have enough evaluations rj ≡ R
mod mj modulo coprimes mj . To perform this reconstruc-
tion, we need two by two liftings with U ≡ R mod M and
V ≡ R mod N as follows:

RMN = U + (V − U)× (M−1 mod N)×M. (1)

We will need this combination most frequently in two dif-
ferent settings: when M and N have the same size, and when
N is of size 1. The first generic aspect of our development
is that for both cases, the same implementation can be fast.

We first need a complexity model. We do not give much
details on fast integer arithmetic in this paper, instead our
point is to show the genericity of our approach and that it
facilitates experiments in order to obtain practical efficiency
independently of the underlying arithmetic. Therefore we
propose to use a very simplified model of complexity where
division/inverse/modulo/gcd are slower than multiplication.
We denote by dα`

α the complexity of the gcd of integers of
size ` with 1 < α ≤ 2, and ranging from O(`2) for classical
multiplication to O(`1+ε) for FFT-like algorithms. Then the
cost of the division and of modular multiplication is also
bounded by dα`

α. Moreover, there exists mα such that the
complexity of integer multiplication of size ` can be bounded
by mα`

α (e.g. m2 = 2). We refer to e.g. the GMP manual4

or [19, 15] for more accurate estimates.
With this in mind we compute formula (1) with one mod-

ular multiplication as follows:

Algorithm 1 Reconstruct

Input: U ≡ R mod M and V ≡ R mod N .
Output: RMN ≡ R mod M ×N .
1: UN ≡ V − U mod N ;
2: MN ≡M−1 mod N ;
3: UN ≡ UN ×MN mod N ;
4: RMN = U + UN ×M ;
5: if RMN > M ×N then RMN = RMN −M ×N end if

Now, if the formula (1) is computed via algorithm 1 and
the operation count uses column “Mul.” for multiplication
and “Div./Gcd.” for division/inverse/modulo/gcd, then we
have the complexities given in column ”CRT” of table 1.

2.2 Radix ladder
Fast algorithms for Chinese remaindering rely on recon-

structing pairs of residues of the same size. A usual way of

2http://kaapi.gforge.inria.fr
3http://openmp.org
4http://gmplib.org/gmp-man-5.0.1.pdf

Size of operands Mul.
Div.

CRT
Gcd.

`× 1 ` 3` 9`+O(1)
`× ` mα`

α dα`
α 2(mα + dα)`α +O(`)

Table 1: Integer arithmetic complexity model

implementing this is via a binary tree structure (see e.g. fig-
ure 1 left). But Chinese remaindering is usually an iterative
procedure and residues are added one after the other. There-
fore it is possible to start combining them two by two before
the end of the iterations. Furthermore, when a combination
has been made it contains all the information of its leaves.
Thus it is sufficient to store only the partially recombined
parts and cut its descending branches. We propose to use a
radix ladder for that task.

Definition 1. A radix ladder is a ladder composed of
successive shelves. A shelf is either empty or contains a mod-
ulus and an associated residue, denoted respectively Mi and
Ui at level i. Moreover, at level i, are stored only residues
or moduli of size 2i.

New pairs of residues and moduli can be inserted anywhere
in the ladder. If the shelf corresponding to its size is empty,
then the pair is just stored there, otherwise it is combined
with occupant of the shelf, the latter is dismissed and the
new combination tries to go one level up as shown on algo-
rithm 2.

Algorithm 2 RadixLadder.insert(U,M)

Input: U ≡ R mod M and a Radix ladder
Output: Insertion of U and M in the ladder.,
1: for i = size(M) while Shelf[i] is not empty do
2: U,M :=Reconstruct(U mod M,Ui mod Mi);
3: Pop Shelf[i];
4: Increment i;
5: end for
6: Push U,M in Shelf[i];

Then if the new level is empty the combination is stored
there, otherwise it is combined and goes up ... An example
of this procedure is given on figure 1.

2
0

2
1

2
2

2
3

2
4

Figure 1: A residue going up the radix ladder

Then to recover the whole reconstructed number it is suf-
ficient to iterate through the ladder from the ground level
and make all the encountered partial results go to up one
level after the other to the top of the ladder. As we will see
in section 3.3, LinBox-1.1.7 contains such a data structure,
in linbox/algorithms/cra-full-multip.h.

27

An advantage of this structure is that it enables insertion
of any size pair with fast arithmetic complexity: any recon-
struction occurs with two pairs of the same size. Now recall
that the sizes of the shelves are powers of 2 to get that the
overall complexity is given by:

log2(`)−1X
i=1

O
“

(2i)α
”

= O(`α)

Moreover, the merge of two ladders, shown on algorithm 3,
is straightforward and we will be used in a parallel setting
in section 5 and algorithm 12.

Algorithm 3 RadixLadder.merge

Input: Two radix ladders RL1 and RL2.
Output: In place merge of RL1 and RL2.
1: for i = 0 to size(RL2) do
2: RL1.insert(RL2.Shelf[i]);
3: end for
4: Return RL1

3. A CHINESE REMAINDERING DESIGN
PATTERN

The generic design we propose here comes from the obser-
vation that there are in general two ways of computing a re-
construction: a deterministic way computing all the residues
until the product of moduli reaches a bound on the size of
the result; or a probabilistic way using early termination. We
thus propose an abstraction of the reconstruction process in
three layers: a black box function produces residues modulo
small moduli, an integer builder produces reconstructions
using algorithm 2, and a Chinese remaindering controller
commands them both.

Here our point is that the controller is completely generic
where the builder may use e.g. the radix ladder data struc-
ture proposed in section 2 and has to implement the termi-
nation strategy.

3.1 Black box residue computation
In general this consists in mapping the problem from Z

to Z/mZ and computing the result modulo m. Such black
boxes, mapping from integer data structures to finite fields
and computing the residue results are defined in the linbox/
solutions directory of LinBox-1.1.7. There, determinant,
valence, minpoly, charpoly or linear system solve are func-
tion objects IntegerModular* (where * is one of the latter
functions). We describe an automated alternative for these
mappings in section 3.4.

3.2 Chinese remaindering controller
The pattern we propose here is generic with respect to the

termination strategy, the integer reconstruction scheme and
the residue computation. It somewhat extends the scheme
proposed in [21, §4.1] which was independent only of the
integer reconstruction scheme.

Our controller must be able to initialize the data struc-
ture via the builder; generate some coprime moduli; apply
the black box function; update the data structure; test for
termination and output the reconstructed element. The gen-
erations of moduli and the black box are parameters and the
other functionalities are provided by any builder. Then the

control is a simple loop. Algorithm 4 shows this loop which
contains also the whole interface of the Builder.

Algorithm 4 CRA-Control

1: Builder.initialize();
2: while Builder.notTerminated() do
3: p := Builder.nextCoPrime();
4: v := BlackBox.apply(p);
5: Builder.update(v, p);
6: end while
7: Return Builder.reconstruct();

LinBox gives an implementation of such a controller, pa-
rameterized by a builder and a black box function as the class
ChineseRemainder in linbox/algorithms/cra-domain.h.

The interface of a controller is to be a function class: it
contains a constructor with a builder as argument and a
functional operator taking as argument a BlackBox, com-
puting e.g. a determinant modulo m, and a moduli gen-
erator. This functional operator returns an integer recon-
structed from the modular computations. Algorithm 5 shows
the specifications of the LinBox-1.1.7 controller.

Algorithm 5 C++ ChineseRemainder class

1 template<c l a s s Bu i l d e r > s t r u c t ChineseRemainder
2 {
3 ChineseRemainder (const Bu i l d e r& b) : b l d r (b) {}
4

5 template<c l a s s Funct ion> I n t e g e r& ope ra to r () (
6 I n t e g e r & re s ,
7 const Funct i on & BlackBox) {
8

9 // CRA−Con t r o l . . .
10

11 r e t u r n r e s ;
12 }
13

14 pro tec ted : B u i l d e r b l d r ;
15 } ;

Any higher-level algorithm then just has to choose its
builder and its controller and pass them the modular Black-
Box iteration it wants to lift over the integers.

Definition 2. The Chinese remaindering controller is the
algorithm combining the launch of BlackBox iterations with
the reconstruction scheme.

3.3 Integer builders
The role of the builder is to implement the interface de-

fined by algorithm 4:

• voidBuilder.initialize(): sets e.g. precomputed, mixed
radix, representations ...

• bool Builder.notTerminated(): tests a determinist
bound or early termination ...

• Integer Builder.nextCoPrime(): produces the next
modulus.

• voidBuilder.update(residue, Integer): gives the new
residue(s) to the builder.

• Integer Builder.reconstruct(): returns the lifted re-
sult.

28

Mapper

Binder

BlackBoxes

Determinant

Minpoly

Valence

...

RaddixLadder
Early * CRA

Builders

FullMultipCRA
Splitter

ThiefEntryPoint

Controllers

CRA−Control

Adaptors
Parallel−CRA

Figure 2: Generic Chinese remaindering scheme

Definition 3. The Builder defines the termination strat-
egy by implementing this interface.

There are three of these implementations in LinBox-1.1.7:
an early terminated version for a single residue, an early
terminated version for a vector of residues and a determin-
istic version for a vector of residues (respectively, the files
cra-early-single.h, cra-early-multip.h and cra-full-

multip.h in the linbox/algorithms directory). Up till now
the radix ladder is not a separate class. Indeed we use only
this data structure for the underlying computations and it
is simple enough to inherit from one of the latter builder
implementations and modify the behavior of the methods.

EarlySingle

EarlyMultip

FullMultip

...

combination
Linear

Figure 3: Early termination of a vector of residues
via a linear combination

Actually, in the current implementation, EarlyMultipCRA
inherits from both EarlySingleCRA and FullMultipCRA as it
uses the radix ladder of FullMultipCRA for its reconstruction
and the early termination of EarlySingleCRA to test a linear
combination of the residues to be reconstructed as shown on
figure 3. The FullMultipCRA has been implemented so that
when a vector/matrix is reconstructed the moduli and some
computations are shared among the ladders.

We give more implementation details on the early termi-
nation strategies in sections 4 and 5.

3.4 Mappers and binders
To further enhance genericity, the mapping between inte-

ger and field operations can also be automated. If binder

adaptors are enclosed within the data structure storing the
data, generic mappers can be designed. This is the case for
the sparse and dense matrices of LinBox. A generic con-
verter, using the Givaro/LinBox Field’s methods init and
convert, can be found in linbox/field/hom.h and linbox/

algorithm/matrix-hom.h.
Then, to map any function class to the field representation

one can use the generic mapper, shown as algorithm 6, which
defines the BlackBox.apply method.

Algorithm 6 C++ Mapper class

1 template<c l a s s Data , c l a s s Funct ion>
2 s t r u c t Mapper {
3 Mapper (const Data &a , const Funct i on& g)
4 : A (a) , g (g) {}
5

6 template<c l a s s F i e l d >
7 typename F i e l d : : Element& app l y (
8 typename F i e l d : : Element& d ,
9 const F i e l d& F) const {

10

11 typename Data : : template
12 r eb ind <F i e l d > : : o t h e r Ap ;
13

14 Homomorphism : : map(Ap , t h i s−> A , F) ;
15

16 r e t u r n th i s−> g (d , Ap) ;
17 }
18

19 pro tec ted : const Data& A ; const Funct i on& g ;
20 } ;

An example of the design usage, here computing a deter-
minant via Chinese remaindering, is then simply algorithm 7.

Definition 4. The Mapper automatically maps and re-
binds the Integer data structure to a modular data structure
and then calls the BlackBox function on the mapped objects.

The whole design and the interactions between the pre-
sented classes are given on figure 2.

4. TERMINATION STRATEGIES
We sketch here several termination strategies and show

that our design enables the modification of this strategy, and
only that, while the rest of the implementation is unchanged.

4.1 Deterministic strategy
By deterministic strategy, we denote a strategy where ter-

mination is decided when the product of primes so far ex-
ceeds a bound on the size of the reconstructed values.

In this case, the implementation is usually straightfor-
ward: FullMultipCRA.update(v, p) just adds the residues

29

Algorithm 7 C++ Chinese remaindering scheme

1 // [. . .] ma t r i x i n i t i a l i z a t i o n s e t c .
2

3 // De f i n e s the t e rm i n a t i o n s t r a t e g y : he r e e a r l y t e rm inated , f o r a s i n g l e i n t e g e r ,
4 // u s i n g Modular<double> as f i n i t e f i e l d s
5 Ear lyS ing leCRA< Modular<double> > ETc ra Bu i l d e r ;
6

7 // De f i n e s the Ch ine se r ema i nd e r i n g a l g o r i t hm
8 ChineseRemainder< Ear lyS ing leCRA< Modular<double> > > ETcra Cont ro l (ETc ra Bu i l d e r) ;
9

10 // De f i n e s an app l y which g i v en a Spar seMat r i x<I n t e g e r >:
11 // maps i t g e n e r i c a l l y to a Spar seMat r i x<F i n i t e F i e l d >
12 // and c a l l s the Determinant a l g o r i t hm on the new mat r i x
13 Mapper< Spar seMat r i x<I n t e g e r >, Determinant> BlackBox (A, Det) ;
14

15 // C a l l s to the c o n t r o l l e r which l aunche s the BlackBox a p p l i c a t i o n s and the Bu i l d e r r e c o n s t r u c t i o n s
16 I n t e g e r d ; ETcra Cont ro l (d , BlackBox) ;

to the ladder; where FullMultipCRA.notTerminated()
tests if the product of primes exceeds the bound.

This bound can be precomputed a priori, or refined with
properties discovered during the computation.

4.2 Earliest termination
In a sequential mode, depending on the actual speed of the

different routines of table 1 on a specific architecture or if the
cost of BlackBox.apply is largely dominant, one can choose
to test for termination after each call to the black box. A way
to implement the probabilistic test of [12, Lemma 3.1] and to
reuse every black box apply is to use random primes as the
moduli generator. Indeed then the probabilistic check can be
made with the incoming black box residue computed modulo
a random prime. The reconstruction algorithm of section 3
is then only slightly modified as shown in algorithm 8.

Algorithm 8 EarlySingleCRA.update(v, p)

Global: U ≡ R mod M .
Global: A variable Stabilization initially set to 0.
Input: v ≡ R mod p.
Output: RMN ≡ R mod M × p.
1: u ≡ U mod p;
2: if u == v then
3: Increment Stabilization;
4: Return (U,M × p);
5: else
6: Stabilization = 0;
7: Return Reconstruct(U mod M, v mod p);
8: end if

Now, EarlyTerminationThreshold is the number of suc-
cessive stabilizations required to get a probabilistic estimate
of failures. It will be denoted ET for the rest of the pa-
per. Then, the termination test becomes simply algorithm 9:
test wether the actual number of stabilizations exceeds this
threshold.

Algorithm 9 EarlySingleCRA.notTerminated()

1: Return Stabilization < EarlyTerminationThreshold;

This is the strategy implemented in LinBox-1.1.7 in linbox/

algorithms/cra-early-single.h.

For this strategy, the cost of one iteration of algorithm 4 is
one BlackBox application and one i×1 reconstruction. With
the estimates of table 1, the cost of the whole reconstruction
thus becomes

t+ETX
i=1

(apply + 9i+O(1)) =

(t+ ET)apply +
9

2
(t+ ET)2 +O(t) (2)

where t = dlog2β (R)e is the size of the result, β is the word
size, and apply the cost of the BlackBox application.

This strategy enables the least possible number of calls to
BlackBox.apply. It it thus useful when the latter domi-
nates the cost of the reconstruction.

4.3 Balanced termination
Another classic case is when one wants to use fast inte-

ger arithmetic for the reconstruction. Then the balanced
computations are mandatory and the radix ladder becomes
handy.

The problem now becomes the early termination. There
a simple strategy could be to test for termination only when
the number of computed residues is a power of two. In that
case the reconstruction is guaranteed to be balanced and fast
Chinese remaindering is also guaranteed.

Moreover random moduli are not any more necessary for
all the residues, only those testing for early termination
need be randomly generated. This induces another saving if
one fixes the other primes and precomputes all the factors
Mi × (M−1

i mod Mi+1). There the cost of the reconstruc-
tion drops by a factor of 2 from 2(mα+dα)lα to (mα+dα)lα.
The drawback is an extension of the number of black box ap-
plications from dlog2β (R)e+ET to the largest power of two
immediately superior and thus up to a factor of 2 in the
number of black box applies.

For the Builder, the update becomes just a push in the
ladder as shown on algorithm 10.

Algorithm 10 EarlyBalancedCRA.update(v, p)

1: RadixLadder.insert(v, p);

The termination condition, on the contrary tests only when
the number of residues is power of two as shown on algo-
rithm 11.

30

Algorithm 11 EarlyBalancedCRA.notTerminated()

1: if Only one Shelf, Shelf[i], is full then
2: Set Ui to Shelf[i] residue;
3: for j = 1 to EarlyTerminationThreshold do
4: p :=PrimeGenerator();
5: if (Ui mod p) ! = BlackBox.apply(p) then
6: Return false;
7: end if
8: end for
9: Return true;

10: else
11: Return false;
12: end if

Then, the whole reconstruction of algorithm 4 now re-
quires:

ET · (apply + 3 · 2k) +

k−1X
i=0

2k

2i+1

“
apply + (mα + dα)2iα

”
+(apply + 3 · 2i) =

(2k + k + ET − 1) · apply +
“

2k
”α mα + dα

2α − 2
+O(2k)

(3)

operations, where now k = dlog2(log2β (R))e.
Despite the increase in the number of black box applica-

tions, the latter can be useful, in particular when multiple
values are to be reconstructed.

Example 1. Consider the Gaußian elimination of an in-
teger matrix where all the matrix entries are bounded in abso-
lute value by A∞ > n. Let a∞ = log2β (A∞) and suppose one
would like to compute the rational coefficients of the triangu-
lar decomposition only by Chinese remaindering (there exist
better output dependant algorithms, see e.g. [24], but usu-
ally with the same worst-case complexity). Now, Hadamard
bound gives that the resulting numerators and denominators
of the coefficients are bounded by

√
nA2∞

n
. Then the com-

plexity of the earliest strategy would be dominated by the re-
construction where the balanced strategy or the hybrid strat-
egy of figure 3 could benefit from fast algorithms. Indeed the
naive earliest strategy would use n2 reconstructions, each one
of cost O(t2) = O(log2(

√
nA2∞

n
)) = O(n2a2

∞), by eq. (2);
overall this would dominate even the elimination cost. Then
the hybrid strategy would use the earliest strategy only on
a linear combination, of single cost O(log2(n

√
nA2∞

n
)) =

O(n2a2
∞), and the n2 reconstructions would be computed with

fast integer arithmetic. Finally the balanced strategy removes
the dependency in a2

∞ by performing only fast integer arith-
metic. Table 2 compares all three complexities.

EarlySingleCRA O(n4a2
∞)

EarlyMultipCRA O(nω+1a∞ + n2+αaα∞ + n2a2
∞)

EarlyBalancedCRA O(2nω+1a∞ + 2n2+αaα∞)

Table 2: Early termination strategies complexities
for Chinese remaindered Gaußian elimination with
rationals

In the case of small matrices with large entries the recon-
struction dominates and then a balanced strategy is prefer-
able. Now if both complexities are comparable it might be

useful to reduce the factor of 2 overhead in the black box ap-
plications. This can be done via amortized techniques, as
shown next.

4.4 Amortized termination
A possibility is to use the ρ-amortized control of [2]: in-

stead of testing for termination at steps 21, 22, . . ., 2i, . . .
the tests are performed at steps ρg(1), ρg(2), . . ., ρg(i), . . .
with 1 < ρ < 2 and g satisfies ∀i, g(i) ≤ i. If the complexity
of the modular problem is C and the number of iterations
to get the output is b, [2] give choices for ρ and g which en-

able to get the result with only b+ f(b)
b

iterations and extra
O(f(b)) termination tests where f(b) = logρ(b).

In example 1 the complexity of the modular problem is nω,
the size of the output and the number of iterations is na∞
so that strategy would reduce the iteration complexity from
2nω+1a∞ to (na∞ + o(na∞))nω and the overall complexity
would then become:

EarlyAmortizedCRA
O(nω+1a∞ + n2+αaα∞

+ log(na∞)nαaα∞)

Indeed, we suppose that the amortized technique is used
only on a linear combination, and that the whole matrix is
reconstructed with a FullMultipCRA, as in figure 3. Then
the linear combination has size 2 log(n) + n · a∞ which is
still O(n · a∞). Nonetheless, there is an overhead of a fac-
tor log(na∞) in the linear combination reconstruction since

there might be up to O(log(na∞)) values ρg(i), ρg(i+1), . . .
between any two powers of two. Overall this gives the above
estimate. Now one could use other g functions as long as
eq. 4 is satisfied.8<:

“
ρg(i+1) − ρg(i)

”
= o(ρg(i))“

ρg(i+k(i)) − ρg(i)
”
∼ 2dlog2(ρg(i))e, k(i) = o(ρg(i))

(4)

5. PARALLELIZATION
All parallel versions of these sequential algorithms have to

consider the parallel merge of radix ladders and the paral-
lelization of the loop of the CRA-control algorithm 4. Many
parallel libraries can be used, namely OpenMP or Cilk would
be good candidates for the parallelization of the embarrass-
ingly parallel FullMultipCRA. Now in the early termination
setting, the main difficulty comes from the distribution of
the termination test. Indeed, the latter depends on data
computed during the iterations. To handle this issue we
propose an adaptive parallel algorithm [5, 26] and use the
Kaapi library [6, 16]. Its expressiveness in an adaptive set-
ting guided our choice, together with the possibility to work
on heterogenous networks.

5.1 Kaapi overview
Kaapi is a task based model for parallel computing. It

was targeted for distributed and shared memory computers.
The scheduling algorithm uses work-stealing [3, 1, 4, 17]:
an idle processor tries to steal work to a randomly selected
victim processor.

The sequential execution of a Kaapi program consists in
pushing and popping tasks to dequeue the current running
processor. Tasks should declare the way they access the
memory, in order to compute, at runtime, the data flow de-
pendencies and the ready tasks (when all their input values
are produced). During a parallel execution, a ready task,

31

in the queue but not executed, may be entirely theft and
executed on an other processor (possibly after being com-
municated through the network). These tasks are called dfg
tasks and their schedule by work-stealing is described in [16,
17].

A task being executed by a processor may be only par-
tially stolen if it interacts with the scheduler, in order to e.g.
decide which part of the work is to be given to the thieves.
Such tasks are called adaptive tasks and allows fine grain
loop parallelism.

To program an adaptive algorithm with Kaapi, the pro-
grammer has to specify some points in the code (using kaapi_

stealpoint) or sections of the code (kaapi_stealbegin and
kaapi_stealend) where thieves may steal work. To guaran-
tee that the parallel computation is completed, the program-
mer has to wait for the finalization of the parallel execution
(using kaapi_steal_finalize). Moreover, in order to bet-
ter balance the work load, the programmer may also decide
to preempt the thieves (send an event via kaapi_preempt_

next).

5.2 Parallel earliest termination
Algorithm 12 lets thieves steal any sequence of primes.

Algorithm 12 ParallelCRA-Control

1: Builder.initialize();
2: while Builder.notTerminated() do
3: p := Builder.nextCoPrime();
4: kaapi stealbegin(splitter, Builder);
5: v := BlackBox.apply(p);
6: Builder.update(v, p);
7: kaapi finalize steal();
8: kaapi stealend();
9: if require synchronization step then

10: while kaapi nomore thief() do
11: (list of v, list of p) :=kaapi preempt next();
12: Builder.update(list of v, list of p);
13: end while
14: end if
15: end while
16: Return Builder.reconstruct();

At line 12, the code allows the scheduler to trigger the pro-
cessing of steal requests by calling the splitter function. The
parameters of kaapi_stealbegin are the splitter function
and some arguments to be given to its call. These argu-
ments5 can e.g. specify the state of the computation to
modify (here the builder object plays this role).

Then, on the one hand, concurrent modifications of the
state, of computation by thieves, must be taken care of
during the control flow between lines 12 and 12: here the
computation of the residue could be evaluated by multiple
threads without any critical section6. On the other hand,
after line 12, the scheduler guarantees that no concurrent
thief can modify the computational state when they steal
some work. We remark that both branches of the condi-
tional if at line 12 must be executed without concurrency:
the iteration of the list of thieves or the generation of the
next random modulus are not reentrant.

5in or out
6This depends on the implementation, most of the LinBox
library functions are reentrant

The role of the splitter function is to distribute the work
among the thieves. In algorithm 13, each thief receives a
coPrimeGenerator object and the entrypoint to execute.

Algorithm 13 Splitter(Builder,N, requests[])

1: for i = 0 to N − 1 do
2: kaapi request reply(request[i], entrypoint,

Builder.getCoPrimeGenerator());
3: end for

The coPrimeGenerator depends on the Builder type and
allows the thief to generate a sequence of moduli. For in-
stance the coPrimeGenerator for the earliest termination
contains at one point a single modulus M which is returned
by the next call of nextCoPrime() by the Builder.

The splitter function knows the number N of thieves that
are trying to steal work to the same victim. Therefore it
allows for a better balance of the work load. This feature
is unique to Kaapi when compared to other tools having a
work-stealing scheduler.

5.3 Synchronization
Now, the victim periodically tests the global termination

of the computation (line 12 of algorithm 12). Depending
on the chosen termination method (Early*CRA, etc.), the
synchronization may occur at every iteration or after a cer-
tain number of iterations. The choice is made in order to
e.g. amortize the cost of this synchronization or reduce the
arithmetic cost of the reconstruction.

Then each thief is preempted (line 12) and the code recov-
ers its results before giving them to the Builder for future
reconstruction (line 12).

The preemption operation is a two way communication be-
tween a victim and a thief: the victim may pass parameters
and get data from one thief. Note that the preemption opera-
tion assumes cooperation with the thief code. The latter be-
ing responsible for polling incoming events at specific points
(e.g. where the computational state is safe preemption-wise).

On the one hand, to amortize the cost of this synchro-
nization, more primes should be given to the thieves. In the
same way, the victim code works on a list of moduli inside
the critical section (at line 12 returns a list of moduli, and
at lines 12-12 the victim iterates over this list by repeatedly
calling apply and update methods). On the other hand, to
avoid long waits of the victim during preemption, each thief
should test if it has been preempted to return quickly its
results (see next section).

5.4 Thief entrypoint
Finally, algorithm 14 returns both the sequence of residues

and the sequence of primes that where given to the Black-
Box. This algorithm is very similar to algorithm 12.

Lines 14 and 14 define a section of code that could be
concurrent with steal requests. At line 14, the code tests if
a preemption request has been posted by algorithm 12 at
line 12. If this is the case, then the thief aborts any further
computation and the result is only a partial set of the initial
work allocated by the splitter function.

5.5 Efficiency
These parallel versions of the Chinese remaindering have

been implemented using Kaapi transparently from the Lin-
Box library: one has just to change the sequential controller

32

Matrix d, r Tseq [k] Tp=8 [k] Tp=16 [k] speed-up Naive

EX1 560× 560, 8736 0.29s [4] 0.16s [9] 0.22s [16.8] 1.32 1.38
EX3 2600× 2600, 71760 837.80s [184] 123.56s [193] 77.99s [193] 10.74 10.66
T150 150× 150, 2040 0.21s [59] 0.046s [63.4] 0.036s [63.6] 5.83 2.10
T300 300× 300, 4678 2.52s [138] 0.36s [144.8] 0.24s [144.7] 10.50 8.52
T500 500× 500, 8478 15.19s [249] 2.05s [257] 1.31s [256.3] 11.60 11.29
T700 700× 700, 12654 52.59s [367] 6.50s [368.9] 4.19s [371.2] 12.55 12.55
T2000 2000× 2000, 41907 2978.23s [1274] 384.43s [1281] 236.59s [1281] 12.59 12.48

Table 3: Timings in seconds for the computation of the determinant. d is the dimension of the matrix, r
the number of non-zero coefficients, [k] is the mean number of primes observed for the Chinese remaindering
using p cores. The speed-ups are for 16 cores of algorithm 12 with Kaapi compared to a naive approach with
OpenMP.

Algorithm 14 Thief’s EntryPoint(M)

1: Builder.initialize();
2: list of v.clear();
3: list of p.clear();
4: while Builder.CoPrimeGenerator() not empty do
5: if kaapi preemptpoint() then break; end if
6: p := Builder.nextCoPrime();
7: kaapi stealbegin(splitter, Builder);
8: list of p.push back(p);
9: list of v.push back(BlackBox.apply(p));

10: kaapi stealend();
11: end while
12: kaapi stealreturn (list of v, list of p);

cra-domain.h to the parallel one.
In LinBox-1.1.7 some of the sequential algorithms which

make use of some Chinese remaindering are the determinant,
the minimal/characteristic polynomial and the valence, see
e.g. [20, 12, 11, 8] for more details.

We have performed these preliminary experiments on an
8 dual core machine (Opteron 875, 1MB L2 cache, 2.2Ghz,
with 30GBytes of main memory). Each processor is attached
to a memory bank and communicates to its neighbors via an
hypertransport network. We used g++ 4.3.4 as C++ com-
piler and the Linux kernel was the 2.6.32 Debian distribu-
tion.

All timings are in seconds. In the following, we denote
by Tseq the time of the sequential execution and by Tp the
time of the parallel execution for p = 8 or p = 16 cores.
All the matrices are from “Sparse Integer Matrix Collection”
(SIMC)7.

Table 3 gives the performance of the parallel computation
of the determinant for small invertible matrices (less than a
second) and larger ones (an hour CPU) of the SIMC/SPG and
SIMC/Trefethen collections.

The small instance (EX1) needed very few primes to re-
construct the integer solution. There, we can see the over-
head of parallelism: this is due to some extra synchroniza-
tions and also to the large number of unnecessary modu-
lar computations before realizing that early termination was
needed. Despite this we do achieve some speed-up and com-
pare them with a naive approach using OpenMP: for p the
number available cores, launch the computations by blocks
of p iterations and test for terminaison after each block is

7http://ljk.imag.fr/CASYS/SIMC

completed.
For large computations the speed-up is quite the same

since the computation is largely dominant, and the better
for OpenMP when the actual number of modular computa-
tion is a multiple of the number of processors. For smaller
instances we see the advantage of reducing the number of
synchronizations. On e.g. multi-user environments the ad-
vantage should be even greater.

6. CONCLUSION
We have proposed a new data structure, the radix ladder,

capable of managing several kinds of Chinese reconstructions
while still enabling fast reconstruction.

Then, we have defined a new generic design for Chinese
remaindering schemes. It is summarized on figure 2. Its
main feature is the definition of a builder interface in charge
of the reconstruction. This interface is such that any ter-
mination (deterministic, early terminated, distributed, etc.)
can be handled by a CRA controller. It enables to define
and test remaindering strategies while being transparent to
the higher level routines. Indeed we show that the Chinese
remaindering can just be a plug-in in any integer computa-
tion.

We also provide in LinBox-1.1.7 an implementation of the
ladder, several implementations for different builders and a
sequential controller. Then we tested the introduction of a
parallel controller, written with Kaapi, without any modifi-
cation of the LinBox library. The latter handles the difficult
issue of distributed early termination and shows good per-
formance on a SMP machine.

In parallel, some improvement could be made to the early
termination strategy in particular when the BlackBox is fast
compared to the reconstruction and when balanced and amor-
tized techniques are required. Also, output sensitive early
termination is very useful for rational reconstruction, see
e.g. [22] and thus the latter should benefit from this kind of
design.

7. REFERENCES
[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.

Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the Tenth Annual
ACM Symposium on Parallel Algorithms and
Architectures (SPAA’01), Puerto Vallarta, pages
119–129, 2001.

[2] O. Beaumont, E. M. Daoudi, N. Maillard,
P. Manneback, and J.-L. Roch. Tradeoff to minimize

33

extra-computations and stopping criterion tests for
parallel iterative schemes. In 3rd International
Workshop on Parallel Matrix Algorithms and
Applications (PMAA04), CIRM, Marseille, France,
Oct. 2004.

[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55–69, 1996.

[4] D. Chase and Y. Lev. Dynamic circular work-stealing
deque. In P. B. Gibbons and P. G. Spirakis, editors,
Proceedings of the 17th Annual ACM Symposium on
Parallel Algorithms (SPAA’05), Las Vegas, Nevada,
USA, pages 21–28. ACM, July 2005.

[5] V. D. C. Cung, V. Danjean, J.-G. Dumas, T. Gautier,
G. Huard, B. Raffin, C. Rapine, J.-L. Roch, and
D. Trystram. Adaptive and hybrid algorithms:
classification and illustration on triangular system
solving. In Dumas [7], pages 131–148.

[6] V. Danjean, R. Gillard, S. Guelton, J.-L. Roch, and
T. Roche. Adaptive loops with kaapi on multicore and
grid: Applications in symmetric cryptography. In
Moreno-Maza and Watt [23], pages 33–42.

[7] J.-G. Dumas, editor. TC’2006. Proceedings of
Transgressive Computing 2006, Granada, España.
Universidad de Granada, Spain, Apr. 2006.

[8] J.-G. Dumas. Bounds on the coefficients of the
characteristic and minimal polynomials. Journal of
Inequalities in Pure and Applied Mathematics,
8(2):art. 31, 6 pp, Apr. 2007.

[9] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. J.
Turner, and G. Villard. LinBox: A generic library for
exact linear algebra. In A. M. Cohen, X.-S. Gao, and
N. Takayama, editors, Proceedings of the 2002
International Congress of Mathematical Software,
Beijing, China, pages 40–50. World Scientific Pub.,
Aug. 2002.

[10] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear
algebra over prime fields. ACM Transactions on
Mathematical Software, 35(3):1–42, Nov. 2008.

[11] J.-G. Dumas, C. Pernet, and Z. Wan. Efficient
computation of the characteristic polynomial. In
M. Kauers, editor, Proceedings of the 2005 ACM
International Symposium on Symbolic and Algebraic
Computation, Beijing, China, pages 140–147. ACM
Press, New York, July 2005.

[12] J.-G. Dumas, B. D. Saunders, and G. Villard. On
efficient sparse integer matrix Smith normal form
computations. Journal of Symbolic Computation,
32(1/2):71–99, July–Aug. 2001.

[13] J.-G. Dumas and A. Urbańska. An introspective
algorithm for the determinant. In Dumas [7], pages
185–202.

[14] I. Z. Emiris. A complete implementation for
computing general dimensional convex hulls.
International Journal of Computational Geometry and
Applications, 8(2):223–253, Apr. 1998.

[15] J. v. Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, New York, NY,
USA, 1999.

[16] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A
thread scheduling runtime system for data flow
computations on cluster of multi-processors. In
Moreno-Maza and Watt [23], pages 15–23.

[17] T. Gautier, J. L. Roch, and F. Wagner. Fine grain
distributed implementation of a dataflow language
with provable performances. In Workshop PAPP 2007
- Practical Aspects of High-Level Parallel Programming
in International Conference on Computational Science
2007 (ICCS2007), Beijing, China, may 2007. IEEE.

[18] A. Goldstein and R. Graham. A Hadamard-type
bound on the coefficients of a determinant of
polynomials. SIAM Review, 15:657–658, 1973.

[19] T. Granlund and P. L. Montgomery. Division by
invariant integers using multiplication. In Proceedings
of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation,
pages 61–72, Orlando, Florida, June 20–24, 1994.

[20] E. Kaltofen. An output-sensitive variant of the baby
steps/giant steps determinant algorithm. In T. Mora,
editor, Proceedings of the 2002 ACM International
Symposium on Symbolic and Algebraic Computation,
Lille, France, pages 138–144. ACM Press, New York,
July 2002.

[21] E. Kaltofen and M. Monagan. On the genericity of the
modular polynomial GCD algorithm. In S. Dooley,
editor, Proceedings of the 1999 International
Symposium on Symbolic and Algebraic Computation,
Vancouver, Canada, pages 59–66. ACM Press, New
York, July 1999.

[22] S. Khodadad and M. Monagan. Fast rational function
reconstruction. In J.-G. Dumas, editor, Proceedings of
the 2006 ACM International Symposium on Symbolic
and Algebraic Computation, Genova, Italy, pages
184–190. ACM Press, New York, July 2006.

[23] M. Moreno-Maza and S. Watt, editors. Parallel
Symbolic Computation’07. Waterloo University,
Ontario, Canada, July 2007.

[24] C. Pernet and W. Stein. Fast computation of hermite
normal form of random integer matrices. Technical
report, 2009. http:
//modular.math.washington.edu/papers/hnf/hnf.pdf.

[25] C. Pernet and A. Storjohann. Faster algorithms for the
characteristic polynomial. In C. W. Brown, editor,
Proceedings of the 2007 ACM International
Symposium on Symbolic and Algebraic Computation,
Waterloo, Canada. ACM Press, New York, July 29 –
August 1 2007.

[26] D. Traore, J.-L. Roch, N. Maillard, T. Gautier, and
J. Bernard. Adaptive parallel algorithms and
applications to STL. In Springer-Verlag, editor,
EUROPAR 2008, Las Palmas, Spain, August 2008.

34

A complete modular resultant algorithm targeted for
realization on graphics hardware

Pavel Emeliyanenko
Max-Planck Institute for Informatics

Saarbrücken, Germany
asm@mpi-sb.mpg.de

ABSTRACT
This paper presents a complete modular approach to com-
puting bivariate polynomial resultants on Graphics Process-
ing Units (GPU). Given two polynomials, the algorithm first
maps them to a prime field for sufficiently many primes, and
then processes each modular image individually. We evalu-
ate each polynomial at several points and compute a set of
univariate resultants for each prime in parallel on the GPU.
The remaining “combine” stage of the algorithm comprising
polynomial interpolation and Chinese remaindering is also
executed on the graphics processor. The GPU algorithm re-
turns coefficients of the resultant as a set of Mixed Radix
(MR) digits. Finally, the large integer coefficients are re-
covered from the MR representation on the host machine.
With the approach of displacement structure [16] and effi-
cient modular arithmetic [8] we have been able to achieve
more than 100x speed-up over a CPU-based resultant algo-
rithm from Maple 13.1

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms, Experimentation, Measurement, Performance,
Theory

Keywords
CUDA, GPU, modular algorithm, parallel computing, poly-
nomial resultants

1. INTRODUCTION
Resultants is a powerful algebraic tool in the quantifier

elimination theory. Among their numerous and widespread
applications, resultants play an important role in topological

1www.maplesoft.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

study of algebraic curves and computer graphics. However,
despite the fact that this problem received a good deal of
attention in the literature, resultants still constitute a major
bottleneck for many geometric algorithms. This is mainly
due to the rapid growth of coefficient bit-length and the de-
gree of the resultant polynomial with respect to the initial
parameters as well as the necessity to work in a complicated
domain. We find it, therefore, very advantageous to try to
utilize the incredible computational horsepower of Graphics
Processing Units (GPUs) for this problem.

A classical resultant algorithm is the one of Collins [6].
The algorithm employs modular and evaluation homomor-
phisms to deal with expression swell during computation
of resultants. Following the “divide-conquer-combine” strat-
egy, it reduces the coefficients of input polynomials modulo
sufficiently many primes. Then, several evaluation homo-
morphisms are applied recursively reducing the problem to
the univariate case. Finally, a set of univariate resultants
are computed using polynomial remainder sequences (PRS),
see [11]. The final result is recovered by means of polynomial
interpolation and the Chinese remainder algorithm (CRA).

This idea gave rise to the whole spectrum of modular al-
gorithms: including sequential [20, 17], and parallel ones
specialized for workstation networks [4] or shared memory
machines [21, 15]. However, neither of these algorithms ad-
mits a straightforward realization on the GPU. The reason
for that is because the modular approach exhibits only a
coarse-grained parallelism since the PRS algorithm, lying in
its core, hardly admits any parallelization. This is a good
choice for traditional parallel platforms such as worksta-
tion networks or multi-core machines but not for massively-
threaded architecture like that of GPU. That is why, we have
decided to use an alternative method to solve the problem
in the univariate case, namely, the approach of displacement
structure [16]. In the essence, this method reduces compu-
tation of the resultant to the triangular factorization of a
structured matrix. Operations on matrices generally map
very well to the GPU’s threading model. The displacement
structure approach is traditionally applied in floating-point
arithmetic, however using square-root and division-free mod-
ifications [10] we have been able to adapt it for a prime field.
It is worth mentioning that even though the PRS algorithm
can also be made division-free (which is probably the method
of choice for a modular approach) this does not facilitate its
the realization on the GPU.

In this work we extend our previous results [9] by porting
the remaining stages of the resultant algorithm (polynomial
interpolation and partly the CRA) to the graphics proces-
sor, thereby, minimizing the amount of work to be done on

35

the CPU. For the sake of completeness, we present the full
approach here. We also use an improved version of the uni-
variate resultant algorithm given in [9] which is based on
a modified displacement equation, see Section 2.2. Addi-
tionally, we have developed an efficient stream compaction
algorithm based on parallel reductions in order to eliminate
“bad” evaluation points right on the GPU, see Section 4.1.
What concerns the CRA, we compute the coefficients of the
resultant polynomial using Mixed Radix (MR) representa-
tion [22] on the GPU without resorting to multi-precision
arithmetic, and finally recover the large integers on the host
machine. Foundation of our algorithm is a fast 24-bit mod-
ular arithmetic developed in [8]. The arithmetic rests on
mixing floating-point and integer computations, and widely
exploits the GPU multiply-add capabilities.

The organization of the paper is as follows. In Section 2
we formulate the problem in a mathematically concise way
and give an introduction to displacement structure and the
generalized Schur algorithm. Section 3 describes the GPU
architecture and CUDA framework. Section 4 focuses on
the algorithm itself including the main aspects of the GPU
realization. In Section 5 we present experimental results and
draw conclusions.

2. THEORETICAL BACKGROUND
In this section we give a definition of the resultant of two

polynomials, and describe the displacement structure ap-
proach in application to univariate resultants and polyno-
mial interpolation. We also briefly consider Chinese remain-
dering and the Mixed Radix representation of the numbers.

2.1 Polynomial resultants
Let f and g be two polynomials in Z[x, y] of y-degrees p

and q respectively: f(x, y) =
Pp
i=0 fi(x)yi and g(x, y) =Pq

i=0 gi(x)yi. Let R = resy(f, g) denote the resultant of f
and g with respect to y. The resultant R is the determinant
of (p+ q)× (p+ q) Sylvester matrix S:

R = det(S) = det

2666666664

fp fp−1 . . . f0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 fp fp−1 . . . f0

gq gq−1 . . . g0 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 gq gq−1 . . . g0

3777777775
.

From the definition it follows that the resultant R is a poly-
nomial in Z[x]. However, using modular techniques one can
reduce the problem to the univariate case. Computing uni-
variate resultants is discussed in the next section.

2.2 Displacement structure of Sylvester ma-
trix and the generalized Schur algorithm

Suppose we are given two polynomials f, g ∈ Z[x] of de-
grees p and q respectively (p ≥ q) and the associated Sylves-
ter matrix S ∈ Zn×n (n = p + q). Let us first assume that
S is a strongly regular matrix.1 The matrix S is structured
with a displacement rank 2 because it satisfies the displace-
ment equation:

S − FSAT = GBT where F = Zn and A = Zq ⊕ Zp.
1Meaning that its leading principal minors are non-singular.

Here Zn ∈ Zn×n is a down-shift matrix zeroed everywhere
except for 1’s on the first subdiagonal. Accordingly, genera-
tors G,B ∈ Zn×2 are matrices whose entries can be deduced
from the matrix S directly by inspection:

GT =

»
fp fp−1 . . . f0 0 . . . 0
gq qq−1 . . . g0 0 . . . 0

–
B ≡ 0 except for
B0,0 = Bq,1 = 1

Consequently, the matrix S can fully be described by its gen-
erators. Our goal is to obtain an LDUT -factorization of S
where the matrices L and U are triangular with unit diago-
nals, and D is a diagonal matrix. Having this factorization,
the resultant is: det(S) = det(D) =

Qn
i dii (the product of

diagonal entries of D).
The generalized Schur algorithm [16, 5] computes the ma-

trix factorization by iteratively computing the Schur com-
plements of leading submatrices. The Schur complement R
of a submatrix M00 in M = [Mij], (i, j = {0, 1}) is de-
fined as: R = M11 −M10M

−1
00 M01. The idea of the algo-

rithm is to rely on a low-rank displacement representation
of a matrix. The displacement equation, preserved under all
transformations, allows us to derive the matrix factorization
by operating solely on matrix generators. As a result, the
matrix factorization can be computed in O(n2) arithmetic
operations, see [16, p. 323].

In each step, the generators are transformed to a proper
form. Let us denote the generator matrices in step i by
(Gi, Bi). A generator Gi is said to be in a proper form if it
has only one non-zero entry in its first row. The transfor-
mation is done by applying non-Hermitian rotation matrices
Θi and Γi

2 such that Gi = (GiΘi) and Bi = (BiΓi):

G
T
i =

»
δi ai1 ai2 . . .
0 bi1 bi2 . . .

–
, B

T
i =

»
ζi ci1 ci2 . . .
0 di1 di2 . . .

–
.

Once the generators are in proper form, the displacement
equation yields: dii = δiζi. To obtain the next generator
Gi+1 (and by analogy Bi+1) from Gi (or Bi) we multiply
its first column (the one with the entry δi or ζi) by corre-
sponding down-shift matrix (F for Gi and A for Bi) while
keeping the other column intact, see [16]. In case of Gi this
corresponds to shifting down all elements of the first column
by one position, while for Bi, in addition to the down-shift,
the q-th entry of the first column (ciq) must be zeroed.3 Ac-
cordingly, the length of generators decreases by one in each
step of the algorithm.

2.3 Division-free rotations in non-Hermitian case
Note that the term non-Hermitian stands for the fact that

we apply rotations to an asymmetric generator pair. To
bring the generators to a proper form we need to find matri-
ces Θ and Γ that satisfy:

ˆ
a0 b0

˜
Θ =

ˆ
δ 0

˜
,
ˆ
c0 d0

˜
Γ =ˆ

ζ 0
˜
, with ΘΓT = I. This holds for the following ma-

trices:

Θ =

»
c0 b0
d0 −a0

–
, Γ =

1

D

»
a0 d0

b0 −c0
–

, D = a0c0 + b0d0.

To get rid of expensive divisions, we use an idea similar
to the one introduced for Givens rotations [10]. Namely,
we postpone the division until the end of the algorithm by

2These matrices must satisfy: ΘΓT = I, which preserves the
displacement equation since: GΘ(BΓ)T = GBT .
3This is because the matrix A = Zq ⊕ Zp is formed of two
down-shift matrices.

36

keeping a common denominator for each generator column.
Put it differently, we express the generators as follows:

aT = 1/la · (a0, a1, . . .) bT = 1/lb · (b0, b1, . . .),
cT = 1/lc · (c0, c1, . . .) dT = 1/ld · (d0, d1, . . .),

where G = (a,b), B = (c,d). Accordingly, the generator
update (G,B) = (GΘ, BΓ) proceeds in the following way:

ai = la(aic0 + bid0) bi = lb(aib0 − bia0),

ci = lc(cia0 + dib0) di = ld(cid0 − dic0),

here G = (a,b) and B = (c,d). Moreover, it follows that
the denominators are pairwise equal, thus, we can keep only
two of them. They are updated as follows: la = ld = a0,
lc = lb = lal

2
c .

Note that the denominators must be non-zero to prevent
the algorithm from breaking down. It is guaranteed by a
strong-regularity assumption introduced at the beginning.
Yet, this is not always the case for Sylvester matrix. In
Section 4.1 we discuss how to alleviate this problem.

2.4 Polynomial interpolation
The task of polynomial interpolation is to find a poly-

nomial f(x), deg(f) < n, satisfying the set of equations:
f(xi) = yi, for 0 ≤ i < n. The coefficients ai of f are given
by the solution of the system: V a = y, where V ∈ Zn×n
is a Vandermonde matrix: Vij = xji (i, j = 0, . . . , n − 1). If
we apply the generalized Schur algorithm to the following
matrix M ∈ Z2n×(n+1):

M =

»
V −y
In 0

–
, where In is n× n identity matrix,

then after n steps we obtain the Schur complement R of V ,
such that: R = 0 − InV −1(−y) = V −1y, i.e., the desired
solution. The matrix M has a displacement rank 2 and sat-
isfies the equation:

M − FMAT = GBT ,

here F = diag(x0 . . . xn−1)⊕Zn, A = Zn+1, with Zn ∈ Zn×n
is a down-shift matrix. The generators G ∈ Z2n×2 and B ∈
Z(n+1)×2 have the following form:

GT =

»
1 . . . 1 1 0 . . . 0
y0 . . . yn−1 0 0 . . . 0

–
B ≡ 0 except for

B0,0 = 1, Bn,1 = −1
.

Again, in each step of the algorithm we bring the generators
to a proper form as outlined in Section 2.3. The next gen-
erator pair (Gi+1, Bi+1) is computed in a slightly different
manner (see [16]):»

0
Gi+1

–
= ΦiGi

»
1 0
0 0

–
+Gi

»
0 0
0 1

–
»

0
Bi+1

–
= ΨiBi

»
1 0
0 0

–
+Bi

»
0 0
0 1

–
,

here Φi = Fi − fiIi, Ψi = Ai(Ii − fiAi)
−1, where Fi, Ai

and Ii are obtained by deleting the first i rows and columns
of matrices F , A and In respectively, fi is an i-th diagonal
element of F . Although, the equations look complicated at
first glance, it turns out that the generator B does not need
to be updated due to its trivial structure, see Section 4.3.
After n steps of the algorithm, the product GBT yields the
solution of the system.

2.5 Chinese Remainder Algorithm (CRA)
The task of CRA is to reconstruct a number X from its

residues (x1, x2, . . . , xk) modulo a set of primes (m1, m2, . . . ,
mk). A classical approach is to associate X with the mixed-
radix (MR) digits (α1, . . . , αk):

X = α1V1 + α2V2 + · · ·+ αkVk,

where V1 = 1, Vj = m1m2 . . .mj−1 (2 ≤ j ≤ k). We use the
algorithm [22] to compute the digits αi as follows (1 ≤ i ≤
k):

α1 = x1, α2 = (x2 − α1)c2 mod m2,

α3 = ((x3 − α1)c3 − (α2V2c3 mod m3)) mod m3, . . .

αi = ((xi − α1)ci − (α2V2ci mod mi)− . . .
−(αi−1Vi−1ci mod mi)) mod mi,

where ci = (m1m2 . . .mi−1)−1 mod mi can be precomputed
in advance. It is easy to see that one can compute the MR
digits on the GPU because the algorithm exposes some par-
allelism.

3. CUDA PROGRAMMING MODEL
Starting with the G80 series, NVIDIA GPUs do not have

separated fragment and vertex processors. Instead, they are
unified in Streaming Multiprocessors (SMs) capable of run-
ning shader programs as well as general purpose parallel pro-
grams. For instance, the GTX 280 contains 30 SMs. The SM
can be regarded as a 32-lane SIMD vector processor because
a group of 32 threads called a warp always executes same
instruction. Accordingly, a data-dependent branch causes a
warp to diverge, i.e., the SM has to serialize execution of
all taken branch paths. Different warps are free from the
divergence problem.

CUDA [1] is a heterogeneous serial-parallel programming
model. In other words, a CUDA program executes serial
code on the host interleaved with parallel threads execu-
tion on the GPU. To manage large number of threads that
can work cooperatively, CUDA groups them in thread blocks.
Each block contains up to 512 threads that can share data in
fast on-chip memory and synchronize with barriers. Thread
blocks are arranged in a grid that is launched on a single
CUDA program or kernel. The blocks of a grid execute in-
dependently from each other. Hence, sequentially dependent
algorithms must be split up in two or more kernels.

CUDA memory hierarchy is built on 6 memory spaces.
These include: Register file which is a set of physical regis-
ters (16Kb per SM) split evenly between all active threads
of a block.1 Local memory is a private space used for per-
thread temporary data and register spils. Each SM has 16Kb
of low-latency on-chip shared memory can be accessed by all
threads of a block and is organized in 16 banks to speed-up
concurrent access. Bank conflicts are resolved by warp seri-
alization and broadcast mechanism. Read-only texture and
constant memory spaces as well as read-write global memory
have lifetime of an application and are visible to all thread
blocks of a grid. Texture and constant memory spaces are
cached on the device. Global memory has no on-chip cache
and is of much higher latency than shared memory. To use
bandwidth efficiently, the graphics hardware tries to combine

1 The advantage of static register allocation is that context
switching comes almost for free, however this incurs register
pressure – a formidable problem in GPU programming.

37

separate thread memory accesses to a single wide memory
access which is also known as memory coalescing. The sec-
ond generation NVIDIA Tesla cards (GT200 series) are much
less restrictive in what concerns the memory access patterns
for which coalescing can be achieved.

4. THE ALGORITHM
We start with a high-level description of the algorithm.

Then, we consider subalgorithms for univariate resultants
and polynomial interpolation in detail. Next, we briefly dis-
cuss the realization of fast modular arithmetic on the GPU.
Finally, in the last subsection we outline the main imple-
mentation details of the algorithm.

4.1 Algorithm overview
As mentioned in the beginning, our approach follows the

ideas of Collins’ algorithm. To compute the resultant of two
polynomials in Z[x, y], we map them to a prime field us-
ing several modular homomorphisms. The number of prime
moduli in use depends on the resultant coefficients’ bit-length
given by Hadamard’s bound [17]. For each modular image
(for each prime mi) we compute resultants at x = α0, x =
α1, · · · ∈ Zmi . Each univariate resultant is computed using
the displacement structure approach, see Section 4.2. The
degree bound (or the number of evaluation points) can be
obtained using the rows and columns of Sylvester matrix.
As shown in [17], one can use both lower and upper bounds
for the resultant degree which is advantageous for sparse
polynomials. In the next step, resultants over Zmi [x] are
recovered through polynomial interpolation, see Section 4.3.
Afterwards, the modular images of polynomials are lifted
using the Chinese remaindering giving the final solution.

An important issue is how to deal with “bad” primes and
evaluation points. With the terminology from [17], a prime
m is said to be bad if fp ≡ 0 mod m or gq ≡ 0 mod m.
Similarly, an evaluation point α ∈ Zm is bad if fp(α) ≡
0 mod m or gq(α) ≡ 0 mod m. Dealing with “bad” primes
is easy: we can eliminate them right away during the initial
modular reduction of polynomial coefficients performed on
the CPU. To handle “bad” evaluation points, we run the
GPU algorithm with an excess amount of points (typically
1–2% more than required). The same idea is applied to
deal with non-strongly regular Sylvester matrices.1 In the
essence, non-strong regularity indicates that there is a non-
trivial relation between polynomial coefficients which, as our
tests confirm, is a rare case on the average(see [9, Section 5]
for experiments).

That is why, if for some αk ∈ Zm the denominators van-
ish, instead of using some sophisticated methods, we simply
ignore the result and take another evaluation point. In a
very “unlucky” case when we cannot reconstruct the resul-
tant because of the lack of points, we launch another grid
to compute extra information. This can be exemplified as
follows. Consider two polynomials:

f = y8 + y6 − 3y4 − 3y3 + (x+ 6)y2 + 2y − 5x

g = (2x3 − 13)y6 + 5y4 − 4y2 − 9y + 10x+ 1.

Now, if we evaluate them at points x = 0 . . . 100000, it is
easy to check that the corresponding Sylvester matrix is non-

1In fact, both cases correspond to zero denominator, and
therefore, are indistinguishable from the algorithm’s per-
spective.

strongly regular only for a single point x = 2. Hence, we have
enough information to recover the result.

4.2 Computing univariate resultants
Let G = (a,b), B = (c,d) be the generator matrices

associated with two polynomials f and g as defined in Sec-
tion 2.2. In each iteration we update these matrices and
collect one factor of the resultant at a time. After n itera-
tions (n = p+ q) the generators vanish completely, and the
product of collected factors yields the resultant.2 The opti-
mized algorithm is given below:

1: procedure resultant univariate(f : Polynomial, g : Polynomial)
2: p = degree(f), q = degree(g), n = p + q
3: f ← f/fp . convert f to monic form
4: let G = (a,b), B = (c,d) . set up the generators
5: for j = 0 to q− 1 do . simplified iterations
6: bi ← bi − aibj for ∀i = j + 1 . . . p + j . rotations
7: c2q−j = bj . update a single entry of c
8: ai+1 ← ai for ∀i = j . . . n− 2 . shift-down
9: end for

10: la = 1, lc = 1 . denominators and
11: res = 1, lres = 1 . the resultant are set to 1
12: for j = q to n− 1 do . the remaining p iterations
13: for ∀i = j . . . n− 1 . multiply by rotation matrices
14: ai ← la(aicj + bidj), bi ← lc(aibj − biaj),
15: ci ← lc(ciaj + dibj), di ← la(cidj − dicj)
16:
17: lc = lal2c , la = aj . update denominators and
18: res = res · cj, lres = lres · lc . the resultant
19: . shift-down the first generator columns
20: ai+1 ← ai, ci+1 ← ci for ∀i = j . . . n− 2
21: end for
22: return res · (fp)q/lres . return the resultant
23: end procedure

In what follows, we will denote the iterations j = 0 . . . q −
1 and j = q . . . n − 1 as type S and T iterations respec-
tively. Note that, the division in lines 3 and 22 is realized
by the Montgomery inverse algorithm [7] with improvements
from [19]. Though the algorithm is serial, the number of it-
erations is bounded by the moduli bit-length (24 bits), for
details see [9, Appendix A].

Our algorithm is based on the observation that B ≡ 0
at the beginning of the algorithm, except for c0 = dq = 1.
Moreover, if we ensure that the polynomial f is monic, i.e.,
fp ≡ 1, we can observe that the vectors a, c and d remain
unchanged during the first q iterations of the algorithm (with
the exception of a single entry cq). Indeed, if f is monic we
have that: D = a0c0 + b0d0 = a0 ≡ 1 (see Section 2.3),
hence we can get rid of the denominators completely which
greatly simplifies the vector update. By the same token,
the computed resultant factors are unit during the first q
iterations. Thus, we do not need to collect them. At the end,
we have to multiply the resultant by (fp)

q as to compensate
for running the algorithm on monic f .

4.3 Polynomial interpolation
Suppose G = (a,b), B = (c,d) are the generators de-

fined in Section 2.4. Again, we take into account that B
has only two non-zero entries: c0 = 1 and dn = −1.3 As
a result, we can skip updating B throughout all n iter-
ations of the algorithm. Furthermore, the vector a does
not need to be multiplied by the rotation matrix because:

2Recall that, in each iteration the size of generators decreases
by 1.
3Here n denotes the number of interpolation points.

38

Listing 1 24-bit modular arithmetic on the GPU

1: procedure mul mod(a, b, m, invm) . computes a · b mod m
2: hf = uint2float rz(umul24hi(a, b)) . compute 32 MSB of the product, convert to floating-point
3: prodf = fmul rn(hf, invm) . multiply by invm=216/m in floating-point
4: l = float2uint rz(prodf) . integer truncation: l = bhi · 216/mc
5: r = umul24(a, b)− umul24(l,m) . now r ∈ [−2m + ε; m + ε] with 0 ≤ ε < m
6: if r < 0 then r = r + umul24(m, 0x1000002) fi . single multiply-add instruction: r = r + m · 2
7: return umin(r, r −m) . return r = a · b mod m
8: end procedure
9: procedure sub mul mod(x1, y1, x2, y2, m, invm1, invm2) . computes (x1y1 − x2y2) mod m

10: hf1 = uint2float rz(umul24hi(x1, y1))
11: hf2 = uint2float rz(umul24hi(x2, y2)) . two inlined mul mod operations
12: pf1 = fmul rn(hf1, invm1), pf2 = fmul rn(hf2, invm1) . multiply by invm1 = 216/m in floating-point
13: l1 = float2uint rz(pf1), l2 = float2uint rz(pf2) . truncate the results to nearest integer
14: r = mc + umul24(x1, y1)− umul24(l1,m)− umul24(x2, y2) + umul24(l2,m) . intermediate product r, mc = m · 100
15: rf = uint2float rn(r) ∗ invm2 + e23 . multiply by invm2 = 1/m and truncate, e23 = 223, rf = br/mc
16: r = r − umul24(float as int(rf),m)
17: return r < 0 ? r + m : r
18: end procedure

ai = la(aic0 + bid0) ≡ laai (see Section 2.3). Also, observe
that only n entries of the generator G are non-zero at a time.
Thus, we can use some sort of a “sliding window” approach,
i.e., only n relevant entries of G are updated in each itera-
tion. The pseudocode for polynomial interpolation is given
below:

1: procedure interpolate(x : Vector, y : Vector, n : Integer)
2: . returns a polynomial f, s.t., f(xi) = yi, 0 ≤ i < n
3: let G = (a,b) . set up the generator matrix
4: lint = 1 . set the denominator to 1
5: for j = 0 to n− 1 do
6: . multiply by the rotation matrix
7: bi ← biaj − aibj for ∀i = j + 1 . . . j + n− 1
8: lint = lint · aj . update the denominator
9: . update the last non-zero entries of a and b

10: bj+n = −bj, an+j+1 = 1, s = 0, t = 0
11: if (i > j and i < n) then s = ai, t = xi

12: elif (i > n and i ≤ j + n) then s = ai−1, t = 1 fi
13: . multiply a by the matrix Φj

14: ai ← s · t− ai · xj for ∀i = j + 1 . . . j + n
15: end for . divide the result by the denominator
16: bi ← −bi/lint for ∀i = n . . . 2n− 1
17: return bn . . . b2n−1 . return the coefficients of f(x)
18: end procedure

Note that, we write the update of a in line 13 in a “lin-
earized” form (using s and t) to avoid thread divergence be-
cause in the GPU realization one thread is responsible for
updating a single entry of each of vectors a and b.1

4.4 Modular arithmetic
Modular multiplication still constitutes a big problem on

modern GPUs due to the limited support for integer arith-
metic and particularly slow modulo (‘%’) operation. The
GPU natively supports 24-bit integer multiplication realized
by two instructions: mul24.lo and mul24.hi.2 CUDA only
provides an intrinsic for mul24.lo while the latter instruc-
tion is not available in a high-level API. To overcome this
limitation, the authors of [13] suggest to use 12-bit residues
because the reduction can proceed in floating-point without
overflow concerns. In the other paper [3], 280-bit residues

1Short conditional statements are likely to be replaced by
predicated instructions which do not introduce branching in
the GPU code.
2They return 32 least and most significant bits of the prod-
uct of 24-bit integer operands respectively.

are partitioned in 10-bit limbs to facilitate multiplication.
Hence, neither paper exploits the GPU multiplication ca-
pabilities at full. We access the “missing intrinsic” directly
using the PTX inline assembly [2] and realize the modular
reduction in floating-point, see also [8].

The procedure mul mod in Listing 1 computes a·b mod m.
Here umul24 and umul24hi denote the intrinsics for mul24.lo
and mul24.hi respectively. First, we partition the product as
follows: a · b = 216hi+ lo (32 and 16 bits parts), and use the
congruence:

216hi+ lo = (m · l + λ) + lo ≡m λ+ lo = 216hi+ lo−
−m · l = a · b− l ·m = r, where 0 ≤ λ < m.

It can be shown that r ∈ [−2m + ε;m + ε] for 0 ≤ ε < m.
As a result, r fits into a 32-bit word. Thus, we can compute
it as the difference of 32 least significant bits of the products
a · b and m · l (see line 5). Finally, the reduction in lines 6–7
maps r to the valid range [0;m− 1].

The next procedure sub mul mod evaluates the expres-
sion: (x1y1−x2y2) mod m used in rotation formulas (see Sec-
tion 2.3). It runs two mul mod’s in parallel with the differ-
ence that the final reduction is deferred until the subtraction
in line 13 takes place. The advantage is that line 13 produces
4 multiply-add (MAD) instructions.3 Lines 14–16 are taken
from reduce mod procedure in [8] with a minor change:
namely, in line 14 we use a mantissa trick [14] to multiply
by 1/m and round the result down in a single multiply-add
instruction. We have studied the efficiency of our realiza-
tion using the decuda tool4. According to disassembly, the
sub mul mod operation maps to 16 GPU instructions where
6 of them are multiply-adds.

4.5 GPU realization
In this section we go through the main aspects of our im-

plementation. Suppose we are given two polynomials f, g ∈
Z[x, y] with y-degrees p and q respectively, and p ≥ q. The
algorithm comprising four kernel launches is depicted in Fig-
ure 1. Grid configuration for each kernel is shown to the left.

Before going through the realization details of each GPU
kernel separately we would like to outline some features

3The compiler favors MAD instructions by aggressively
merging subsequent multiply and adds.
4http://wiki.github.com/laanwj/decuda

39

g
ri
d

g
ri
d

g
ri
d

g
ri
d

recover large-integer coefficients of res(f, g)

from MR digit representation C
P
U

evaluate res/lres (modular inverse)

run stream compaction algorithm

evaluate res(f, g)k/lint mod mi

for each mi (modular inverse)
write out MR digits of res(f, g)k (apply CRA)

res(f, g)k do in parallelfor each coefficient

interpolate res(f, g)/lint mod mi using αj ∈ Zmi

for each modulus mi do in parallel

M
x1

N
x1

write out lint and coeffs of res(f, g) mod mi

compute res/lres = res(f, g) mod mi

sufficiently many primes mi

at x = αj ∈ Zmi
; write out res and lres

reduce coefficients of f and g modulo

N
xM

C
P
U

for each mi and each αj ∈ Zmi
do in parallel

N
x

M 1
2
8

Figure 1: Schematic view of the resultant algorithm with N is the number of moduli, and M is the number of evaluation
points

2

1

3

4

5

0

2

1

3

4

0

5

tid

3

4

2

1

0

5

2

1

3

4

5

2

1

3

4

5

1

2

3

4

1

2

3

4

columns and

2

1

3

4

5

2

1

3

4

5

1

2

3

4

1

2

3

4

2

1

3

4

5

2

1

3

4

5

2

1

3

4

5

2

1

3

4

5

tid

3

2

1

0

4

share the first rows
between all thids

of the resultant

2

1

3

4

5

0

2

1

3

4

0

5

collect factors

shift down share the first rows
between all thids

ith iteration (i+1)th iteration
c

α β

dba

a c

c

α β

dba

β

db cba dc a

su
b

m
u
l

m
o
d

su
b

m
u
l

m
o
d

...

α

Figure 2: Vector updates during the type T iterations of
the resultant algorithm, where tid denotes the thread ID

shared by all kernels. In our implementation we have used a
number of standard optimization techniques including con-
stant propagation via templates, loop unrolling, exploiting
warp-level parallelism (parallel prefix sum), favoring small
thread blocks over the large ones, etc.

An important aspect of GPU optimization is dealing with
register pressure. We decrease register usage partly by kernel
templetizations and by declaring frequently used local vari-
ables with volatile keyword. The latter technique forces
the compiler to really keep those variables in registers and
reuse them instead of inlining the expressions.

We keep the moduli set mi and corresponding reciprocals
invm used for reduction in constant memory space. This is
because one thread block (except for CRA kernel) works with
a single modulus. Hence, all threads of a block read the same
value which is what the constant memory cache optimized
for. Moreover, direct access from constant memory has a
positive effect on reducing register usage.

4.5.1 Resultant kernel
The resultant kernel evaluates polynomials at x = αj ∈

Zmi and computes univariate resultants. It is launched on a
2D grid N ×M , see Figure 1. The evaluation points are im-
plicitly given by the block indices. Four kernel instantiations
with 32 × 2, 64, 96 and 128 threads per block are special-
ized for different polynomial degrees. A kernel specializa-
tion with P threads per block covers the range of degrees:
p ∈ [P/2; P − 1].1

This configuration is motivated by the fact that we use
p+ 1 threads to substitute x in each of p+ 1 coefficients of
f (and the same for g) in parallel. The resultant algorithm

1The first kernel instantiation – 32 × 2 – calculates two re-
sultants at a time.

final warp reduction

warp−sized prefix sum warp−sized prefix sum

warp (32 threads)
...

Figure 3: Warp-sized parallel reduction (prefix sum)

consists of one outer loop split up in iterations of types S and
T , see Section 4.2. In each iteration the generators are trans-
formed using the sub mul mod procedure, see Figure 2. The
inner loop is completely vectorized: this is another reason for
our block configuration. The type S iterations are unrolled
by the factor of 2 for better thread occupancy, so that each
thread runs two sub mul mod operations in a row. In this
way, we double the maximal degree of polynomials that can
be handled, and ensure that all threads are occupied. More-
over, at the beginning of type T iterations we can guarantee
that not less than half of threads are in use in the corner
case (p = P/2).

The column vectors a and c of generators G = (a, b) and
B = (c, d) are stored in shared memory because they need to
be shifted down in each iteration. The vectors b and d reside
in a register space. Observe that, the number of working
threads decreases with the length of generators in the outer
loop. We run the type T iterations until at least half of all
threads enter an idle state. When this happens, we rebal-
ance the workload by switching to a “lighter” version where
all threads do half of a job. Finally, once the generator size
descends below the warp boundary, we switch to iterations
without sync.2 The factors of the resultant and the denomi-
nator are collected in shared memory, then the final product
(fp)

q ·Qi dii is computed efficiently using “warp-sized” par-
allel reduction based on [12]. The idea of reduction is to
run prefix sums for several warps separately omitting syn-
chronization barriers, and then combine the results in a final
reduction step, see Figure 3. Listing 2 computes a prefix sum
of 256 values stored in registers. It slightly differs from that
of used in [12]. Namely, our algorithm requires less amount
of shared memory per warp (WS + HF + 1 = 49 words in-

2Recall that, the warp, as a minimal scheduling entity, is
always executed synchronously on the GPU.

40

Listing 2 “warp-sized” parallel reduction with 256 threads

1: procedure warp scan(x) . parallel prefix of 256 values x
2: . abbrev.: OP: prefix operation, TID: thread-id
3: . WS: warp-size (32), HF: half-warp (16),
4: . initialize shared memory space for reduction:
5: volatile type ∗scan = data + HF+
6: +(TID%32) + (TID/32) ∗ (WS + HF + 1)
7: scan[−HF] = Ident . ident. symbol: OP(Ident,x)=x
8: scan[0] = x . save elements to shared memory
9: . run warp-scans independently:

10: t = OP(t, scan[−1]), scan[0] = t
11: t = OP(t, scan[−2]), scan[0] = t
12: t = OP(t, scan[−4]), scan[0] = t
13: t = OP(t, scan[−8]), scan[0] = t
14: t = OP(t, scan[−HF]), scan[0] = t
15: .“post-scan” leading elements of each warp
16: volatile type ∗postscan = data + HF+
17: +(WS ∗ 8/32) ∗ (WS + HF + 1)
18: syncthreads() . thread synchronize
19: if TID < 8 then . post-scan 8 leading elements
20: volatile type ∗scan2 = postscan + TID
21: scan2[−HF] = Ident . put identity symbol
22: . load high-order elements from shared mem
23: t = data[HF + WS− 1 + TID ∗ (WS + HF + 1)]
24: scan2[0] = t, t = OP(t, scan2[−1])
25: scan2[0] = t, t = OP(t, scan2[−2])
26: scan2[0] = t, t = OP(t, scan2[−4])
27: scan2[0] = t
28: fi
29: syncthreads() . thread synchronize
30: t = scan[0] . read out and update scanned elements
31: t = OP(t, postscan[TID/32− 1]. postscan[-1] = Ident
32: return t
33: end procedure

stead of 64 words) and uses fewer number of sync operations
(2 instead of 3).

4.5.2 Modular inverse and stream compaction kernel
This kernel is also launched on a 2D grid with 128 threads

per block, see Figure 1. For each modulus mi it eliminates
the resultants corresponding to“bad”evaluation points,1 and
computes the quotient res/lres for each non-zero denomina-
tor lres using the modular inverse. The input sequence (the
set of M evaluation points for each modulus) is partitioned
into 128-element chunks such that one thread computes one
Montgomery modular inverse. In this way, we achieve the
full occupancy due to sequential nature of the Montgomery
algorithm.

To realize the efficient stream compaction we have made
the following observations. 1. The number of evaluation
points M per modulus can be quite large (typically on the
order of one thousand), hence it is inefficient/impossible to
process all of them in one thread block. 2. Running hierar-
chical stream compaction in global memory (several kernel
launches) seems to be unreasonable because“bad”evaluation
points occur quite rarely on the average.2 3. The actual or-
der of evaluation points does not matter for interpolation.
As a result, we found the following solution optimal: Each
block runs the stream compaction on its 128-element chunk
using warp-sized reduction in shared memory. The reduction
computes an exclusive prefix sum of a sequence of 0’s and 1’s

1In other words, those points for which denominators vanish,
see Section 4.1.
2Our experiments show that for random polynomials typi-
cally 3–4 evaluation points are “bad” out of 10–50 thousand.

2 2 2 21 1 1

n n n n

2 2 2 2 1 1 12 12 nnn n1

nnn n1 1 22

Block 1 Block 2 Block n

write offset to global mem.
controlled by a global variable

warp−sized reduction
(excl. prefix sum)

... ...

...

Figure 4: Stream compaction in shared memory

where 0’s correspond to elements being eliminated. Finally,
the compacted sequence is written out to global memory.
The current writing position is controlled by a global vari-
able which gets updated (atomically) each time a block out-
puts its results to global memory, see Figure 4. Note that,
such a memory access pattern does not cause a severe per-
formance degradation on GT200 hardware. This is because
on the devices of compute capability 1.2 (SM12) and higher
memory coalescence is also achieved for misaligned access,
see [1].

4.5.3 Interpolation kernel
The realization is based on the algorithm from Section 4.3.

One thread block is responsible for interpolating one polyno-
mial for some prime modulus mj . Similarly to the resultant
kernel, the inner loop is unrolled and vectorized. Again, vec-
tor updates are performed using sub mul mod operation.

We have chosen to unroll the inner loop to have high arith-
metic intensity and to decrease the number of shared mem-
ory accesses per iteration because running one sub mul mod
operation per thread results in far too low thread’s work-
load. On the other hand, unrolling increases register pres-
sure. Therefore, in order to keep the computations fast we
unroll the loop by the factor of 2 for low resultant degrees
(n ≤ 256) and by the factor of 4 for the remaining ones
(n > 256). Our tests have shown that the kernel with 128
threads and unrolling factor of 2 runs faster than that of 64
threads and the factor of 4. Accordingly, one thread is re-
sponsible for updating 2 or 4 elements of generator G. The
number of threads per block is adjusted to estimated degree
n of the resultant. Hence, in the current implementation the
maximal degree is limited to 2048 which corresponds to 512
threads.

The major difference is that the generator’s size stays con-
stant throughout the algorithm. That is why, in each iter-
ation we process only n relevant entries of G in a “sliding
window” fashion. We have found it advantageous to param-
eterize the kernel by the“data parity”, that is, by n mod 2 or
n mod 4 depending on the loop unrolling factor, in place of
the data size n itself. This allowed us to substantially reduce
branching inside the outer loop which is a big performance
issue for GPU algorithms. Again, the collected factors of the
denominator lint are multiplied using the prefix sum.

4.5.4 CRA kernel
The remaining CRA kernel processes each resultant coef-

ficient res(f, g)k independently, see Figure 1. It first divides
the residues res(f, g)k mod mj by respective denominators
lint computed during the interpolation (using Montgomery
inverse), and runs the CRA to recover the Mixed-radix repre-
sentation of the coefficient. The algorithm is rather straight-
forward realization of formulas from Section 2.5. It consists

41

Table 1: Timing the resultants of f and g ∈ Z[x, y]. 1st column: instance number; 2nd column: degy(f/g) : polynomials’
y-degree; degx(f/g) : polynomials’ x-degree; bits : coefficient bit-length; sparse/dense: varying density of polynomials; 3rd
column: resultant degree

.

Configuration degree GPU Maple speed-up

1-2. degy(f) : 20, degy(g) : 16
degx(f) : 7, degx(g) : 11, bits : 32 / 300 332 / 332 0.015 s / 0.14 s 1.8 s / 16.3 s 120x / 116x

3-4. degy(f) : 29, degy(g) : 20
degx(f) : 32, degx(g) : 25, bits : 64 / 250 1361 / 1361 0.3 s / 0.89 s 36.6 s / 143.9 s 122x / 161x

5-6. degy(f) : 62, degy(g) : 40, bits : 24
degx(f) : 12, degx(g) : 10 (sparse/dense) 1088 / 1100 0.28 s / 0.33 s 25.8 s / 34.8 s 92x / 105x

7-8. degy(f) : 90, degy(g) : 80, bits : 20
degx(f) : 10, degx(g) : 10 (sparse/dense) 1502 / 1699 1.06 s / 1.4 s 76.7 s / 148.8 s 72x / 106x

9-10. degy(f) : 75, degy(g) : 60
degx(f) : 15, degx(g) : 7, bits : 32 / 100 1425 / 1425 1.2 s / 3.1 s 100.6 s / 298.4 s 84x / 96x

11-12. degy(f) : 126, degy(g) : 80, bits : 16
degx(f) : 4, degx(g) : 7 (sparse/dense) 1150 / 1202 1.29s / 1.53 s 87.9 s / 121.3 s 68x / 79x

of one outer loop while the inner loop is vectorized. In each
iteration one mixed-radix digit αi is computed and the re-
maining ones αi+1 . . . αM get updated. The intermediate
variables Vi are computed on-the-fly while ci’s are preloaded
from the host because modular inverse is expensive.

It is worth noting that we simplify the computations by
processing moduli in increasing order, i.e., m1 < m2 < · · · <
mM . Indeed, suppose xi and xj are residues modulo mi

and mj respectively (j < i). Then, the expressions of the
form (xi − xj) · ci mod mi can be evaluated without initial
modular reduction of xj because xj < mi. The modular
multiplication is performed using mul mod procedure from
Listing 1.

The block size is adjusted to the number of moduli M .
Again, for performance reasons we have unrolled the outer
loop by the factor of 2 or 4 and parameterized the kernel by
“data parity” (M mod 2 or M mod 4).

As a very last step, we reconstruct the multi-precision co-
efficients from their MR representation by evaluating the
Horner form on the host machine.

5. PERFORMANCE EVALUATION AND CON-
CLUSIONS

We have run experiments on the GeForce GTX 280 graph-
ics card. The resultant algorithm from Maple 13 (32-bit ver-
sion) has been tested on a 2.8Ghz Dual-Core AMD Opteron
2220SE with 1MB L2 cache comprised in a four-processor
cluster with total of 16Gb RAM under Linux platform. We
have configured Maple to use deterministic algorithm by set-
ting EnvProbabilistic to 0. This is because our approach
uses Hadamard’s bounds both for resultant’s height and de-
gree while the default Maple algorithm is probabilistic, in
other words it uses as many moduli as necessary to produce
a “stable” solution, see [17].

Performance comparison is summarized in Table 1. The
GPU timing covers all stages of the algorithm including ini-
tial modular reduction and recovering multi-precision results
on the host. For large integer arithmetic we have used GMP-
4.3.1 library.1 We have varied different parameters such as
polynomial’s x- and y-degree, the number of moduli, the co-
efficient bit-length and the density of polynomials (the num-
ber of non-zero entries). One can see that our algorithm
achieves better speed-up for dense polynomials. This im-

1http://gmplib.org

plicitly indicates that Maple uses the PRS algorithm in its
core: the PRS generally performs more iterations (divisions)
for dense polynomials. Whereas our algorithm is indifferent
to polynomial density as it is based on linear algebra.

Also, observe that, our algorithm is faster polynomials of
high x-degree. This is expected because, with the x-degree,
the number of thread blocks increase (thereby, leading to
better hardware utilization) while the size of Sylvester ma-
trix remains the same. On the contrary, increasing the y-
degree penalizes the performance as it causes the number
of threads per block to increase. Similarly, for larger bit-
lengths, the attained performance is typically higher (again
because of increased degree of parallelism), with the excep-
tion that for low-degree polynomials the time for CPU mod-
ular routines becomes noticeably large as compared to the
resultant computation itself.

The histogram in Figure 5 shows how the different stages
of the algorithm contribute to the overall timing. Appar-
ently, the time for resultant kernel is dominating: this is
no surprise because its grid size is much larger than that
of other kernels, see Figure 1). The second largest time is
either initial modular reduction (‘mod. reduce’ in the fig-
ure) for polynomials with large coefficients, or interpolation
for high-degree polynomials. Also, observe that, the time
for GPU–host data transfer (‘data transfer’ in the figure) is
negligibly small. This indicates that our algorithm is not
memory-bound, and therefore has a big performance poten-
tial on future generation GPUs. The remaining two graphs
in Figure 5 examine the running time as a function of co-
efficients’ bit-length and polynomial degree. The bit-length
only causes the number of moduli to increase resulting in a
linear dependency. While polynomial’s y-degree affects both
moduli and evaluation points, therefore the performance de-
grades quadratically.

We have presented the algorithm to compute polynomial re-
sultants on the GPU. The displacement structure approach
has been proved to be well-suited for realization on massively-
threaded architectures. Our results indicate a significant
performance improvement over a host-based implementa-
tion. We have achieved the high arithmetic intensity of the
algorithm by dynamically balancing the thread’s workload
and taking into account hardware-specific features such as
multiply-add instruction support. Moreover, our algorithm
has a great scalability potential due to the vast amount of
thread blocks used by the resultant kernel.

42

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 7 8

mod. reduce
resultant

mod. inverse
interpolate

CRA
data transfer
MR recover

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 20 30 40 50 60
coefficient bit-length

Polynomials y-degree:
deg(f)=45, deg(g)=37
deg(f)=70, deg(g)=65

 0

 0.5

 1

 1.5

 2

 2.5

 20 30 40 50 60 70 80 90 100
bivariate polynomials y-degree

with 16-bit coeffs
with 32-bit coeffs

Figure 5: Left: relative contribution of different stages to the overall time, x-axis: instance number in Table 1; Middle:
the running time as a function of coefficient bit-length; Right: the running time as a function of polynomial y-degree. All
timings are in seconds.

As a future research directions, we would like to revisit
implementation of our approach on the GPU in order to
benefit from a block-level parallelism since the algorithm
admits only a single-block parallelization, in that way lim-
iting the size of input that can be handled. One possibility
could be to adapt one of the recursive Schur-type algorithms
for matrix factorization based on the block inversion for-
mula, see for instance [18]. We would also like to extend
our approach to other computationally-instensive symbolic
algorithms that can be reformulated in matrix form: good
candidates could be multivariate polynomial GCDs and sub-
resultant sequences.

6. REFERENCES
[1] CUDA Compute Unified Device Architecture.

Programming Guide. Version 2.3. NVIDIA Corp.,
2009.

[2] PTX: Parallel Thread Execution. ISA Version 1.4.
NVIDIA Corp., 2009.

[3] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange,
and B.-Y. Yang. ECM on Graphics Cards. In
EUROCRYPT ’09, Berlin, Heidelberg, 2009.
Springer-Verlag.

[4] T. Bubeck, M. Hiller, W. Küchlin, and W. Rosenstiel.
Distributed Symbolic Computation with DTS. In
IRREGULAR ’95, pages 231–248, London, UK, 1995.
Springer-Verlag.

[5] S. Chandrasekaran and A. H. Sayed. A fast stable
solver for nonsymmetric toeplitz and quasi-toeplitz
systems of linear equations. SIAM J. Matrix Anal.
Appl., 19:107–139, 1998.

[6] G. E. Collins. The calculation of multivariate
polynomial resultants. In SYMSAC ’71, pages
212–222. ACM, 1971.

[7] G. de Dormale, P. Bulens, and J.-J. Quisquater. An
improved Montgomery modular inversion targeted for
efficient implementation on FPGA. In FPT ’04. IEEE
International Conference on, pages 441–444, 2004.

[8] P. Emeliyanenko. Efficient Multiplication of
Polynomials on Graphics Hardware. In APPT ’09,
pages 134–149, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] P. Emeliyanenko. Modular Resultant Algorithm for
Graphics Processors. In ICA3PP ’10, pages 427–440,
Berlin, Heidelberg, 2010. Springer-Verlag.

[10] E. Frantzeskakis and K. Liu. A class of square root
and division free algorithms and architectures for
QRD-based adaptive signal processing. Signal
Processing, IEEE Transactions on, 42:2455–2469, Sep
1994.

[11] K. Geddes, S. Czapor, and G. Labahn. Algorithms for
computer algebra. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1992.

[12] M. Harris, S. Sengupta, and J. D. Owens. CUDPP:
CUDA Data Parallel Primitives Library. Version 1.1.
http://gpgpu.org/developer/cudpp.

[13] O. Harrison and J. Waldron. Efficient Acceleration of
Asymmetric Cryptography on Graphics Hardware. In
AFRICACRYPT ’09, pages 350–367, Berlin,
Heidelberg, 2009. Springer-Verlag.

[14] C. Hecker. Let’s get to the (floating) point. Game
Developer Magazine, pages 19–24, 1996.

[15] H. Hong and H. W. Loidl. Parallel Computation of
Modular Multivariate Polynomial Resultants on a
Shared Memory Machine. In CONPAR 94, pages
325–336. Springer Verlag, 1994.

[16] T. Kailath and S. Ali. Displacement structure: theory
and applications. SIAM Review, 37:297–386, 1995.

[17] M. Monagan. Probabilistic algorithms for computing
resultants. In ISSAC ’05, pages 245–252. ACM, 2005.

[18] J. H. Reif. Efficient parallel factorization and solution
of structured and unstructured linear systems. J.
Comput. Syst. Sci., 71(1):86–143, 2005.

[19] E. Savas and C. Koc. The Montgomery modular
inverse-revisited. Computers, IEEE Transactions on,
49(7):763–766, 2000.

[20] A. Schönhage and E. Vetter. A New Approach to
Resultant Computations and Other Algorithms with
Exact Division. In ESA’94, pages 448–459, London,
UK, 1994. Springer-Verlag.

[21] W. Schreiner. Developing A Distributed System For
Algebraic Geometry. In EURO-CM-PAR’99, pages
137–146. Civil-Comp Press, 1999.

[22] M. Yassine. Matrix Mixed-Radix Conversion For RNS
Arithmetic Architectures. In Proceedings of 34th
Midwest Symposium on Circuits and Systems, 1991.

43

Parallel operations of sparse polynomials on multicores -
I. Multiplication and Poisson bracket

Mickaël Gastineau
IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC

Astronomie et Systèmes Dynamiques
77 Avenue Denfert-Rochereau

75014 Paris, France
gastineau@imcce.fr

ABSTRACT
The multiplication of the sparse multivariate polynomials
using the recursive representations is revisited to take ad-
vantage on the multicore processors. We take care of the
memory management and load-balancing in order to obtain
linear speedup. The widely used Poisson bracket during the
studies of the dynamical systems had been parallelized on
these computers. Benchmarks are presented, comparing our
implementation to the other computer algebra systems.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic Algorithms

General Terms
Design, Performance

Keywords
Parallel, Sparse, Polynomial, Multiplication, Poisson bracket

1. INTRODUCTION
As many applications, such as celestial mechanics, require

to handle large sparse multivariate power series, many spe-
cialized or general computer algebra systems had been devel-
oped to handle these objects at the time when most of com-
puters had only one processor. But despite multiple cores
and multiple processors are now widely available, even in
laptop computers, few existing computer algebra systems,
such as SDMP [16], TRIP [8] and Piranha [3], take advan-
tage of the presence of these processor-elements to reduce the
time of the computation on the multivariate sparse polyno-
mials. The SDMP library performs the multiplication of the
sparse polynomials using a heap and divides the work on the
multiple processors using a static scheduling. This library
stores these objects in a distributed form and could only
work with integer coefficients. The computer algebra system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

TRIP dedicated to celestial mechanics supports several rep-
resentations for the multivariate sparse polynomials in the
computer’s memory, such as recursive forms or distributed
forms optimized for celestial mechanics. TRIP could handle
floating-point numbers (hardware double-precision, multiple
precision), integer or rational numbers. The multiplication
of polynomials using burst-tries was investigated on multi-
ple processors [7] but it suffers from the merge step of the
burst-tries that prevents a good scalability. In the first part,
we present an efficient implementation of the multiplication
of the multivariate sparse polynomials using the recursive
form.

As the operator Poisson bracket on the multivariate sparse
polynomials is widely used during the studies of the dynam-
ical systems, Roldan demonstrated that this operator could
benefit of the distributed architectures using MPI [18]. But a
linear speedup was obtained only on few nodes for the com-
putation on the homogeneous polynomials. In this paper,
we present, for the shared memory architectures, a parallel
implementation of the Poisson bracket on any sparse poly-
nomials.

2. DATA AND PARALLEL COMPUTATIONS

2.1 Polynomials representation
The multivariate polynomials could be represented in the

memory using different data structures to keep them in a
canonical form [22, 6]. Instead of using a distributed form,
the polynomials are stored in a recursive container into the
main memory of the computer. The multivariate polynomial
in n variables is considered as a polynomial in one variable
with coefficients in the polynomial ring in n − 1 variables.
These recursive data structure could be a recursive list or
recursive dense vector, such as the containers implemented
in the computer algebra system TRIP.

Each element of the recursive singly-linked list contains
the exponent and the non-zero coefficients. These coeffi-
cients are in the polynomial ring in n − 1 variables and are
also recursive lists. As most problems need not large expo-
nents, the exponents are encoded using hardware integers,
e.g. signed 32-bit integers in TRIP. Figure 1(a) shows the
representation of a multivariate polynomial as a recursive list
which is used in TRIP. If a variable is not present in a term,
this variable is missing in the representation (e.g., the vari-
able y is not present in the term 8x2z2 as shown in Fig. 1(a)).
The complexity in search/insertion is in O(

Pn
k=1 deg(xk)).

All polynomials could be represented in this structure.

44

X 0 1 2 4 9

Y 0 1 Y 1 Z 2 8

Z 0 3 1 5 3 7 Z 011 1 9 Z 113

generic G G G N

generic generic GG G Ngeneric

NNNNNNgeneric generic generic

(a) recursive list (sparse generic)

X 0 4 9

Y 0 1 Y 1 Z 2 8

0

Z 0 3 03 7 Z 0 111 9 Z 1 13

21

5 1

G G NNG

G G G N

N N NN N N N

generic

generic generic generic

generic generic generic

(b) recursive vector (dense generic)

Figure 1: representation of the polynomial
P (x, y, z) = 3 + 5z+ 7z3 + 11y+ 9yz+ 13xyz+ 8x2z2 + 9x4

using generic container with the lexicographic order.
The type information is G for generic container and
N for numerical coefficient.

The elements stored in the containers could be a poly-
nomial or a numerical coefficient. For example in figures
1(a) and 1(b), the coefficient of x0 is a polynomial and the
coefficient of x4 is a numerical value. To handle these dif-
ferent data types, the generic container requires additional
information to determine the type of stored data. So each
coefficient of the list is composed of two fields, type and
value. This type field could be hidden if a polymorphic ap-
proach is used but, in this case, this type information is
still present inside the value of the coefficient. During the
computation, these generic containers require additional pro-
cessing to check the data type of each element and select the
appropriate algorithm. TRIP 1.0 encodes all coefficients in
a generic container, even in the leaf nodes.

The recursive dense representation is similar to the previ-
ous one. The lists of tuple (degree, coefficient) is replaced
by a vector of coefficients. All coefficients are stored in the
array even the zero coefficients between the minimal and
maximal degree. This minimal and maximal degree are kept
in the header of the vector. Figure 1(b) shows the repre-
sentation of a multivariate polynomial as a recursive vector
which is used in TRIP. The complexity of the search and
insertion algorithm is in O(n) which is very efficient even for
large polynomials. But this representation is not optimized
for high degrees because the memory footprint of the vec-
tor becomes very large in some cases, such as 1 + x1000. In
both representations, each container stores in its header the

X 0 1 2 4 9

Y 0 1 Y 1 Z 2 8

Z 0 3 1 5 3 7 Z 011 1 9 Z 113

generic G G O N

generic generic OO O

optimizedoptimized optimized

optimized

(a) recursive list (sparse optimized)

X 0 4 9

Y 0 1 Y 1 Z 2 8

0

21

G O NNG

O O O

generic

generic generic optimized

Z 0 3 03 7 Z 0 111 9 Z 1 135 1
optimized optimized optimized

(b) recursive vector (dense optimized)

Figure 2: representation of the polynomial
P (x, y, z) = 3 + 5z+ 7z3 + 11y+ 9yz+ 13xyz+ 8x2z2 + 9x4

using optimized container with the lexicographic or-
der. The type information is G for generic container,
O for optimized container and N for numerical coef-
ficient.

number of monomials with non-zero number coefficients in
the full expanded form of the polynomial represented at that
node (e.g., root containers of Fig. 1 and 2 store 8 as number
of monomials).

Nevertheless, the leaf nodes contain always only numerical
coefficients. To solve this bottleneck in TRIP 1.1, the leaf
containers store only a single type of objects. So the type
field is removed from the elements of the vector or list in
the leaf nodes. This reduces the memory usage proportion-
ately to the number of terms and reduces time consumption
to check the data type. Figures 2(a) and 2(b) show the
recursive list and vector representations with an optimized
container for the leaf nodes. Afterwards, in the following
examples, the recursive vector, respectively list, represen-
tation with a generic container for the leaf nodes is called
dense generic, respectively sparse generic. The recursive
vector, respectively list, representation with an optimized
container for the leaf nodes is called dense optimized, re-
spectively sparse optimized.

2.2 Memory management
As the polynomials stored into these data structures could

create many small objects in the main memory, the mem-
ory management could become a bottleneck for the scala-
bility on a computer with multiple cores [2]. PARSAC-2
[13] organizes memory in pages but its available pages are

45

protected by a global lock. To handle these objects, we use
two lock-free memory allocators, for fixed-size or any-size
objects, based on [19] and [7]. The fixed-size objects, such
as elements of the recursive list, do not require a header
before the objects. Each thread has its own heap. They
always allocate from their heap without locks. The “free”
operation is more complex. If the memory was allocated
by the same thread, this one released the memory without
lock. If the memory was allocated by another thread, the ad-
dress is pushed into a LIFO list of the distant heap using the
lock-free techniques. The access from the cores to the main
memory could be non uniform, such as on the Intel Xeon Ne-
halem processors. To hide the latency of the main memory
accesses, the cores of the processors share the cache memory,
which could have several megabytes. On these Non-Uniform
Memory Architectures (NUMA), the allocators take care of
allocating the memory on the same local node.

2.3 Parallel work
Nowadays, desktop computers have between 2 and 8 cores

and server computers could have up to 24 cores or more.
So the computation on the sparse polynomials could benefit
from these multiple cores and could be split between these
cores. A static split between them could not be performed
because the recursive form could be irregular and unbalanced
load occurs. Virtual tasks [20], based on S-threads [12] allow
to parallelize algorithms, such as Karatsuba’s method. The
S-threads is based on the fork-join approach which have a
significant overhead. In TRIP, a task stealing model, similar
to the work stealing model [4], is thus used to balance the
load and minimize the overhead. A pool of threads is cre-
ated at the beginning of the execution of the session. Their
number is equal to the number of available cores. At the
beginning, these threads are in an idle state. Each paral-
lelized task is divided into small tasks which are pushed into
a LIFO queue owned by the thread. If a thread becomes idle,
it looks to the queues of the other threads and steals a task
if it is available. Our task stealing implementation is similar
to the Intel Threading Building Blocks [17] to abstract the
decomposition of loops in several tasks.

3. MULTIPLICATION
Some symmetries are present in celestial mechanics, such

as d’Alembert relations in the planetary motion [14], and im-
plies that sparse series are manipulated. The degree of these
series are low during some computations, such as the com-
putation of the Hamiltonian in the Restricted Three Body
Problem [11]. Due to these sparse series and low degrees,
the naive (term by term) algorithm of the multiplication is
used instead of the fast methods, such as FFT or evalua-
tion/interpolation.

3.1 Recursive dense
The product of 2 recursive dense multivariate polynomials

A and B could be done in the same way as for the univariate
case.

A(x1, ..., xn) =
X
i

ai(x2, ..., xn).xi1

B(x1, ..., xn) =
X
j

bj(x2, ..., xn).xj1

C = A×B =
X
k

ck(x2, ..., xn).xk1

Algorithm 1: FMA(A,B,C). Compute the fused
multiplication-addition C ← C + A × B. A,B and
C are multivariate polynomials represented using a re-
cursive sparse or dense structure.

Input: A =
P
aix

i
a

Input: B =
P
bjx

j
b

Input: C =
P
ckx

k
c

Output: C =
P
c′kx
′k
c

// compare order of variables

if xa < xb then FMAcst (A,B,C)
else if xa > xb then FMAcst (B,A,C)
else FMAsame (A,B,C)

Algorithm 2: FMAcst(A,B,C). Compute the fused
multiplication-addition C ← C + A × B for the re-
cursive dense representations. Assume xa < xb or A is a
numerical value.

Input: A =
Pdamax
i=damin

aix
i
a or A is a numerical value

Input: B =
Pdbmax
j=dbmin

bjx
j
b

nb = number of monomials in the expanded form of B
Input: C =

Pdcmax
k=dcmin

ckx
k
c

Output: C =
Pdc′max

k=dc′min
c′kx

k
c′

Data: Thres thresold integer to perform loop in
parallel

// Adds a polynomial
Pdbmax
j=dbmin

0× xjb inside C

1 D ← FindorInsertContainer (C, xb, dbmin, dbmax)

2 for j ← dbmin to dbmax
do in parallel if (Thres < nb)

3 FMA (a, bj , dj)

4 end
5 parallel barrier
6 Put C in canonical form if D = 0

where

ck =
X
i+j=k

aibj (1)

If the naive algorithm for the univariate case is applied
directly to the multivariate case, many data structures will
be briefly created in the main memory. Indeed, if the com-
putation of Eq. 1 is performed in two steps : d ← ai × bj
and ck ← ck + d, then each computation aibj generates a
recursive polynomial d in x2, ..., xn and, just after, its con-
tent is merged with the current content of ck. To avoid these
unnecessarily data structures, we use a Fused-Multiply-Add
algorithm for the multiplication of two polynomials.

The main algorithm 1 (FMA) checks the order of the most
factorized variable of A and B and selects the appropriate
algorithm. If A and B depend on the same main variable,
then the algorithm 3 (FMAsame dense) is used. In the other
cases, the algorithm 2 (FMAcst dense) is executed. The first
step of this two procedures prepares the addition through
the function FindorInsertContainer. This function finds or
inserts a container which receives a polynomial depending
on xb by taking care of the order of the variables. If xb is
not present in the recursive structure C, this function inserts
a vector depending on the variable xb. On the other hand, if
xb is present, the corresponding container is resized if neces-

46

Algorithm 3: FMAsame(A,B,C). dense. Compute the
fused multiplication-addition C ← C + A × B for the
recursive dense representations. Assume xa = xb.

Input: A =
Pdamax
i=damin

aix
i
a

na = number of monomials in the expanded form of A
Input: B =

Pdbmax
j=dbmin

bjx
j
b

nb = number of monomials in the expanded form of B
Input/Output: C polynomial
Data: Thres thresold integer to perform loop in

parallel

// Adds a polynomial
Pdabmax
j=dabmin

0× xjb inside C

1 dabmin ← damin + dbmin
2 dabmax ← damax + dbmax
3 D ← FindorInsertContainer (C, xb, dabmin, dabmax)

// Computation

4 for k ← dabmin to dabmax
do in parallel if (Thres < na × nb)

5 for j ∈ [damin, damax] and k − j ∈ [dbmin, dbmax]
do

6 FMA (aj , bk−j , dk)

7 end

8 end
9 parallel barrier

10 Put C in canonical form if D = 0

sary. For example, if we need to insert a polynomial
P12
j=9 x

j

inside P (Figure 2(b)), the root container will be resized to
the dimension (0,12) and the function returns a reference to
this container. Second example, we need to insert

P5
j=1 y

j

at the location x4 inside P , the processing moves the nu-
merical value 9 from location x4 to the location 0 of a new
container for y with a dimension (0,5), references this new
container at the location of x4 in the root container and re-
turns the reference to new container. The worst case for this
type of algorithm occurs when they are many cancelations,
such as in (1 + x+ y)(1− x− y).

The second step of both procedures performs the compu-
tation of the dk term by term. As the dk could be computed
independently [21], the outer loops of FMAsame (line 4) and
FMAcst (line 2) could be easily parallelized. Only a syn-
chronization barrier is required after the loop between the
threads which process the body loop. This parallelization is
done using the task-stealing model. Each different value of
the counter loop k corresponds to a task. If the computation
of the dk is shared at each recursive step, the granularity is
too fine and the cost of the stealing dominates largely the
coefficients’ arithmetic and the memory management. To
avoid this problem, the coefficients are computed in paral-
lel only if A and B have enough terms. This threshold is
based on the product of their number of terms, which is the
number of monomials in the full expanded form of the poly-
nomial represented at that node. That is the reason why the
number of monomials inside the children vectors is stored at
each level of the recursive data structure. If this threshold
is too small, performance degradation happens as shown in
Fig. 3.

3.2 Recursive sparse
A similar Fused-Multiply-Add algorithm is used to reduce

the memory management of the list. The recursive sparse

Algorithm 4: FMAsamelarge(A,B,C). sparse. Compute
the fused multiplication-addition C ← C + A × B for
the recursive sparse representations. Assume xa = xb
and sa × sb is large.

Input: A =
P
i aix

i
a , sa = number of elements(A),

na = number of monomials in the expanded form of A
Input: B =

P
j bjx

j
b , sb = number of elements(B),

nb = number of monomials in the expanded form of B
Input/Output: C polynomial
Data: Thres thresold integer to perform loop in

parallel

// Adds a polynomial
P
j 0× xjb inside C

1 D ← FindorInsertContainer (C, xb)

// Computation

2 foreach element {δa, aδa} in A do
3 foreach element {δb, bδb} in B do
4 δd ← δa + δb
5 dδd ← Find/insert an element of degree δd in D
6 do in parallel if (Thres < na × nb)
7 FMA (aδa , bδb , dδd)
8 end

9 end
10 parallel barrier

11 end
12 Put C in canonical form if D = 0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

number of cores

1.107

5.106

1.106

5.106

1.105

Figure 3: Speedup to compute and expand f × g
with f = (1 + x + y + z + t)30 and g = f + 1 using the
recursive dense representation for several threshold
to stop the work stealing.

representation uses the same algorithms 1 (FMA) and 2
(FMAcst) as the dense case. As the singly-linked lists are
used to store the coefficients, the computation inside the pro-
cedure FMAsame cannot be done in the same way as for the
dense case, except if the number of elements in the list of

47

Algorithm 5: FMAsamesmall(A,B,C). sparse. Com-
pute the fused multiplication-addition C ← C +A×B
for the recursive sparse representations. Assume xa = xb
and sa × sb is small.

Input: A =
P
i aix

i
a , sa = number of elements(A),

na = number of monomials in the expanded form of A
Input: B =

P
j bjx

j
b , sb = number of elements(B),

nb = number of monomials in the expanded form of B
Input/Output: C polynomial
Data: Thres thresold integer to perform loop in

parallel

// Adds a polynomial
P
j 0× xjb inside C

1 D ← FindorInsertContainer (C, xb)

2 Copy references of root elements of A in a vector Va
3 Copy references of root elements of B in a vector Vb
4 Draw up the list of computed degree from VA and Vb

inside a vector E (maximal size sa × sb).
// Computation

5 foreach element of degree k in E do
6 dk ← Find/insert an element of degree k in D
7 do in parallel if (Thres < na × nb)
8 forall the i+ j = k do
9 FMA (ai, bj , dk)

10 end

11 end

12 end
13 parallel barrier
14 Put C in canonical form if D = 0

A and B are small. The algorithm FMAsame for the sparse
case just selects the appropriate algorithm 5 (FMAsames-
mall) or 4 (FMAsameslarge) depending on the number of
terms in A and B.

If the number of elements in the list of A and B are large,
the loop (line 5) of FMAsame (dense) cannot be done with
singly-linked lists. Indeed, this requires many traversals of
the polynomial B to get the coefficient bk−j . Therefore, the
coefficients dk are computed using a double loop over the
list of A and B in the algorithm 4 (FMAsamelarge). In
order to find or insert dk into the list D, the traversal from
the beginning of D is not performed at each computation of
aibj . Instead, as the result of aibj is stored after aibj−1, the
last position in D is kept for the next search or insertion.

The outer loop (line 2) of the algorithm 4 could not be
parallelized because dk could be accessed at the same time
by different iterations, e.g. aibj and ai+1bj−1 access to the
same location di+j . However, as the di + aib0, di+1 + ajb1,
di+2+ajb2, . . . could be computed independently and writes
to a different location inD, the inner FMA statement (line 7)
is parallelized. A synchronization barrier is added before the
next iteration (i+1) of the outer loop. As for the dense case,
the splitting of the work in several parallel tasks is stopped
if A and B have not enough terms (number of monomials in
the distributed representation). A similar value, as the dense
thresold, has been found for the sparse representation.

If the number of elements in the list of A and B are small,
which is the case in most of the series used in the perturba-
tion theories, the usage of barrier could be reduced. The fol-
lowing optimization is done in the algorithm 5 (FMAsames-
mall). Using the stack frame to avoid memory allocation, the

Intel Xeon computer
Processor 2 Intel Xeon X5570 quad-core
Total number of cores 8
Total number of threads 16 (hyper-threading)
L3 Cache Size 8 Mbytes by processor
Memory 32 Gbytes
Operating System Linux kernel 2.6 - glibc 2.5
Compiler Intel C++ 10.1 64 bits
Library GMP 4.2.4

Intel Itanium2 computer
Processor 4 Intel Itanium2 9040 dual-core
Total number of cores 8
L3 Cache Size 18 Mbytes by processor
Memory 16 Gbytes
Operating System Linux kernel 2.6 - glibc 2.3
Compiler Intel C++ 10.1 64 bits
Library GMP 4.2.4

Table 1: Description of the computers used in the
benchmarks

example 1 example 2
representation time memory time memory
Maple 13 1943.70 473 2310.23 10152
Singular 3.1.1 720.18 68.55 398.86 3935
SDMP 58.35 40.20 13.27 1291
TRIP 1.0
vector 71.09 41.75 35.95 2041
list 72.88 52.55 22.68 2321
TRIP 1.1
generic dense 55.02 41.25 22.47 2023
generic sparse 63.20 52.05 19.64 2304
optimized dense 22.54 31.13 19.63 1477
optimized sparse 29.53 41.92 16.54 1850

Table 2: Sequential execution timing expressed
in seconds and memory consumption expressed in
Mbytes. The numerical coefficients are integers
numbers (GMP or hardware integers). The compu-
tations are performed on the Intel Xeon computer.

references of the elements of list A and B are thus copied
into small vectors. It switches to a similar algorithm as the
dense case to compute independently the coefficient dk. The
threshold limit for the size of the list, that is the product of
the number of elements of A and B, is fixed to 2000 in order
to use not too much stack memory.

3.3 Benchmarks
The following benchmarks have been selected to test our

implementation of the multiplication. These benchmarks are
due to Fateman in [6] and Monagan and Pearce in [16].

• Example 1 : f × g with f = (1 + x + y + z + t)30

and g = f + 1. f ang g have 46376 terms. The result
contains 635376 terms. This example is very dense.

• Example 2 : f×g with f = (1+x+y+2z2+3t3+5u5)16

and g = (1 + u + t + 2z2 + 3y3 + 5x5)16. f and g
has 20349 terms. The result contains 28398035 terms.
This example is very sparse. As shown in [16], a linear
speedup is quite difficult to obtain on this example.

48

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of threads

(a) example 1 (dense)

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10

sp
ee

du
p

number of threads

1.1 generic dense
1.1 generic sparse

1.1 optimized dense
1.1 optimized sparse

1.0 generic dense
1.0 generic sparse

SDMP

(b) example 2 (sparse)

Figure 4: Speedup to compute the examples on the
Intel Xeon computer.

Table 1 describes the computer and software used to per-
form the benchmarks. In the sequential case, our algorithms
are implemented in TRIP 1.1 and are compared to the com-
puter algebra systems (Maple and Singular [10]) and to the
existing software (SDMP library and TRIP 1.0) optimized
for the sparse polynomials on shared memory computers.
Table 2 shows the sequential execution timing and mem-
ory usage on the previous examples. The SDMP library
stores the polynomials in a distributed form with packed ex-
ponents. The SDMP package performs the multiplication

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

number of threads

(a) example 1 (dense)

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

number of threads

1.1 generic dense
1.1 generic sparse

1.1 optimized dense
1.1 optimized sparse

1.0 generic dense
1.0 generic sparse

(b) example 2 (sparse)

Figure 5: Speedup to compute the examples on the
Intel Itanium2 computer.

using a binary heap to sort the terms. TRIP 1.0 uses al-
most the same algorithm as the version 1.1 but splits the
work only on the most factorized variable and does not take
in account the number of terms in the children containers.
This limitation could produce unbalanced-load if the data
structure is very irregular. TRIP 1.0 uses the GNU MP
Bignum Library (GMP)[9] to handle the integer or rational
numbers. However, SDMP handles integers using hardware
registers when these integers are small and comes back to
the GNU MP library only when they grow [15]. TRIP 1.1

49

implements the same improvement for the integers smaller
than 263−1 on 64-bit computers. This optimization for small
integers reduces the computation timing by a factor up to
2 on example 1 but it has less impact on example 2. The
specialized container for the leaf nodes of the recursive form
strongly improves the computation timings. The SDMP li-
brary has better timings and uses less memory on example
2 because it uses hardware integers up to 192 bits for the
accumulation during the intermediate computations.

As shown in Fig. 4(a), the SDMP library has a super lin-
ear speedup due to its threads work on their binary heaps
which fits in the cache memory. The optimized container
in TRIP has a linear speedup up to 8 threads, except for
the list container of the version 1.0. The presence of the
hyper-threading improves the speedup up to 17% for SDMP
and for the optimized containers in TRIP if we increase the
number of threads to 16. The figure 5(a) shows the same
computation on the computer Itanium with 8 cores with-
out SDMP as this library is not available on the Itanium2
computer.

The SDMP library has only a speedup of 2 with 5 threads
on the Xeon processor when it computes example 2, as shown
in Fig. 4(b). With more threads, the speedup of SDMP de-
creases. TRIP 1.0 has the same difficulty to scale on this
computer and on the Itanium computer, confirming the re-
sults founded in [16]. With the improvement of the job dis-
patching, the vector and list container of TRIP 1.1 have a
speedup of about 6.7 with 8 threads. But it does not bene-
fit of the hyper-threading with more threads, as this exam-
ple requires more memory management. Indeed, this sparse
example implies many memory operations with the recur-
sive representations. Figure 5(b) shows that TRIP 1.1 has
a linear speedup up to 8 cores on the Itanium2 and takes
advantage of the larger cache.

The memory allocator could have a large impact on the
execution time and on the memory foot print. Indeed, the
speedup of example 2, which requires many memory allo-
cations with the recursive form, drops to only 5.44 and the
memory footprint is about bigger by half on 8 cores if the op-
erating system allocator is used, as shown in Table 3. Even if
the vector representation is used, similar impacts on the ex-
ecution timings occur due to the resizing step (reallocation)
of the vectors.

allocator threads time memory
8 8.5 (8.11x) 1851

TRIP 4 15.9 (4.33x) 1851
1 68.7 (1x) 1841
8 15.3 (5.44x) 3448

Operating System 4 22.1 (3.77x) 3536
1 83.3 (1x) 2724

Table 3: Execution timing and memory usage on the
example 2 for different memory allocators on the Ita-
nium2 computer using the optimized sparse represen-
tation. Timings are expressed in seconds and mem-
ory consumption expressed in Mbytes.

4. POISSON BRACKET
The equations describing a dynamical system are often ex-

pressed using the Hamiltonian formulation [1]. The Hamilto-
nian form H(p, q), where p are the conjugate momenta of q,

+

+

-

∂f

∂p1

∂g

∂q1

x

∂f

∂q1

∂g

∂p1

x

-

-

x x

...... ∂f

∂qn

∂f

∂pn

∂g

∂pn

∂g

∂qn

Figure 6: Tasks involved in the parallelization of the
Poisson bracket.

is a function that verifies the following differential equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p

The Poisson bracket of the two functions f(p, q) and g(p, q)
is defined as

{f, g} =
X
k

„
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

«
(2)

This Poisson bracket is an important operator to compute
the canonical transformations [5]. Indeed, this operator is
intensively used for the computation of the normal forms
and for the Lie series.

The summation in the Poisson bracket could be viewed
as a summation reduction operation of the computing task“
∂f
∂qk

∂g
∂pk
− ∂f

∂pk

∂g
∂qk

”
. The four derivations of this task could

be computed independantly followed by the two products.
Even if the addition of the two series has a low complexity
against the multiplication complexity, the addition becomes
a bottleneck in the scalability. So the addition of the poly-
nomials is parallelized. Figure 6 shows the tasks involved in
the parallelization of the Poisson bracket.

To test the scalability of the implementation of these al-
gorithms, we select the two following examples. The first
example, called example 3, is the computation of the pois-
son bracket of two almost dense polynomials in 6 variables,
f(p1..3, q1..3) and g(p1..3, q1..3) where

f = (1 + p1 + q1 + p2 + q2 + p3 + q3)12

g = (1 + p2
1 + q2

1 + p2
2 + q2

2 + p2
3 + q2

3)12

The second example, called example 4, is the computation
of the Poisson bracket of two almost sparse polynomials in
6 variables, H14(p1..3, q1..3) and G14(p1..3, q1..3) where H14

and G14 are the homogeneous polynomials of the degree 14.
Instead of taking all coefficients in the monomial sets of the
degree 14 (11628 monomials) for these homogeneous polyno-
mials, we set some terms to 0 in order to have a sparse poly-

50

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

number of threads

1.1 generic dense
1.1 generic sparse

1.1 optimized dense
1.1 optimized sparse

Figure 7: Speedup to compute the Poisson bracket
of the example 3 on the Intel Itanium2 computer.

nomial1. So, H14 has 7722 terms and G14 has 5832 terms.
The Poisson bracket of H14 and G14 has 142050 terms. Fig-
ures 7 and 8 show the speedup of the Poisson bracket on
the Intel Itanium2 computer. The speedups of the recursive
vector representations are almost linear on the two exam-
ples. On the example 4, the recursive list representations
have the same behavior but their speedups are only about
5 with 8 threads on the example 3. This smaller speedup
is due to many cancellations that occur during the addition
step which requires more memory management for the ele-
ments of the lists. Similar behaviors have been obtained on
the Intel Xeon computer.

5. CONCLUSION
The parallelization of the Poisson bracket benefits from

the multiple threads but the recursive list representations
do not have a linear speedup if many cancellations occur
during the addition step. Recursive representations could
exploit efficiently the multicore processors and obtain linear
speedups for the multiplication of sparse polynomials if a
dynamic scheduling, such as work stealing, is used to perform
the load-balancing between the cores, even on the NUMA
computers.

1The coefficients of the monomials qd11 pd̄11 qd22 pd̄22 qd33 pd̄33 are
set to 0 if such that

3X
j=1

dj − d̄j
!

mod 3 = 0 for H14
3X
j=1

dj − d̄j
!

mod 4 = 0 for G14

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

number of threads

1.1 generic dense
1.1 generic sparse

1.1 optimized dense
1.1 optimized sparse

Figure 8: Speedup to compute the Poisson bracket
of the example 4 on the Intel Itanium2 computer.

6. REFERENCES
[1] V. I. Arnol’d. Mathematical methods of classical

mechanics, volume 60 of Graduate Texts in
Mathematics. Translated from the Russian by K.
Vogtmann and A. Weinstein, Springer-Verlag, New
York, NY, USA, second edition edition, 1989.

[2] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: a scalable memory allocator for
multithreaded applications. SIGPLAN Not.,
35(11):117–128, 2000.

[3] F. Biscani. Design and implementation of a modern
algebraic manipulator for Celestial Mechanics. PhD
thesis, Centro Interdipartimentale Studi e Attivita
Spaziali,Universita degli Studi di Padova, Padova, May
2008.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J.
ACM, 46(5):720–748, 1999.

[5] J. R. Cary. Lie transform perturbation theory for
hamiltonian systems. Physics Reports, 79(2):129–159,
12 1981.

[6] R. Fateman. Comparing the speed of programs for
sparse polynomial multiplication. SIGSAM Bull.,
37(1):4–15, 2003.

[7] M. Gastineau and J. Laskar. Development of trip: Fast
sparse multivariate polynomial multiplication using
burst tries. Computational Science –ICCS 2006, pages
446–453, 2006.

[8] M. Gastineau and J. Laskar. TRIP 1.0. TRIP
Reference manual, IMCCE, Paris Observatory, 2009.
http://www.imcce.fr/trip/.

[9] T. Granlund. GNU multiple precision arithmetic
library 4.2.4, September 2008. http://swox.com/gmp/.

[10] G.-M. Greuel, G. Pfister, and H. Schönemann.
Singular 3-1-0 — A computer algebra system for

51

polynomial computations, 2009.
http://www.singular.uni-kl.de.

[11] A. Jorba. A methodology for the numerical
computation of normal forms, centre manifolds and
first integrals of hamiltonian systems. Experiment.
Math., 8(2):155–195, 1999.

[12] W. Küchlin. The s-threads environment for parallel
symbolic computation. Computer Algebra and
Parallelism, pages 1–18, 1992.

[13] W. Kuechlin. Parsac-2: A parallel sac-2 based on
threads. Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, pages 341–353, 1991.

[14] J. Laskar. Accurate methods in general planetary
theory. Astronomy Astrophysics, 144:133–146, Mar.
1985.

[15] M. Monagan and R. Pearce. Sparse polynomial pseudo
division using a heap. Submitted to ’Milestones in
Computer Algebra’, J. Symb. Comput., September
2008.

[16] M. Monagan and R. Pearce. Parallel sparse polynomial
multiplication using heaps. In ISSAC ’09: Proceedings
of the 2009 international symposium on Symbolic and
algebraic computation, pages 263–270, New York, NY,
USA, 2009. ACM.

[17] J. Reinders. Intel threading building blocks. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2007.

[18] P. Roldán. Analytical and numerical tools for the study
of normally hyperbolic invariant manifolds in
Hamiltonian systems and their associated dynamics.
PhD thesis, Departament de Matemàtica Aplicada I,
ETSEIB-UPC., Avda. Diagonal 647, 08028 Barcelona,
Spain, November 2007.

[19] S. Schneider, C. D. Antonopoulos, and D. S.
Nikolopoulos. Scalable locality-conscious
multithreaded memory allocation. In ISMM ’06:
Proceedings of the 5th international symposium on
Memory management, pages 84–94, New York, NY,
USA, 2006. ACM.

[20] W. Schreiner. Virtual tasks for the paclib kernel.
Parallel Processing: CONPAR 94 —VAPP VI, pages
533–544, 1994.

[21] P. S. Wang. Parallel polynomial operations on smps:
an overview. J. Symb. Comput., 21(4-6):397–410, 1996.

[22] F. Winkler. Polynomial Algorithms in Computer
Algebra. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1996.

52

Parallel Computation of the Minimal Elements of a Poset

Charles E. Leiserson
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
cel@mit.edu

Liyun Li
University of Western Ontario
London ON, Canada N6A 5B7

lli287@csd.uwo.ca

Marc Moreno Maza
University of Western Ontario
London ON, Canada N6A 5B7

moreno@csd.uwo.ca

Yuzhen Xie
University of Western Ontario
London ON, Canada N6A 5B7

yxie@csd.uwo.ca

ABSTRACT
Computing the minimal elements of a partially ordered finite set
(poset) is a fundamental problem in combinatorics with numerous
applications such as polynomial expression optimization, transver-
sal hypergraph generation and redundant component removal, to
name a few. We propose a divide-and-conquer algorithm which is
not only cache-oblivious but also can be parallelized free of deter-
minacy races. We have implemented it in Cilk++ targeting multi-
cores. For our test problems of sufficiently large input size our code
demonstrates a linear speedup on 32 cores.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and vector implementa-
tions; G.2.2 [Graph Theory]: Hypergraphs

General Terms
Algorithms, Theory

Keywords
Partial ordering, minimal elements, multithreaded parallelism, Cilk,
polynomial evaluation, transversal hypergraph

1. INTRODUCTION
Partially ordered sets arise in many topics of mathematical sci-

ences. Typically, they are one of the underlying algebraic structures
of a more complex entity. For instance, a finite collection of alge-
braic sets V = {V1, . . . , Ve} (subsets of some affine space Kn

where K is an algebraically closed field) naturally forms a partially
ordered set (poset, for short) for the set-theoretical inclusion. Re-
moving from V any Vi which is contained in some Vj for i 6= j is
an important practical question which simply translates to comput-
ing the maximal elements of the poset (V,⊆). This simple problem
is in fact challenging since testing the inclusion Vi ⊆ Vj may re-
quire costly algebraic computations. Therefore, one may want to
avoid unnecessary inclusion tests by using an efficient algorithm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

for computing the maximal elements of the poset (V,⊆). However,
this problem has received little attention in the literature [6] since
the questions attached to algebraic sets (like decomposing polyno-
mial systems) are of much more complex nature.

Another important application of the calculation of the minimal
elements of a finite poset is the computation of the transversal of a
hypergraph [2, 12], which itself has numerous applications, like
artificial intelligence [8], computational biology [13], data min-
ing [11], mobile communication systems [23], etc. For a given hy-
pergraph H, with vertex set V , the transversal hypergraph Tr(H)
consists of all minimal transversals ofH: a transversal T is a subset
of V having nonempty intersection with every hyperedge ofH, and
is minimal if no proper subset of T is a transversal. Articles dis-
cussing the computation of transversal hypergraphs, as those dis-
cussing the removal of the redundant components of an algebraic
set generally take for granted the availability of an efficient routine
for computing the maximal (or minimal) elements of a finite poset.

Today’s parallel hardware architectures (multi-cores, graphics pr-
ocessing units, etc.) and computer memory hierarchies (from pro-
cessor registers to hard disks via successive cache memories) en-
force revisiting many fundamental algorithms which were often de-
signed with algebraic complexity as the main complexity measure
and with sequential running time as the main performance counter.
In the case of the computation of the maximal (or minimal) ele-
ments of a poset this is, in fact, almost a first visit. Up to our knowl-
edge, there is no published papers dedicated to a general algorithm
solving this question. The procedure analyzed in [18] is specialized
to posets that are Cartesian products of totally ordered sets.

In this article, we propose an algorithm for computing the mini-
mal elements of an arbitrary finite poset. Our motivation is to ob-
tain an efficient implementation in terms of parallelism and data lo-
cality. This divide-and-conquer algorithm, presented in Section 2,
follows the cache-oblivious philosophy introduced in [9]. Refer-
ring to the multithreaded fork-join parallelism model of Cilk [10],
our algorithm has work O(n2) and span (or critical path length)
O(n), counting the number of comparisons, on an input poset of
n elements. A straightforward algorithmic solution with a span
of O(log(n)) can be achieved in principle. This algorithm does
not, however, take advantage of sparsity in the output, where the
discovery that an element is nonminimal allows it to be removed
from future comparisons with other elements. Our algorithm elim-
inates nonminimal elements immediately so that no work is wasted
by comparing them with other elements. Moreover, our algorithm
does not suffer from determinacy races and can be implemented in
Cilk with sync as the only synchronization primitive. Experimen-
tal results show that our code can reach linear speedup on 32 cores
for n large enough.

53

In several applications, the poset is so large that it is desirable
to compute its minimal (or maximal) elements concurrently to the
generation of the poset itself, thus avoiding storing the entire poset
in memory. We illustrate this strategy with two applications: poly-
nomial expression optimization in Section 4 and transversal hyper-
graph generation in Section 5. In each case, we generate the poset
in a divide-and-conquer manner and at the same time we compute
its minimal elements. Since, for these two applications, the num-
ber of minimal elements is in general much smaller than the poset
cardinality, this strategy turns out to be very effective and allows
computations that could not be conducted otherwise.

This article is dedicated to Claude Berge (1926 - 2002) who in-
troduced the third author to the combinatorics of sets.

2. THE ALGORITHM
We start by reviewing the notion of a partially ordered set. Let
X be a set and � be a partial order on X , that is, a binary relation
on X which is reflexive, antisymmetric, and transitive. The pair
(X ,�) is called a partially ordered set, or poset for short. If A is
a subset of X , then (A,�) is the poset induced by (X ,�) on A.
When clear from context, we will often write A instead of (A,�).
Here are a few examples of posets:

1. (Z, |) where | is the divisibility relation in the ring Z of inte-
ger numbers,

2. (2S ,⊆) where⊆ is the inclusion relation in the ranked lattice
of all subsets of a given finite set S,

3. (C,⊆) where ⊆ is the inclusion relation for the set C of all
algebraic curves in the affine space of dimension 2 over the
field of complex numbers.

An element x ∈ X is minimal for (X ,�) if for all y ∈ X we
have: y�x ⇒ y = x. The set of the elements x ∈ X which are
minimal for (X ,�) is denoted by Min(X ,�), or simply Min(X).
From now on we assume that X is finite.

Algorithms 1 and 2 compute Min(X) respectively in a sequential
and parallel fashion. Before describing these algorithms in more de-
tails let us first specify the programming model and data-structures.
We adopt the multi-threaded programming model of Cilk [10]. In
our pseudo-code, the keywords spawn and sync have the same se-
mantics as the cilk_spawn and cilk_sync in the Cilk++ program-
ming language [15]. We assume that the subsets of X are imple-
mented by a data-structure which supports the following operations
for any subsets A,B of X :

Split: if |A| ≥ 2 then Split(A) returns a partition A−, A+ of A
such that |A−| and |A+| differ at most by 1.

Union: Union(A,B) accepts two disjoint sets A, B and returns C
where C = A ∪B;

In addition, we assume that each subset A of X , with k = |A|,
is encoded in a C/C++ fashion by an array A of size ` ≥ k. An
element in A can be marked at trivial cost.

In Algorithm 1, this data-structure supports a straight-forward
sequential implementation of the computation of Min(A), which
follows from this trivial observation: an element ai ∈ A is minimal
for � if for all j 6= i the relation aj � ai does not hold. However,
and unless the input data fits in cache, Algorithm 1 is not cache-
efficient. We shall return to this point in Section 3 where cache
complexity estimates are provided.

Algorithm 2 follows the cache-oblivious philosophy introduced
in [9]. More precisely, and similarly to the matrix multiplication

Algorithm 1: SerialMinPoset

Input : a poset A
Output : Min(A)

1 for i from 0 to |A|−2 do
2 if ai is unmarked then
3 for j from i+1 to |A|−1 do
4 if aj is unmarked then
5 if aj � ai then
6 mark ai and break inner loop;

7 if ai� aj then
8 mark aj ;

9 A← {unmarked elements in A};
10 return A;

Algorithm 2: ParallelMinPoset

Input : a poset A
Output : Min(A)

1 if |A| ≤MIN_BASE then
2 return SerialMinPoset(A);

3 (A−, A+)← Split(A);
4 A− ← spawn ParallelMinPoset(A−);
5 A+ ← spawn ParallelMinPoset(A+);
6 sync;
7 (A−, A+)← ParallelMinMerge(A−, A+);
8 return Union(A−, A+);

algorithm of [9], Algorithm 2 proceeds in a divide-and-conquer
fashion such that when a subproblem fits into the cache, then all
subsequent computations can be performed with no further cache
misses. However, Algorithm 2, and other algorithms in this paper,
use a threshold such that, when the size of the input is within this
threshold, then a base case subroutine is called. In principle, this
threshold can be set to the smallest meaningful value, say 1, and
thus Algorithm 2 is cache-oblivious. In a software implementation,
this threshold should be large enough so as to reduce parallelization
overheads and recursive call overheads. Meanwhile, this threshold
should be small enough in order to guarantee that, in the base case,
cache misses are limited to cold misses. In the implementation of
the matrix multiplication algorithm of [9], available in the Cilk++
distribution, a threshold is used for the same purpose.

In Algorithm 2, when |A| ≤ MIN_BASE, where MIN_BASE is
the threshold, Algorithm 1 is called. Otherwise, we partitionA into
a balanced pair of subsets A−, A+. By balanced pair, we mean
that the cardinalities |A−| and |A+| differ at most by 1. The two
recursive calls on A− and A+ in Lines 4 and 5 of Algorithm 2 will
compare the elements in A− and A+ separately. Thus, they can
be executed in parallel and free of data races. In Lines 4 and 5 we
overwrite each input subset with the corresponding output one so
that at Line 6 we haveA− = Min(A−) andA+ = Min(A+). Line
6 is a synchronization point which ensures that the computations
in Lines 4 and 5 complete before Line 7 is executed. At Line 7,
cross-comparisons between A− and A+ are made, by means of the
operation ParallelMinMerge of Algorithm 3.

We also apply a divide-and-conquer-with-threshold strategy for
this latter operation, which takes as input a pair B,C of subsets of
X , such that Min(B) = B and Min(C) = C hold. Note that this

54

pair is not necessarily balanced. This leads to the following four
cases in Algorithm 3, depending on the values of |B| and |C| w.r.t.
the threshold MIN_MERGE_BASE.

Case 1: both |B| and |C| are no more than MIN_MERGE_BASE.
We simply call the operation SerialMinMerge of Algorithm 4
which cross-compares the elements of B and C in order to
remove the larger ones in each ofB and C. The minimal ele-
ments from B and C are stored separately in an ordered pair
(the same order as in the input pair) to remember the prove-
nance of each result. In Cases 2, 3 and 4, this output spec-
ification helps clarifying the successive cross-comparisons
when the input posets are divided into subsets.

Algorithm 3: ParallelMinMerge

Input : B, C such that Min(B) = B and
Min(C) = C hold

Output : (E,F) such that E ∪ F = Min(B ∪ C),
E ⊆ B and F ⊆ C hold

1 if |B| ≤MIN_MERGE_BASE and
2 |C| ≤MIN_MERGE_BASE then
3 return SerialMinMerge(B,C);

4 else if |B| >MIN_MERGE_BASE and
5 |C| >MIN_MERGE_BASE then
6 (B−, B+)← Split(B);
7 (C−, C+)← Split(C);
8 (B−, C−)← spawn
9 ParallelMinMerge(B−, C−);

10 (B+, C+)← spawn
11 ParallelMinMerge(B+, C+);
12 sync;
13 (B−, C+)← spawn
14 ParallelMinMerge(B−, C+);
15 (B+, C−)← spawn
16 ParallelMinMerge(B+, C−);
17 sync;
18 return (Union(B−, B+),Union(C−, C+));

19 else if |B| >MIN_MERGE_BASE and
20 |C| ≤MIN_MERGE_BASE then
21 (B−, B+)← Split(B);
22 (B−, C)← ParallelMinMerge(B−, C);
23 (B+, C)← ParallelMinMerge(B+, C);
24 return (Union(B−, B+), C);

25 else
// |B| ≤ MIN_MERGE_BASE and
// |C| > MIN_MERGE_BASE

26 (C−, C+)← Split(C);
27 (B,C−)← ParallelMinMerge(B,C−);
28 (B,C+)← ParallelMinMerge(B,C+);
29 return (B,Union(C−, C+));

Case 2: both |B| and |C| are greater than MIN_MERGE_BASE.
We splitB and C into balanced pairs of subsetsB−, B+ and
C−, C+ respectively. Then, we recursively merge these 4
subsets, as described in Lines 8–14 in Algorithm 3. Merging
B−, C− and merging B+, C+ can be executed in parallel
without data races. These two computations complete half of

Algorithm 4: SerialMinMerge

Input : B, C such that Min(B) = B and
Min(C) = C hold

Output : (E,F) such that E ∪ F = Min(B ∪ C),
E ⊆ B and F ⊆ C hold

1 if |B| = 0 or |C| = 0 then
2 return (B,C);

3 else
4 for i from 0 to |B|−1 do
5 for j from 0 to |C|−1 do
6 if cj is unmarked then
7 if cj � bi then
8 mark bi and break inner loop;

9 if bi� cj then
10 mark cj ;

11 B ← {unmarked elements in B};
12 C ← {unmarked elements in C};
13 return (B,C);

the cross-comparisons between B and C. Then, we perform
the other half of the cross-comparisons between B and C by
merging B−, C+ and merging B+, C− in parallel. At the
end, we return the union of the subsets from B and the union
of the subsets from C.

Case 3, 4: either |B| or |C| is greater than MIN_MERGE_BASE,
but not both. Here, we split the larger set into two subsets
and make the appropriate cross-comparisons via two recur-
sive calls, see Lines 15–25 in Algorithm 3.

3. COMPLEXITY ANALYSIS AND EXPE-
RIMENTATION

We shall establish a worst case complexity for the work, the span
and the cache complexity of Algorithm 2. More precisely, we as-
sume that the input poset of this algorithm has n ≥ 1 elements,
which are pairwise incomparable for �, that is, neither x� y nor
y�x holds for all x 6= y. Our running time is estimated by count-
ing the number of comparisons, that is, the number of times that
the operation � is invoked. The costs of all other operations are
neglected. The principle of Algorithm 2 is similar to that of a par-
allel merge-sort algorithm with a parallel merge subroutine, which
might suggest that the analysis is standard. The use of thresholds
requires, however, a bit of care.

We introduce some notations. For Algorithms 1 and 2 the size of
the input is |A| whereas for Algorithms 3 and 4 the size of the input
is |B|+ |C|. We denote by W1(n), W2(n), W3(n) and W4(n) the
work of Algorithms 1, 2, 3 and 4, respectively, on an input of size
n. Similarly, we denote by S1(n), S2(n), S3(n) and S4(n) the
span of Algorithms 1, 2, 3 and 4, respectively, on an input of size
n. Finally, we denote byN2 andN3 the thresholds MIN_BASE and
MIN_MERGE_BASE, respectively.

Since Algorithm 4 is sequential, under our worst case assump-
tion, we clearly have W4(n) = S4(n) = Θ(n2). Similarly, we
have W1(n) = S1(n) = Θ(n2).

Observe that, under our worst case assumption, the cardinalities
of the input sets B,C differ at most by 1, when each of Algo-

55

rithms 3 and 4 is called. Hence, the work of Algorithm 3 satisfies:

W3(n) =

W4(n) if n ≤ N3

4W3(n/2) otherwise.

This implies: W3(n) ≤ 4log2(n/N3)N2
3 for all n. Thus we have

W3(n) = O(n2). On the other hand, our assumption implies that
every element of B needs to be compared with every element of C.
Therefore W3(n) = Θ(n2) holds. Now, the span satisfies:

S3(n) =

S4(n) if n ≤ N3

2S3(n/2) otherwise.

This implies: S3(n) ≤ 2log2(n/N3)N2
3 for all n. Thus we have

S3(n) = O(nN3). Moreover, S3(n) = Θ(n) holds for N3 = 1.
Next, the work of Algorithm 2 satisfies:

W2(n) =

W1(n) if n ≤ N2

2W2(n/2) +W3(n) otherwise.

This implies: W2(n) ≤ 2log2(n/N2)N2
2 + Θ(n2) for all n. Thus

we have W2(n) = O(nN2) + Θ(n2).
Finally, the span of Algorithm 2 satisfies:

S2(n) =

S1(n) if n ≤ N2

S2(n/2) + S3(n) otherwise.

Thus we have S2(n) = O(N2
2 +nN3). Moreover, forN3 = N2 =

1, we have S2(n) = Θ(n).
We proceed now with cache complexity analysis, using the ideal

cache model of [9]. We consider a cache of Z words where each
cache line hasLwords. For simplicity, we assume that the elements
of a given poset are packed in an array, occupying consecutive slots,
each of size 1 word. We focus on Algorithms 2 and 3, denoting by
Q2(n) and Q3(n) the number of cache misses that they incur re-
spectively on an input data of size n. We assume that the thresholds
in Algorithms 2 and 3 are set to 1. Indeed, Algorithms 1 and 4
are not cache-efficient. Both may incur Θ(n2/L) cache misses,
for n large enough, whereas Q2(n) ∈ O(n/L + n2/(ZL)) and
Q3(n) ∈ O(n2/(ZL)) hold, as we shall prove now. Observe first
that there exist positive constants α2 and α3 such that we have:

Q2(n) =

Θ(n/L+ 1) if n ≤ α2Z

2Q2(n/2) +Q3(n) + Θ(1) otherwise,

and:

Q3(n) =

Θ(n/L+ 1) if n ≤ α3Z

4Q3(n/2) + Θ(1) otherwise.

This implies: Q3(n) ≤ 4log2(n/(α3Z))Θ(Z/L) for all n, sinceZ ∈
Ω(L2) holds. Thus we have Q3(n) ∈ O(n2/(ZL)). We deduce:

Q2(n) ≤ 2kΘ(Z/L) +
Xi=k−1

i=0
2iQ3(n/2i) + Θ(2k)

where k = log2(n/(α2Z)). This leads to: Q2(n) ≤ O(n/L +
n2/(ZL)). Therefore, we have proved the following result.

PROPOSITION 1. Assume thatX has n ≥ 1 elements, such that
neither x� y nor y�x holds for all x, y ∈ X . Set the thresholds in
Algorithms 2 and 3 to 1. Then, the work, span and cache complexity
of Min(X), as computed by Algorithm 2, are Θ(n2), Θ(n) and
O(n/L+ n2/(ZL)), respectively.

We leave for a forthcoming paper other types of analysis such as
average case algebraic complexity. We turn now our attention to
experimentation.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing the minimal elements of 100,000 random natural numbers

Parallelism = 1001, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing the minimal elements of 500,000 random natural numbers

Parallelism = 4025, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 1: Scalability analysis for ParallelMinPoset by Cilkview

We have implemented the operation ParallelMinPoset of Algo-
rithm 2 as a template function in Cilk++. It is designed to work for
any poset providing a method Compare(ai, aj) that, for any two
elements ai and aj , determines whether aj � ai, or ai� aj , or ai
and aj are incomparable. Our code offers two data structures for
encoding the subsets of the poset X : one is based on arrays and the
other uses the bag structure introduced by the first Author in [20].

For the benchmarks reported in this section, X is a finite set of
natural numbers compared for the divisibility relation. For exam-
ple, the set of the minimal elements of X = {6, 2, 7, 3, 5, 8} is
{2, 7, 3, 5}. Clearly, we implement natural numbers using the type
int of C/C++. Since checking integer divisibility is cheap, we
expect that these benchmarks could illustrate the intrinsic parallel
efficiency of our algorithm.

We have benchmarked our program on sets of random natural
numbers, with sizes ranging from 50, 000 to 500, 000 on a 32-core
machine. This machine has 8 Quad Core AMD Opteron 8354 @ 2.2
GHz connected by 8 sockets. Each core has 64 KB L1 data cache
and 512 KB L2 cache. Every four cores share 2 MB of L3 cache.
The total memory is 128.0 GB. We have compared the timings with
MIN_BASE and MIN_MERGE_BASE being 8, 16, 32, 64 and 128
for different sizes of input. As a result, we choose 64 for both
MIN_BASE and MIN_MERGE_BASE to reach the best timing for

56

all the test cases.
Figure 1 shows the results measured by the Cilkview [14] scala-

bility analyzer for computing the minimal elements of 100, 000 and
500, 000 random natural numbers. The reference sequential algo-
rithm for the speedup is Algorithm 2 running on 1 core; the run-
ning time of this latter code differs only by 0.5% or 1% from the
C elision of Algorithm 2. On 1 core, the timing for computing the
minimal elements of 100, 000 and 500, 000 random natural num-
bers is respectively 260 and 6454 seconds, which is slightly better
(0.5%) than Algorithm 1. The number of minimal elements for
the two sets of random natural numbers is respectively 99, 919 and
498, 589. These results demonstrate the abundant parallelism cre-
ated by our divide-and-conquer algorithm and the very low parallel
overhead of our program in Cilk++. We have also used Cilkview to
check that our program is indeed free of data races.

4. POLYNOMIAL EXPRESSION OPTIMI-
ZATION

We present an application where the poset can be so large that
it is desirable to compute its minimal elements concurrently to the
generation of the poset itself, thus avoiding storing the entire poset
in memory. As we shall see, this approach is very successful for
this application.

We briefly describe this application which arises in the optimiza-
tion of polynomial expressions. Let f ∈ K[X] be a multivari-
ate polynomial with coefficients in a field K and with variables in
X = {x1, . . . , xn}. We assume that f is given as the sum of its
terms, say f =

P
m∈monoms(f) cmm, where monoms(f) denotes

the set of the monomials of f and cm is the coefficient of m in f .
A key procedure in this application computes a partial syntactic

factorization of f , that is, three polynomials g, h, r ∈ K[X], such
that f writes gh + r and the following two properties hold: (1)
every term in the product gh is the product of a term of g and a
term of h, (2) the polynomials r and gh have no common mono-
mials. It is easy to see that if both g and h are not constant and
one has at least two terms, then evaluating f represented as gh+ r
requires less additions/multiplications in K than evaluating f rep-
resented as

P
m∈monoms(f) cmm, that is, as the sum of its terms.

Consider for instance the polynomial f = ax + ay + az + by +
bz ∈ Q[x, y, z, a, b]. One possible partial syntactic factorization is
(g, h, r) = (a+b, y+z, ax) since we have f = (a+b)(y+z)+ax
and since the above two properties are clearly satisfied. Evaluating
f after specializing x, y, z, a, b to numerical values will amount to 9
additions and multiplications in Q with f = ax+ay+az+by+bz
while 5 are sufficient with f = (a+ b)(y + z) + ax.

One popular approach to reduce the size of a polynomial expres-
sion and facilitate its evaluation is to use Horner’s rule. This high-
school trick well-known for univariate polynomials is extended to
multivariate polynomials via different schemes [4, 21, 22, 5]. How-
ever, it is difficult to compare these extensions and obtain an opti-
mal scheme from any of them. Indeed, they all rely on selecting
an appropriate ordering of the variables. Unfortunately, there are
n! possible orderings for n variables, which limits this approach to
polynomials with moderate number of variables.

In [19], given a finite set M of monomials in x1, . . . , xn, the
authors propose an algorithm for computing a partial syntactic fac-
torization (g, h, r) of f such that monoms(g) ⊆ M holds. The
complexity of this algorithm is polynomial in |M|, n, d, t where d
and t are the total degree and number of terms of f , respectively.
One possible choice forM would consist in taking all monomials
dividing a term in f . The resulting base monomial set M would
often be too large since the targeted n and d in practice are respec-

tively in the ranges 4 · · · 16 and 2 · · · 10, which would lead |M| to
be in the order of thousands or even millions. In [19], the setM is
computed in the following way:

1. compute G the set of all non-constant gcd(m1,m2) where
m1,m2 are any two monomials of f , with m1 6= m2,

2. compute the minimal elements of G for the divisibility rela-
tion of monomials.

In practice, this strategy produces a more efficient evaluation repre-
sentation comparing to the Horner’s rule based polynomial expres-
sion optimization methods. However, there is an implementation
challenge. Indeed, in practice, the number of terms of f is often in
the thousands, which implies that |G| could be in the millions.

This has led to the design of a procedure presented through Al-
gorithms 5, 6, 7 and 8, where G and Min(G) are computed con-
currently in a way that the whole set G does not need to be stored.
The proposed procedure is adapted from Algorithms 1, 2, 3 and
4. The top-level routine is Algorithm 5 which takes as input a set
A of monomials. In practice one would first call this routine with
A = monoms(f). Algorithm 5 integrates the computation of G
andM (as defined above) into a “single pass” divide-and-conquer
process. In Algorithms 5, 6, 7 and 8, we assume that monomials
support the operations listed below, where m1,m2 are monomials:

• Compare(m1,m2) returns 1 if m1 divides m2 (that is, if
m2 is a multiple of m1) and returns −1 if m2 divides m1.
Otherwise, m1 and m2 are incomparable. This function im-
plements the partial order used on the monomials.

• Gcd(m1,m2) computes the gcd of m1 and m2.

In addition, we have a data-structure for monomial sets which sup-
port the following operations, where A,B are monomial sets.

• InnerPairsGcds(A) computes Gcd(a1, a2) for all a1, a2 ∈
A where a1 6= a2 and returns the non-constant values only.

• CrossPairsGcds(A,B) computes Gcd(a, b) for all a ∈ A
and for all b ∈ B and returns the non-constant values only.

• SerialInnerBaseMonomials(A) first calls InnerPairsGcds(A),
and then passes the result to SerialMinPoset of Algorithm 1.

• SerialCrossBaseMonomials(A,B) applies SerialMinPoset
to the result of CrossPairsGcds(A,B).

With the above basic operations, we can now describe our divide-
and-conquer method for computing the base monomial set of A,
that is, Min(GA), where GA consists of all non-constant gcd(a1, a2)
for a1, a2 ∈ A and a1 6= a2. The top-level function is Parallel-
BaseMonomial of Algorithm 5. If |A| is within a threshold, namely
MIN_BASE, the operation SerialInnerBaseMonomials(A) is called.
Otherwise, we partition A as A− ·∪A+ and observe that

Min(GA) = Min(Min(GA−) ∪Min(GA+) ∪Min(GA−,A+))

holds where GA−,A+ consists of all non-constant gcd(x, y) for
(x, y) ∈ A− × A+. Following the above formula, we create two
computational branches: (1) one for Min(Min(GA−)∪Min(GA+))
which is computed by the operation SelfBaseMonomials of Algo-
rithm 6; (2) one for Min(GA−,A+) which is computed by the op-
eration CrossBaseMonomials of Algorithm 7. Algorithms 6 and 7
proceed in a divide-and-conquer manner:

• Algorithm 6 makes two recursive calls in parallel, then merges
their results with Algorithm 3.

57

Algorithm 5: ParallelBaseMonomials

Input : a monomial set A
Output : Min(GA) where GA consists of all

non-constant gcd(a1, a2) for a1, a2 ∈ A and
a1 6= a2

1 if |A| ≤ MIN_BASE then
2 return SerialInnerBaseMonomials(A);

3 else
4 (A−, A+)← Split(A);
5 B ← spawn SelfBaseMonomials(A−, A+);
6 C ← spawn CrossBaseMonomials(A−, A+);
7 sync;
8 (D1, D2)← ParallelMinMerge(B,C);
9 return Union(D1, D2);

Algorithm 6: SelfBaseMonomials

Input : two disjoint monomial sets B,C
Output : Min(GB ∪GC) where GB (resp. GC) consists

of all non-constant gcd(x, y) for x, y ∈ B
(resp. C) with x 6= y

1 E ← spawn ParallelBaseMonomials(B);
2 F ← spawn ParallelBaseMonomials(C);
3 sync;
4 (D1, D2)← ParallelMinMerge(E,F);
5 return Union(D1, D2);

Algorithm 7: CrossBaseMonomials

Input : two disjoint monomial sets B,C
Output : Min(GB,C) where GB,C consists of all

non-constant gcd(b, c) for (b, c) ∈ B × C
1 if |B| ≤ MIN_MERGE_BASE then
2 return SerialCrossBaseMonomials(B,C);

3 else
4 (B−, B+)← Split(B);
5 (C−, C+)← Split(C);
6 E ← spawn
7 HalfCrossBaseMonomials(B−, C−, B+, C+);
8 F ← spawn
9 HalfCrossBaseMonomials(B−, C+, B+, C−);

10 sync;
11 (D1, D2)← ParallelMinMerge(E,F);
12 return Union(D1, D2);

Algorithm 8: HalfCrossBaseMonomials

Input : four monomial sets A,B,C,D pairwise
disjoint

Output : Min(GA,B ∪ GC,D) where GA,B (resp.
GC,D) consists of all non-constant gcd(x, y)
for (x, y) ∈ A×B (resp. C ×D)

1 E ← spawn CrossBaseMonomials(A,B);
2 F ← spawn CrossBaseMonomials(C,D);
3 sync;
4 (G1, G2)← ParallelMinMerge(E,F);
5 return Union(G1, G2);

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing a base monomial set of 14869 monomials

Parallelism = 7366, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Computing a base monomial set of 38860 monomials

Parallelism = 121798, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 2: Scalability analysis for ParallelBaseMonomials by Cilkview

• Algorithm 7 uses a threshold. In the base case, computations
are performed serially. Otherwise, both input monomial sets
are split evenly then processed via two concurrent calls to
Algorithm 8, whose results are merged with Algorithm 3.

• Algorithm 8 simply performs two concurrent calls to Algo-
rithm 7 whose results are merged with Algorithm 3.

We have implemented these algorithms in Cilk++. A monomial
is represented by an exponent vector. Each entry of an exponent
vector is an unsigned int. A set A of input monomials is repre-
sented by an array of |A|n unsigned ints where n is the number
of variables. Accessing the elements in A is simply by indexing.

When the divide-and-conquer process reaches the base cases,
at Lines 1–2 in Algorithm 5 and lines 1–2 in Algorithm 7, we
compute either InnerPairsGcds(A) or CrossPairsGcds(B,C), fol-
lowed by the computation of the minimal elements of these gcds.
Here, we allocate dynamically the space to hold the gcds. Each exe-
cution of InnerPairsGcds(A) allocates memory for |A|(|A|− 1)/2
gcds. Each execution of CrossPairsGcds(B,C) allocates space
for |B||C| gcds. The size of these allocated memory spaces in
the base cases is rather small, which, ideally, should fit in cache.
Right after computing the gcds, we compute the minimal elements
of these gcds in place. In other words, we remove those gcds which

58

are not minimal for the divisibility relation. In the Union opera-
tions, for example the Union(D1, D2) in Line 9 in Algorithm 5,
we reallocate the larger one between D1 and D2 to accommo-
date |D1|+ |D2| monomials and free the space of the smaller one.
This memory management strategy combined with the divide-and-
conquer technique permits us to handle large sets of monomials,
which could not be handled otherwise. This is confirmed by the
benchmarks of our implementation.

Figure 2 gives the scalability analysis results by Cilkview for
computing the base monomial sets of two large monomial sets.
The first one has 14869 monomials with 28 variables; its num-
ber of minimal elements here 14. Both thresholds MIN_BASE and
MIN_MERGE_BASE are set to 64. Its timing on 1 core is about
3.5 times less than the serial loop method, which is the function
SerialInnerBaseMonomials. Using 32 cores we gain a speedup fac-
tor of 27 with respect to the timing on 1 core. Another monomial
set has 38860 monomials with 30 variables. There are 15 minimal
elements. The serial loop method for this case aborted due to mem-
ory allocation failure. However, our parallel execution reaches a
speedup of 30 on 32 cores. We also notice that the ideal parallelism
and the lower performance bound estimated by Cilkview for both
benchmarks are very high but our measured speedup curve is lower
than the lower performance bound. We attribute this performance
degradation to the cost of our dynamic memory allocation.

5. TRANSVERSAL HYPERGRAPH GENE-
RATION

Hypergraphs generalize graphs in the following way. A hyper-
graph H is a pair (V, E) where V is a finite set and E is a set of
subsets of V , called the edges (or hyperedges) of H. The elements
of V are called the vertices ofH. The number of vertices and edges
ofH are denoted here by n(H) and |H| respectively; they are called
the order and the size ofH. We denote by Min(H) the hypergraph
whose vertex set is V and whose hyperedges are the minimal el-
ements of the poset (E ,⊆). The hypergraph H is said simple if
none of its hyperedges is contained in another, that is, whenever
Min(H) = H holds.

We denote by Tr(H) the hypergraph whose vertex set is V and
whose hyperedges are the minimal elements of the poset (T ,⊆)
where T consists of all subsets A of V such that A∩E 6= ∅ holds
for all E ∈ E . We call Tr(H) the transversal of H. Let H′ =
(V, E ′) and H′′ = (V, E ′′) be two hypergraphs. We denote by
H′∪H′′ the hypergraph whose vertex set is V and whose hyper-
edge set is E∪E ′. Finally, we denote by H′ ∨ H′′ the hypergraph
whose vertex set is V and whose hyperedges are the E′∪E′′ for all
(E′, E′′) ∈ E ′ × E ′′. The following proposition [2] is the basis of
most algorithms for computing the transversal of a hypergraph.

PROPOSITION 2. For two hypergraphsH′ = (V, E ′) andH′′ =
(V, E ′′) we have

Tr(H′∪H′′) = Min(Tr(H′) ∨ Tr(H′′)).
All popular algorithms for computing transversal hypergraphs,

see [12, 16, 1, 7, 17], make use of the formula in Proposition 2
in an incremental manner. That is, writing E = E1, . . . , Em and
Hi = (V, {E1, . . . , Ei}) for i = 1 · · ·m, these algorithms com-
pute Tr(Hi+1) from Tr(Hi) as follows

Tr(Hi+1) = Min(Tr(Hi) ∨ (V, {{v} | v ∈ Ei+1}))
The differences between these algorithms consist of various tech-

niques to minimize the construction of unnecessary intermediate
hyperedges. While we believe that these techniques are all impor-
tant, we propose to apply Berge’s formula à la lettre, that is, to

Algorithm 9: ParallelTransversal

Input : A hypergraphH
Output : Tr(H)

1 if |H| ≤ TR_BASE then
2 return SerialTransversal(H);

3 (H−,H+)← Split(H);
4 H− ← spawn ParallelTransversal(H−);
5 H+ ← spawn ParallelTransversal(H+);
6 sync;
7 return ParallelHypMerge(H−,H+);

Algorithm 10: ParallelHypMerge

Input : H, K such that Tr(H) = H and Tr(K) = K.
Output : Min(H ∨K)

1 if |H| ≤MERGE_HYP_BASE and
2 |K| ≤MERGE_HYP_BASE then
3 return SerialHypMerge(H,K);

4 else if |H| >MERGE_HYP_BASE and
5 |K| >MERGE_HYP_BASE then
6 (H−,H+)← Split(H);
7 (K−,K+)← Split(K);
8 L ← spawn
9 HalfParallelHypMerge(H−,K−,H+,K+);

10 M← spawn
11 HalfParallelHypMerge(H−,K+,H+,K−);
12 return Union(ParallelMinMerge(L,M));

13 else if |H| >MERGE_HYP_BASE and
14 |K| ≤MERGE_HYP_BASE then
15 (H−,H+)← Split(H);
16 M− ← ParallelHypMerge(H−,K);
17 M+ ← ParallelHypMerge(H+,K);
18 return Union(ParallelMinMerge(M−,M+));

19 else
// |H| ≤ MERGE_HYP_BASE and
// |K| > MERGE_HYP_BASE

20 (K−,K+)← Split(K);
21 M− ← ParallelHypMerge(K−,H);
22 M+ ← ParallelHypMerge(K+,H);
23 return Union(ParallelMinMerge(M−,M+));

Algorithm 11: HalfParallelHypMerge

Input : four hypergraphsH, K,L,M
Output : Min(Min(H ∨K) ∪ Min(L ∨M))

1 N ← spawn ParallelHypMerge(K,H);
2 P ← spawn ParallelHypMerge(L,M);
3 sync;
4 return Union(ParallelMinMerge(N ,P));

59

divide the input hypergraph H into hypergraphs H′, H′′ of similar
sizes and such thatH′∪H′′ = H. Our intention is to create oppor-
tunity for parallel execution. At the same time, we want to control
the intermediate expression swell resulting from the computation of

Tr(H) ∨ Tr(H′).
To this end, we compute this expression in a divide-and-conquer
manner and apply the Min operator to the intermediate results.

Algorithm 9 is our main procedure. Similarly to Algorithm 2, it
proceeds in a divide-and-conquer manner with a threshold. For the
base case, we call SerialTransversal(H), which can implement any
serial algorithms for computing the transversal of hypergraph H.
When the input hypergraph is large enough, then this hypergraph
is split into two so as to apply Proposition 2 with the two recursive
calls performed concurrently. When these recursive calls return,
their results are merged by means of Algorithm 10.

Given two hypergraphs H and K, with the same vertex set, sat-
isfying Tr(H) = H and Tr(K) = K, the operation ParallelHyp-
Merge of Algorithm 10 returns Min(H ∨ K). This operation is
another instance of an application where the poset can be so large
that it is desirable to compute its minimal elements concurrently to
the generation of the poset itself, thus avoiding storing the entire
poset in memory. As for the application described in Section 4,
one can indeed efficiently generate the elements of the poset and
compute its minimal elements simultaneously.

The principle of Algorithm 10 is very similar to that of Algo-
rithm 3. Thus, we should simply mention two points. First, Algo-
rithm 10 uses a subroutine, namely HalfParallelHypMerge of Al-
gorithm 11, for clarity. Secondly, the base case of Algorithm 10,
calls SerialHypMerge(H,K), which can implement any serial al-
gorithms for computing Min(H ∨K).

We have implemented our algorithms in Cilk++ and benchmarked
our code with some well-known problems on the same 32-core ma-
chine reported in Section 3. An implementation detail which is
worth to mention is data representation. We represent each hyper-
edge as a bit-vector. For a hypergraph with n vertices, each hy-
peredge is encoded by n bits. By means of this representation, the
operations on the hyperedges such as inclusion test and union can
be reduced to bit operations. Thus, a hypergraph with m edges
is encoded by an array of mn bits. Traversing the hyperedges is
simply by moving pointers to the bit-vectors in this array.

Our test problems can be classified into three groups. The first
one consists of three types of large examples reported in [16]. We
summarize their features and compare the timing results in Table 1.
A scalability analysis for the three large problems in data mining
on a 32-core is illustrated in Figure 3. The second group consid-
ers an enumeration problem (Kuratowski hypergraph), as listed in
Table 2 and Figure 4. The third group is Lovasz hypergraph [2],
reported in Table 3. The sizes of the three base cases used here
(TR_BASE, MERGE_HYP_BASE and MIN_MERGE_BASE) are
respectively 32, 16 and 128. Our experimentation shows that the
base case threshold is an important influential factor on perfor-
mance. In this work, they are determined by our test runs. To
predict the feasible values based on the type of a poset and the hi-
erarchical memory of a machine would definitely help. We shall
develop a tool for this purpose when we deploy our software.

In Table 1, we describe the parameters of each problem follow-
ing the same notation as in [16]. The first three columns indicate re-
spectively the number of vertices, n, the number of hyperedges, m,
and the number of minimal transversals, t. The problems classified
as Threshold, Dual Matching and Data Mining are large examples
selected from [16]. We have used thg, a Linux executable program
developed by Kavvadias and Stavropoulos in [16] for their algo-

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Data mining large dataset 1 (n = 287, m = 48226, t = 97)

Parallelism = 450, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Data mining large dataset 2 (n = 287, m = 92699, t = 99)

Parallelism = 1157, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Data mining large dataset 3 (n = 287, m = 108721, t = 99)

Parallelism = 1474, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 3: Scalability analysis on ParallelTransversal for data mining
problems by Cilkview

60

rithm, named KS, to measure the time for solving these problems
on our machine. We observed that the timing results of thg on our
machine were very close to those reported in [16]. Thus, we show
here the timing results (seconds) presented in [16] in the fourth col-
umn (KS) in our Table 1. From the comparisons in [16], the KS
algorithm outperforms the algorithm of Fredman and Khachiyan
as implemented by Boros et al. in [3] (BEGK) and the algorithm
of Bailey et al. given in [1] (BMR) for the Dual Matching and
Threshold graphs. However, for the three large problems from data
mining, the KS algorithm is about 30 to 60 percent slower than the
best ones between BEGK and BMR.

In the last three columns in Table 1, we report the timing (in
seconds) of our program for solving these problems using 1 core
and 32 cores, and the speedup factor on 32-core w.r.t on 1-core.
On 1-core, our method is about 6 to 18 times faster for the selected
Dual Matching problems and the large problems in data mining.
Our program is particularly efficient for the Threshold graphs, for
which it takes only about 0.01 seconds for each of them, while
thg took about 11 to 82 seconds. In addition, our method shows
significant speedup on multi-cores for the problems of large input
size. As shown in Figure 3, for the three data mining problems, our
code demonstrates linear speedup on 32 cores w.r.t the timing of the
same algorithm on 1 core.

There are three sets of hypergraphs in [16] on which our method
does not perform well, namely Matching, Self-Dual Threshold and
Self-Dual Fano-Plane graphs. For these examples our code is about
2 to 50 times slower than the KS algorithm presented in [16]. Al-
though the timing of such examples is quite small (from 0.01 to
178 s), they demonstrate the efficient techniques used in [16]. In-
cooperating such techniques into our algorithm is our future work.

Instance parameters KS ParallelTransversal Speedup Ratio
n m t (s) 1-core (s) 32-core (s) KS/1-core KS/32-core

Threshold problems
140 4900 71 11 0.01 - 1000 -
160 6400 81 23 0.01 - 2000 -
180 8100 91 44 0.01 - 4000 -
200 10000 101 82 0.02 - 4000 -
Dual Matching problems

34 131072 17 57 9 0.57 6 100
36 262144 18 197 23 1.77 9 111
38 524288 19 655 56 3.53 12 186
40 1048576 20 2167 131 7.13 17 304

Data Mining problems
287 48226 97 1648 92 3 18 549
287 92699 99 6672 651 21 10 318
287 108721 99 9331 1146 36 8 259

Table 1: Examples from [16]

The first family of classical hypergraphs that we have tested is
related to an enumeration problem, namely the Kuratowski Kr

n hy-
pergraphs. Table 2 gives two representative ones. This type of hy-
pergraphs are defined by two parameters n and r. Given n distinct
vertices, such a hypergraph contains all the hyperedges that have
exactly r vertices. Our program achieves linear speedup on this
class of hypergraphs with sufficiently large size, as reported in Ta-
ble 2 and Figure 4 for K5

40 and K7
30. We have also used the thg

program provided by the Authors of [16] to solve these problems.
The timing for solving K5

30 by the thg program is about 6500 sec-
onds, which is about 70 times slower than our ParallelTransversal
on 1-core. For the case of K5

40 and K7
30, the thg program did not

produce a result after running for more than 15 hours.
Another classical hypergraph is the Lovasz hypergraph, which

is defined by a positive integer r. Consider r finite disjoint sets
X1, . . . , Xr such that Xj has exactly j elements, for j = 1 · · · r.
The Lovasz hypergraph of rank r, denoted by Lr , has all its hyper-

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Enumeration problem (n = 40, r = 5)

Parallelism = 2156, Ideal Speedup
Lower Performance Bound

Measured Speedup

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Cores

Enumeration problem (n = 30, r = 7)

Parallelism = 24216, Ideal Speedup
Lower Performance Bound

Measured Speedup

Figure 4: Scalability analysis on ParallelTransversal for K5
40 and K7

30

by Cilkview

edges of the form

Xj ∪ {xj+1, . . . , xr},
where xj+1, . . . , xr belong respectively to Xj+1, . . . , Xr , for j =
1 . . . r. We have tested our implementation with the Lovasz hy-
pergraphs up to rank 10. For the rank 9 problem, we obtained 25
speedup on 32-core. For the one of rank 10, due to time limit, we
only obtained the timing on 32-core and 16-core, which shows a
linear speedup from 16 cores to 32 cores. The thg program solves
the problem of rank 8 in 8000 seconds. For the problems of rank 9
and 10, the thg program did not complete within 15 hours.

6. CONCLUDING REMARKS
In this paper, we have proposed a parallel algorithm for comput-

ing the minimal elements of a finite poset. Its implementation in
Cilk++ on multi-cores is capable of processing large posets that a
serial implementation could not process. Moreover, for sufficiently
large input data set, our code reaches linear speedup on 32 cores.

We have integrated our algorithm into two applications. One is
polynomial expression optimization and the other one is the com-
putation of transversal hypergraphs. In both cases, we control in-
termediate expression swell by generating the poset and computing

61

Instance parameters KS ParallelTransversal
n r m t (s) 1-core 16-core 32-core

(s) (s) Speedup (s) Speedup
30 5 142506 27405 6500 88 6 14.7 3.5 25.0
40 5 658008 91390 >15 hr 915 58 15.8 30 30.5
30 7 2035800 593775 >15 hr 72465 4648 15.6 2320 31.2

Table 2: Tests for the Kuratowski hypergraphs

Instance parameters KS ParallelTransversal
n r m t (s) 1-core 16-core 32-core

(s) (s) Speedup (s) Speedup
36 8 69281 69281 8000 119 13 8.9 10 11.5
45 9 623530 623530 >15 hr 8765 609 14.2 347 25.3
55 10 6235301 6235301 >15 hr - 60509 - 30596

Table 3: Tests for the Lovasz hypergraphs

its minimal elements concurrently. Our Cilk++ code for computing
transversal hypergraphs is competitive with the implementation re-
ported by Kavvadias and Stavropoulos in [16]. Moreover, our code
outperforms the one of our colleagues on three sets of large input
problems, in particular the problems from data mining. However,
our code is slower than theirs on other data sets. In fact, our code
is a preliminary implementation, which simply applies Berge’s for-
mula in a divide-and-conquer manner. We still need to enhance our
implementation with the various techniques which have been de-
veloped for controlling expression swell in transversal hypergraph
computations [12, 16, 1, 7, 17].

We are extending the work presented in this paper in different
directions. First, we would like to obtain a deeper complexity anal-
ysis of our algorithm for computing the minimal elements of a finite
poset. Secondly, we are adapting this algorithm to the computation
of GCD-free bases and the removal of redundant components.

Acknowledgements.
Great thanks to our colleagues Dimitris J. Kavvadias and Elias C.
Stavropoulos for providing us with their program (implementing
the KS algorithm) and their test suite. Sincere thanks to the re-
viewers for their constructive comments. We are grateful to Matteo
Frigo for fruitful discussions on Cilk++. This work was supported
in part by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) the Mathematics of Information Technol-
ogy and Complex Systems. (MITACS) of Canada and the National
Science Foundation (NSF) under Grants CNS-0615215 and CCF-
0621511. In addition, our benchmarks were made possible by the
dedicated resource program of the Shared Hierarchical Academic
Research Computing Network (SHARCNET) of Canada.

7. REFERENCES
[1] J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast

algorithm for computing hypergraph transversals and its
application in mining emerging patterns. In ICDM ’03:
Proceedings of the 3rd IEEE International Conference on
Data Mining, page 485, 2003. IEEE Computer Society.

[2] C. Berge. Hypergraphes : combinatoire des ensembles finis.
Gauthier-Villars, 1987.

[3] E. Boros, K. hachiyan, K. Elbassioni, and V. Gurvich. An
efficient implementation of a quasi-polynomial algorithm for
generating hypergraph transversals. In Proc. of the 11th
European Symposium on Algorithms (ESA), volume 2432,
pages 556–567. LNCS, Springer, 2003.

[4] J. Carnicer and M. Gasca. Evaluation of multivariate
polynomials and their derivatives. Mathematics of
Computation, 54(189):231–243, 1990.

[5] M. Ceberio and V. Kreinovich. Greedy algorithms for
optimizing multivariate Horner schemes. SIGSAM Bull.,
38(1):8–15, 2004.

[6] C. Chen, F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie.
Efficient computations of irredundant triangular
decompositions with the regularchains library. In Proc.
of the International Conference on Computational Science
(2), volume 4488 of Lecture Notes in Computer Science,
pages 268–271. Springer, 2007.

[7] G. Dong and J. Li. Mining border descriptions of emerging
patterns from dataset pairs. Knowledge and Information
Systems, 8(2):178–202, 2005.

[8] T. Eiter and G. Gottlob. Hypergraph transversal computation
and related problems in logic and ai. In JELIA ’02:
Proceedings of the European Conference on Logics in
Artificial Intelligence, pages 549–564, 2002. Springer-Verlag.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In 40th Annual Symposium on
Foundations of Computer Science, pages 285–297, New
York, USA, 1999.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language. In
ACM SIGPLAN, 1998.

[11] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharma. Discovering all most specific
sentences. ACM Trans. Database Syst., 28(2):140–174, 2003.

[12] M. Hagen. Lower bounds for three algorithms for transversal
hypergraph generation. Discrete Appl. Math.,
157(7):1460–1469, 2009.

[13] U. Haus, S. Klamt, and T. Stephen. Computing knock out
strategies in metabolic networks. ArXiv e-prints, 2008.

[14] Y. He, C. E. Leiserson, and W. M. Leiserson. The cilkview
scalability analyzer. In SPAA ’10: Proceedings of the 22nd
ACM symposium on Parallelism in algorithms and
architectures, pages 145–156, New York, USA, 2010. ACM.

[15] Intel Corp. Cilk++. http://www.cilk.com/.
[16] D. J. Kavvadias and E. C. Stavropoulos. An efficient

algorithm for the transversal hypergraph generation. Journal
of Graph Algorithms and Applications, 9(2):239–264, 2005.

[17] L. Khachiyan, E. Boros, K. M. Elbassioni, and V. Gurvich. A
new algorithm for the hypergraph transversal problem. In
COCOON, pages 767–776, 2005.

[18] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. J. ACM, 22(4):469–476, 1975.

[19] C. E. Leiserson, L. Li, M. Moreno Maza, and Y. Xie.
Efficient evaluation of large polynomials. In Proc.
International Congress of Mathematical Software - ICMS
2010. Springer, 2010. To appear.

[20] C. E. Leiserson and T. B. Schardl. A work-efficient parallel
breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). In SPAA ’10: Proceedings of
the 22nd ACM symposium on Parallelism in algorithms and
architectures, pages 303–314, New York, USA, 2010. ACM.

[21] J. M. Pena. On the multivariate Horner scheme. SIAM J.
Numer. Anal., 37(4):1186–1197, 2000.

[22] J. M. Pena and T. Sauer. On the multivariate Horner scheme
ii: running error analysis. Computing, 65(4):313–322, 2000.

[23] S. Sarkar and K. N. Sivarajan. Hypergraph models for
cellular mobile communication systems. IEEE Transactions
on Vehicular Technology, 47(2):460–471, 1998.

62

Parallel Disk-Based Computation for Large, Monolithic
Binary Decision Diagrams

Daniel Kunkle∗ Vlad Slavici Gene Cooperman∗

Northeastern University
360 Huntington Ave.

Boston, Massachusetts 02115
{kunkle,vslav,gene}@ccs.neu.edu

ABSTRACT
Binary Decision Diagrams (BDDs) are widely used in for-
mal verification. They are also widely known for consum-
ing large amounts of memory. For larger problems, a BDD
computation will often start thrashing due to lack of mem-
ory within minutes. This work uses the parallel disks of a
cluster or a SAN (storage area network) as an extension of
RAM, in order to efficiently compute with BDDs that are or-
ders of magnitude larger than what is available on a typical
computer. The use of parallel disks overcomes the band-
width problem of single disk methods, since the bandwidth
of 50 disks is similar to the bandwidth of a single RAM sub-
system. In order to overcome the latency issues of disk, the
Roomy library is used for the sake of its latency-tolerant data
structures. A breadth-first algorithm is implemented. A fur-
ther advantage of the algorithm is that RAM usage can be
very modest, since its largest use is as buffers for open files.
The success of the method is demonstrated by solving the
16-queens problem, and by solving a more unusual problem
— counting the number of tie games in a three-dimensional
4×4×4 tic-tac-toe board.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms — Algebraic
algorithms, Analysis of algorithms; E.1 [Data Structures]:
Distributed data structures

General Terms: Algorithms, Experimentation, Performance

Keywords: parallel, disk-based, binary decision diagram,
BDD, breadth-first algorithm

1. INTRODUCTION
There are three widespread symbolic techniques for for-

mal verification currently in use: binary decision diagrams,
SAT solvers, and explicit state model checking. Binary deci-
sion diagrams (BDDs) have a particular attraction in being

∗This work was partially supported by the National Science
Foundation under Grant CNS-0916133.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

able to compactly represent a Boolean function on k Boolean
variables. Because BDDs are a representation of the general
solution, they are an example of symbolic model checking —
in contrast with SAT-solving and explicit state model check-
ing, which find only particular solutions.

BDDs have found widespread use in industry — especially
for circuit verification. Unfortunately, as with many formal
verification methods, it tends to quickly run out of space. It
is common for a BDD package to consume the full memory
of RAM in a matter of minutes to hours.

To counter this problem of storage, a novel approach is
demonstrated that uses parallel disks. While we are aware
of approaches using the local disks of one computer and of
approaches using the RAM of multiple computers or CPUs,
we are not aware of work simultaneously using the parallel
disks of many computers. The parallel disks may be the
local disks of a cluster, or the disks of a SAN in a cluster.

The parallelism is not for the sake of speeding up the com-
putation. It is only to support the added storage of parallel
disks. Because aggregate disk bandwidth is the bottleneck
of this algorithm, more disks produce a faster computation.
Nevertheless, the goal of the algorithm is to extend the avail-
able storage — not to provide a parallel speedup beyond the
traditional sequential computation in RAM.

The new package is demonstrated by building large QB-
DDs (quasi-reduced BDDs) for two combinatorial problems.
The first is the well-known N-queens problem, and is used
for comparability with other research. The second combina-
torial problem may be new in the literature. The number of
tie boards are counted on a 3-dimensional tic-tac-toe board
of dimensions 4× 4× 4.

The question of comparability of this new work with pre-
vious work is a subtle one. Previously, researchers have used
the disks of a single node in an effort to extend the available
storage of a sequential BDD package [2, 21, 24, 25]. Re-
searchers have also developed parallel BDD algorithms with
the goal of making BDD computations run faster [11, 15,
19, 22, 28, 29]. All of the work cited was performed in the
1990s, with little progress since then. One exception is that
in 2001, Minato and Ishihara [16] demonstrated a stream-
ing BDD mechanism that incorporates pipelined parallelism.
That work stores its large result on a single disk at the end
of the pipeline, but it does not use parallel disks.

Given that there has been little progress in disk-based and
in parallel BDDs in the last ten years, there is a question of
how to produce a fair scalability comparison that takes into
account the advances in hardware over that time. While the
last ten years have seen only a limited growth in CPU speed,

63

they have seen a much greater growth in the size of RAM.
We use the N-queens problem to validate the scalability

of our new algorithm. We do this in two ways. Recall that
the N-queens problem asks for the number of solutions in
placing N non-attacking queens on an N ×N chess board.

In the first validation, we compare with a traditional se-
quential implementation on a computer with large RAM.
The BuDDy package [8] was able to solve the N-queens prob-
lem for 14 queens or less, when given 8 GB of RAM. When
given 56 GB of RAM, BuDDy was still not able to go be-
yond 14 queens. In comparison, the new program was able
to solve the 16-queens problem. One measure of the size
of the computation is that the size of the canonical BDD
produced for 16 queens was 30.5 times larger than that for
14 queens. The number of solutions with 16 queens was 40.5
times the number of solutions with 14 queens.

A second validation of the scalability is a comparison with
the more recent work of Minato and Ishihara [16]. That
work used disk in 2001 to store a BDD solution to the
N-queens problem. Like BuDDy, that work was also only
able to solve the 14-queens problem. Nevertheless, it rep-
resented the state of the art for using BDDs to solve the
N-queens problem at that time. It reported solving the 14-
queens problem in 73,000 seconds with one PC and in 2,500
seconds with 100 PCs. The work of this paper solves the
16-queens problem using 64 computers in 100,000 seconds.
The ROBDD for 16 queens is 30 times larger than that for
14 queens. The bandwidth of disk access has not grown by
that factor of 30 over those 9 years.

To our knowledge, the BDD package presented here is the
first demonstration of the practicality of a breadth-first par-
allel disk-based computation. Broadly, parallel-disk based
computation uses disks as the main working memory of a
computation, instead of RAM. The goal is to solve space-
limited problems without significantly increasing hardware
costs or radically altering existing algorithms and data struc-
tures. BDD computations make an excellent test of parallel-
disk based computation because larger examples can exhaust
several gigabytes of memory in just minutes (see experimen-
tal results in Section 5).

There are two fundamental challenges in using disk-based
storage as main memory:

Bandwidth: roughly, the bandwidth of a single disk
is 50 times less than that of a single RAM subsystem
(100 MB/s versus 5 GB/s). Our solution is to use
many disks in parallel, achieving an aggregate band-
width comparable to RAM.

Latency: worse than bandwidth, the latency of disk
is many orders of magnitude worse than RAM. Our so-
lution is to avoid latency penalties by using streaming
data access, instead of costly random access.

Further, as an optimization, we employ a hybrid approach:
using serial, RAM-based methods for relatively small BDDs;
transitioning to parallel disk-based methods for large BDDs.

Briefly, the main points of novelty of our approach are:

• This is the first package to efficiently use both par-
allel CPUs and parallel disks. More disks make the
computation run faster. The package also allows com-
putations for monolithic BDDs larger than ever before
(the alternative approach is partitioning the very large

BDD into smaller BDDs). There are advantages to us-
ing one monolithic BDD rather than many sub-BDDs:
the duplicate work is reduced, thus reducing compu-
tation time in some cases; sometimes, partitioning a
BDD requires domain-specific knowledge, while our ap-
proach does not. There are, however, good partition-
ing methods for which no domain-specific knowledge
is necessary. In any case, our approach can be com-
bined with BDD partitioning, to solve very very large
problems.

• By using Roomy [12], the high-level algorithms are sep-
arated from the low-level memory management, garbage
collection and load balancing. Most existing BDD pack-
ages have at least some of these three components in-
tegrated in the package, while our BDD package deals
only with the “application” level, thus making it very
flexible.

• As opposed to most other packages for manipulating
very large BDDs, we do not require that a level in a
BDD fit entirely in the aggregate RAM of a cluster.
The RAM is used primarily to hold buffers for open
files. While the number of open files can potentially
grow in some circumstances, a technique analogous to
the use of two levels in external sorting can be em-
ployed to again reduce the need for RAM, at a modest
slowdown in performance (less than a factor of two).

Related work is described in Section 1.1. An overview of
binary decision diagrams is presented in Section 2. A brief
overview of the Roomy library is given in Section 3. Section 4
presents the parallel algorithms that are the foundation of
this work. Section 5 presents experimental results. This is
followed by a discussion of future work in Section 6.

1.1 Related Work
Prior work relevant to the proposed BDD package comes

from two lines of research: sequential breadth-first BDD al-
gorithms and parallel RAM-based BDD algorithms. The two
approaches often overlap, resulting is parallel RAM-based
breadth-first algorithms. However, there are no prior suc-
cessful attempts at creating a parallel disk-based package in
the literature.

Algorithms and representations for large BDDs stored in
secondary memory have been the subject of research since
the early 1990s. Ochi et al. [21] describe efficient algorithms
for BDDs too large to fit in main memory on the commod-
ity architectures available at that time. The algorithms are
based on breadth-first search, thus avoiding random pointer
chasing on disk. Shared Quasi-Reduced BDDs (SQBDDs)
are used to minimize lookups at random locations on disk.
These algorithms are inherently sequential, requiring the use
of a local “operation-result-table”. Random lookups to this
local table avoid the creation of duplicate nodes.

Ashar and Cheong [2] build upon the ideas of [21] and im-
prove the performance of BDD operations based on breadth-
first search by removing the need for SQBDDs and using the
most compact representation, the Reduced Ordered BDD
(ROBDD). Duplicate avoidance is performed by lookups to
local queues, which make the algorithm hard to parallelize.

A High Performance BDD Package which exploits the
memory hierarchy is presented in [24]. The package builds
upon the findings in [2], making the algorithms more general

64

and more efficient. Even though [24] introduces concepts as
“superscalarity” and “pipelining” for BDD algorithms, the
presented package is still an inherently sequential one, rely-
ing on associative lookups to request queues.

Ranjan et al. [22] propose a BDD package based on breadth-
first algorithms for a network of workstations, making pos-
sible the use of distributed memory for large BDD compu-
tations. However, their algorithms are sequential – the com-
putation is carried out one workstation at a time, thus only
taking advantage of the large amount of space that a network
of workstations offers, without parallelizing the processing of
data. Their approach is infeasible for efficient parallelization.

Stornetta and Brewer [28] propose a parallel BDD pack-
age for distributed fast-memory (RAM) based on depth-first
algorithms, while providing a mechanism for efficient load
balancing. However, their algorithms incur a large com-
munication overhead. Any approach based on depth-first
search would be infeasible for a parallel disk-based package,
because the access pattern has a high degree of randomness.
Milvang-Jensen and Hu [15] provide a BDD package building
upon ideas in [22]. As opposed to [22], the package proposed
in [15] is parallel – the workstations in a network all ac-
tively process data at the same time. However, since each
workstation deals only with a sequence of consecutive levels,
the workload can become very unbalanced, which would be
unacceptable for a parallel disk-based BDD algorithm.

In 1997, Yang and O’Hallaron [29] propose a method for
parallel construction of BDDs for shared memory multipro-
cessors and distributed shared memory (DSM) systems based
on their technique named partial breadth-first expansion, hav-
ing as starting point the depth-first/breadth-first hybrid ap-
proach in [1]. Their algorithms rely on very frequent syn-
chronization of global data structures and on exclusive ac-
cess to critical sections of the code which make this ap-
proach infeasible for any distributed-memory system. Also
in 1997, Bianchi et al. [3] propose a MIMD approach to par-
allel BDDs. Their approach exhibits very good load balanc-
ing, but the communication becomes a bottleneck, making
it infeasible to be adapted for parallel disks, because it does
not delay and batch requests.

Other methods for manipulating very large BDDs are par-
titioning the BDD by means of partitioning the Boolean
space using window functions [18] or by determining good
splitting variables [6].

The newest result mentioned so far in this section is from
2001. Although there is substantial BDD-related work after
2001, little of it is concerned with providing fundamentally
different ways of parallelizing BDD algorithms. Most use ex-
isting ideas and improve upon them or optimize the imple-
mentations. Most BDD-related research in the past decade
was oriented towards better and faster algorithms for reach-
ability analysis [9, 10, 23], compacting the representation of
BDDs [27] or variable ordering [7, 17, 20].

There are many other methods for improving the efficiency
of BDD processing. One such method, described by Mao and
Wu [14], applies Wu’s method to symbolic model checking.

2. BACKGROUND: BINARY DECISION DI-
AGRAMS

The conceptual idea behind Binary Decision Diagrams is
quite simple. One wishes to represent an arbitrary Boolean
function from k Boolean variables to a Boolean result. For
example, “and”, “or”, and “xor” are three functions, each of

which is a Boolean function on two Boolean variables. In
the following description, the reader may wish to refer to
Figure 1 for an example.

An ordered binary decision diagram (OBDD) fixes an or-
dering of the k Boolean variables, and then represents a bi-
nary decision tree with respect to that ordering. The tree
has k + 1 levels, with each of the first k levels correspond-
ing to the next Boolean variable in the ordering. For each
node at level i, the Boolean values of x1, . . . , xi−1 are known,
and the child along the left branch of a tree represents those
same Boolean values, along with xi being set to 0 or false.
Similarly, the descendant of a node at level i along the right
branch of a tree corresponds to setting xi to 1 or true. For a
node at level k + 1, the Boolean values of x1, . . . , xk at that
node are all determined by the unique path from the root
of the tree to the given node. Next, a node at level k + 1 is
set either to false or to true, according to the result of the
Boolean function being represented.

For example, the “and” function on two variables will have
three levels: one root node at the first level, two nodes at the
second level, and four leaf nodes at the third level. Three of
the leaf nodes are set to false and one is set to true.

A reduced ordered binary decision diagram (ROBDD) is
a lattice representing the same information as an OBDD,
but with maximal sharing of nodes. More precisely, one can
progressively convert an OBDD into an ROBDD as follows.
First, identify all “true” nodes of the OBDD with a single
“true” node of the ROBDD, and similarly for the “false”
nodes. Thus, there are exactly two nodes at level k + 1
in the ROBDD. One says that the nodes at level k + 1 have
been reduced.

Next, one iterates moving bottom up. Assume that all
nodes at levels i + 1, i + 2, . . . , k of the OBDD have been
reduced. Two nodes at level i are reduced, or identified with
each other, if they have the same left child node and the
same right child node. After all possible reductions at level i
are completed, one continues to level i− 1, and so on.

The structure described so far is in fact a quasi-reduced
BDD (QBDD), which has no redundant nodes, and a child
of a node can be either a node at the next level or a ter-
minal. A fully reduced BDD (ROBDD) has one additional
optimization: nodes that have identical left and right chil-
dren (sometimes called forwarding nodes) are removed. So,
children can be from any lower level.

Often, one refers to an ROBDD as simply a BDD for short.
The advantage of a BDD is a compact representation. For
example, the parity Boolean function is the Boolean function
that returns true if an even number of the k input variables
are true, and it returns false otherwise. A BDD representing
the parity function will have exactly two distinct nodes for
each level below level 1. Intuitively, one of the two nodes
at level i can be thought of as indicating that the variables
x1, . . . , xi−1 have even parity, and the other node represents
odd parity. Following the branch that sets xi to true will
lead from a node at level i to a node of the opposite parity
at level i + 1. Following the branch that sets xi to false will
lead to a node of the same parity at level i + 1.

Finally, to take the logical “and” of two BDDs, one con-
structs a new BDD in top-down fashion using the Shannon
expansion. If one wishes to form the “and” of two nodes at
the same level (one from the first BDD and one from the
second BDD), the result will be a new node whose left child
will be the “and” of the two original left children, and the

65

right child will be the “and” of the two original right chil-
dren. Thus, to construct the “and” of two nodes requires
that one recursively construct the “and” of the left children
along with the “and” of the right children. The recursion
stops when reaching the leaf nodes. The combinatorial ex-
plosion is reduced (but not necessarily eliminated) by using
an implementation related to dynamic programming [4].

Logical “or” and “xor” of BDDs are implemented similarly
to logical “and”. The generic algorithm for combining two
BDDs is often called apply in the literature. Logical “not”
of a BDD consists of exchanging the values of the two leaf
nodes, “true” and “false”.

The QBDD is preferred over the ROBDD due to its more
natural specification of node levels. In a QBDD, the level
of a node is the number of edges that have to be traversed
on any path from the root to the node. Note that the level
definition is consistent for any non-terminal node – any path
from the root to a node in a QBDD has the same length. We
use the convention that the root of a BDD is at level 0. Level
i corresponds to variable index i.

Figure 1 shows a comparison between OBDD, QBDD and
ROBDD representations of the same Boolean formula.

3. A BRIEF OVERVIEW OF ROOMY
This section gives a brief overview of the parts of Roomy

that are pertinent to the BDD algorithms in Section 4. Com-
plete documentation and source code for Roomy can be
found online [12]. Also published in the same proceedings as
this paper is a tutorial on Roomy [13], which describes the
Roomy programming model and gives example programs.

We chose to use Roomy for our implementation because
it removes the need for the programmer to deal with various
correctness and performance issues that arise when writing
parallel disk-based applications.

3.1 Goals and Design of Roomy
Roomy is implemented as an open-source library for C/C++

that provides programmers with a small number of simple
data structures (arrays, unordered lists, and hash tables) and
associated operations. Roomy data structures are transpar-
ently distributed across many disks, and the operations on
these data structures are transparently parallelized across
the many compute nodes of a cluster. All aspects of the
parallelism and remote I/O are hidden within the Roomy
library.

The primary goals of Roomy are:

1. to provide the most general programming model possi-
ble that still biases the application programmer toward
high performance for the underlying parallel disk-based
computation.

2. the use of full parallelism; providing not only the use
of parallel disks (e.g., as in RAID), but also parallel
processing.

3. to allow for a wide range of architectures, for exam-
ple: a single shared-memory machine with one or more
disks; a cluster of machines with locally attached disks;
or a compute cluster with storage area network (SAN).

The overall design of Roomy has four layers: foundation;
programming interface; algorithm library; and applications.
Figure 2 shows the relationship between each of these layers,

Foundation
file management

remote I/O

external sorting

synchronization and barriers

Programming Interface
RoomyArray

RoomyList

RoomyHashTable

Basic Algorithms
breadth-first search

parallel depth-first search

dynamic programming

delayed and

immediate

operations

Applications
binary decision diagrams

explicit state model checking

SAT solver

Figure 2: The layered design of Roomy.

along with examples of the components contained within
each layer.

3.2 Roomy-hashtable
Because the Roomy-hashtable is the primary data struc-

ture used in the parallel disk-based BDD algorithms in Sec-
tion 4, it is used to illustrate the various operations provided
by the Roomy data structures. Operations for the Roomy-
array and Roomy-list are similar in nature.

A Roomy-hashtable is a variable sized container which main-
tains a mapping between user-defined keys and values. Those
elements can be built in data types (such as integers), or user
defined structures of arbitrary size. A Roomy-hashtable can
be of any size, up to the limits of available disk space, and
will grow as needed as elements are inserted.

Each Roomy-hashtable is stored as a number of RAM-
sized subtables, distributed across the disks of a cluster (or
the disks of a SAN). Delayed operations are buffered to disk
and co-located with the subtable they reference. Once many
delayed operations are collected, each subtable can be pro-
cessed independently to complete the delayed operations,
avoiding costly random access patterns.

Below are the operations provided by a Roomy-hashtable,
categorized by whether they are delayed or immediate.

Roomy-hashtable delayed operations..

insert: insert a given key/value pair, replacing any
existing pair with the same key

access: apply a user defined function to the key/value
pair with the given key, if it exists

remove: remove the key/value pair with the given key,
if it exists

Roomy-hashtable immediate operations..

size: return the number of key/value pairs stored in
the hashtable

map: applies a user defined function to each key/value
pair in the hashtable

66

01

x0

x1 x1

x2 x2

x3x3

x4 x4

x5 x5

(a) OBDD representation

0 1

x0

x1 x1

x2 x2

x3x3

x4

x5

(b) QBDD representation

x0

x1x1

x3

1

x2

x4

x5

0

(c) ROBDD representation

Figure 1: OBDD, QBDD and ROBDD representations for Boolean formula (x0∨¬x1∨x2∨x4∨x5)∧ (¬x0∨x3∨x1∨x4∨x5).
Solid lines represent the high (true) branch, dashed lines the low (false) branch. The OBDD is the least compact representation.
Combining identical nodes (for variables x4 and x5 in this case) will create a QBDD. The QBDD can be further reduced to
an ROBDD by removing a node if it has identical high and low pointers (for variables x2 and x3 in this case).

reduce: applies a user defined function to each key/value
pair in the hashtable and returns a value (e.g. the sum
of all of the values)

predicateCount: return the number of key/value pairs
in the hashtable that satisfy the given predicate

sync: perform all outstanding delayed insert, access,
and remove operations

4. PARALLEL DISK-BASED ALGORITHMS
FOR BDDS

The proposed Roomy-based parallel disk-based BDD pack-
age uses the SQBDD (shared QBDD) representation de-
scribed in [21]. This package does not support BDDs that
are shared among multiple Boolean expressions (although
this feature can easily be implemented in the package), thus
making the representation a quasi-reduced BDD (QBDD).
Although [2] describes cases in which the ROBDD repre-
sentation can be a few times more compact than the corre-
sponding (S)QBDD representation, this is not the case for
the problems considered here. The focus of the experimen-
tal results (see Section 5) is on the solutions to combinato-
rial problems (the N-queens problem and 3-D tic-tac-toe) in
which the inherent regularities and symmetries of the prob-
lem lead to QBDDs that are only at most 15 % larger than
the corresponding ROBDD (the percentage was observed ex-
perimentally). Since most operations in Roomy are delayed
and processed in batches, the locality advantage of a the
QBDD representation is important (a node in a QBDD can
only have as children the nodes at the immediate next level).
This is especially true in cases where the QBDD representa-
tion is not much larger than the ROBDD representation, as
is the case here.

Since the QBDDs for the considered problems are close in
size to their corresponding ROBDDs, it means that one can

solve problems one or two orders of magnitude larger using
disk-based methods than by using a RAM-based alternative.

The rest of this section presents a brief implementation de-
scription of our package, followed by a high-level description
of the main operations: apply, any-SAT and SAT-count.

4.1 Implementation Description
Each BDD is represented in a quasi-reduced form. This

means that, when a node at level i has a child at level
j > i + 1, there are j − i − 1 padding nodes inserted in
the BDD, one at each level between i + 1 and j − 1, thus
creating an explicit path from the node at level i to its child
at level j. These padding nodes would be considered redun-
dant nodes in an ROBDD implementation, and thus, would
not exist. However, a QBDD needs such redundant nodes
to maintain the invariant that each node at a certain level
only has children at the immediate next level.

Our implementation of a QBDD maintains a data struc-
ture that contains:

• d, the depth of the BDD.

• Nodes, an array of d Roomy-hashtables. Nodes[i] is a
Roomy-hashtable that contains all the nodes at level i
of the BDD in key-value form. The key is the BDD-
unique node id and the value is a pair of ids (low(id),
high(id)), which reference the children of the node.
Each of the children is either at level i + 1 or is a
terminal node.

This representation allows the delayed lookup of a node
in the BDD by providing only its unique id. Since each
BDD level has its own Roomy-hashtable, when processing a
certain level i we only need to inspect Nodes[i] (the current
nodes), Nodes[i + 1] (the child nodes) and, in some cases
Nodes[i− 1] (the parents). Inspecting the entire BDD is not
necessary. This is important for very large BDDs, in which

67

even the nodes at a single level can overflow the aggregate
RAM of a cluster.

4.2 The APPLY Algorithm
The foundation that most BDD algorithms are built upon

is the apply algorithm. apply applies a Boolean operation
(like or, and, xor, implication, a.s.o) to two BDDs. If
BDDs A and B represent Boolean expressions fA and fB

respectively, then AB = op(A, B) is the BDD which rep-
resents the Boolean expression op(fA, fB). The traditional
RAM-based apply algorithm performs this operation by em-
ploying a depth-first algorithm, as explained in [5]. A mem-
oization table in which already computed results are stored
increases the performance of the algorithm from exponential
to quadratic in the number of input nodes. The pseudo-code
is presented in Algorithm 1.

Algorithm 1 RAM-based depth-first apply

Input: BDD A with root-node n1, BDD B with root-node
n2, Boolean operator op

Output: n, the root node of a BDD representing op(A, B)
Init M (memoization table for new nodes)
if M(n1, n2) was already set then

return M(n1, n2)
if n1 ∈ {0, 1} AND n2 ∈ {0, 1} then

n = op(n1, n2)
else if var(n1) = var(n2) then

n← new Node(var(n1), apply(low(n1), low(n2), op),
apply(high(n1), high(n2), op))

else if var(n1) < var(n2) then
n← new Node(var(n1), apply(low(n1), n2, op),

apply(high(n1), n2, op))
else

n← new Node(var(n2), apply(n1, low(n2), op),
apply(n1, high(n2), op))

set M(n1, n2)← n
return n

To create a version of apply applicable for data stored
in secondary memory, [21] converts the requirements on the
implicit process stack in Algorithm 1 into an explicit require-
ment queue. This is the main idea behind converting a DFS
algorithm into a BFS one. Our parallel disk-based pack-
age uses the same framework to create an efficient parallel
disk-based apply. The structure used is a parallel queue, im-
plemented on top of a Roomy-hashtable. A parallel queue
relaxes the condition that all requirements must be processed
one by one to a condition that all requirements at a certain
level in the BFS must be processed before any requirement
at the next level. In this way, parallel processing of data at
each BFS level is enabled.

An important feature that Roomy provides for any appli-
cation is load balancing. For the BDD package, load balanc-
ing means that the BDD nodes are distributed evenly across
the disks of a cluster. This is achieved by assigning each
BDD node to a random disk. Hence, a BDD node is not nec-
essarily stored near its children, and accessing the children
of a node in an immediate manner would lead to long de-
lays due to network and disk latency. Using delayed batched
operations, as Roomy does (see Section 3), is the only ac-
ceptable solution if the very large BDDs are being treated
as monolithic. Other approaches decompose the large BDD
into smaller BDDs and then solve each of them separately

on various compute nodes in the cluster [6]. These two solu-
tions are not mutually exclusive. A decomposition approach
can be adapted to our BDD package as well. For the rest
of the paper, only the case of very large monolithic BDDs
which are not decomposed into smaller BDDs is considered.

The parallel disk-based apply algorithm consists of two
phases: an expand phase and a reduce phase, described in
Algorithms 2 and 3, respectively. The expand phase creates
a valid but larger than necessary QBDD. It can be reduced
to a smaller size, because it contains non-unique nodes. Non-
unique nodes are nodes at the same level i which represent
identical sub-BDDs. However, the fact that they are dupli-
cates cannot be determined in the expand phase. expand

is a top-down breadth-first scan. The purpose of the re-

duce phase is to detect the duplicates at each level and keep
only one representative of each duplication class. reduce is
a bottom-up scan of the BDD returned by expand.

Algorithm 2 Parallel disk-based expand

Input: QBDDs A, B and Boolean operator op
Output: QBDD AB = op(A, B)
1: Initialize Q with the entry representing the root of AB:

(root–idA, root-idB)→ (new Id(), N/A)
2: level← 0, Q′ ← ∅
3: while level ≤ max(depth(A), depth(B)) AND Q 6= ∅

do
4: Remove entries with duplicate keys from Q and up-

date their parent nodes (extracted from the entry’s
value) to point to the id found in the value of the
representative of the duplicate class.

5: for each entry (idA, idB)→ (idAB , parent–idAB) in Q
do

6: Perform delayed lookup of the child nodes of
idA : low(idA) and high(idA) and
of idB : low(idB) and high(idB)

7: id′ ← new Id()
id′′ ← new Id()
Create two entries in Q′:
(low(idA), low(idB))→ (id′, idAB)
and, respectively,
(high(idA), high(idB))→ (id′′, idAB)

8: Insert node idAB → (id′, id′′) in Nodes[level]
9: level← level + 1

10: Q← Q′, Q′ ← ∅

Notation.
The notation k → v is used to represent a key-value entry

in a Roomy-hashtable.
All ids are Roomy-unique integers that can be passed back

to Roomy as keys in a Roomy-hashtable.
A forwarding node is a temporary node created during the

reduce phase. Such a node acts as a pointer to a terminal
node, meaning that all parents pointing to the node should
actually point to the terminal node. When it is no longer
needed, it is removed.

If node is a forwarding node in the reduce phase, the nota-
tion fwd(idnode) is used to represent the id of the permanent
node that node points to.

Implementation aspects.
The expand algorithm uses per-level distributed disk-based

requirement queues Q and Q′, which are implemented as

68

Roomy-hashtables. All entries in Q are of the form (idA, idB)
→ (idAB , parent–idAB).

The nodes at a certain level in AB are stored in Nodes[i].
In AB, idAB = op(idA, idB). idAB is a low or high child of
parent–idAB , a node at the previous level in AB.
expand creates a partially-reduced OBDD, which reduce

converts into a QBDD.
Note that our expand algorithm differs from the expand

presented in [21] in the following way: in our case all data
structures are distributed and stored on the parallel disks
of a cluster; there is no need for any QBDD level to fit
even in the distributed RAM at any time; all the opera-
tions that involve reading or writing remote data are de-
layed and batched; in line 7, unique ids for the left and right
child of a node are created in advance (in the next iteration
it will be found that some are duplicates), while in [21] a
per-level memoization table named “operation-result-table”
is used. When duplicates are found, the parent nodes of the
duplicates are updated to point to the child representative
of the duplicate class. A per-level memoization table would
not work for parallel expand algorithms because all reads
are delayed, and so one cannot immediately check whether
a certain node has already been computed.

Algorithm 3 Parallel disk-based reduce

Input: a QBDD AB, returned by expand

Output: a QBDD AB′, resulted from AB by eliminating
non-unique nodes

1: level← depth(AB)
2: while level ≥ 1 do
3: for each node entry (id) → (low(id), high(id)) in

Nodes[level] do
4: if low(id) is a forwarding node then
5: low(id)← fwd(low(id))
6: if high(id) is a forwarding node then
7: high(id)← fwd(high(id))
8: if low(id) = high(id) = T (terminal node 0 or 1)

then
9: Make this a forwarding node to T .

10: Remove non-unique nodes (duplicates) at the current
level. Update the parents of the duplicate nodes to
point to the representative of the duplicate class. This
is duplicate detection.

11: level← level + 1

Satisfying Assignments.
The any-SAT algorithm simply follows any path in the

QBDD that ends in the terminal 1. When a high child is
followed, the level’s variable is set to 1. When a low child is
followed, the level’s variable is set to 0. When terminal 1 is
reached, the assigned values of all the variables are listed.

The SAT-count algorithm is implemented with a top-down
breadth-first scan of the QBDD. Each node in the QBDD has
a counter associated with it. Initially, the root of the QBDD
has its counter set to 1 and all other counters are set to 0. At
each level in the breadth-first scan, the counter of each node
is added to each of its children’s counters. When a child of a
node at level i is the terminal node 1, update a global counter
by adding the node’s local counter multiplied by 2m, where
m = depth(QBDD) − i − 1, to it. All updates are delayed
and batched, to maintain the parallelism of the scan. After
the scan finishes and the updates are processed, the global

counter contains the number of satisfying assignments of the
QBDD.

5. EXPERIMENTAL RESULTS
Hardware and Software Configurations.

The Roomy-based parallel disk BDD package was experi-
mentally compared with BuDDy [8], a popular open-source
BDD package written in C/C++. BuDDy was used with
two different computer architectures.

• Server: with one dual-core 2.6 GHz AMD Opteron
processor, 8 GB of RAM, running HP Linux XC 3.1,
and compiling code with Intel ICC 11.0.

• Large Shared Memory: with four quad-core 1.8 GHz
AMD Opteron processors, 128 GB of RAM, running
Ubuntu SMP Linux 2.6.31-16-server, and compiling
code with GCC 4.4.1.

While BuDDy could make use of all of the RAM on the
machine with 8 GB, it was only able to use approximately
56 GB out of 128 GB in the other case, because the array
used to store the nodes of the BDDs was limited to using a
32-bit index.

For Roomy, the architecture was a cluster of the 8 GB
machines mentioned above, using a Quadrics QsNet II inter-
connect. Each machine had a 40 GB partition on the local
disk for storage. This provides an upper bound for the total
storage used at any time. For smaller problem instances,
8 machines of the cluster were used, with larger examples
using 32 or 64 machines.

Test Problems.
Four cases were tested: BuDDy using a maximum of 1, 8,

or 56 GB of RAM; and Roomy. These four cases were tested
on two combinatorial problems:

• N-queens: counting the number of unique solutions
to the N-queens problem.

• 3-dimensional tic-tac-toe: counting the number of
possible tying configurations when placing N X’s and
64−N O’s in a 4×4×4 3D tic-tac-toe board.

In both cases, the experiments were run with increasing
values of N . For N-queens, this increases the problem diffi-
culty by increasing the dimension of the board. For 3D tic-
tac-toe, this increases the difficulty by increasing the number
of possible positions to consider (with maximum difficulty at
32 out of 64 positions for each X and O).

The rest of this section describes the details of each prob-
lem, how the solutions are represented as Boolean formulas,
and gives experimental results.

5.1 Counting N-Queens Solutions
Problem Definition.

The N-queens problem considered here is: how many dif-
ferent ways can N queens be placed on an N×N chess board
such that no two queens are attacking each other? The size
of the state space is N !, corresponding to an algorithm that
successively places one queen in each row, and for row k
chooses one of the remaining N − k columns not containing
a queen.

69

8 9 10 11 12 13 14 15 16

Board Dimension

1

10

100

1000

10000

100000

T
im
e
 (
s
e
c
o
n
d
s
)

Roomy (8 nodes)

BuDDy (56 GB)

BuDDy (8 GB)

BuDDy (1 GB)
32 nodes

64 nodes

Figure 3: Running times for the N-queens problem.

The current record for the largest N solved is 26, achieved
using massively-parallel, FPGA-based methods [26]. The
more general BDD approach described here is not meant to
directly compete with this result, but to serve as a method
for comparing traditional RAM-based BDD packages and
our parallel-disk based approach. The N-queens problem is
often used as an illustration in introductions to the subject,
and a solution to the problem comes with BuDDy as an
example application.

The following defines a Boolean formula that represents all
of the solutions to a given instance of the N-queens problem.

First, define N2 variables of the form xi,j , where xi,j is
true iff a queen is placed on the square at row i column j.
Then, define Si,j , which is true iff there is a queen on square
i, j and not on any square attacked from that position.

Si,j = xi,j ∧ ¬xi1,j1 ∧ ¬xi2,j2 ∧ . . .

The constraint that row i must have exactly one queen is

Ri = Si,1 ∨ Si,2 ∨ . . . ∨ Si,N

And finally, the board has one queen in each row.

B = R1 ∧R2 ∧ . . . ∧RN

The number of solutions is computed by counting the num-
ber of satisfying assignments of B.

Experimental Results.
Figure 3 shows the running times for the N-queens prob-

lem using BuDDy with a maximum of 1, 8, or 56 GB of
RAM, and using our BDD package based on Roomy.

BuDDy with 1 GB is able to solve up to N = 12, which
finished in 15 seconds. BuDDy with 8 GB is able to solve
up to N = 14, which finished in 16.7 minutes. For higher N ,
BuDDy runs out of RAM. This demonstrates how quickly
BDD computations can exceed available memory, and the
need for methods providing additional space.

Even when given up to 56 GB, BuDDy can not complete
N = 15. For smaller cases, the version using more memory is
slower because the time for memory management dominates
the relatively small computation time.

The Roomy-based package is able to solve up to N = 16,
which finished in 28.4 hours. The figure shows the running
times for N ≤ 14 using 8 compute nodes, N = 15 using
32 nodes, and N = 16 using 64 nodes. The results demon-

Table 1: Sizes of largest and final BDDs, and number of
solutions, for the N-queens problem (* indicates that BuDDy
exceeded 56 GB of RAM without completing).

Largest Largest
N Buddy BDD Roomy BDD Ratio

8 10705 11549 1.08
9 44110 50383 1.14

10 212596 234650 1.10
11 1027599 1105006 1.08
12 4938578 5250309 1.06
13 26724679 29370954 1.10
14 153283605 165030036 1.08
15 * 917859646 –
16 * 3380874259 –

Final Final # of
N Buddy BDD Roomy BDD Ratio Solutions

8 2451 2451 1.00 92
9 9557 9557 1.00 352

10 25945 25945 1.00 724
11 94822 94822 1.00 2680
12 435170 435170 1.00 14200
13 2044394 2044394 1.00 73712
14 9572418 9572418 1.00 365596
15 * 51889029 – 2279184
16 * 292364273 – 14772512

strate that parallel-disk based methods can extend the use of
BDDs to problem spaces several orders of magnitude larger
than methods using RAM alone.

For the cases using BuDDy, the versions using more RAM
had a time penalty due to the one-time cost of initializing
the larger data structures. For Roomy, the time penalties
for the smaller cases are primarily due to synchronization
of the parallel processes, which is amortized for the longer
running examples.

For the computations using Roomy, BuDDy was first used
to compute each of the N row constraints, Ri. Then, Roomy
was used to combine these into the final BDD B. This was
done to avoid performing many operations on very small
BDDs with Roomy, which would cause many small, ineffi-
cient disk operations.

Table 1 shows the sizes of the largest BDD, the final BDD,
and the number of solutions for 8 ≤ N ≤ 16. In this case,
the largest BDD produced by Roomy was approximately
22 times larger than the largest BDD produced by BuDDy
(for instances that were solved). Table 1 also shows that,
for this problem, the additional nodes required by the use
of quasi-reduced BDDs, instead of the traditional fully re-
duced BDDs, increase BDD size by at most 14 percent. We
consider this cost acceptable given the increase in locality
QBDDs provide the computation.

5.2 Counting Ties in 4×4×4 3D Tic-Tac-Toe
Problem Definition.

This problem deals with a generalization of the traditional
game of tic-tac-toe: two players, X and O, take turns mark-
ing spaces in a 3×3 grid, attempting to place three marks in
a given row, column, or diagonal. In this case, we consider
a 3-dimensional 4×4×4 grid.

The question considered here is: how many possible tie
games are there when X marks N spaces, with O filling the
remaining 64 − N? As N is increased from 1 to 32, both

70

14 15 16 17 18 19 20 21 22 23 24

Number of X's

10

100

1000

10000

100000

T
im
e
 (
s
e
c
o
n
d
s
)

Roomy (8 nodes)

BuDDy (56 GB)

BuDDy (8 GB)

BuDDy (1 GB)

32 nodes

64
nodes

Figure 4: Running times for the 3D tic-tac-toe problem.

the number of possible arrangements and the difficulty of
the problem increase. To the best of our knowledge, this
problem has not been solved before.

The Boolean formula representing the solution uses 64 vari-
ables of the form xi,j,k, which are true iff the corresponding
space is marked by X. First, a BDD representing placements
that have exactly N out of 64 spaces marked with X is con-
structed. Then, BDD constraints for each possible sequence
of four spaces in a row are successively added. The con-
straints are of the form: ¬(all four spaces are X) ∧ (at least
one space has an X).

The number of possible ties is computed by counting the
number of satisfying assignments of the final BDD.

Experimental Results.
Figure 4 shows the running times for the 3D tic-tac-toe

problem using BuDDy with a maximum of 1, 8, or 56 GB
of RAM, and using the Roomy-based package. As in the
N-queens problem, BuDDy was used to compute several
smaller BDDs, which were then combined into the final BDD
using Roomy.

BuDDy with 1 GB of RAM is able to solve up to N = 18,
finishing in 127 seconds. BuDDy with 8 GB of RAM is able
to solve up to N = 21, finishing in 40 minutes. Unlike the
N-queens problem, increasing the available RAM from 8 to
56 GB increases the number of cases that can be solved, up
to N = 23, which finished in 5.5 hours. Roomy was able
to solve up to N = 24, finishing in under 30 hours using
64 nodes.

Table 2 shows the sizes of the largest BDD, the final BDD,
and the number of solutions for 14 ≤ N ≤ 24. The smallest
number of X’s that need to be placed to force a tie is 20,
yielding 304 tying arrangements. The number of possible
ties then increases rapidly, up to over 5 billion for N = 24.

For the 3D tic-tac-toe problem, all of the QBDDs used by
Roomy are exactly the same size as the ROBDDs used by
BuDDy. So, like the N-queens problem, using the possibly
less compact representation is not an issue here.

Table 2: Sizes of largest and final BDDs, and number of
tie games, for the 3D tic-tac-toe problem (* indicates that
BuDDy exceeded 56 GB of RAM without completing).

Largest Largest
X’s Buddy BDD Roomy BDD Ratio

14 389251 389251 1.00
15 671000 671000 1.00
16 1350821 1350821 1.00
17 4378636 4378636 1.00
18 11619376 11619376 1.00
19 24742614 24742614 1.00
20 42985943 42985943 1.00
21 113026291 113026291 1.00
22 383658471 383658471 1.00
23 988619402 988619402 1.00
24 * 2003691139 –

Final Final # of
X’s Buddy BDD Roomy BDD Ratio Ties

14 1 1 1.00 0
15 1 1 1.00 0
16 1 1 1.00 0
17 1 1 1.00 0
18 1 1 1.00 0
19 1 1 1.00 0
20 8179 8179 1.00 304
21 433682 433682 1.00 136288
22 6560562 6560562 1.00 9734400
23 60063441 60063441 1.00 296106640
24 * 373236946 – 5000129244

6. CONCLUSIONS AND FUTURE WORK
This work provides a parallel disk-based BDD package

whose effectiveness is demonstrated by solving large com-
binatorial problems. Those problems are typical for a broad
class of mathematical problems whose large state space con-
tains a significant degree of randomness.

Future work will tackle the verification of large industrial
circuits. A parallel disk-based ROBDD representation will
be provided, together with modified versions of the BFS al-
gorithms that now use QBDDs. It is expected that this
future implementation will perform better for industrial cir-
cuits, while we believe that QBDDs will still be more suit-
able to combinatorial problems. These expectations coincide
with the motivation of using ROBDDs in [2] and [24].

Extensive research shows that, for many industrial prob-
lems, dynamic variable reordering can yield significant space
savings, which get translated into time savings. Providing a
parallel disk-based method for dynamic variable reordering
is also part of the future work.

7. REFERENCES
[1] Y. an Chen, B. Yang, and R. E. Bryant. Breadth-first

with depth-first BDD construction: A hybrid
approach. Technical report, 1997.

[2] P. Ashar and M. Cheong. Efficient breadth-first
manipulation of binary decision diagrams. In ICCAD
’94: Proceedings of the 1994 IEEE/ACM International
Conference on Computer-aided design, pages 622–627,
Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[3] F. Bianchi, F. Corno, M. Rebaudengo, M. S. Reorda,
and R. Ansaloni. Boolean function manipulation on a
parallel system using BDDs. In HPCN Europe ’97:

71

Proceedings of the International Conference and
Exhibition on High-Performance Computing and
Networking, pages 916–928, London, UK, 1997.
Springer-Verlag.

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient
implementation of a BDD package. In DAC ’90:
Proceedings of the 27th ACM/IEEE Design
Automation Conference, pages 40–45, New York, NY,
USA, 1990. ACM.

[5] R. E. Bryant. Symbolic Boolean manipulation with
ordered binary-decision diagrams. ACM Comput.
Surv., 24(3):293–318, 1992.

[6] G. Cabodi, P. Camurati, and S. Quer. Improving the
efficiency of BDD-based operators by means of
partitioning. IEEE Trans. on CAD of Integrated
Circuits and Systems, 18(5):545–556, 1999.

[7] M. Carbin. Learning effective BDD variable orders for
BDD-based program analysis, 2006.

[8] H. Cohen. BuDDy: A binary decision diagram library,
2004. http://sourceforge.net/projects/buddy/.

[9] O. Grumberg, T. Heyman, N. Ifergan, and
A. Schuster. Achieving speedups in distributed
symbolic reachability analysis through asynchronous
computation. In In CHARME, pages 129–145.
Springer, 2005.

[10] T. Heyman, D. Geist, O. Grumberg, and A. Schuster.
A scalable parallel algorithm for reachability analysis
of very large circuits. Form. Methods Syst. Des.,
21(3):317–338, 2002.

[11] S. Kimura and E. Clarke. A parallel algorithm for
constructing binary decision diagrams. In Proc. of
IEEE International Conference onComputer Design:
VLSI in Computers and Processors, 1990 (ICCD ’90),
pages 220 –223, sep 1990.

[12] D. Kunkle. Roomy: A C/C++ library for parallel
disk-based computation, 2010.
http://roomy.sourceforge.net/.

[13] D. Kunkle. Roomy: A system for space limited
computations. In Proc. of Parallel Symbolic
Computation (PASCO ’10). ACM Press, 2010.

[14] W. Mao and J. Wu. Application of wu’s method to
symbolic model checking. In ISSAC ’05: Proceedings
of the 2005 International Symposium on Symbolic and
Algebraic Computation, pages 237–244, New York,
NY, USA, 2005. ACM.

[15] K. Milvang-Jensen and A. J. Hu. BDDNOW: A
parallel BDD package. In FMCAD ’98: Proceedings of
the Second International Conference on Formal
Methods in Computer-Aided Design, pages 501–507,
London, UK, 1998. Springer-Verlag.

[16] S. Minato and S. Ishihara. Streaming BDD
manipulation for large-scale combinatorial problems.
In DATE ’01: Proceedings of the Conference on
Design, Automation and Test in Europe, pages
702–707, Piscataway, NJ, USA, 2001. IEEE Press.

[17] H. Moeinzadeh, M. Mohammadi, H. Pazhoumand-dar,
A. Mehrbakhsh, N. Kheibar, and N. Mozayani.
Evolutionary-reduced ordered binary decision diagram.
In AMS ’09: Proceedings of the 2009 Third Asia
International Conference on Modelling & Simulation,
pages 142–145, Washington, DC, USA, 2009. IEEE
Computer Society.

[18] A. Narayan, J. Jain, M. Fujita, and
A. Sangiovanni-Vincentelli. Partitioned ROBDDs — a
compact, canonical and efficiently manipulable
representation for Boolean functions. In ICCAD ’96:
Proceedings of the 1996 IEEE/ACM International
Conference on Computer-aided Design, pages 547–554,
Washington, DC, USA, 1996. IEEE Computer Society.

[19] Z. Nevo and M. Farkash. Distributed dynamic BDD
reordering. In DAC ’06: Proceedings of the 43rd
annual Design Automation Conference, pages 223–228,
New York, NY, USA, 2006. ACM.

[20] Z. Nevo and M. Farkash. Distributed dynamic BDD
reordering. In DAC ’06: Proceedings of the 43rd
annual Design Automation Conference, pages 223–228,
New York, NY, USA, 2006. ACM.

[21] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first
manipulation of very large binary-decision diagrams.
In ICCAD ’93: Proceedings of the 1993 IEEE/ACM
International Conference on Computer-aided design,
pages 48–55, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press.

[22] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. Binary decision
diagrams on network of workstation. In ICCD ’96:
Proceedings of the 1996 International Conference on
Computer Design, VLSI in Computers and Processors,
pages 358–364, Washington, DC, USA, 1996. IEEE
Computer Society.

[23] D. Sahoo, J. Jain, S. K. Iyer, D. L. Dill, and E. A.
Emerson. Multi-threaded reachability. In DAC ’05:
Proceedings of the 42nd annual Design Automation
Conference, pages 467–470, New York, NY, USA,
2005. ACM.

[24] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. High performance BDD
package by exploiting memory hierarchy. In DAC ’96:
Proceedings of the 33rd annual Design Automation
Conference, pages 635–640, New York, NY, USA,
1996. ACM.

[25] A. Sangiovanni-Vincentelli. Dynamic reordering in a
breadth-first manipulation based BDD package:
challenges and solutions. In ICCD ’97: Proceedings of
the 1997 International Conference on Computer
Design (ICCD ’97), page 344, Washington, DC, USA,
1997. IEEE Computer Society.

[26] R. G. Spallek, T. B. Preußer, and B. Nägel.
Queens@TUD, 2009.
http://queens.inf.tu-dresden.de/.

[27] S. Stergios and J. Jawahar. Novel applications of a
compact binary decision diagram library to important
industrial problems. Fujitsu scientific and technical
journal, 46(1):111–119, 2010.

[28] T. Stornetta and F. Brewer. Implementation of an
efficient parallel BDD package. In DAC ’96:
Proceedings of the 33rd Annual Design Automation
Conference, pages 641–644, New York, NY, USA,
1996. ACM.

[29] B. Yang and D. R. O’Hallaron. Parallel breadth-first
BDD construction. In PPOPP ’97: Proceedings of the
sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 145–156, New
York, NY, USA, 1997. ACM.

72

Parallel arithmetic encryption for high-bandwidth
communications on multicore/GPGPU platforms∗

Ludovic Jacquin
INRIA

Planète team, France
ludovic.jacquin@inria.fr

Vincent Roca
INRIA

Planète team, France
vincent.roca@inria.fr

Jean-Louis Roch
∗ † ‡

Laboratoire d’Informatique de
Grenoble (LIG), France

jean-louis.roch@imag.fr
Mohamed Al Ali

Laboratoire d’Informatique de
Grenoble (LIG), France

mohamed.alali@imag.fr

ABSTRACT
In this work we study the feasibility of high-bandwidth, se-
cure communications on generic machines equipped with
the latest CPUs and General-Purpose Graphical Process-
ing Units (GPGPU). We first analyze the suitability of cur-
rent Nehalem CPU architectures. We show in particular
that high performance CPUs are not sufficient by themselves
to reach our performance objectives, and that encryption is
the main bottleneck. Therefore we also consider the use of
GPGPU, and more particularly we measure the bandwidth
of the AES ciphering on CUDA. These tests lead us to the
conclusion that finding an appropriate solution is extremely
difficult.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: General;
C.4 [Performances of Systems]

Keywords
High-performance communications, encryption, parallelism,
GPU/GPGPU

1. INTRODUCTION
During the past few years, communications have experi-

enced tremendous throughput increases since 10 Gb/s Net-

∗This work is partially supported by French the French Min-

istère de l’Économie, de l’Industrie, et de l’Emploi and the
Global competitive cluster Minalogic, project SHIVA no 09-
2-93-0473.∗INRIA†Grenoble Université
‡Institut Nation Polytechnique de Grenoble (INPG).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

work Interfaces Controllers (NIC) are now common on high
performance machines. This situation authorizes the de-
ployment of large scale clusters for distributed computing.
In this context, security is more and more often a require-
ment and communications between sites must be encrypted
to avoid critical information leaks. This is the case for in-
stance with medical applications that require the processing
power of computational grids but manipulate highly confi-
dential data from patients for instance [17]. This is also
the case for inter-site secure communications, where the ag-
gregated traffic can reach high throughput during database
synchronization or remote backup procedures for instance.
The Moore law has long been sufficient to keep a reasonable
equilibrium between the available processing power and the
physical link throughput. However, this is no longer the case
with transmission throughput in the order of 10 Gb/s when
ciphering is required. Indeed, at 10 Gb/s, the available pro-
cessing time to encrypt or decrypt data is in the order of a
few CPU cycles only.

This work addresses the feasibility of achieving high-band-
width secured communications using generic off-the-shelf com-
ponents, such as multicore CPUs and General-Purpose Graph-
ical Processing Units (GPGPU). Based on our detailed ex-
perimental analysis, we conclude that high-bandwidth secure
networking does require high-speed arithmetic facilities.

This article is structured as follows. Section 2 gives an
overview of the state of the art in the domain, both from the
hardware and software points of view. Section 3 describes
the benchmark architecture on which the chosen proof-of-
concept tests are performed. In Section 4, we inspect the
algorithms and protocols used to secure communications, as
well as their parallelization. Then the results of our ex-
perimentations are presented, on multicore architectures in
Section 5, and on GP-GPU in section 6. Finally, Section
7 presents the conclusions from this study and the perspec-
tives.

2. RELATED WORKS
To our knowledge, no reference that couples together high-

bandwidth and parallel encryption exists nowadays. But
there are some work that has been done in fields near our
center of interest.

73

Specialized Hardware.
Solutions exist for encryption and high-bandwidth net-

working, but they are based on specialized hardware pro-
vided by companies such as Cisco [2] or Cavium [1]. The
main disadvantages of these solutions are:

• scalability: for example a Cisco encryption board up-
per limit is 2,5 Gb/s, and four units are needed to reach
10 Gb/s.

• upgradability: once the hardware is installed, it is no
more possible to change the chips.

• recyclability: in the future, when we will be deploying
about 100+ Gb/s links, 10 Gb/s hardware will become
obsolete and useless.

• price: such solutions cost 10 times more than an aver-
age server.

Therefore we chose not to consider this approach in our work.

High-bandwidth networking.
Previous works focused on routing and have explored the

capabilities of generic servers to serve as high bandwidth
routers. When the need for security is considered, the ex-
periments carried out are rather limited. Yet their two main
conclusions are that: (1) 10 Gb/s routing is possible, al-
though it uses all the CPU resources [15], and (2) that when
using IPsec and AES 128 bits encryption, they only achieve
1,5 to 4,5 Gb/s transmission speeds (depending on the packet
size) [16].

Cipher parallelism.
On CPU, Roche et al [14] propose to use a block cipher in

counter chaining mode, a mode that is well-suited for paral-
lelization in addition to feature a high security level. The au-
thors use a very effective method based on work-stealing and
loop rescheduling for DES encryption. Using this method
and when considering only in memory operations, they ob-
tain a near-optimal speedup on multicore systems. However,
when considering network I/O (our case), the speedup is sig-
nificantly reduced, by up to 50%.

On GPUs, Andrea Di Biagio et al [13] present two imple-
mentations of the AES algorithm that are parallelized for
GPUs. They propose a fine-grained approach for paralleliz-
ing the inner operations of the AES round, and a coarse-
grained approach that focuses on the parallelism outside the
round operations an data blocks. Thanks to these tech-
niques, they obtain great speed-ups when ciphering large
files. However this is not directly applicable to our case since
we need to consider smaller sizes (we follow a per-packet ap-
proach).

3. BENCHMARK ARCHITECTURE
In this section, we describe the server we used for our

experiments and its basic performance.

Processor architecture.
The Intel Nehalem architecture [4] introduces parallelism

mechanisms at the hardware level. Those mechanisms con-
centrate on two aspects of the architecture: cache/memory
accesses and I/O connections.

As far as memory is concerned, each CPU chip introduces
a new level of cache (L3) that is shared by the four cores,

Figure 1: Nehalem cache architecture.

Figure 2: New Nehalem motherboard architecture.

Figure 3: Old motherboard architecture.

74

Figure 4: Old Network Interface Cards (NIC).

Figure 5: New Network Interface Cards (NIC), with
multi-queue.

and two physical buses (RAM and QuickPath) (figure 1). To
each CPU chip is associated a privileged memory bank (con-
nected to the CPU chip RAM bus) that is accessed directly
by the associated CPU, and that can still be accessed by
remote CPU chips through a CPU-to-CPU interconnection
(figure 2). This new memory hierarchy enhances parallelism
since each CPU can now access its own memory bank inde-
pendently, without creating any contention with respect to
other CPUs. As far as I/O communications are concerned,
Intel also removed the classic bottleneck by replacing the
old shared-bus architecture (e.g. the Front Side Bus, FSB,
of figure 3) by point-to-point connections between each CPU
and a I/O hub (figure 2).

Network Interface Card (NIC).
In traditional NIC architectures, the NIC driver is the only

entity capable of accessing the NIC (figure 4). On the oppo-
site, recent NIC also include parallelism mechanisms at the
hardware level, and more precisely new NIC define multiple
reception and transmission queues (figure 5). Thanks to this
change, the traditional bottleneck at the hardware/software
edge is removed. Even though it was primarily designed for
virtualized server [5], the new NIC architecture is useful in
our use-case because they can help spreading the network
charge over different cores, over different OS threads.

First performance evaluation.
Using a Nehalem based server, with multi-queue NIC and

running GNU[9]/Linux[7], we carried out several bandwidth
tests, using a TCP/IPv4 bulk transfer, with/without IPsec,
in order to have a first idea of the performance of an ”out
of the box” solution. More precisely, we use a bi-Xeon 5530
server (for a total of 8 cores), equipped with a 10 Gb/s NIC
based on the Intel 82598EB chipset. The average bandwidth
at application level (i.e. without counting the Ethernet, IP
and TCP header overheads) is summarized in table 1. The
evaluation tool used was Iperf[6].

Without IPsec/encryption, we can saturate the physical
link, with average transmission rates between 8 and 9.2 Gb/s
depending on the server load. However, when IPsec (ESP / tun-
neling mode, see section 4, using AES in counter mode) is

Table 1: First performance evaluation.
Without IPsec 9,2 Gb/s (best)

IPsec in tunnel mode (AES-CTR) 0,8 Gb/s
AES-CTR cipher (mono-thread) 0,8 Gb/s

Figure 6: IPsec packet format.

used encrypt communications, performances drop by more
than a factor 10. One can notice that this is roughly the
same throughput as the AES-CTR cipher of the libcrypto
library [8] in mono-thread mode.

The conclusions is that using the latest hardware (Ne-
halem processors, a multi-queue NIC) and kernel-space IPSec
support is not sufficient to achieve high throughput: an ”out
of the box” GNU/Linux solution fails to achieve 10 Gb/s
with a bulk encrypted traffic. More fundamentally, during
the past 10 years, we observed a fundamental shift in CPU
development, from frequency to parallelism, and this shift is
also impacting motherboards and NIC. Therefore, the seek
for high performance communications requires that develop-
ers take this situation into account and develop highly par-
allelized applications, which is the only possibility to take
benefit of current and future servers, instead of counting on
the raw performance growth of CPU cores.

4. ENCRYPTED COMMUNICATIONS AND
PARALLELISM

IPsec.
A common solution for network-level encrypted commu-

nications is IPsec [10]. IPsec is mostly used with ESP (En-
capsulated Security Payload) in tunnel mode, and provides
confidentiality, source authentication and integrity verifica-
tion services. When this mode is used in a security gateway,
packets coming from the local network are encapsulated in
a new IP packet as shown in figure 6. The ESP header al-
lows the remote host to identify and use to same cipher and
key. One of the ciphers supported by IPsec is AES which
is considered as one of the best symmetric key algorithm of
the moment. Therefore we concentrate our effort on this ci-
pher in counter mode (section 4). Finally, IKE (Internet Key
Exchange) is another protocol related to IPsec which allows
two hosts to safely exchange the session keys. However since
IKE does not impact our tests, we do not consider it.

Counter mode.
From the five ciphering modes of operations (Electronic

Code-Book, Cipher Block Chaining, Cipher-FeedBack, Out-
put FeedBack and Counter), we choose to use the Counter
mode since it allows an easy parallelism[3]. More precisely
(figure 7), using a set {nonce, counter 0, f} (where f is a
function that produces a sequence guaranteed not to repeat
for a long time and that enables to easily obtain counter i =
f(counter 0, i)) and a secret key K (constant during the
communication), we can generate a pseudo random bit-stream

75

Figure 7: Cipher counter mode.

(or keystream). This keystream is then XORed to all the
blocks M i of the plaintext message M , during the encoding
process, and the same keystream is XORed to all the blocks of
the ciphertext message during the decoding process. Since
the various blocks are encrypted/decrypted independently,
the Counter mode allows an easy parallelization, by dis-
patching block processing over the computing units.

Parallelism and packet streams.
We are dealing with TCP flows, and therefore the TCP

segments should be delivered in order to the receiving TCP
engine. Indeed mis-ordered TCP segments are considered
as the sign of a potential packet erasure over the network,
which leads the receiver to generate immediate duplicated
acknowledgements. Upon receiving three such duplicated
acknowledgements, the TCP sender will immediately en-
ter in congestion avoidance state and reduce the connection
throughput accordingly. Therefore the parallel processing of
incoming packets must preserve the ordering within a given
TCP connection.

[12] introduces a work-stealing based algorithm to dis-
tribute tasks for a given stream over different processors in
such a way that it guaranties the output ordering. The rela-
tive speedup is a factor 6 when using 8 processors, which is
rather good compared to the factor 4 obtained with classic
parallel algorithms.

5. EXPERIMENTING BANDWIDTH LIMI-
TATIONS ON MULTICORE ENVIRON-
MENTS

Experimental settings.
We know (section 3) that even though the Nehalem archi-

tecture can handle 10Gb/s traffic without encryption, the
standard IPsec implementation limits us to 0.8 Gb/s (which
is also the monothread bandwidth of AES-CTR). We now
want to assess our server peak performance level (see sec-
tion 3 for server description), in the most ideal configuration,
at the sender. To that purpose, one thread is dedicated to
TCP/IP processing (no encryption) and several threads per-
forms encryption over unrelated buffers (these buffers are not
related to the TCP/IP packets, even if in a real situation,
they would be IPsec packets). More precisely, the sending
application sends 240 Gbit of data with the communication
thread, and distributes the encryption of the corresponding
number of data packets over the set of encryption threads.
We then evaluate the upper encryption performance as 240
Gbit divided by the processing time of the slowest thread.
As can be seen, these tests fail to catch the real behavior of

Figure 8: Communication and encryption thread ex-
ecution times as a function of the number of encryp-
tion threads.

an IPsec protocol stack. However it is sufficient to provide an
upper bound of the performance, and is useful to assess the
feasibility of the problem: is a 10 Gb/s encryption feasible
or not on this architecture?

Optimal number of threads.
First of all, we evaluate the number of threads that enable

us to achieve the best performance. Figure 8 plots the mea-
sured time used by each thread as a function of the number
of threads.

As one can predict, under 7 encryption threads, we are
limited by the encryption thread processing time, which in
turn is limited by the AES bandwidth. This test was per-
formed on 240 Gbit of data, split in buffers of 3 kB. So for
the 6 encryption threads (each having to encrypt 40 Gbit),
one cannot expect better results than 50 seconds for each
thread. We can see that threads are only a few seconds
slower than the monothread bandwidth of the AES cipher
itself. For the networking thread, we are under 30 seconds
which corresponds to more than 8 Gb/s. In this part of the
curve, there is a linear gain with the number of available
threads.

Between 8 and 15 encryption threads, we are above the
maximum number of threads that can truly run in parallel
over the 8 cores. However, the CPU hyperthreading tech-
nique (HT) enables the parallel execution of these threads.
By looking more carefully at the results, at first we see that
the bandwidth decreases (figure 9) and HT seems to be a
drawback. Then, between 13 and 15 encryption threads, the
HT mechanism improves the achievable throughput.

To better understand the HT behaviour, we measure the
thread execution time distribution for the 2 extremes (val-
ues are averaged over 10 tests): with 9 and 15 encryption
threads (figure 10), to which we need to add the commu-
nication thread. More precisely, we performed 10 tests for
each configuration, and we calculate the execution thread
distribution. We see that the distribution is uniform with
15 encryption threads. On the opposite, with 9 encryption
threads the distribution exhibits an important tail: we have
six threads around 36 seconds, one thread between 45 and

76

Figure 9: Bandwidth as a function of the number of
encryption threads.

Figure 10: Communication and encryption thread
execution time distribution.

Figure 11: Sending time as a function of the data
size.

50 seconds and two threads near 70 seconds. What hap-
pens here is that the first 8 threads use the 8 ”real” cores
(one is in fact slower because of the impacts of other system
processes), and the remaining threads are scheduled using
the HT capability of the processors. This experiment shows
that two threads are delayed and do not get access to a
fair share of the available CPUs, which significantly impacts
the estimated throughput that only takes into account the
slowest thread (bottleneck). We do not experience such a
phenomenon with 15 encryption threads, which shows that
scheduling is done in a fair way.

Finally, with 16 or more encryption threads we do not
experience any benefit in increasing the number of threads.
We can conclude that optimum performance is achieved with
15 encryption threads, plus one communication thread, and
that the maximum achievable throughput is around 5.75
Gb/s.

Data size impact.
Now that we identified the appropriate number of threads

(15 for encryption, 1 for communications), we consider the
influences of the data buffer size. Figure 11 shows that the
execution time of all threads (encryption and communica-
tions) is a linear function of the data size. We also noticed
that encryption is the bottleneck compared to communica-
tion.

Extrapolation to the receiver.
In a high-bandwidth context, a receiver will most likely

use the polling mechanism instead of interruptions that gen-
erate high CPU consumption. This is possible because of
the high-bandwidth context which implies the reception of
millions of packets per second, which will be handled by a
dedicated thread. Therefore the situation is rather similar
to the sender side where a thread is dedicated to the send-
ing operations. We can anticipate that the same bottleneck
remains the same at the receiver side (this claim remains to
be confirmed).

Partial conclusions.
Previous experiments have shown that even an up-to-date

77

8-core server (two Nehalem CPUs) cannot handle secure
communications at the full 10 Gb/s Ethernet speed, and that
encryption is the bottleneck. So we need to search another
way of doing encryption without overloading the CPUs.

6. CYPHERING CAPABILITIES OF GPUS

GPU and CUDA.
The domain of Graphical Processing Units (GPU) recently

made major progress, much faster than CPUs, and as a con-
sequence, some GPUs now have more transistors than new
quad-core CPUs. This is due to the fact that they are specif-
ically designed for intensive and highly parallel computing,
as is needed for image rendering. Since these GPUs have
a highly parallel structure, many complex algorithms have
been redesigned to take advantage of it. This approach also
offloads computing intensive tasks on to the GPU, which
saves a lot of processing time in the general purpose CPU.

The two major GPU manufacturers, NVidia and AMD,
have both released development systems for GPU hardware,
respectively CUDA and Stream. The Nvidia CUDA frame-
work extends the C language to give access to the GPU,
allowing C functions to run on the GPU stream processors
in parallel. With CUDA, a programmer can use both regular
C code and GPU code in the same file which simplifies the
development process. CUDA abstracts the parallelism and
gives the notion of ”blocks” and ”threads”: several ”threads”
run within each ”block”. Each ”block” is independent from
other ”blocks”, and if ”threads” from different ”blocks” need
to communicate they need to use the global memory of the
GPU. Communication within a ”block” is done using the
block’s memory. Finally, data needs to be moved from the
host memory to the GPU memory, which is one of the main
limitation of the approach because of the associated latency.

AES parallelization.
The AES algorithm is a standard algorithm, widely used

in communication systems. With the CTR mode of opera-
tion, AES can be easily implemented in a parallel manner
(section 4), and different parts of the cleartext message are
processed on different GPU processing units. However, since
each round in the algorithm depends on the previous round
result, we cannot go any further and introduce a finer grain
parallelism.

Experimental settings.
During the experiments, we use an NVIDIA GeForce GTX

295 GPU. We consider buffers of size in the range 1KB to
128KB, since our focus is on network packets whose size
depends on the target physical layer, but is usually small.
We then compare the results with those achieved on a CPU
(an Intel bi-Xeon 5530 running at 2,4 GHz in this case).

Performance Evaluation.
We did several modifications on the implementation of [11]

in order to get better results when encrypting files of small
sizes. Indeed, using small files prevents to use the GPU in
an optimal way for two reasons: first of all, the GPU cores
are not all used in this case, and secondly, a lot of overhead
is introduced when we wait for previous files to be processed.
In order to solve this problem, we propose to use threads or
what is known as ”CUDA streams”. In our experiments we

Figure 12: Cipher Throughput.

define 1024 streams to cipher files of the same size. The idea
is that operations are done asynchronously, so while compu-
tations are done on previous files, new files are transfered to
the GPU. In addition, since the files are relatively small, the
ciphering of each file is performed on one CUDA block in
order to reduce the overhead of distributing the file across
many blocks. These techniques allow to use all the stream
processors of the GPU efficiently.

The results (figure 12) show that the CPU speed is almost
constant, regardless of the file size. Concerning GPU, we
compare three strategies: the first one is the naive imple-
mentation that was used for large file sizes; the second im-
plementation uses CUDA streams to cipher asynchronously;
and the last implementation limits the third implementation
to use one block per file in order to reduce the overhead. The
speed-up obtained from the third implementation over the
naive one is 4 times for files of size 4KB. This increases up to
8 times in the case of files of size 128KB, reaching a through-
put of 3,7 Gb/s. It should be noted that there is almost no
significant speed-up in the case of files smaller than 4KB.
Nonetheless, the throughput of very small files is still rela-
tively low. To overcome this in terms of network packets, we
propose the use of multiple GPUs (our server authorizes the
use of up to four GPU cards) and the grouping of packets
together to have files of higher size, almost 64KB or even
128KB. This may allow the reach of a throughput higher
than 8Gb/s.

7. CONCLUSIONS AND PERSPECTIVES
This paper analyzes the raw capabilities of today’s generic

server for high performance secure communications. We
show that relying on multi-core processors only is not suffi-
cient to encrypt and send the data over the network at 10
Gb/s speed. We also show that the hyper-threading feature
of processors should be used very carefully: correctly used,
hyper-threading can help increase the sustainable bandwidth
by distributing the processing load uniformly over the var-
ious cores, but certain configurations can also seriously de-
crease performances.

Since our experiments highlight the need for additional
techniques, we also consider GPGPU for encryption opera-
tions. Although previous works in the domain have shown

78

great results, it appears that for small data (i.e. one network
packet) a GPGPU is slower than a CPU. However, we man-
aged to optimize the AES implementation for the CUDA
API and to achieve higher ciphering throughput than was
previously feasible. We are continuing this effort in the hope
to have similar results for data sizes in the order of a packet
size.

Future research efforts will also address the use of multiple
GPUs on a given server, as another possible way of improv-
ing performances. We are also considering the possibility to
group several packets and to encrypt them together, as an-
other way of improving the use of GPGPUs. However the
practical impacts of doing so, both from a protocol point of
view and inter-dependence point of view have to be seriously
considered.

8. REFERENCES
[1] Cavium networks. http://www.caviumnetworks.com/.

[2] Cisco systems. http://www.cisco.com/.

[3] Counter mode.
http://http://en.wikipedia.org/wiki/Block_

cipher_modes_of_operation#Counter_.28CTR.29.

[4] Intel nehalem architecture. http://www.intel.com/
technology/architecture-silicon/next-gen/.

[5] Intel virtual machine device queue technology.
http://www.intel.com/network/connectivity/vtc_

vmdq.htm.

[6] Iperf. http://perf.sourceforge.net/.

[7] Linux. http://kernel.org/.

[8] Openssl’s libcrypto manual page.
http://www.openssl.org/docs/crypto/crypto.html.

[9] GNU. http://www.gnu.org/.

[10] IPsec. http://tools.ietf.org/html/rfc4301.

[11] C. Berk Guder. AES on CUDA.
http://github.com/cbguder/aes-on-cuda, January
2009.

[12] J. Bernard, J.-L. Roch, and D. Traore.
Processor-oblivious parallel stream computations. In
16th Euromicro International Conference on Parallel,
Distributed and network-based Processing, Toulouse,
France, Feb 2007.

[13] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi.
Design of a parallel AES for graphics hardware using
the CUDA framework. Parallel and Distributed
Processing Symposium, International, 0:1–8, 2009.

[14] V. Danjean, R. Gillard, S. Guelton, J.-L. Roch, and
T. Roche. Adaptive loops with kaapi on multicore and
grid: Applications in symmetric cryptography. In
A. publishing, editor, Parallel Symbolic
Computation’07 (PASCO’07), London, Ontario,
Canada.

[15] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism to
Scale Software Routers. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles
(SOSP), Big Sky, MT, USA, 2009. ACM.

[16] N. Egi, A. Greenhalgh, M. Handley, G. Iannaccone,
M. Manesh, L. Mathy, and S. Ratnasamy. Improved
forwarding architecture and resource management for
multi-core software routers. In Network and Parallel

Computing, 2009. NPC ’09. Sixth IFIP International
Conference on, pages 117–124, Oct. 2009.

[17] P. Vicat-Blanc/Primet, V. Roca, J. Montagnat, J.-P.
Gelas, O. Mornard, L. Giraud, G. Koslovski, and T. T.
Huu. A scalable security model for enabling dynamic
virtual private execution infrastructures on the
internet. In 9th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’09),
Shanghai, China, May 2009.

79

Exact Sparse Matrix-Vector Multiplication on GPU’s and
Multicore Architectures

Brice Boyer Jean-Guillaume Dumas
∗

Laboratoire J. Kuntzmann, UMR CNRS 5224,
Université de Grenoble

BP 53X, F38041 Grenoble, France.
{Brice.Boyer,Jean-Guillaume.Dumas}@imag.fr

Pascal Giorgi
Laboratoire LIRMM, UMR CNRS 5506,

Université Montpellier 2
F34095 Montpellier cedex 5, France.

Pascal.Giorgi@lirmm.fr

ABSTRACT
We propose different implementations of the sparse matrix–
dense vector multiplication (SpMV) for finite fields and rings
Z /mZ. We take advantage of graphic card processors (GPU)
and multi-core architectures. Our aim is to improve the
speed of SpMV in the LinBox library, and henceforth the
speed of its black-box algorithms. Besides, we use this li-
brary and a new parallelisation of the sigma-basis algorithm
in a parallel block Wiedemann rank implementation over fi-
nite fields.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations in finite fields; G.1.3 [Numerical Linear Algebra]:
Sparse, structured, and very large systems (direct and iter-
ative methods); G.4 [Mathematical Software]: Parallel
and vector implementations

Keywords
Sparse Matrix Vector multiplication, Finite field, Parallelism,
Rank, Block Wiedemann

1. INTRODUCTION
Nowadays, personal computers and laptops are often equip-

ped with multicore architectures, as well as with more and
more powerful graphic cards. The latter can be easily pro-
grammable for a general purpose computing usage (Nvidia
Cuda, Ati Stream, OpenCL). Graphic processors can offer
nowadays superior performance on a same budget as their
CPU counterparts. However, programmers can also effi-
ciently use many-core CPUs for parallelization e.g. with the
OpenMP standard.

∗Part of this work was done while the second author was
visiting the Claude Shannon Institute and the University
College Dublin, Ireland, under a CNRS grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

On the numerical side, several libraries automatically tune
the sparse matrix kernels [19, 20, 16] and recently some ker-
nels have been proposed for GPU’s [17, 2, 1]. In this paper
we want to adapt those techniques for exact computations
so we first focus on Z /mZ rings, with m smaller that a
machine word.

The first idea consists in using the numerical methods
in an exact way as done for dense matrix operations [7].
For sparse matrices, however, the extraction of sparse sub-
matrices is different. Also, over small fields some more dedi-
cated optimizations (such as a separate format for ones and
minus ones) can be useful. Finally, we want to be able to
use both multi-cores and GPU’s at the same time and the
best format for a given matrix depends on the underlying
architecture.

Therefore, we propose an architecture with hybrid data
formats, user-specified or heuristically discovered dynami-
cally using ad-hoc sparse matrix completions. The idea is
that a given matrix will have different parts in different for-
mats adapted to its data or to the resources. Also we outline
a “just-in-time” technique that allows to compile on the fly
some parts of the matrix vector product directly with the
values of the matrix.

We have efficiently implemented1 “Sparse Matrix-Vector mul-
tiplication” (SpMV) on finite rings, together with the trans-
pose product and the iterative process to compute the power
of a matrix times a vector.

We also make use of this library to improve the efficiency
of the block Wiedemann algorithm’s of the LinBox2 library.
Indeed, this kind of algorithm uses block “black box” [13]
techniques: the core operation is a matrix-vector multipli-
cation and the matrix is never modified. We use the new
matrix-vector multiplication library, together with a new
parallel version of the sigma-basis algorithm, used to com-
pute minimal polynomials [11, 8].

In section 2 we present different approaches to the par-
allelization of the SpMV operation: the adaptation of nu-
merical libraries (section 2.3) and new formats adapted to
small finite rings (section 2.5) together with our new hy-
brid strategy and their iterative versions (section 2.6). Then
in section 3 we propose a new parallelization of the block
Wiedemann rank algorithm in LinBox, via the paralleliza-
tion of the matrix-sequence generation (section 3.1) and the
parallelization of the matrix minimal polynomial computa-
tion (section 3.2).

1https://ljkforge.imag.fr/projects/ffspmvgpu/
2http://linalg.org

80

2. SPARSE-VECTOR MATRIX MULTIPLI-
CATION

We begin with introducing some notations. In this section,
we will consider a matrix A; the element at row i, column
j is A[i, j]. The number nbnz is the number of non zero
elements in matrix A, it has row lines and col columns. If x
and y are vectors, then we perform here the operation y←
Ax + y. The general operation y← αAx +β y can then be
done by pre-multiplying x and y by α and β respectively.
The operation y ← A> x + y is done by pre-transposing
the matrix A. The apply operation in LinBox black box
algorithms, or y ← Ax, is performed by first setting the
elements of y to zero. For further use in block methods, we
also provide the operation Y ← αAX +βY where X and
Y are sets of vectors (or multivectors).

2.1 Sparse Matrix Formats and Multiplication
Sparse matrices arise form various domains and their shapes

can be very specific. Taking into consideration the structure
of a sparse matrix can dramatically improve the performance
of SpMV. However, there is no general storage format that
is efficient for all kind of sparse matrices.

Among the most important storage formats is the COO (co-
ordinate) format which stores triples. It consists of three
vectors of size nbnz, named data, colid and rowid, such
that data[k]= A [rowid[k], colid[k]].

The CSR (compressed storage row) stores more efficiently
the previous representation: the rowid field is replaced by a
(row + 1) long start vector such that if start[i] 6 k <
start[i + 1], then data[k]= A[i,colid[k]]. In other
words, start indicates where a line starts and ends in the
other two ordered fields.

The ELL (ELLpack) format stores data in a denser way:
it has data and colid fields such that data[i, j0]= A[i,
colid[i, j0]], where j0 varies between 0 and the maximum
number of non zero elements on a line of A. One notices
that these fields can be stored in row-major or column-major
order. A variant is the ELL_R format that adds a row long
rownb vector that indicates how many non zero entries there
are per line.

The DIA (DIAgonal) is used to store matrices with non zero
elements grouped along diagonals. It stores these diagonals
in an array along with offsets where they start. We refer
to [1],[17] for more details on these formats.

This very schematic description of a few well-known for-
mats shows that each of them has pros and cons. Our aim
is to produce a more efficient implementation of the SpMV
operation on finite fields than the one present in LinBox,
first taking advantage of this variety of formats.

2.2 Finite field representation
We present now how the data is stored. We use com-

mon data types such as float, int,. . . Firstly, when doing
modular linear algebra over Z /mZ, we try to minimize the
number of costly fmod (reduction mod m) operation calls.
Indeed, this fmod operation is the one difference with nu-
merical implementations of SpMV and needs very special
attention. For instance, we prefer, if possible, the right loop
to the left one in the following figure 1:

for (i=0 ; i<n ; ++i){

y += a[i] * b[i] ;

y = fmod(y,m);
}

for (i=0 ; i<n ; ++i){

y += a[i] * b[i] ;

}

y = fmod(y,m);

Figure 1: Delaying fmod

In this case, suppose that y = 0, a[i] and b[i] are reduced
modulo m at first. Let M be the largest representable in-
teger. On Z /mZ, we can represent the ring on J0,m− 1K.
Then we can do at most M/(m−1)2 accumulations before re-
ducing. We can also represent the ring on

q− ¨m−1
2

˝
,
˚
m−1

2

ˇy
.

This last representation enables us to perform twice more
operations before a reduction, but this reduction is slightly
more expensive. Another trade-off consists in choosing a
float representation instead of double (on the architectures
that support double). Indeed, operations can be much faster
on float that on double but the double representation lets
us do more operations before reduction. This is particularly
true on some GPU’s.

��������� 	
� �����

�

���

���

���

���

����

����

����

����

������������� ������������ ��������������� ��������������

����������������� ��� ���������������� ��� ����������������� ��� ������������������ ���

!�� ���"

!
��
�
#
"

��������� 	
� �����

�

���

����

����

����

����

����

����

����

����

������������� ������������ ��������������� ��������������

��������������������� �������������������� ��������������������� ����������������������

 ������!

��
�
"
!

Figure 2: float–double trade-off for different sizes of
m, on the CPU and GPU (ELL_R format)

In figure 2, we present variations in efficiency due to the
storage data type and the size of m on one core of a 3.2GHz
Intel Xeon CPU and a Nvidia GTX280 GPU. The timings
correspond to the average of 50 SpMV operations, where x
and y are randomly generated on the CPU; every data trans-
fer between the CPU and GPU is taken into account. The
measure unit corresponds to the number of million floating
point operations per seconds (flops); a SpMV operation re-
quires 2 ∗ nbnz such operations. The data storage here is
ELL_R and the matrices3 are presented in table 1. This fig-
ure shows a significant slow down for for double operations
on this GPU and a minor one on this CPU. On the border
case (large prime, small data type), we can see a large per-
formance gain on the CPU but not on the GPU. We suspect
the massive parallelisation on the GPU hides the cost of the
fmod operation.

3matrices available at http://www-ljk.imag.fr/membres/
Jean-Guillaume.Dumas/simc.html

81

name mat1916 bibd 81 3 EX5 GL7d15 mpolyout2
row 1916 3240 6545 460261 2410560
col 1916 85320 6545 171375 2086560
nbnz 195985 255960 295680 6080381 15707520
rank 1916 3240 4740 132043 1352011

Table 1: Matrices overview

For further information about these techniques on these
rings and fast arithmetic in Galois extensions, see e.g. [7].

Note: in the sequel of the paper, unless otherwise men-
tionned, the timings will be done on float with m = 31 and
the classical representation.

2.3 Adapting numerical libraries
Another speed-up consists in using existing numerical li-

braries. The ideas behind using them on the rings Z /mZ, is
twofold. Firstly, we delay the modular reduction, secondly
we can use highly optimized popular libraries and get instant
speed-ups as compared to more näıve “home made” routines.

Just like BLAS libraries can be used to speed up modu-
lar linear algebra [9], we can use numerical libraries for our
purposes, or get inspiration for our algorithms from their
techniques. For instance, there is the Oski library [19] for
sequential numerical SpMV, or the GPU implementation of
SpMV by Nathan Bell et al. in [1]. The BLAS specifica-
tions include Sparse BLAS4 but these routines are seldom
fully implemented in free BLAS implementations.

Unfortunately, numerical libraries usually cannot be used
as-is. We need to extract submatrices from the sparse ma-
trices, which is more complicated than for its dense coun-
terpart when the use of strides and dimensions suffices. For
instance, let us suppose one can do b accumulations on y[i]
before an overflow may happen and we need to reduce. Sup-
pose too that line i of A has ri non zero elements. Then
we want to split this line between dri/be matrices. We can
improve this technique with a finer majoration. We split the
elements in row i into a disjoint union of κi sets Si,k. Let µ
be the largest (in absolute value) element we can represent
in the ring (usually m or dm/2e). For all i, k, we demand
that

P
α∈Si,k

|α|µ < M and create maxi(κi) submatrices.

Eventually, we can use the numerical libraries on these
submatrices we have created. The general algorithm reads
as follows:

spmv(y,A,x){
foreach submatrix Ai in A do {

spmv num(y,Ai,x); //no overflow guaranteed
reduce(y,m);

}
}

Figure 3: Using numerical routines

On the CPU, numerical routines have been written for ev-
ery format and on the GPU we use an adaptation of Nathan
Bell’s cusp library.

2.4 Using OpenMP
For the ease of implementation and for it is becoming a

well-used standard, we chose OpenMP to parallelise our code
on the CPU. In most cases, we simply added a #pragma omp

above the outer loops. This technique gave good perfor-
mances as shown in figure 4.

4www.netlib.org/blas/blast-forum/chapter3.pdf

��������� 	
� ����� ������� ���������

�

���

����

����

����

����

����

����

����

����

����

�������

�������

�������

 �!������

 �!������

���!�"�#

$
%�
�
�
#

Figure 4: OpenMP-parallelised CSR with N cores,
on an 8 core 3.2GHz Intel Xeon and a 3GHz Intel
Core2Duo processor

As we can notice on this figure, OpenMP help scale well the
performances, with a few processors.

2.5 New formats
Most of the formats implemented show a row-level paral-

lelism, except COO that has element-wise parallelism. The
COO case is not obvious to implement and is generally much
slower. The parallel efficiency of other formats will depend
then on the length of the rows as well as the data regularity.
Unbalanced rows on a GPU architecture will produce many
idle threads. Two solutions exist: the vector approach of
Bell et al. (they split the rows into shorter chunks and re-
duce) or the rearranging of rows with permutations to sort
the rows according to their length. The last idea will not
work in e.g. a power distribution of the row lengths. The
ELL format answers very well this problem because each row
has the same length. However, one has to be very care-
ful about the amount of unnecessary memory allocated by
ELL in case of very uneven row lengths. Then, as proved in
e.g. [1], yet another solution consists in splitting the matrix
A into a sum of matrix, one dense part in ELL, the other in
COO format.

An other way to parallelise the SpMV operation is to split
the matrix A along rows to get smaller submatrices and treat
them in parallel. We took this approach on the CPU COO

algorithm.
Also, we have to keep in mind that we are dealing with

large matrices, used many times as black-boxes. Therefore
there is a trade-off between the time spent on optimizing the
matrix and how much faster these optimizations will make
SpMV run.

Things to consider during preprocessing may include for
instance: reordering row-columns to create denser parts,
choosing best-fitting formats, cutting the matrix into effi-
cient sub-matrices ([20],[16]). . . The preprocessing approach
is taken by Oski: if the expected number of SpMV is very
high, optimizing the matrix deeper will prove efficient.

2.5.1 Base case: JIT
One idea to improve SpMV on a given matrix is to hard

code this operation in a static library. We read the matrix
file and create a library that will apply this matrix to input
vectors. For instance the y ← y +Ax operation on the

matrix

„
2 1
0 3

«
would be translated to (if m = 27):

void spmv(float * y, const float * x) {

y[0] += 2*x[0] ;

y[0] += x[1] ;

82

y[0] = fmod(y[0],27);

y[1] += 3*x[1] ;

y[1] = fmod(y[1],27);

}

Then we compile this generated file a as static library and
use dlopen to access its functions. As we can see in this ex-
ample, one can implement various optimizations: rearrang-
ing the rows so that the work is more even, replacing the
occurrences of ±1 in the matrix by less costly additions or
subtractions. However, large matrices take extremely long
to compile, even if the matrix is divided into smaller (easier
to compile) submatrices. Only then for instance, we could
compile bibd_81_3 but it took 63s on the same Xeon ma-
chine. Once it is compiled, the CPU version runs at 620
Mflops, which is reasonably fast but not usable. This idea
did not take into account the pressure on the instruction
cache and the possibly small bandwidth of certain architec-
tures. However, it produced the idea for the following data
formats.

2.5.2 Taking into account the ±1

The example of JIT and the observation that many ma-
trices arising from different applications have a lot of ±1F
attracted our attention on this special case. Moreover, many
matrices on a small fields also share this property. Thus we
can extract two submatrices corresponding to the 1 and −1
from the rest of the matrix and replace multiplications by
usually less expensive additions. Besides, the data field in
most formats (except ELL, DIA) can be forgotten as we know
they only consist of 1 or −1: this reduces the memory usage.
Doing only additions as opposed to axpy also hugely delays
reduction.

��������� 	
� ����� �������

�

���

����

����

����

����

���������

��������

���������

��������

������ !

"
#�
$
%
!

Figure 5: Speed improvement on one 3.2GHz Intel
Xeon CPU and a Nvidia GTX280 GPU when segre-
gating or not the ±1 (CSR format)

Figure 5 shows a significative improvement on these ma-
trices. GL7d15 has close to half 1 and half −1, bibd_81_3

and EX5 are only constitued of 1 and 55% of the non zero
coefficients of mat1916 are 1s.

The only drawback in singling out the ±1 and creating
accordingly new formats is that, to our knowledge, there is
no numerical library for them.

2.5.3 Basic Formats
As evoked earlier, the matrix A can be split into smaller

submatrices. These submatrices can have a format adapted
to them and/or can be treated differently. For instance, we
can split row-wise and distribute these matrices for paral-
lelism, or split them column-wise as in the delaying case

(figure 3). This makes (possibly) many matrices that we
each want to optimize individually so we get better overall
performance.

We start with some observations. The COO format is slow
due to the many fmod calls, it is best used when the ma-
trix is extremely sparse. The CSR format is denser and can
let delayed reduction occur, but one has to ensure the row
lengths are well balanced when parallelizing. The ELL for-
mats are very efficient on matrices that have roughly the
same number of non zeros per line. The ELL_R format ([17])
is better for less even row lengths. One difference in the
CPU and GPU architecture makes the ELL row-major on
the CPU (for better cache use) and column-major on the
GPU (for better coalescing). The following figure shows on
one example (bibd_81_3) the variation of efficiency. The
data is normalized so that CSR is 1 on the CPU or GPU.

���������
�����	���

�����������

�������	���

�����������

�������	���

�

���

���

���

���

�

���

�����

�
�
�
�
�
��
�

Figure 6: Speed-ups for various formats on matrix
bibd_81_3 both on one 3.2GHz Intel Xeon CPU and
a Nvidia GTX280 GPU; reference is CSR on each ar-
chitecture

2.5.4 Hybridization
The previous remarks lead us to combine these formats to

take advantage of them. Hybrid formats such as ELL(_R)+

COO or ELL(_R)+CRS give good performance on the GPU.
When the ELL part is taken out of a matrix, many rows can
be left empty. Then, we use a format called COO_S that is a
CSR format with pointers only to the non empty rows. It has
data, colid same as in CSR and COO. The number rowid[k]
corresponds to the kth non empty row that starts in data

and colid at start[k]. This format could be avoided if we
used row permutations and ordered the lines according to
their weight.

2.5.5 Heuristic format chooser
The previous remarks show a great complexity in the for-

mats and the cutting of the matrix. We have implemented a
user-helped heuristic format chooser. For instance, the user
can indicate if she wants to try and make use of ±1. If so,
for each submatrix, the program tries to find an a priori ef-
ficient format for them or if it fails, does not separate the 1
or the −1 from the rest. She can also indicate what is the
format she wants to fill in priority.

The hybridization of the matrix is usually done as follows.
If the matrix is large enough and most of the lines are filled, it
will try to fit a part of the matrix in an ELL or ELL_R format.
This choice is supported by the observation that, on one
hand, many matrices have a c+r row distribution where c is
some constant and r ∈ Z varies and that, on the other hand,
ELL is generally much faster that other formats for matrices

83

with even row weights. The rest of the matrix will be put
in a CSR, COO or COO_S format, according to the number of
empty lines and the number of residual non zero elements.
Parameters that decide when segregating the 1s, that choose
the best length for ELL matrix, etc., vary according to the
architecture of the computer and need some specific tuning.
This tuning is not yet provided at compile time but some of
it could be automatically performed at install time.

Experiments (figure 7) show that this heuristic often gives
equal or better results that simple formats on the CPU and
the GPU.

��������� 	
� ����� �������

�

���

���

���

���

�

���

���

���

���

���

���

��������

!
�
�
�
"#
!

Figure 7: Speed-up of the auto-generated format
over CSR.

2.6 Block and iterative versions

2.6.1 Using multi-vectors
We have described the SpMV operation y← Ax where x

and y are vectors. We also need x and y to be multi-vectors,
for they may be used in block algorithms. There are at least
two ways to represent them : row or column-major order. In
the row-major order, we can use the standard SpMV many
times (and align the vectors). In the column-major order,
we can write dedicated versions that try and make use of the
cache. Indeed, in this case, we traverse the matrix only once
and x and y are read/written contiguously.

���������
	
�

�����
�������

���������

�

���

����

����

����

����

�

�

�

��

��������

!�
�
�
�

���������
	
�

�����
�������

���������

�

���

����

����

����

����

��������

Figure 8: Matrix-multivector multiplication speed
on one 3.2GHz Intel Xeon CPU (left) and a Nvidia
GTX280 GPU (right) for column-major multi-
vectors, with 1, 4, 8 and 16 vectors. (ELL_R format)

On figure 8, we note that on the CPU, using column-
major multivectors is a non negligible gain of speed. On
the contrary, the GPU implementation fails to sustain good
efficiency for blocks of more than 8 vectors. We suspect the
problem comes from a bad use of local memory. Besides,
some large matrices start to reach the memory limitation.

2.6.2 Performance issues
The GPU operation on a single SpMV call from the host

point of view is very slow because we need to move the vec-
tors between the host and the device. It is therefore only
usable on operations that need no data moving between the
host and the device. Examples include the computation
y ← An x or the computation of the sequence

˘
Aix

¯
i∈J0,mK

that are used in many of the black box methods.
On figure 10, we illustrate this difference, mostly reusing

or not the data on the GPU, by comparing the performance
of the following two pseudo-codes (figure 9):

void smpv n(y,A,x,n){
y_d = copy on gpu(y);
x_d = copy on gpu(x);
A_d = copy on gpu(A);
for (i=0 ; i<n ;++i) {

y_d = A_d * x_d ; // spmv on GPU

x_d = y_d; // full copy

}

}

void n spmv(y,A,x,n){
A_d = copy on gpu(A);
for (i=0 ; i<n ;++i) {

y_d = copy on gpu(y_i);
x_d = copy on gpu(x_i);
y_d = A_d * x_d ; // spmv on GPU

}

}

Figure 9: Pseudo code for y ← Anx and n times y ←
Ax on the GPU with x randomly generated on the
CPU.

As expected, figure 10 clearly supports that it is highly
desirable not to move data between CPU and GPU when
avoidable. The speed-up is noticeable even from a very small
number of iterations.

��� ����	�
 �����

�

���

�

���

�

���

�

���

����

�

���

���

����

����

������

��������

�
�
�
�
�
��
�

Figure 10: Nvidia GTX280 GPU speed up of y ←
Anx compared to n times y ← Ax, with n = 5, 10, 20;
CSR format is used.

Note : plots thoughout this paper all take into account the
data transfer between CPU/GPU and back at each SpMV
operation.

3. PARALLEL BLOCK WIEDEMANN AL-
GORITHM

84

Some of the most representative applications requiring ef-
ficient sparse matrix-vector product are blackbox methods
based on the Lanczos/Krylov approach. In particular, the
method proposed by Wiedemann [21] and its block version
proposed by Coppersmith [5] are well suited to highlight ef-
ficiency of sparse matrix-vector product since the latter is
quite often their bottleneck.

As an application, we propose to improve the implemen-
tation of the Block Wiedemann rank algorithm presented in
[8]. Let us first briefly recall the outline of this algorithm,
we let the reader refer to e.g. [15] for further details.

Let A ∈ Fn×n be a matrix satisfying the preconditions of
[14]. Then the algorithm can be decomposed in three steps:

1. Compute the matrix sequence Si = Y TAiY for i =
0..2n/s+O(1), with Y ∈ Fn×s chosen at random

2. Compute the minimal matrix generator FAY ∈ Fs×s[x]
of the matrix series S(x) =

P
i Six

i

3. Return the rank r = deg(det(FAY))− codeg det(FA
Y).

Our approach is to separate the parallelization of each
step. The first step is clearly related to sparse matrix-vector
product and we will re-use our tools presented in previ-
ous sections. The second step needs the computation of a
minimal matrix generator. This can be achieved by a σ-
basis computation as explained in [8, section 2.2]. Finally,
the last step reduces to computing the co-degree of the deter-
minant of the σ-basis . The degree of the determinant being
directly computed as the sum of the row degrees of FAY since,
due to the σ-basis properties, the matrix is already in Popov
form.

3.1 Parallelization of the matrix sequence gen-
eration

The parallelization proposed in [8] was to ship independent
set of vector blocks of V to different cores and apply them in
parallel. Then gather the results to compute the dense dot
products by UT .

An alternative is to use the SpMV library and let it take
care of the iteration with the algorithm of the preceding
section.

In figure 11 we compare both approaches:

��������� 	
� ������

�

���

�

���

�

���

�

���

�������

�
�
�
�
�
��
�

Figure 11: Speed up from the new SpMV library
compared to the native LinBox implementation in
the generation of the matrix sequence (2n iterations)
on one core of a 2.33GHz Intel Xeon E5345 CPU

3.2 Parallelization of the σ-basis computation
One can efficiently compute σ-basis using the algorithm

PM-Basis of [11]. This algorithm mainly reduces to polyno-
mial matrix multiplication. Therefore a first parallelization
approach is to parallelize the polynomial multiplication.

3.2.1 Parallel polynomial matrix multiplication
Let A,B ∈ Fn×n[x] be two polynomial matrices of degree

d. One can multiply A and B in O(n3d + n2d log d) oper-
ations in F assuming F has a d-th primitive root of unity
[3]. Assuming one has k processors such that k 6 n2, one
can perform this multiplication with a parallel complexity of

O(n
3d
k

+ n2d log d
k

) operation in F. Let us now see the sequen-
tial fast polynomial matrix multiplication algorithm and how
it achieves such a parallel complexity:

Fast Polynomial Matrix Multiplication:
Inputs: A,B ∈ Fn×n[x] of degree d, ω a d-th primitive root
of unity inf F.
Outputs: A×B

1. Ā := DFT (A, [1, ω, ω2, ..., ω2d])
2. B̄ := DFT (B, [1, ω, ω2, ..., ω2d])
3. C̄ := Ā⊗ B̄
4. C := 1

2d
DFT (C̄, [1, ω−1, ω−2, ..., ω−2d])

return C.

Here, DFT (P,L) means the multi-points evaluation of the
polynomial P on each points of L, while ⊗ means the point-
wise product.

• step 1,2 and 4 can be accomplished by using Fast Fourier
Transform on each matrix entries which gives n2 ×
O(d log d) operations (see [10, Theorem 8.15]). This
clearly can be distributed on k processors such that

each processor achieves in parallel the FFT on n2

k
+

O(1) matrix entries. This gives a parallel complexity

of O(n
2d log d
k

) operations in F.

• step 3 requires the computation of 2d independent ma-
trix multiplications of dimension n, which gives O(n3d)
operations in F. One can easily see how to distribute
this work on k processors such that each processor has

a workload of O(n
3d
k

) operations.

We report in figure 12 the performance of the implemen-
tation of this parallel algorithm in the LinBox5 library. Our
choice of using this parallel algorithm rather than another
one, achieving a possible better parallel complexity, has been
driven by the re-usability of efficient sequential components
of the library (e.g. matrix multiplication) and the ease of use
within the library itself (i.e. mostly the same code as sequen-
tial one, only some OpenMP pragmas have been added).

One can see on figure 12 that our coder does not com-
pletely match the theoretical parallel speedup. The best we
can achieved with 16 processors is a speedup of 5.5, which
is only one third of the theoretical optimality. Neverthe-
less, one can see that with less processors (e.g. less than 4)
the speedup factor is closer to 75% of the optimality, which
is quite fair. We think this phenomenon can be explained
by the underlying many multi-core architecture (Quad-Core

5www.linalg.org

85

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

polynomial degree = 256

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

polynomial degree = 512

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

polynomial degree = 2048

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

1

2

3

4

5

6

polynomial degree = 1024

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p

fa
ct

or
Figure 12: Scalability of parallel polynomial matrix multiplication with LinBox and OpenMP on a 16 core
machine (based on Quad-Core AMD Opteron). n is the matrix dimension.

AMD Opteron), which may clearly suffers from cache effect
if computation are done on same chip or not.

As expected, we can also point out from figure 12 that
our implementation benefits at most from parallelism when
matrices are larger. Since workload on each core is more
important, this allows to hide the penalty from memory op-
erations and threads management of OpenMP. This remarks
also applies on the degree but the impact is less important.

3.2.2 Parallel σ-basis implementation
According to the reduction of PM-Basis to polynomial ma-

trix multiplication, one can achieve a parallel complexity of

O (̃n
3d
k

+ n2d log d
k

) operations in F with k processors for σ-

basis calculation, assuming k 6 n2. Therefore, it suffices
to directly plug in our parallel polynomial matrix multipli-
cation into the original code of the LinBox library to get a
parallel σ-basis implementation.

We report in figure 13 the performance of the parallel ver-
sion of PM-Basis algorithm within LinBox. Here again, the
speedup factor of parallelism is quite low when compared to
the theoretical optimality. At most we were able to obtain a
speedup of 3 with 16 processors. However, this timings are
consistent with the previous ones in figure 12 where the best
speedup was 5.

One may notice that reduction to polynomial matrix mul-
tiplication of the PM-Basis algorithm relies on a divide a con-
quer approach on the degree of the approximation (see [11,
theorem 2.4]). Therefore, the recursion calls are made with
smaller and smaller approximation’s degrees, which leads to
use less efficient parallel multiplications. Moreover, when
the degree is too small, the use of the M-Basis algorithm
of [11] should be prefered since it becomes more efficient in
practice. We have not yet implemented a parallel implemen-

tation of this algorithm in LinBox and this clearly affects the
performance of our implementation.

3.3 Parallel determinant co-degree
Here we just launch in parallel the evaluations of the ma-

trix polynomial at different points, and the computation of
the determinant of the obtained matrix at the given point,
and gather the results sequentially with the Poly1CRT class
of Givaro.

3.4 Parallel block Wiedemann performance
In table 2 we show the overall performance of our algo-

rithm on an octo-processor Xeon E5345 CPU, 8 × 2.33GHz.
*-LB shows the timings of the current LinBox implemen-
tation, where *-SpMV presents our new improvement, both
in sequential and in parallel. The speed-up for SpMV be-
tween 1 and 8 processors is slightly larger than 5 for all the
matrices where the speed-up for LinBox ranges from 4 to
4.9. Furthermore, the speed-up obtained with SpMV ver-
sus LinBox on the sequence generation seems scalable as it
even improves when used in a parallel setting. Comparing
with figure 11, we can confirm that the bottle-neck in the
sequence phase is really the SpMV operation.

This table will be completed in the future with a line in-
cluding the generation of the sequence on the GPU. It in-
volves porting some FFLAS/FFPACK functionalities to the
GPU using Cublas which is underway.

4. CONCLUSION
We have proposed a new SpMV library providing good

results on Z /mZ rings. To attain this efficiency it has been
mandatory to augment the complexity of the SpMV algo-
rithms, since OpenMP, Cuda et al. all manage differently

86

1 2 3 4 6 8 10 12 14 16
0

0,5

1

1,5

2

2,5

degree of approximation = 256

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p

fa
ct

or

1 2 3 4 6 8 10 12 14 16
0

0,5

1

1,5

2

2,5

3

3,5

degree of approximation = 2048

n=32
n=64
n=128
n=256

number of cores

sp
ee

du
p

fa
ct

or

Figure 13: Scalability of parallel σ-basis computa-
tion with LinBox and OpenMP on a 16 core ma-
chine (based on a Quad-Core AMD Opteron). n is
the matrix dimension of the series.

Matrix mat1916 bibd 81 3 EX5
Cores 1 8 1 8 1 8
Seq-LB 15.09 3.08 47.73 12.41 84.21 20.22
Seq-SpMV 5.02 0.91 41.28 7.56 49.66 7.36
σ-basis 9.02 1.64 18.45 3.63 37.45 8.39
Interpolation 0.37 0.29 1.07 0.82 2.29 1.75

Total-LB 24.48 5.01 67.25 16.86 123.95 30.36
Total-SpMV 14.41 2.84 60.80 12.01 89.40 17.50

Table 2: Rank modulo 65521 with OpenMP Parallel
block Wiedemann on a Xeon E5345, 8 × 2.33GHz
(timings in seconds)

the parallelization. Nonetheless, we provide new hybrid for-
mats that improve the performance. Moreover we have also
specialized it to the computation of a sequence of matrix-
vector products together with a new parallelization of the
sigma-basis algorithm in order to enhance e.g. rank compu-
tations of very large sparse matrices. As seen in 3.2.2, a first
parallelization of the σ-basis computation has been achieved.
Its efficiency is not matching the expected scalability and lot
of work needs to be done to circumvent this problem. First,
a deeper study on the parallelization of σ-basis computa-
tion has to be done. Beside the parallelization of PM-Basis
and M-Basis algorithms themselves, we need to design new
algorithms to avoid the numerous task dependencies, inher-
ent to the existing methods. This will also enable an easier
parallelization of early termination strategies (requiring to
interleave the generation sequence and the σ-basis computa-
tion).

Another important task is to extend the sigma-basis algo-

rithm to work on polynomial matrices over extension fields.
Indeed the use of random projections U and V over extension
fields might improve the probabilities to get the full minimal
polynomial of the matrix [12, 18, 4]. As shown in this paper
and in [8], σ-basis needs only a polynomial matrix multipli-
cation implementation to work. In order to adapt current
LinBox’s implementation to extension field, we will use the
same technique as [7]: first use Kronecker substitution to
transform the extension field polynomial representation to
an integer representation ; then use a Chinese remaindered
version of the polynomial matrix multiplication to recover
the resulting matrix polynomial over Z ; and finally convert
back the integers using e.g. the REDQ inverse operation of
[6].

The SpMV implementation also needs further work and
other directions to be explored. For instance, we need to
have dedicated implementations in Z /2 Z where x and y
can be compressed. More formats, including dense subma-
trices, have yet to be explored, which is linked to spending
some more time on pre-processing the matrix: for instance
the use of Metis6 for partitioning and reordering A would
also improve the performance. It will be interesting to deal
with matrices such that A and At cannot be simultaneously
stored ([2]). This problem indeed occurs on GPU’s where on-
chip memory is very limited. Finally, we will also provide
multi-GPU and hybrid GPU/CPU implementations.

5. REFERENCES
[1] N. Bell and M. Garland. Implementing sparse

matrix-vector multiplication on throughput-oriented
processors. In SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage
and Analysis, pages 1–11, New York, NY, USA, 2009.
ACM.

[2] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and
C. E. Leiserson. Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using
compressed sparse blocks. In SPAA ’09: Proceedings of
the twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 233–244, New
York, NY, USA, 2009. ACM.

[3] D. G. Cantor and E. Kaltofen. On fast multiplication
of polynomials over arbitrary algebras. Acta
Informatica, 28(7):693–701, 1991.

[4] L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders,
W. J. Turner, and G. Villard. Efficient matrix
preconditioners for black box linear algebra. Linear
Algebra and its Applications, 343-344:119–146, 2002.

[5] D. Coppersmith. Solving homogeneous linear
equations over GF (2) via block Wiedemann algorithm.
Mathematics of Computation, 62(205):333–350, Jan.
1994.

[6] J.-G. Dumas. Q-adic transform revisited. In D. Jeffrey,
editor, Proceedings of the 2008 ACM International
Symposium on Symbolic and Algebraic Computation,
Hagenberg, Austria, pages 63–69. ACM Press, New
York, July 2008.

[7] J. G. Dumas, T. Gautier, and C. Pernet. Finite field
linear algebra subroutines. In ISSAC ’02: Proceedings
of the 2002 international symposium on Symbolic and

6http://glaros.dtc.umn.edu/gkhome/metis/metis/
overview

87

algebraic computation, pages 63–74, New York, NY,
USA, 2002. ACM.

[8] J.-G. Dumas, P. Giorgi, P. Elbaz-Vincent, and
A. Urbańska. Parallel computation of the rank of large
sparse matrices from algebraic k-theory. In S. Watt,
editor, PASCO 2007, pages 43–52. Waterloo
University, Ontario, Canada, July 2007.

[9] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear
algebra over word-size prime fields: the FFLAS and
FFPACK packages. ACM Trans. Math. Softw.,
35(3):1–42, 2008.

[10] J. v. Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, New York, NY,
USA, 1999.

[11] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the
complexity of polynomial matrix computations. In
R. Sendra, editor, Proceedings of the 2003 ACM
International Symposium on Symbolic and Algebraic
Computation, Philadelphia, Pennsylvania, USA, pages
135–142. ACM Press, New York, Aug. 2003.

[12] E. Kaltofen. Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of
sparse linear systems. Mathematics of Computation,
64(210):777–806, Apr. 1995.

[13] E. Kaltofen and A. Lobo. Factoring high-degree
polynomials by the black box Berlekamp algorithm. In
ACM, editor, ISSAC ’94: Proceedings of the 1994
International Symposium on Symbolic and Algebraic
Computation: July 20–22, 1994, Oxford, England,
United Kingdom, pages 90–98, pub-ACM:adr, 1994.
ACM Press.

[14] E. Kaltofen and B. D. Saunders. On Wiedemann’s
method of solving sparse linear systems. In Applied
Algebra, Algebraic Algorithms and Error–Correcting
Codes (AAECC ’91), volume 539 of Lecture Notes in
Computer Science, pages 29–38, Oct. 1991.

[15] W. J. Turner. A block Wiedemann rank algorithm. In
J.-G. Dumas, editor, Proceedings of the 2006 ACM
International Symposium on Symbolic and Algebraic
Computation, Genova, Italy, pages 332–339. ACM
Press, New York, July 2006.

[16] P. Tvrdik and I. Simecek. A new approach for
accelerating the sparse matrix-vector multiplication.
Symbolic and Numeric Algorithms for Scientific
Computing, International Symposium on, 0:156–163,
2006.

[17] F. Vazquez, E. M. Garzon, J. A. Martinez, and J. J.
Fernandez. The sparse matrix vector product on
GPUs. Technical Report, June 2009.

[18] G. Villard. A study of Coppersmith’s block
Wiedemann algorithm using matrix polynomials.
Technical Report 975–IM, LMC/IMAG, Apr. 1997.

[19] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A
library of automatically tuned sparse matrix kernels.
In Institute of Physics Publishing, 2005.

[20] R. W. Vuduc and H.-J. Moon. Fast sparse
matrix-vector multiplication by exploiting variable
block structure. In L. T. Yang, O. F. Rana, B. D.
Martino, and J. Dongarra, editors, HPCC, volume
3726 of Lecture Notes in Computer Science, pages
807–816, pub-SV:adr, 2005. Springer-Verlag Inc.

[21] D. H. Wiedemann. Solving sparse linear equations over

finite fields. IEEE Transactions on Information
Theory, 32(1):54–62, Jan. 1986.

88

Parallel Gaussian Elimination for Gröbner bases
computations in finite fields

Jean-Charles Faugère
INRIA, Paris-Rocquencourt Center, SALSA Project

UPMC, Univ Paris 06, LIP6
CNRS, UMR 7606, LIP6
UFR Ingénierie 919, LIP6

Case 169, 4, Place Jussieu, F-75252 Paris
Jean-Charles.Faugere@inria.fr

Sylvain Lachartre
Thales Communications - Laboratoire Chiffre

160, boulevard de Valmy
92700 Colombes

Sylvain.Lachartre@fr.thalesgroup.com

ABSTRACT
Polynomial system solving is one of the important area of Com-
puter Algebra with many applications in Robotics, Cryptology, Com-
putational Geometry, etc. To this end computing a Gröbner basis
is often a crucial step. The most efficient algorithms [6, 7] for
computing Gröbner bases [2] rely heavily on linear algebra tech-
niques. In this paper, we present a new linear algebra package for
computing Gaussian elimination of Gröbner bases matrices. The
library is written in C and contains specific algorithms [11] to com-
pute Gaussian elimination as well as specific internal representa-
tion of matrices (sparse triangular blocks, sparse rectangular blocks
and hybrid rectangular blocks). The efficiency of the new software
is demonstrated by showing computational results fr well known
benchmarks as well as some crypto-challenges. For instance, for a
medium size problem such as Katsura 15, it takes 849.7 sec on a
PC with 8 cores to compute a DRL Gröbner basis modulo p < 216;
this is 88 faster than Magma (V2-16-1).

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Ma-
nipulation—Algorithms: Algebraic algorithms; F.2.2 [Theory of
Computation]: Analysis of algorithms and problem complexity—
Non numerical algorithms and problems: Geometrical problems
and computation; D.4.6 [Software]: Operating Systems—Security
and Protection: Cryptographic controls

General Terms
Algorithms.

Keywords
Polynomial systems solving, Gröbner bases, Gaussian Elimination,
High Performance Linear Algebra, Cryptography, Multi-core Pro-
gramming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

1. INTRODUCTION
The most efficient algorithms [6, 7] for computing Gröbner bases

[2] rely heavily on linear algebra techniques. More precisely, the
main cost in Gröbner bases computation is the Gaussian reduction
of matrices constructed from polynomials of the ideal generated by
the input equations. The matrices generated by these algorithms
have unusual properties: sparse, almost block triangular and not
necessary full rank. Moreover, most of the pivots are known at the
beginning of the computation.

Unfortunately, although M4RI [1] has good performances in F2,
the best linear algebra packages such as ATLAS [13], LinBox [4],
FFLAS-FFPACK [5] or Sage [12] are very efficient for dense lin-
ear algebra, but not tuned for F4/F5 matrices in word-size prime
fields. In [11], we have presented a dedicated efficient algorithm
for computing Gaussian elimination of such matrices. The main
idea consists in decomposing the initial matrix in four submatrices
obtained from both lists of pivot and non pivot rows and columns,
and to treat them specifically. To benefit as much as possible from
the cache memory, each matrix is split into small blocks and the
reduction relies on three elementary block operations. To deal with
the specific structures of the matrices occurring in a Gröbner basis
computation we distinguish three block formats: sparse triangular
blocks, sparse rectangular blocks and hybrid rectangular blocks (the
internal representation can be sparse or dense, in adequation with
the eventual rows densification occurring during the computation).
At the end of this paper we report some timings and speedup to
show the efficiency of the new library and to compare with existing
linear algebra packages.

2. GRÖBNER BASES AND LINEAR ALGE-
BRA

Notions about Gröbner bases and how to compute them using
linear algebra are not described here (see [3, 6, 7] for instance).

A list of polynomials [f1, · · · , fs] can be represented by a matrix
as follows: columns correspond to all the monomials occurring in
the polynomials (sorted with respect to a monomial ordering), and
each row contains coefficients of a polynomial with respect to these
monomials. The leading coefficient of a row denotes the column
index of its first non zero coefficient.

f1 = ∑k

i=1 α1,i mi
f2 = ∑k

i=1 α2,i mi
...

fs = ∑k
i=1 αs,i mi

−→

m1 m2 . . . mk

f1 α1,1 α1,2 . . . α1,k
f2 α2,1 α2,2 . . . α2,k
...

...
...

. . .
...

fs αs,1 αs,2 . . . αs,k

89

To summarize, a Gröbner basis computation can be seen as a
sequence of Gaussian eliminations of such matrices. In the next
section, we present a new Gaussian elimination algorithm in which
operations are performed in a different order. For that purpose, two
types of columns in the matrix are distinguished: pivot columns (in
which a row has its leading term), and non pivot columns. Similarly,
a non null row chosen to reduce others is called a pivot row. The
column pivot set (resp. row pivot set) is the set of all pivot column
(resp. row).

The new algorithm use three elementary matrix operations:

• Trsm1 : Y ← X−1Y ,

• Axpy2: Y ← AX +Y ,

• Gauss : classical Gaussian elimination.

2.1 Structure of the matrices
The matrices occurring in the Gröbner basis computation have

the following common properties:

• sparse: in degree δ a shift of a homogeneous degree d poly-
nomial with n variables has less than

(n+d−1
d
)

non zero co-
efficients for

(n+δ−1
δ
)

total columns. For instance, if d = 3,
n = 5 and δ = 10, then the average density for this line is
about 3.5%),

• several rows are monomial multiples of the same polynomial
f : (m1 f , m2 f , . . . , mk f),

• the matrices are not necessary full rank (this is the main dif-
ference between F4 and F5).

• almost block triangular: each matrix is constructed by pair-
wise combinations from a set of polynomials with distinct
leading terms (S-polynomial), to exhibit new polynomials
with new leading terms.

The last point provides the predetermination of a part of the pivot
columns. The efficiency of our new algorithm rely on this knowl-
edge.

3. SKETCH OF THE SEQUENTIAL ALGO-
RITHM

This algorithm has been introduced in [11] and it takes into con-
sideration sparsity and almost block triangular shape, with different
treatments and representations for the preselected pivot rows and
columns, and the other ones. It inputs a n0 ×m0 matrix M0 and
performs its Gaussian elimination.

3.1 Analysis
The first stage consists in looking for columns clearly identified

as pivot. For that purpose, it is enough to sweep the row leading
terms. The list of the corresponding columns indices is called Cpiv,
and is of size Npiv. Then, one pivot row is chosen from several
candidates (in fact all the rows which have the same leading index),
to obtain the list Rpiv, also of length Npiv : the coordinates of the
i-th pivot will be

[
Rpiv[i],Cpiv[i]

]
. The list of non pivot rows (resp.

columns) is denoted Rpiv (resp. Cpiv).

1Trsm: TRiangular Solve with Multiple right-hand sides
2Axpy: "A X plus Y"

3.2 Decomposition into submatrices
M0 can be decomposed in 4 submatrices A, B, C, D using the row

and column pivot lists:

• A is made from the elements indexed by Rpiv and Cpiv (upper
triangular Npiv×Npiv matrix with diagonal coefficients equal
to 1).

• B of dimensions Npiv× (m0−Npiv) contains the elements in-
dexed by Rpiv and Cpiv.

• C is a (n0−Npiv)×Npiv matrix built from the elements in-
dexed by Rpiv and Cpiv. Its rows are sorted by increasing
leading term indices and with leading coefficient equal to 1.

• D is obtained from the (n0−Npiv)× (m0−Npiv) remaining
elements (indexed by Rpiv and Cpiv).

Figure 1 shows these four submatrices with their respective di-
mensions.

B

C D

A Npiv

m0−NpivNpiv

n0−Npiv

Figure 1: ABCD decomposition

3.3 Pivot row reduction (Trsm)
The third step of the algorithm consists in reducing the pivot rows

by themselves. From linear algebra point of view, this means com-
puting B← A−1B since A is non singular (upper triangular with 1s
on the diagonal). This operation is a basis change for the non pivot
columns: it computes their expression in the vector space gener-
ated by the pivot columns. Each submatrix is treated differently: A
is only read so it remains sparse, whereas the matrix B is accessed
in read/write mode, so its density may increase. When B is a dense
matrix, this computation can be made "in place" to save memory.
At this step, the matrix M0 is equivalent to:

M0 ∼
(

Id A−1B
C D

)
3.4 Non pivot rows reduction (Axpy)

Once the pivot rows are reduced, the non-pivot rows must be
reduced by these new pivot rows by computing D← D−CB (here
B denotes the new matrix B← A−1B) and C is set to zero, since all
its coefficients are reduced by those of A. M0 is now equivalent to
(wrt. initial matrices A, B, C and D):

90

M0 ∼
(

Id A−1B
0 D−CA−1B

)
3.5 New pivot row computation (Gauss)

At this point, all the rows of M0 have been reduced by pivot rows.
The next step is to look and find new pivots in the matrix D, with a
Gaussian elimination (row version of the classical and well-known
algorithm): D← Gauss(D). Note that the leading terms of D are
not necessary equal to 1 anymore, and some field inversions may
be further required. Now:

M0 ∼
(

Id A−1B
0 Gauss(D−CA−1B)

)
3.6 Reconstruction

At last, the final matrix Gauss(M0) is reconstructed from rows
and pivots lists Rpiv and Cpiv, and from new matrices B and D.

REMARK 1. The final matrix is not in row reduced echelon form.
To obtain rre f (M0) a second iteration of this new algorithm must
be applied (see [11] for details) : the last step (3.5) gives two new
lists of pivot rows and columns (so a new decomposition and the
Trsm and Axpy steps can be performed once again before recon-
structing the final rref matrix).

4. PARALLEL IMPLEMENTATION
Operations on Cpiv columns are independent, so they can be per-

formed in parallel. In this section, we present the data structures we
used to implement a parallel version of the new algorithm.

4.1 Data structures
We take into account the architecture with last generation pro-

cessors, while respecting the structure of matrices from F4/F5 algo-
rithms. To benefit from the cache processor memory, and to main-
tain an optimal stream of data, matrices are reorganized by row and
column blocks. We use three block matrix formats : sparse, dense
and hybrid (rows are stored in sparse or dense format according to
their density). Moreover, three blocks sizes have to be fixed:

• KAB (resp. KArl): row and column block (resp. incomplete
block) size of matrix A (common block size of columns of A
and C, and rows of B),

• KCX (resp. KCrl): row block (resp. incomplete block) size of
matrices C and D,

• KBY (resp. KBrc): column block (resp. incomplete block) size
of the matrices B and D,

where KArl , KCrl and KBrc are the dimensions of incomplete blocks,
respectively equal to: KArl ≡ Npiv mod KAB,

KCrl ≡ n0−Npiv mod KCX ,
KBrc ≡ m0−Npiv mod KBY .

Before giving a more formal description, figure 2 presents the
global block layout: the numbered blocks in matrices and the dot-
ted arrows of a block inner row symbolize the storage order of the
elements in the memory.

......
... ...

KArl

K

KArl ABK KBY KB rc

KC rl

AB

KCX

... ...

A2,1

A1,1

A2,2

A3,3 A3,2 A3,1 B1,3

B1,1 B2,1

B1,2 B2,2

B2,3 B3,3

B3,2

B3,1

C1,3

C2,3 C2,2

C1,2 D1,1C1,1

C2,1

D2,1

D1,2 D2,2

D3,1

D3,2

BA

DC

Figure 2: Matrices A, B, C and D block division

4.2 Block inner operations
This section deals with operations within a block. We distinguish

three block formats:

1. Sparse triangular block format: applies to triangular blocks
of the matrix A. It uses three lists: Aval , Apos and Anb, which
represent respectively the values, the positions and the num-
ber of non zero elements in each row of the matrix A. El-
ements as well as rows are sorted by increasing order, from
bottom to top. Row leading coefficients (equal to 1) and the
last row of the block are not stored.

2. Sparse rectangular block format: this is the format of the rect-
angular blocks of matrices A and C. Three lists are also nec-
essary to store the value, the position and the number of non-
zero elements of each row in the block. Rows are sorted by
decreasing order, from bottom to top. For the blocks of A, the
positions of the non-zero elements are decreasing, from right
to left, while for C, these are written in increasing order, from
left to right.

3. Hybrid rectangular block format: used for the blocks of ma-
trices B and D. Rows are stored in hybrid format: their repre-
sentation is sparse or dense, according to the number of non-
zero elements. Rows are ordered by decreasing indices, from
bottom to top, while the row elements by growing indices,
from left to right.

The layout of blocks in matrices is one of the following three
formats:

1. Block format of sparse triangular matrix: uses sparse trian-
gular and sparse rectangular blocks. Blocks are ordered by
rows from right to left, and from bottom to top. Rectangular
blocks have KAB rows while triangular blocks have KAB− 1

91

rows (since the leading coefficients, always equal to 1, are
not stored).

2. Block format of sparse rectangular matrix: only contains rect-
angular sparse blocks stored by rows. The block layout is the
same that the sparse triangular matrix format.

3. Block format of hybrid rectangular matrix: consists of hybrid
rectangular blocks ordered from top to bottom, and from left
to right.

EXAMPLE 1. To illustrate each one of these three formats, we
present three matrices A, B and C of dimensions n×m with block
size K and density threshold d (for better legibility, a zero row or
column is represented by the the empty set /0 for value and posi-
tion, and 0 for the number). For hybrid blocks, a threshold density
d is chosen to determine whether a row has a sparse or a dense
representation (ie. if the density is greater than the threshold):

• Sparse triangular block matrix format n = m = 5, K = 2:

A =

1 5 2 0 0
0 1 4 8 3
0 0 1 6 0
0 0 0 1 7
0 0 0 0 1

Aval 7 6 3 8 4 /0 2 5

Apos 1 2 1 2 1 /0 1 2

Anb 1 1 2 1 0 2

• Sparse rectangular block matrix format, n = 3, m = 5 and
K = 2:

C =

 8 6 1 9 0
4 0 0 5 0
7 0 0 2 3

Cval 3 2 5 /0 7 4 9 1 6 8

Cpos 1 2 2 /0 1 1 2 1 2 1

Cnb 2 1 0 0 1 1 1 2 1

• Hybrid rectangular block matrix format, n = 5, m = 3, K = 2
and d = 50%:

B =

0 2 5
4 0 0
7 1 0
0 0 3
6 8 0

Bval 6 8 7 1 4 2 3 /0 5

Bpos /0 1 2 /0 /0 /0

Bnb 2 0 2 1 1 0 1 0 0 1

This ordering is in perfect adequacy with the double spacial and
temporal principle (see [13] for example) and so, benefits from the
cache memory (small and fast memory taking advantage of two
principles : a program is more likely to spend its time executing
code around the same set of instructions, and tend to run in loops
repeating the same instructions).

Algorithm 1 performs B←A−1B between sparse triangular block
A and hybrid rectangular block B (D← D−CB block algorithm
follows the same philosophy). It uses a dense temporary row de-
noted Temp (rows must be converted from hybrid to dense format
when copying rows from B to Temp, and from dense to hybrid for-
mat when updating B from Temp). Sparse or dense linear algebra
(Axpy) is used according to the density of hybrid rows of B.

Algorithm 1: B← A−1B: block "hybrid" version
Inputs : sparse triangular block block A

hybrid rectangular block B
Output : hybrid rectangular block B = A−1 B
Local : Temp is a m0−Npiv temporary dense row
Notation: X [i,∗] is the i-th row of X ∈ {A,B}
/* A rows loop */
for i← Npiv−1 to 1 do1

/* Hybrid format to dense format */
Temp← Hybrid2Dense(B[i,∗])2

/* A i-th row loop (Anb[i]−1 elements) */
for j← 2 to Anb[i] do3

Av← Aval [i, j], Ap← Apos[i, j]4

if Density(B[Ap,∗])≤ T hreshold then5

/* Sparse : Temp← Temp−Av∗B[Ap,∗] */
Temp← SparseAxpy(Temp,Av,−1,B[Ap,∗])6

else7
/* Dense : Temp← Temp−Av∗B[Ap,∗] */
Temp← DenseAxpy(Temp,Av,−1,B[Ap,∗])8

/* Dense format to hybrid format */
B[i,∗]← Dense2Hybrid(Temp)9

return B10

4.3 Block outer operations
The outer operations are performed on matrix blocks: each oper-

ation B← A−1B and D← D−CB uses block hybrid algorithms. It
is also possible to use a temporary dense block to store the results
of the partial block products.

4.4 Block hybrid Gaussian elimination
The search of new pivots (see 3.5) has to be adapted to the block

hybrid format of the matrix D (Gauss algorithm operating on hybrid
blocks). Here, the Gaussian elimination is performed on successive
blocks (by increasing indices) of the new matrix D obtained in 3.4.
A #Rpiv× #Rpiv matrix P, equivalent to a pseudo inverse, is intro-
duced to keep a track of the successive row operations. In the i-th
stage, the i-th block Di is updated by left-product by P, and then
Gaussian elimination is performed on Di | P (Di concatenated with
P), from rows of indices greater than the partial rank r(i)

D . Note that
a temporary block is used to store the rows of Di and P which have
to be reduced.

Initially, P is equal to the identity matrix. The Gaussian reduction
of the first block concatenated with P is computed. Then, in the i-th
stage, the i-th block is updated by a simple left matrix multiplication

92

by P, and then, the a Gaussian reduction is performed on this block
concatenated with P. We denote nz(i) the number of non-null rows
in the i-th block Di. Identically, r(i)

D is the rank of the i-th block
after Gaussian elimination.

On figure 3, the matrix is represented after the reduction of the
first block and has "nz(1)" non-null rows. After the first Gaussian
block reduction, the first block contains the up-triangular matrix of
rank r(1)

D . The nz(1) first rows of P contain the linear operations
needed by the Gaussian reduction of the first block.

������
������
������
������

������
������
������
������������������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������

...

Temp

DK−1D2 DK P(2)D1

r(1)
D

nz(2)
nz(1)

Figure 3: Gaussian block reduction

Then, the non null rows from index
(

r(i)
D +1

)
of D2 and of P

are copied in the temporary block. Finally, the temporary block is
reduced by Gaussian elimination, and the submatrices are updated.
The temporary rank is then denoted r(2)

D .

This process is iterated to obtain the Gaussian reduction of the
matrix, which final rank is denoted rD. Therefore, rank(M0) =
Npiv + rD. The efficiency relies on the number Npiv (trivial piv-
ots in M0): if #Rpiv = n0−Npiv is small with respect to n0, the cost
of this hybrid Gaussian block elimination is negligible both in time
and memory, comparing to the whole process cost.

Algorithm 2 present this hybrid Gaussian algorithm. The func-
tion FistNonZeroRow(l,M) returns the index of the first non-null
row in the list l of rows of the matrix M. The function Update(Temp)
copies the temporary rows of Temp in the corresponding rows of Di
and P in a hybrid format. At the end of this algorithm, both matrices
P and Temp can be freed from memory.

4.5 Parallelization
During the computation of B ← A−1B thus D ← D−CB, the

operations on the columns of matrices B and D are independent.
They can be realized in parallel. For that purpose, matrices B and
D must be considered from columns blocks point of view (noted Bi
and Di), and the two elementary parallelizable operations are:

• Trsm(i): inputs the block index i and outputs

Bi← A−1Bi,

• Axpy(i): inputs the block index i and outputs

Di← Di−CBi.

The hybrid Gaussian elimination algorithm is applied to Di (de-
noted Gauss(i)) to search for new pivots (after both previous re-
ductions).

During the whole process, Gaussian elimination must be per-
formed as soon as possible. So, we define priority rules between

Algorithm 2: Block hybrid Gaussian elimination
Input : Block hybrid matrix D (dimension nD×mD).
Outputs: Block hybrid matrix Gauss(D) and its rank rD.

/* Init parameters */

P← IdnD , r(1)
D ← 0, N← dmD/KBY e1

/* D blocks loop */
for i← 2 to N−1 do2

nz(i)← FirstNonZeroRow({r(i−1)
D +1, . . . ,nD},Di)3

Temp← Gauss
(
SubMatrix

(
{nz(i−1), . . . ,nz(i)},Di|P

))
4

r(i)
D ← r(i−1)

D +Rank(Temp)5
(Di,P)← Update(Temp)6

/* Last block of D */

Temp← Gauss
(
SubMatrix

(
{r(N−1)

D +1, . . . ,nD},DN

))
7

rD← r(N−1)
D +Rank(Temp)8

DN ← Update(Temp)9

return D and rD10

the three operations Trsm, Axpy and Gauss. Four priority con-
straints and synchronization points (denoted Si for i from 1 to 4)
are introduced for the parallel algorithm (see figure 4):

• S1 (from Analysis to Trsm): no constraint of synchroniza-
tion,

• S2 (from Trsm to Axpy): to compute Axpy(i), the computa-
tion of Trsm(i) must be completed,

• S3 (from Axpy to Gauss): to process the reduction Gauss(i),
Axpy(i) must be completed as well as the operation Gauss(j)
for j between 1 and i−1,

• S4 (from Axpy step to the reconstruction step): all the opera-
tions of type Axpy must be completed.

To keep track of all the operations on reduced blocks by each
of the operations, the list of remaining tasks is shared by all pro-
cessors.During its update, we make sure that no other processor
has access to this critical section. For that purpose, we use Mutex
(MUTual exclusion). Algorithm 3 presents a way of parallelizing
the computation in order to lower the latency. It uses four lists:

• Function: list of the three block operations (Trsm, Axpy and
Gauss),

• Todo: list of the lists of not treated yet block indices for each
of the three functions,

• Done: list of the block indices for which the three operations
have been performed,

• Pr: list of priorities of each function (since Gauss is sequen-
tial, it must be computed as soon as possible, so its priority is
1 and the priority of Axpy is 2; Trsm is the function with less
priority).

This algorithm is executed by all the threads and ends when the
blocks of all the matrices have been treated by the three opera-
tions. At the beginning of the while loop, the thread looks for a task
(searching first in the most priority list – ie. Todo3, then Todo2,
etc – and denoting ind = TodoPr[i] this block index), locks the mu-
tex to update Todo (ie. remove ind from Todo[i] : the chosen task
has no longer to be treated by the other threads), and performs the

93

D1 D2 DK−2 DK−1 DK

D1 D2 DK−2 DK−1 DK
...

...

C

A B B BB B1 2 K−2 K−1 K

Analysis

...

Trsm

Axpy

Gauss

Reconstruction

S

S

3

2

1

4

S

S

Figure 4: New Gaussian algorithm (parallel version)

computation Function[i](ind). If i≤ 2, ind is added to the next list
Todo[i+1], else the ind-th block is added to Done (nothing to do
with it anymore). Then, the thread goes on until all the blocks have
been treated by the three operations.

5. PRACTICAL EXPERIMENTS
We have implemented a small finite field version (Fp with 3 ≤

p ≤ 65521) of this new algorithm in C language (approximately
15000 lines of code) using POSIX threads.

5.1 Comparison with existing linear algebra
packages

First, we compute the row echelon form (in [11] we have also
described a Rref algorithm to compute a row echelon form of ma-
trix) of small matrices occurring in some Gröbner bases applica-
tions. We compare the computations in F65521 with several linear
algebra tools: Maple 13 (function RowReduce from LinearAlge-
bra and Modular packages), Magma 2.16.1 (function Nullspace-

OfTranspose on sparse matrices), Sage 3.0.5 (echelon_form on
sparse matrices) and Linbox 1.1.6 (rowReducedEchelon on Sparse-
Matrix), on the six matrices:

Name Dimension Density Rank
robot 404×302 12.39% 262

katsura7 694×738 7.44% 611
f855 2456×2511 2.78% 2331

cyclic8 4562×5761 9.37% 3903
katsura12 18285×19607 10.50% 15810

cyclic9 72552×93913 0.70% 71872

The tests are run on a pc with two Intel Xeon E5420 processors

Algorithm 3: Parallel Gaussian algorithm
Inputs : matrices A, B, C and D
Outputs : matrices B and D after reduction
Notations: Todo: lists of blocks to be treated by functions,

Pr: list of function priorities.

Todo← [[1, . . . ,K], [], []], Done← []1
Function← [Trsm,Axpy,Gauss], Pr← [3,2,1]2

/* Something to do */
while Done 6= [1, . . . ,K] do3

/* search a task from high to low priority */
for i← 1 to 3 do4

if TodoPr[i] 6= [] then5

Lock()6
ind← TodoPr[i][1]7
TodoPr[i]← TodoPr[i]\[ind]8
Unlock()9

/* The computation is performed */
Function[i](ind)10

Lock()11
if i≤ 2 then12

/* Next operation must be performed on
this block */

TodoPr[i+1]← Sort(TodoPr[i+1] ∪ [ind])13
else14

/* All the operations are done */
Done← Done∪ [ind]15

Unlock()16

(with four 2.5 GHz cores each), and 6 Go of RAM, and obtain the
following table (MT refers to the case of a memory trash):

Name New Maple Sage Magma Linbox
(version) library (13) (3.0.5) (2.16.1) (1.1.6)

robot <0.1 6.4 2.4 <0.1 <0.1
katsura7 <0.1 40.8 20.92 0.2 0.2

f855 <0.1 841.2 257.11 3.3 4.3
cyclic8 1.8 > 105 > 105 54.9 33.0

katsura12 28.5 MT MT 1036.81 1166.8
cyclic9 46.6 MT MT MT MT

Although these matrices are sparse, for Maple and Sage dense
linear algebra is more efficient. Our Rref version is more efficient
(wrt. to memory and time) than the other tools.

At last, the results of the parallel version of the new algorithm
using POSIX threads:

Seq. Thread number / SpeedUp
Name (s) 1 2 4 8 12
cyclic8 1.8 1.0 1.8 3.1 4.7 4.4
cyclic9 46.6 1.0 1.9 3.4 5.7 5.4

Note that with two threads, latency periods are almost null, both
processors are used at full capacity. The best real times are obtained
with eight threads using the eight cores of the machine. However,
sequential hybrid last blocks computations and/or bus memory en-
gorgement prevent from optimal performances.

5.2 Comparison with existing Gröbner bases
tools

All the timings given in this section are in elapsed seconds and
are obtained using our library on a 64 bit Intel Xeon CPU X5570
@ 2.93GHz with 8 cores.

94

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Katsura 15 (modulo p)
Speedup FGb/New Library

Fig.5.2: relative speedup for the Katsura 15 problem over F65521
(the abscissa corresponds to the stage of the GB computation and the ordinate to the speedup).

The goal now is to try to estimate the real speedup that we can
achieve using the new library. In contrast with the previous sub-
section we have thus to perform Gaussian elimination on several
matrices. To start with a well known benchmark we run our new
library on the Katsura n problem [10]: since this system is a set
of n quadratic equations we know that we have to perform n + 1
Gaussian eliminations (this is the Macaulay bound for regular sys-
tems). In figure 5.2, we compare the new implementation with our
reference library FGb. The conclusion is that the new library is al-
ways more efficient than the original implementation in FGb except
for the last two computations: in that cases the matrices are quasi-
triangular (triangular with few more rows) the new algorithm is not
optimal (the cost of Trsm is too important with respect to a classical
Gaussian elimination performed in FGb). The same phenomenon
occurs for the steps 3 and 4 and that is why the speedup decreases.

In the current state of the implementation we have to devise
the following strategy: by default to perform Gaussian elimination
we call the new library except when the matrix is quasi-triangular
(there is a threshold to find). When the matrix is quasi-triangular
we call the old sequential implementation. Note that in practice the
previous restriction is not a big deal: the CPU needed to perform
Gaussian elimination on the first/last matrices occurring in the com-
putation is negligible compared with the total CPU time. In the rest
of the paper, we assume that we always apply this strategy.

5.2.1 Katsura modulo p
We present here the detailed results of the Katsura n problems

for n from 13 to 16. In some table we also include a comparison
between the sequential version of the library (New Seq Library)
and the 8-cores version of the library (New Seq Library (8)).
All the timings are in seconds.

Dimension FGb New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New (8)

1042 x 2135 0.02 0.01 2.00 0.0 2.4
3827 x 6207 0.29 0.06 4.83 0.3 4.7

10014 x 14110 2.10 0.33 6.36 1.8 5.2
19331 x 25143 9.30 1.27 7.32 7.6 6.0
28447 x 35546 23.36 2.87 8.14 18.1 6.3
34501 x 42315 36.38 4.5 8.08 29.4 6.4
38165 x 46265 34.79 5.78 6.02 38.0 6.5
39590 x 47768 19.28 5.94 3.25 38.7 6.5
39965 x 48156 5.90 5.65 1.04 36.3 6.4
40035 x 48227 1.08 1.08 1.00 35.5 6.3
40042 x 48234 0.07 0.07 1.00 35.4 6.3

Total 191.69 27.56 6.96
Katsura 13 modulo 65521 with 8 cores

Dimension FGb New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New (8)

1333 x 2804 0.04 0.01 4.00 0.05 4.8
5559 x 9032 0.63 0.11 4.50 0.65 5.9

11683 x 18005 0.52 0.36 1.33 1.8 5.0
21717 x 30783 5.85 1.31 4.50 7.7 5.8
39001 x 50484 93.65 7.11 13.12 49.9 6.7
67933 x 82582 322.19 27.42 12.08 182.85 5.8
70411 x 85376 218.69 21.46 10.33 141.4 6.6
81277 x 97202 332.68 30.72 10.99 215.4 7.0

86547 x 102826 258.66 30.64 8.58 208.5 6.8
88417 x 104786 105.31 28.18 3.76 189.3 6.7
88874 x 105257 28.70 26.92 1.08 176.5 6.6
88954 x 105338 4.72 4.72 1.00 175.1 6.6
88962 x 105346 0.32 0.32 1.00 175.2 6.7

Total 1881.29 180.68 10.55
Katsura 14 modulo 65521 with 8 cores

95

Dimension FGb New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New (8)

1667x3608 0.05 0.01 6.00 0.1 8.8
7312x12257 1.40 0.21 6.43 1.2 5.6
17248x26575 2.05 0.82 2.46 4.6 5.6
32109x46154 9.36 2.85 3.25 17.3 6.1
60801x79831 289.77 23.39 12.33 177.4 7.6

114563x140832 830.56 62.93 13.17 422.8 6.7
142062x170248 1454.32 85.78 16.92 558.2 6.5
170221x201111 2351.63 121.53 19.26 858.9 7.1
187664x219868 2275.85 142.23 15.87 865.1 6.1
195325x227973 1513.69 127.6 11.75 871.4 6.8
197778x230530 533.53 129.95 4.06 790.8 6.1
198335x231102 133.15 115.03 1.14 760.1 6.6
198426x231194 20.40 20.40 1.00 729.8 6.5
198434x231202 1.25 1.25 1.00 738.6 6.5

Total 11948.14 849.68 14.06
Katsura 15 modulo 65521 with 8 cores

Steps Dimension FGb New library (8) SpeedUp
FGb/New

1 271 x 968 0 0
2 2048 x 4565 0.08 0.02 4.00
3 9953 x 16839 2.58 0.38 6.79
4 23290 x 36757 3.86 1.50 2.57
5 45844 x 67046 18.70 6.25 2.99
6 83046 x 114252 108.55 23.96 4.53
7 160426 x 204782 3326.63 186.06 17.88
8 175286 x 214892 3822.91 194.53 19.65
9 328980 x 385905 11295.82 700.92 16.12
10 373624 x 432524 16441.15 890.49 18.46
11 401429 x 464523 19090.29 733.58 26.02
12 426807 x 491659 15294.66 728.41 21.00
13 437603 x 503003 8912.21 867.45 10.27
14 440754 x 506273 3035.39 622.11 4.88
15 441423 x 506958 603.01 595.60 1.01
16 441525 x 507061 84.23 84.23 1.00
17 441534 x 507070 4.84 4.84 1.00

Total 103180.96 5687.29 18.14
Katsura 16 modulo 65521 with 8 cores

We can deduce from the previous table that the new library is
very efficient. Better results can still probably obtained since we
have sometimes a maximal speedup of 26 and sometimes a much
lower speedup.

5.2.2 Minrank
The Minrank problem is a fundamental linear algebra problem

(generalisation of the eigenvalues problem) as was studied recently
in Cryptology [8] or in Computer Algebra [9]. In that case, the
polynomial system is a list of polynomials of degree 4.

Steps Dimension FGb New library (8) SpeedUp
FGb/New

1 441 x 2002 0.47 0.17 2.76
2 1676 x 4231 0.70 0.10 7.00
3 3657 x 7058 2.06 0.31 6.65
4 5089 x 8985 4.54 0.53 8.57
5 6204 x 10265 4.88 0.85 5.74
6 6594 x 10700 2.06 0.87 2.37
7 6720 x 10835 0.63 0.63 1.00
8 6753 x 10869 0.14 0.14 1.00
9 6758 x 10874 0.02 0.02 1.00

Total 28 3.62 7.73
Minrank (9,7,4) with 8 cores

Steps Dimension FGb New library (8) SpeedUp
FGb/New

1 784 x 5005 3.89 0.07 2.76
2 3145 x 10201 7.43 0.68 5.99
3 6989 x 16880 24.25 2.44 7.01
4 11160 x 23270 51.36 4.88 6.94
5 14947 x 28344 96.73 10.72 6.31
6 17421 x 31313 109.04 15.52 5.54
7 18420 x 32477 52.34 15.59 2.85
8 18810 x 32912 20.08 15.52 1.11
9 18936 x 33047 5.92 5.92 1.00

10 18969 x 33081 1.3 1.3 1.00
11 18974 x 33086 0.14 0.14 1.00

Total 512.32 72.78 7.04
Minrank (9,8,5) with 8 cores

Dimension FGb New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New (8)

784 x 5005 3.89 0.07 2.76 1.7 1.4
3145 x 10201 7.43 0.68 5.99 3.9 5.9
6989 x 16880 24.25 2.44 7.01 17.1 7.1

11160 x 23270 51.36 4.88 6.94 35.7 7.4
14947 x 28344 96.73 10.72 6.31 83.1 7.9
17421 x 31313 109.04 15.52 5.54 123.0 8.0
18420 x 32477 52.34 15.59 2.85 122.7 8.0
18810 x 32912 20.08 15.52 1.11 119.6 7.7
18936 x 33047 5.92 5.92 1.00 116.5 7.9
18969 x 33081 1.3 1.3 1.00 108.3 7.6
18974 x 33086 0.14 0.14 1.00 115.4 7.8

Total 512.32 72.78 7.04
Minrank (9,8,5) with 8 cores

Dimension FGb New
lib(8)

SpeedUp
FGb/New

New Seq
library

New (seq)
/New (8)

1296 x 11440 25.26 7.19 3.51 0.0 1.3
5380 x 22400 55.48 4.16 13.34 23.1 5.6

12224 x 36784 225.41 14.74 15.29 106.9 7.3
21066 x 52502 567.18 46.77 12.13 322.2 6.9
30519 x 67094 1119.4 91.61 12.22 643.8 7.0
38109 x 77687 1724.84 192.08 8.98 1436.6 7.5
43162 x 84027 1808.62 259.87 6.96 2071.4 8.0
45441 x 86801 956.11 245.61 3.89 1953.4 8.0
46440 x 87965 420.85 264.91 1.59 1813.8 6.8
46830 x 88400 154.03 154.03 1.00 1732.6 7.8
46956 x 88535 45.79 45.79 1.00 1697.6 7.2
46989 x 88569 10.03 10.03 1.00 1695.2 5.8
46994 x 88574 1.11 1.11 1.00 1673.5 7.5

Total 8757.62 1337.90 6.55
Minrank (9,9,6) with 8 cores

Even if the new library is less efficient on this example than for
the Katsura n problem we observe a non linear speedup for huge
computations. The 8-core version is also always 6 to 8 times more
efficient than the sequential version showing that the parallelization
of the algorithm is quite efficient.

5.2.3 Comparison with Magma 2.16.1
We compare now our new algorithm with a recent version of the

F4 implantation in Magma.

F4 Kat11 F4 Kat12 F4 Kat 13
Magma 19.5 151.2 1091.4

FGb 40.6 342.6 2550.65
New library 2.85 19.45 149.6

F5 Kat 12 F5 Kat 13 F5 Kat 14
Magma 151.2 1091.4 9460.35

FGb 32.8 191.7 1881.3
New library 4.6 27,6 180,7

6. CONCLUSIONS AND PERSPECTIVES

96

We have shown a parallelized algorithm to perform Gaussian
elimination in in order to compute efficiently Gröbner bases. We
have applied our implementation on real size and difficult problems
(for instance the Minrank problem in Cryptology). Hence our ap-
proach is very effective for computing Gröbner bases on a multicore
PC. Some work is still necessary to obtain a maximal speedup and
to decrease the memory requirement of the new library.

Acknowledgements: The authors would like to thank Olivier
Orcière for his helpful remarks.

7. REFERENCES
[1] M. Albrecht and G. Bard. The M4RI Library – Version

20090409. The M4RI Team, 2009.
[2] B. Buchberger. An Algorithmical Criterion for the

Solvability of Algebraic Systems. Aequationes
Mathematicae, 4(3):374–383, 1970. (German).

[3] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and
Algorithms : An Introduction to Computational Algebraic
Geometry and Commutative Algebra. Springer, 7 1997.

[4] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. Saunders, W. J. Turner, and
G. Villard. Linbox: A Generic Library For Exact Linear
Algebra, 2002.

[5] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense Linear Algebra
over Word-Size Prime Fields: the FFLAS and FFPACK
Packages. ACM Trans. Math. Softw., 35(3):1–42, 2008.

[6] J.-C. Faugère. A New Efficient Algorithm for Computing
Groebner bases (F4). Journal of Pure and Applied Algebra,
139(1-3):61–88, 1999.

[7] J.-C. Faugère. A new efficient algorithm for computing
Groebner bases without reduction to zero F5. In Proceedings
of the ACM SIGSAM International Symposium on Symbolic
and Algebraic Computation, 2002.

[8] J.-C. Faugère, F. Levy-dit Vehel, , and L. Perret.
Cryptanalysis of Minrank. In D. Wagner, editor, Advances in
Cryptology CRYPTO 2008, volume 5157 of Lecture Notes in
Computer Science, pages 280–296, Santa-Barbara, USA,
2008. Springer-Verlag.

[9] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer.
Computing Loci of Rank Defects of Linear Matrices using
Gröbner Bases and Applications to Cryptology. In S. Watt,
editor, ISSAC ’10: Proceedings of the 2010 international
symposium on Symbolic and algebraic computation, New
York, NY, USA, 2010. ACM.

[10] K. Katsura. Theory of spin glass by the method of the
distribution function of an effective field. Progress of
Theoretical Physics, 87:139–154, 1986. Supplement.

[11] S. Lachartre. Algèbre linéaire dans la résolution de systèmes
polynomiaux Applications en cryptologie. PhD thesis,
Université Paris 6, 2008.

[12] W. Stein et al. Sage Mathematics Software (Version 3.3). The
Sage Group, 2009. http://www.sagemath.org.

[13] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
Empirical Optimization of Software and the ATLAS Project.
Parallel Computing, 27(1–2):3–35, 2001. Also available as
University of Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

97

A Quantitative Study of Reductions in Algebraic Libraries

Yue Li
Texas A&M University

College Station, TX, USA
yli@cse.tamu.edu

Gabriel Dos Reis
Texas A&M University

College Station, TX, USA
gdr@cse.tamu.edu

ABSTRACT
How much of existing computer algebra libraries is amenable to
automatic parallelization? This is a difficult topic, yet of practi-
cal importance in the era of commodity multicore machines. This
paper reports on a quantitative study of reductions in the AXIOM-
family computer algebra systems. The experiment builds on the in-
troduction of assumptions in OpenAxiom. It identifies a variety of
reductions that are candidate for implicit concurrent execution. An
assumption is an axiomatic statement of an algebraic property. We
hope that this study will encourage wider adoption of axioms, not
just for the purpose of expression simplification and provably cor-
rect libraries, but also to enable derivation of implicit concurrency
in a scalable fashion.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; I.1.3 [Symbolic and
Algebraic Manipulation]: Languages and Systems—Special-purpose
algebraic systems

General Terms
Algorithms, Design, Languages

Keywords
Parallel reduction, assumptions, computer algebra, OpenAxiom

1. INTRODUCTION
Reduction is a standard operation in computational algebra. For

instance, the content of an univariate integer polynomial P ∈ Z[x]
of the form P(x) =

∑n
0 anx

n is the greatest common divisor of
all its coefficients [2]:

cont(P) = greatest-common-divisor(a0, a1, ..., an).

Equivalently, it is the reduction of the monoid operator gcd over the
coefficients of P. Furthermore, the computation can be arranged in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

a divide-and-conquer fashion, say

cont(P) = combine(gcd(a0, a1), . . . , gcd(an−1, an)),

where operator “combine” further computes the greatest common
divisor of the results produced by each pair. The above expression
may be evaluated concurrently by distributing pairs of polynomial
coefficients to different computation engines, and then combine the
results, which is known as parallel reduction pattern.

Detecting reduction patterns in large and typed programs presents
interesting challenges. A programmer can discover implicit con-
currency by observation, and further rewrite them with parallelism.
However, such manual investigation is not scalable. On the other
hand, automating detection of reduction pattern is also not trivial.
A static analysis tool needs semantic information to compute facts
underlying reductions. The process is much harder for reductions
of user-defined operators. The principal reason is that most users
write algorithms in impoverished programming languages, thereby
leaving out essential semantic information.

This paper suggests a solution via an extension to an existing
computer algebra programming language. We take OpenAxiom [8]
as our experimental platform. We extend it with a new construct
called assumption. An assumption is an axiomatic statement of
mathematical properties. For instance:

forall(T: EuclideanDomain)
assume MonoidOperator(T, gcd) with
neutralValue = 0$T

That assumption states that gcd is a monoid operator over Eu-
clidean domains, admitting 0 as neutral value. MonoidOperator
is the name of the Spad category defining that property. We note
that in the current system, we do not attempt to prove assumptions.
As the keyword assume indicates, we just take the assumptions on
faith, as if they were axioms.
The contributions of this paper include:

1. A quantitative study of reductions in the OpenAxiom alge-
bras. We analyze the complete set of OpenAxiom algebra
library, and show rich parallelization opportunities brought
by monoid operator reductions.

2. A static analysis tool for reduction detection. The detec-
tor utilizes the algebraic properties of operators specified via
user assumptions to identify implicit concurrency in user code.

3. Extension of the Spad programming language with assump-
tions.

4. A library of category hierarchies for algebraic properties in
OpenAxiom.

98

The rest of this paper is organized as follows: section 2 gives a
short introduction to Spad programming language; section 3 dis-
cusses the design principle of a hierarchy of algebraic operator cat-
egories; section 4 studies the extension of Spad programming lan-
guage with assumption; our reduction detector is discussed in sec-
tion 5; and the implementation details of the reduction detector are
discussed in section 6; we present and discuss experimental results
and running examples in section 7; Related work is in section 8; We
conclude and discuss future directions in section 9.

2. EXTENDING AXIOM LIBRARIES
Spad is the library extension language of the AXIOM-family

systems. It is a strongly typed language, with a two-level type
system—categories and domains. We briefly discuss the key ideas
of the Spad language relevant to this experiment. An in-depth cov-
erage of the essentials of Spad is available from the AXIOM book [4].
Abstract algebraic structures are defined using categories. Cate-
gories can be thought of as specifications of algebraic concepts and
properties. For instance, the monoid algebraic structure can be ex-
pressed in Spad as:

Monoid(): Category == Type with
*: (%, %) -> %
1: %

The category Monoid above specifies that the monoid algebraic
structure has a binary operator * whose neutral element is 1. Spec-
ifications declared by categories are implemented by domains. The
following fragment shows a version of domain ListMonoid, which
implements the specification of the category Monoid:

ListMonoid(T: Type): Monoid == add
import List(T)
Rep == List(T)
(x:%) * (y:%) == per concat(rep x, rep y)
1: % == per empty()

ListMonoid domain is internally represented by domain List(T).
It asserts membership to the category Monoid, and implements the
binary operator and the neutral element with list concatenation op-
erator concat and an empty list empty(), respectively. In the next
section, we show how categories can be used for specifying alge-
braic properties of operators.

3. PROPERTY CATEGORIES
Most algebraic operators enjoy non-trivial properties. And most

interesting algebraic algorithms are the result of skillful exploita-
tions of operator properties, and structures of data they manipu-
late. Our approach to implicit concurrency rests upon the idea
that data structures from computational algebra usually have rich
algebraic properties, and algorithms operating on those structures
should somehow be “tainted” by those properties. In particular, we
are interested in those properties that enable automatic exploitation
of implicit concurrency. To that end, we need mechanisms to ex-
press algebraic properties directly in programs. Furthermore, we
need a way to organize those properties as library components so
that they can be reused in large scale development—after all, math-
ematics are about organization of facts.

An effective operational way to think about AXIOM categories
is to consider them as specifications. However, in their existing
form they are closer a sub-language for initial algebra specification
of data types without laws or equations. Support for axioms in cat-
egories has been considered by several researchers over the year,
but there is no concrete implementation to date. We extent that

notion of data type specification to cover specification of operator
properties. Let us consider a simple hierarchy of algebraic operator
categories, sufficient for our discussion in this paper. The hierarchy
starts with the notion of binary operation:

MagmaOperator(T: SetCategory, op: (T,T) -> T): Category
== Type

This definition says a binary operation on a domain satisfies the
magma operator property. That is just a statement of the obvious.
Now, we move on a more computationally interesting property: as-
sociative operator

AssociativeOperator(T: SetCategory,op: (T,T)->T): Category
== MagmaOperator(T,op) with
associativity:
rule forall(a:T, b: T, c: T)

op(a,op(b,c)) == op(op(a,b),c)

This category definition is essentially a logical statement (as Spad
expression) of the property that an operator is associative if it is a
magma operator and follows of a certain rule of re-association.

Next we consider monoid structures. An operator is a monoid
operator if, in addition to being associative, it admits a neutral ele-
ment:

MonoidOperator(T: SetCategory, op: (T,T) -> T): Category
== AssociativeOperator(T, op) with
neutralValue: T

Note that the neutral element is not a parameter to MonoidOperator.
Rather, it is specified as a constant depending on the parameter
op. This reflects the mathematical fact that the neutral value of
a monoid operator is unique, therefore completely determined by
that operator.

4. ASSUMPTIONS
Users express operator properties as assumptions. Properties are

stated as facts without any attempt at proof beyond conventional
type checking. We distinguish two kinds of assumptions: ground
assumptions and parameterized assumptions.

4.1 Ground assumptions
A ground assumption states properties for a specific operator,

whose input and output types are concrete non-parametrized do-
mains. For example, the assumption

assume AssociativeOperator(NonNegativeInteger, max)

says the function max is a monoid operator over the domain of non-
negative integers, with 0 as neutral value.

4.2 Parameterized assumptions
A parameterized assumption states properties for a family of op-

erators. For example,

forall(T: Type)
assume MonoidOperator(List(T), concat) where
neutralValue == empty()$List(T)

asserts that concat is a monoid operation over List T for any type
T. Type variables may be constrained, reflecting constraints on do-
mains or operations. For instance, the parameterized assumption

forall(T: GcdDomain)
assume MonoidOperator(T, gcd) where
neutralValue == 0$T

99

states that gcd is a monoid operation over all GCD domains. whose
neutral value is 0 of type T.

As illustrated in both examples, type variables in parameterized
assumptions are introduced by declarations announced by the key-
word forall. They must occur in deducible positions in assump-
tions.

In the experiments reported in this paper, an assumption is viewed
like an annotation. It conveys a user’s knowledge about an opera-
tor.

5. REDUCTION DETECTOR
The reduction detector takes a library file and assumptions from

user, and attempts to extract reductions from the library file. The
detection proceeds in two steps. First, it performs pattern matching
on the fully typed abstract syntax trees obtained from the input pro-
gram, after type checking and semantics elaboration. This phase
yields a set of candidate reduction forms and scans forms. The de-
tector then proceeds with only those binary operators for which as-
sociativity could be “certified” — either because they are built-ins
or because they have matching assumptions.

5.1 Reduction forms
There are three ways to write reductions in AXIOM:

• explicit accumulation loop

• reduction operator form

• call to library function reduce

Explicit accumulation loop is probably the most widely known form.
Consider the task of multiplying all integer values in a sequence
seq. Writing that in AXIOM is just as simple as writing it in most
programming languages:

result := 1
for v in seq repeat
result := result * v

Here, the variable result is initialized with the neutral value of
multiplication; then it is updated at every execution of the body of
the loop. The final result is the accumulated value.

In the tradition of APL, AXIOM offers a short notation for re-
duction. The previous loop can be written as */seq. Here, / is the
built-in reduction operator, not the ratio operator. It should be noted
that in all flavours of AXIOM systems (including current releases
of OpenAxiom), the built-in reduction operator is applicable only
to a handful known monoid operators.

Finally, one can just call a library function: reduce(*,seq,1).
Note that this form explicitly specifies the neutral value, just like in
the accumulation loop case. That value was left implicit in the form
using built-in reduction operator. Ideally, one should not have to
supply the neutral value, since a monoid operation uniquely defines
its neutral value.

5.2 Pattern matching reduction forms
Several semantic based pattern matching strategies are designed

for extracting the various reduction forms.

Accumulation loop.
We introduce the concept basic loop for the purpose of describing

our algorithms for detecting accumulation loops. A basic loop is
a loop controlled by for-iterators, such that each statement in its
body is either a variable definition, or an assignment to a previously
defined variable. Example:

result : Integer := 0
for i in 1..10 repeat
x : Integer := i+1 -- variable definition
result := x * 2 -- variable assignment

We define an accumulation loop as basic atomic loop, where def-
initions or assignments involve certain expressions in recognizable
form:

ι1 · · · ιn repeat ~β

where ι1, . . . , ιn are for-iterators of the forms

• for v in e, with v a variable, and e a sequence

• for v in e1..e2, with v a variable, and e1 and e2 integer-
valued expressions denoting the bounds of the loop-control
variable v

An expression β is either a basic assignment of the form v :=
f(χ, e) or v := f(e, χ), or a conditional controlled by a side-effect
free predicate and whose branches are sequences of basic assign-
ments. The operand χ is either the same variable v being assigned
to, or another expression of the form f(χ, e) or f(e, χ). We don’t
allow the control loop variables to be modified in the body of the
loop. The accumulating variable v should have a linear occurrence
in the right hand side of the assignment.

For simplicity, we take side-effect free predicate to mean a call
to Boolean expression that does not use effectful functions. This is
a semantics notion, therefore hard to check in practice. However,
there is a notational convention used in AXIOM libraries, where a
function name ending with symbol “!” indicates possibly effect-
ful functions. Examples include concatenation function concat!,
duplicate removal function removeDuplicate!, etc. The current
implementation of the reduction detector does not allow effectful
functions in accumulation—not just in the predicates.

The notion of recognizable accumulation loop is adapted from
the aggregate array computation form studied by Liu and Stoller [6].
This adaptation is semantic-based since it draws heavily from type
information. In each accumulation assignment, the same operator f
has to be used consistently to accumulate values into the accumula-
tion variable v. Because of operator overloading, we need to make
sure that the same operator is applied consistently, and that requires
overload resolution.

Built-in reduction operator.
The detection of built-in reduction operator is purely syntactic,

unfortunately. For instance, parsing of +/[1,2,3,4] gives:

(REDUCE + 0
(COLLECT (IN G784 (construct (One) 2 3 4)) G784))

The value 0 is automatically generated by compiler, and is inserted
into the AST as the built-in neutral element of +. The reduction
detector typechecks each parameter of the REDUCE operator except
the neutral value which is automatically generated, and verifies that
the operator parameter is a binary operator over some domain d,
and the other parameter of the reduce form is a list whose element
has type d.

Library function call.
The function reduce is heavily overloaded in AXIOM algebra

libraries for implementing different functionalities or semantics.
Therefore, given an AST whose operator is reduce, the reduction
detector needs to type check all arguments, given enough seed to
proceed with overload resolution.

100

5.3 Parallel prefix forms
A parallel prefix form (or scan) is a generalization of reduction.

A parallel prefix form takes a sequence and a binary operator, and
returns a sequence. Each entry of the result is filled by a reduction,
i.e., the value of the i-th element is given by the reduction which
applies the input binary operator to combine the values up to the i-
th element of the input sequence. That can be expressed in at least
two forms:

• explicit scan loop

• call to library function scan

We elaborate only on loops. The following example illustrates a
prefix sum of the sequence seq:
sum := first seq
for i in 2.. #seq repeat
sum := sum + seq.i
res.i := sum

The implementation of OpenAxiom library functions scan are based
on scan loops as well as self recursions.

Matching parallel prefixes.
Strategies for extracting scan operations are again based on pat-

tern matching. We use two kinds of recognizable form.

ι1 · · · ιn repeat ~ξ

where ι1, . . . , ιn are for-iterators. The form of the loop body ~ξ is
partially determined by the specific form of for-iterators:

• If the iterators are of the form for v in e, with v a vari-
able, and e a sequence, then ~ξ is a two statement sequence,
where the first statement is an accumulation of the form v :=
f(v, e) or v := f(e, v) where v is a variable, and the second
statement is for updating the vector for storing the prefix re-
sult, this can be a sequence concatenation expression such as
r := concat(r, v), where r is the resulting sequence of scan,
and operator concat appends the value of v to the end of the
resulting sequence v.

• When the iterators are of the form for i in e1..e2, with i a
variable, and e1 and e2 integer-valued expressions denoting
the bounds of the loop-control variable i. The loop can be ei-
ther one statement of the form r.i := f(r.(i − 1), s.i) where
the (i − 1)-th element of the resulting sequence r and the
i-th element of the input sequence s are combined together
via binary operator f, the result is written into i-th element
of r; Or ~ξ can be a sequence containing two assignments,
where the first statement is of the form v := f(v, s.i) or
v := f(s.i, v) where v is a variable, and the second statement
updates value of v into the resulting vector r, e.g., r.i := v,
or r := concat(r, v).

5.4 Assumption uses
Assumptions, as reported in this paper, are not used directly by

users. Rather, they form an external knowledge database consulted
by static analysis tools such as the reduction detector. For implicit
concurrency, the most important property we focus on is associativ-
ity. To get there, the reduction detector needs to gather properties
from the assumption database supplied by the user. Then, the com-
puted information is passed to the associativity checking engine.

If the operator in a reduction form is associative, the form is
deemed fully parallelizable. On the other hand, if associativity can-
not be decided from the set of available assumptions, the accumu-
lation loop is said to be partially parallelizable. For instance, the
following loop

for i in 1..10 repeat
x := x + i
y := y * i
z := z quo i

is only partially parallelizable. However, it can be rewritten as two
loops: one that is fully parallelizable:

for i in 1..10 repeat
x := x + i

and a second that is not readily so (according to our recognizable
form definition):

for i in 1..10 repeat
y := y * i
z := z quo i

6. IMPLEMENTATION
The reduction detector is implemented as a Spad library of a

branch of the OpenAxiom system 1. The implementation of the
reduction detector accounts for approximately 2000 lines of Spad
code. It uses the AST library component of the standard OpenAx-
iom system. The overall workflow is illustrated in Figure 1. To
maintain portability to other AXIOM systems not implementing
assumptions, users are required to write their Spad code and as-
sumptions in different files.

6.1 A Spad typechecker in Spad
The pattern matching and assumption verification steps of re-

duction detection requires typechecking. Instead of exporting the
typechecking function from the Spad compiler which is written in
a lower-level language named Boot, we built an independent type-
checking library in Spad. The implementation of the typechecker
consists of about 1000 lines of Spad code. It is used for typecheck-
ing, overload resolution, and assumption checking. The library is
tested with the complete set of OpenAxiom algebra library, where
some programs were edited before passing to the typechecker. It is
still experimental.

6.2 Preprocessing before pattern matching
A basic atomic loop needs to be preprocessed before pattern

matching. The preprocessing step essentially consists of forward
substitution of expression [7], eliminating assignments to the vari-
ables used as intermediate stores.

The purpose of this pass is to expose “hidden” accumulations.
Indeed, some intermediate stores may introduce unnecessary de-
pendencies, which may prevent an accumulation loop from being
identified.

6.3 Inferring properties from assumptions
Assumptions are organized in hierarchies. So, it can happen

that a property the reduction detector is looking for is not textu-
ally present in the assumption database, but must be derived using
the semantics of hierarchy as entailment. Consider

forall(D: IntegralDomain)
assume MonoidOperator(D, *) where
neutralValue = 1$D

The assumption states that the operator * specified by IntegralDomain
category is a monoid operator. This implies that all other properties
entailed by the parents categories of MonoidOperator (e.g. asso-
ciativity) are also inherited.
1The source code is at http://open-axiom.svn.sf.net/
svnroot/open-axiom/yli-sandbox/

101

Source Code

Assumptions

Reduction Detector

Pattern Matching Associativity Checking

Algebraic Operator Categories

 Property Inference
Accumulation loops

Reduction operator forms

Reduce calls

Scan calls

Scan loops

Figure 1: The workflow of our reduction detector.

7. EXPERIMENTS
The experiment has two parts. The first only uses the pattern

matching component to identify all reductions used in OpenAxiom
algebra libraries. The second identifies those reductions that are
parallelizable.

7.1 OpenAxiom algebra library
The OpenAxiom library consists of type definitions. Each type

is a package, a domain, or a category.

Item Number
Type definitions 1129
Category definitions 222
Domain definitions 434
Package definitions 473
Function definitions 12748

Table 1: Statistical properties of OpenAxiom algebra library.

From Table. 1, we observe that categories account for the small-
est portion of the library. This is expected since category are speci-
fications, and it is reasonable to have fewer specifications than im-
plementations. Packages are almost as prevalent as domains. On
average, there are 11 function definitions per type definitions. Note
that a category definition can also contain function definitions in its
body, e.g., the generic operator gcd of category GcdDomain.

7.2 Reduction extraction
The results of running the pattern matching engine over the alge-

bra library files is summarized in Table. 2 and Table. 3. A signifi-
cant portion (about 32%) of loops are atomic loops, and about 46%
of atomic loops implement reductions. The number of reductions
per 100 function definitions is smaller than our expectation, this is
mainly because the current implementation does not compute the
transitive closure of call chains to functions implementing reduc-
tions. Among the three kinds of reduction forms, built-in reduction
operator is the most frequently used.

Table. 4 gives the distribution of accumulation loops according
to the number of accumulation statements in their bodies. The
data, with the limitations of the current implementation, suggest
that most accumulation loops contain a single accumulation state-
ment; those containing more than 2 accumulations are rare.

7.3 Distribution of reduction forms
A set of 13 operators were manually annotated as associative: +

of category AbelianMonoid, * of category Monoid, gcd and lcm
of category GcdDomain, max and min of category OrderedSet,
two list concatenation operators concat and append, one list union
operator setUnion of domain List(T)where T has category Type,
two matrix concatenation operators horizConcat and vertConcat
over domain Matrix(T)where T has Type, and two local functions

Item Number
Loops 2181
Atomic loops 689
Reductions 820
Reductions/100 function defs 6

Table 2: Statistical properties of loops and reductions.

Item Number Percentage in reductions
Accumulation loops 333 41%
Function reduce calls 73 9%
Built-in reduce operator 414 50%

Table 3: Statistical properties of reduction forms.

No. of Acc. Stmt. No. of Acc. Lps. Percent. in Acc. Lps.
1 305 91.6%
2 22 6.6%
3 6 1.8%

Table 4: Distribution of the number of accumulation loops with
different number of accumulation statements in their bodies.

pairsum of domain List(T) where T has category Type, and the
operator sum over domain Expression(DoubleFloat).

All algebraic properties in this experiment entail associativity.
Table. 5 lists the distribution of the different parallel reductions
regarding each reduction operator. Partially parallelizable loops
(PPL) seem to be less frequent than other reduction loops. This
indicates that these 13 operators rarely appear in an accumulation
loop with more than one accumulation statements involving a dif-
ferent accumulation operator. Addition, multiplication, and list con-
catenation are dominant in parallelizable reduction forms.

7.4 Parallel prefix extraction
The statistics obtained for parallel prefix suggests that it is barely

used in current versions of OpenAxiom library. The detector dis-
covers 4 scan loops and 11 scan function calls. We found only
two scan function calls which are parallelizable due to the use of
associative operator + over PolynomialCategory and Ring, re-
spectively.

7.5 Rejected cases
The analysis is conservative; that is it may reject some reduc-

tion forms on the ground that it cannot certify — based on available
static information — that they are indeed bona fide parallel (pre-
fix) reduction forms. For instance, the recognizable form requires
that each accumulation assignment uses only one binary operator.
In particular, it forbids cases where different accumulation opera-
tors appear in one accumulation. For example, the following accu-
mulation loop from function basisOfRightNucleus of package

102

Operator PPL FPL PRC PRF
+ of AbelianMonoid 7 76 8 148
* of Monoid 6 21 1 76
gcd 1 0 4 4
lcm 0 0 3 7
concat 1 18 1 1
append 1 8 1 17
max 2 1 8 36
min 2 0 3 12
horizConcat 0 2 2 0
vertConcat 0 3 0 0
setUnion 0 2 1 35
pairsum 0 1 0 0
sum 0 0 3 0

Table 5: Amount of parallel reductions based on different user
assumptions. PPL: Partially Parallelizable Loop, FPL: Fully
Parallelizable Loop, PRC: Parallelizable reduce call, PRF:
Parallelizable Reduce Form.

AlgebraPackage:

for l in 1..n repeat
entry := entry + elt(gamma.l,k,i)*elt(gamma.s,j,l)_

- elt(gamma.l,j,k)*elt(gamma.s,l,i)

was rejected. Indeed, parsing of the loop above gives the AST:

(REPEAT (STEP l (One) 1 n)
(%LET entry
(- (+ entry (* (elt (gamma l) k i) (elt (gamma s) j l)))
(* (elt (gamma l) j k) (elt (gamma s) l i)))))

The appearance of the operator + does not match our definition of
recognizable form. An algebraic term rewriting may help the de-
tector. For instance, by applying the rewriting rule −x ≡ +(−x) to
the example above, we obtain:

for l in 1..n repeat
entry := entry + elt(gamma.l,k,i) * elt(gamma.s,j,l)_

+ (-elt(gamma.l,j,k) * elt(gamma.s,l,i))

which becomes:

(REPEAT (STEP l (One) 1 n)
(%LET entry
(+ (+ entry (* (elt (gamma l) k i) (elt (gamma s) j l)))
(- (* (elt (gamma l) j k) (elt (gamma s) l i))))))

The detector reported 14 cases of this kind. Other examples in-
clude 3 uses of side-effecting functions, and 2 of the unsupported
recursive parallel prefix patterns.

8. RELATED WORK

8.1 Reduction detection
Reduction detection is a well developed program analysis tech-

nique in the compiler construction community. It is widely used
in automatic parallelization of loops. An internal representation of
loops needs to be specified, the definition of reduction patterns and
the design of pattern matching algorithms are further based on that
internal representation. Jouvelot and Dehbonei [5] represent loops
symbolically, and reductions patterns are formalized as values of
symbolic stores so that pattern matching is applied to the symbolic
stores. Pinter and Pinter [9] use dependence graphs. Redon and
Feautrier [10] use a preprocessor that taking loops and generates

linear recurrence equations as internal representations, and reduc-
tions are discovered via reasoning on the generated linear equations.
Liu and Stoller [6] describe how incrementalization aids optimizing
aggregate array computation, which is a very typical generalization
of reductions. In that paper, a recognizable form for reduction se-
mantics is derived directly from the abstract syntax tree of an ac-
cumulation loop. The recognizable accumulation loop discussed in
this paper builds on that work. This form is syntax directed, which
simplifies implementation. Indeed, instead of building a tools for
between several representations, the reduction detector presented
in this paper shares the fully typed AST with the type checker. Re-
cently, Gautam and Rajopadhye [3] studied polyhedra equations
to represent reductions. The polyhedra model provides powerful
mathematical foundations to simplify the algorithmic complexities
of accumulation loops. Empirical data, obtained by augmenting our
reduction detector extractor, show a total of 431 loop nests, out of
which 57% are affine control loops, and an average of 2.4 per nest
depth.

Much of this work [5, 9, 10, 6] supports reduction extraction
for Fortran program, Liu and Stoller’s work [3] implements reduc-
tion detection and simplification using the ALPHA language and
the MMALPHA framework for transforming ALPHA program [1].
However, for programming languages such as Spad, Aldor, C++,
and Java, those tools cannot correctly extract reductions of user de-
fined functions—compiler does not have knowledge about the alge-
braic properties of some reduction operator over user defined types
due to overloading. The assumption mechanism presented in this
paper helps user convey operator properties to compiler tools.

8.2 Attributes
The original AXIOM system supports algebraic properties via

axioms and attributes in type descriptions [4, Chapter 12]. How-
ever, axioms are just stated as comments, they do not affect the
compiler in any way. Attributes are uninterpreted identifiers or tags.
However, the attribute support is very limited and it is not possible
to express that a function is a monoid structure with a specific neu-
tral value.

8.3 Maple assume facility
The Maple computer algebra system has enjoyed an assume fa-

cility since the work of Weibel and Gonnet [13, 14]. It enables a
powerful conditional rewriting tool for expressions simplification.
That functionality is not directly supported by the work described in
this paper. However, it would be interesting to explore how Maple’s
assume facility—which is mostly dynamic—could be combined
with the type-directed approach of this paper to support correct and
fast algebraic computations on modern computers.

9. CONCLUSIONS AND FUTURE WORK
This paper presented an empirical and quantitative study of re-

ductions in the AXIOM algebra libraries. The experiments suggest
rich parallelization opportunities exposed by the uses of a language
extension called assumptions. Experimental data show that specify-
ing operator properties directly in code, checkable by the compiler,
is beneficial for parallelizable reductions. The core idea of this ap-
proach is not restricted to Spad or Aldor programs. It can be applied
to programs written in higher-level languages such as C++ or Java.

There are several directions for future work that we would like to
explore. Currently, a parallel library is being built in OpenAxiom
aiming at providing support for higher-level parallel programming.
It would be interesting to see how a compiler that utilizes the infor-
mation provided by our reduction detector, could perform an effec-
tive implicit parallization. Another direction would be to develop

103

more use cases of assumption to increase its benefit to symbolic
computation. As inspired by recent work on axiom based verifica-
tions for Java program [12, 11], it would be also interesting to see
how user assumption can help verify program transformations for
computer algebra code.

10. REFERENCES
[1] Alpha. http://www.irisa.fr/cosi/ALPHA, IRISA,

France, 2010.
[2] J. V. Z. Gathen and J. Gerhard. Modern Computer Algebra.

Cambridge University Press, New York, NY, USA, 2003.
[3] Gautam and S. Rajopadhye. Simplifying reductions. In POPL

’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
30–41, New York, NY, USA, 2006. ACM.

[4] R. D. Jenks and R. S. Sutor. AXIOM: The Scientific
Computation System. Springer-Verlag, 1992.

[5] P. Jouvelot and B. Dehbonei. A unified semantic approach
for the vectorization and parallelization of generalized
reductions. In ICS ’89: Proceedings of the 3rd international
conference on Supercomputing, pages 186–194, New York,
NY, USA, 1989. ACM.

[6] Y. A. Liu, S. D. Stoller, N. Li, and T. Rothamel. Optimizing
aggregate array computations in loops. ACM Trans. Program.
Lang. Syst., 27(1):91–125, 2005.

[7] S. S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[8] OpenAxiom. open-axiom.org, 2010.
[9] S. S. Pinter and R. Y. Pinter. Program optimization and

parallelization using idioms. In POPL ’91: Proceedings of
the 18th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 79–92, New York, NY,
USA, 1991. ACM.

[10] X. Redon and P. Feautrier. Detection of recurrences in
sequential programs with loops. In PARLE ’93: Proceedings
of the 5th International PARLE Conference on Parallel
Architectures and Languages Europe, pages 132–145,
London, UK, 1993. Springer-Verlag.

[11] R. Tate, M. Stepp, and S. Lerner. Generating compiler
optimizations from proofs. In POPL ’10: Proceedings of the
37th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 389–402, New
York, NY, USA, 2010. ACM.

[12] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality
saturation: a new approach to optimization. In POPL ’09:
Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
264–276, New York, NY, USA, 2009. ACM.

[13] T. Weibel and G. H. Gonnet. An algebra of properties. In
ISSAC ’91: Proceedings of the 1991 international
symposium on Symbolic and algebraic computation, pages
352–359, New York, NY, USA, 1991. ACM.

[14] T. Weibel and G. H. Gonnet. An assume facility for cas, with
a sample implementation for maple. In DISCO ’92:
Proceedings of the International Symposium on Design and
Implementation of Symbolic Computation Systems, pages
95–103, London, UK, 1993. Springer-Verlag.

104

Parallel Sparse Polynomial Division Using Heaps

Michael Monagan ∗

Department of Mathematics
Simon Fraser University

Burnaby, B.C. V5A 1S6, CANADA.
mmonagan@cecm.sfu.ca

Roman Pearce
Department of Mathematics

Simon Fraser University
Burnaby, B.C. V5A 1S6, CANADA.

rpearcea@cecm.sfu.ca

ABSTRACT
We present a parallel algorithm for exact division of sparse
distributed polynomials on a multicore processor. This is a
problem with significant data dependencies, so our solution
requires fine-grained parallelism. Our algorithm manages to
avoid waiting for each term of the quotient to be computed,
and it achieves superlinear speedup over the fastest known
sequential method. We present benchmarks comparing the
performance of our C implementation of sparse polynomial
division to the routines of other computer algebra systems.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algebraic Algorithms

General Terms: Algorithms, Design, Performance

Keywords: Parallel, Sparse, Polynomial, Division, Heaps

1. INTRODUCTION
Modern multicore processors let you write extremely fast

parallel programs. The cores share a coherent cache with a
latency of nanoseconds, where communication can occur at
roughly the speed of the processor. The challenge now is to
design fast parallel algorithms that execute largely in cache
and write only their result to main memory.

In [11] we presented such a method for sparse polynomial
multiplication. Given polynomials f and g with #f and #g
terms, we construct f × g =

P#f
i=1

P#g
j=1 fi · gj by creating,

sorting, and merging all the products in parallel, entirely in
the cache. We based the algorithm on Johnson’s method [7]
which we found to be a fast sequential approach in [12, 13].

Johnson’s algorithm computes
P#f

i=1 fi · g using a binary
heap to perform an #f -ary merge. The products fi · gj are
constructed on the fly so only O(#f) scratch space is used.
It begins with f1 · g1 in the heap, and after merging fi · gj

it inserts fi · gj+1. When j = 1 it also inserts fi+1 · g1. This
assumes that f and g are sorted in a monomial ordering.

∗We gratefully acknowledge the support of the MITACS
NCE of Canada and NSERC of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

In our parallel algorithm each core multiplies a subset of
the terms of f by all of g. Those subproblems were chosen
because Johnson’s algorithm is O(#f#g log #f). The cores
write their intermediate results to circular buffers in shared
cache, and a global instance of Johnson’s algorithm merges
the buffers to produce the result. Superlinear speedup was
obtained from the extra local cache in each core.

This paper obtains a similar result for sparse polynomial
division. This is a considerably harder problem, because in
multiplication the polynomials f and g are known up front.
For division, we are given the dividend f and the divisor g,
and we construct each new term of the quotient q from the
largest term of f − q · g. This produces a tight dependency
among the terms of the quotient, and adds synchronization
and contention to the multiplication of q and g.

We are not aware of a comparable attempt to parallelize
sparse polynomial division. Our algorithm is asynchronous
and does not wait between the computation of qi and qi+1.
In [15], Wang suggests parallelizing the subtraction of qi · g
and synchronizing after each new term of the quotient. No
data is provided to assess the effectiveness of this approach
but we believe the waiting would be a problem. It appears
the CABAL group [10, 14] has also tried this approach. For
dense polynomials, Bini and Pan develop a parallel division
algorithm based on the FFT in [1], and in [8], Li and Maza
assess parallelization strategies for dense univariate division
modulo a triangular set.

Our paper is organized as follows. In Section 2 we discuss
the division algorithm and the challenges of parallelization.
We describe our solutions and present the algorithm. Then
in Section 3 we present benchmarks of our implementation.
We compare its performance and speedup to the sequential
routine of [13], the parallel multiplication codes of [11], and
the division routines of other computer algebra systems.

2. SPARSE POLYNOMIAL DIVISION
Consider the problem of dividing two sparse multivariate

polynomials f ÷ g = q in Z[x1, . . . , xn]. In general there are
two ways to proceed. In the recursive approach we consider
them as polynomials in x1 with coefficients in Z[x2, . . . , xn].
We divide recursively to obtain a quotient term qi, then we
subtract f := f − qig. The recursive coefficient operations
could be performed in parallel as suggested by Wang in [15].

One problem with this method is the many intermediate
pieces of storage required. Memory management is difficult
to do in parallel while preserving locality and performance.
For exact division the polynomial f is also reduced to zero,
so the construction of q · g in memory is wasteful.

105

In the distributed approach we impose a monomial order
on Z[x1, . . . , xn] to divide and cancel like terms. We divide
the largest term of f by the largest term of g to construct
the first term q1 of the quotient, and repeat the process for
f − q1g to obtain q2, and so on, until either f −P qig = 0
or the division fails. There may be very little work between
the computation of qi and qi+1, which makes this approach
difficult to parallelize.

But it has a critical advantage for division. Using a heap
we can merge the terms of q · g in descending order without
constructing large objects in memory. For example, when a
new term qi is computed we can insert qi · g2 into the heap,
and when this term is used we would replace it with qi · g3.
This is Johnson’s “quotient heap” algorithm, where a heap
of size #q is used to merge

P#q
i=1 qi · (g− g1). It uses O(#q)

memory in total, far less than the O(#f + #q #g) memory
used by the recursive approach.

One nice feature of the quotient heap algorithm is that a
new term qi completely determines a row qi · g in the heap.
If we could distribute the qi to different processors it would
be easy to parallelize division. However one problem is that
a new term of the quotient could be computed at any time.
We may also use qi · g2 immediately to compute qi+1. This
suggests an alternative partition of the work.

The “divisor heap” algorithm of Monagan and Pearce [12]

computes
P#g

i=2 gi · q instead. That is, elements of the heap
walk down the quotient and multiply by some divisor term.
Distributing terms of g to the threads solves two problems.
First, we can divide the work in advance with good locality
and suggest the number of threads. Second, {g2, g3, . . . , gk}
may be merged by the processor computing quotient terms
so that their products are known without delay. Our entire
algorithm is designed to avoid waiting in a typical division,
and this is one of two situations we address.

One may ask whether there is a loss of efficiency because
the divisor heap algorithm performs O(#f + #q#g log #g)
monomial comparisons. This is not optimal when #q < #g.
In [13] we present a sequential division algorithm that does
O(#f + #q#g log min(#q, #g)) comparisons. However our
divisor heap is run on subproblems with #g/p by #q terms
where p is the number of threads, so the threshold becomes
easier to meet as the number of threads increases.

2.1 Dependencies
We begin with an example that shows the main problem

encountered in parallelizing sparse polynomial division. Let
g = x5 + x4 + x3 + x2 + x + 1 and f = g2. To divide f by g
we will compute q1 = f1/g1 = x5, q2 = (f2 − q1g2)/g1 = x4,
q3 = (f3 − q1g3 − q2g2)/g1 = x3, and so on. Each new term
of the quotient is used immediately to compute subsequent
terms, so qk depends on the triangle of products gi · qj with
i + j − 1 ≤ k, as shown below for q4.

Figure 1: Dependency in Dense Univariate Division.

g2

g3

g4

g5

g6

q1 q2 q3 q4

must compute

summed

. . .

In parallel division the products gi · qj are merged using
multiple threads. Our problem is to divide up the products
in a way that mostly prevents having threads wait for data.
For example, in the computation above we compute qk and
then immediately use qkg2 to compute qk+1. It would make
sense to do both operations in the same thread. Otherwise,
one thread will compute qk and stop to wait for qkg2 while
the thread computing qkg2 waits for qk and then carries out
its task. Waiting serializes the algorithm because the round
trip latency is longer than it takes to compute terms.

In the dense example (see Figure 1) we might be able to
multiply g6 · q in a separate thread without waiting for any
of its terms, because after we compute qk we need to merge
{g2qk, g3qk, g4qk, g5qk} before g6qk is used. We could merge
other terms as well but those four have distinct monomials.
The second thread may still have to wait for qk if it doesn’t
have enough other work to do.

The structure of sparse polynomial multiplication is that
giqj > gi+1qj and giqj > giqj+1 when the terms of q and g
are sorted in a monomial ordering. In general this is called
X + Y sorting, see Harper et al. [6]. We are exploiting this
structure to get parallelism in the multiplication of q and g.
The approach is a recognized parallel programming pattern
called geometric decomposition. For details see [9].

Our algorithm partitions the products {giqj} into regions
that are merged by different threads. The X + Y structure
provides a lower bound on the amount of work that is done
before a term from an adjacent region is needed. The work
is used to conceal the latency of communication so that our
threads can run independently and do not have to wait.

Figure 2: Common X+Y Sort Orders.

triangular hyperbolic irregular blocks

Whatever partition we choose will have to interact nicely
with the construction of the quotient q, but there is no way
to know the dependencies of q in advance. So we identified
three common cases by experiment, see Figure 2. To create
each graphic, we sorted the products {giqj} for 1 ≤ i ≤ #g
and 1 ≤ j ≤ #q and shaded them from white to black. The
image shows the order that terms are merged, and the first
row shows when we construct each term of the quotient.

The triangular dependencies of dense univariate divisions
(see Figure 1) are apparent in the first image, although the
structure is found in sparse problems too. In this case O(k)
terms are merged between the computation of qk and qk+1.
Merging and quotient computation both occur at the same
regular rate, so this is the easiest case to parallelize. In the
hyperbolic case the quotient is computed rapidly, with very
little work between the computation of qk and qk+1. There
we must avoid waiting for {g2qk, g3qk, . . . } to be computed
since those terms will be needed immediately. The last case
is the hardest one to parallelize. Polynomials with algebraic
substructure tend to produce blocks which must be merged
in their entirety before any new quotient term is computed.
In the next section we describe our solution.

106

2.2 Parallel Algorithm
Our parallel division algorithm borrows heavily from our

multiplication algorithm in [11]. To each thread we assign a
subset of the partial products {gi · q}. These are merged in
a heap and the result is written to a buffer in shared cache.
A global function is responsible for merging the contents of
the buffers and computing new terms of the quotient. This
function is protected by a lock.

Unlike in the parallel multiplication algorithm, the global
function here is also assigned a strip of terms along the top
(g1 + · · ·+ gs) · q. This allows it to compute some quotient
terms and stay ahead of the threads. It uses g1 to compute
quotient terms and the terms (g2 + · · ·+ gs) · q are merged.
Then the strip (gs+1 + · · ·+ g 2s) · q is assigned to thread 1,
the next strip of s terms is assigned to thread 2, and so on,
as in Figure 3 below. The strip height s is derived from the
number of terms in g, refer to Section 2.3 for details.

Figure 3: Parallel Sparse Division Using Heaps.

Global

Threads

g

q

f − q g

1

3

2

4

The threads merge terms from left to right in the style of
a divisor heap of Monagan and Pearce [13]. Each iteration
of the main loop extracts all of the products gi · qj with the
largest monomial, multiplies their coefficients to compute a
sum of like terms, and inserts their successors gi · qj+1 into
the heap to set up the next iteration of the algorithm.

A major problem is that after gi · qj is extracted from the
heap and merged, we may find that qj+1 does not yet exist.
For example, towards the end of a division there will be no
more quotient terms. The threads need some way to decide
that it is safe to continue without gi · qj+1 in the heap.

In the sequential division algorithm this is easy because
g1 · qj+1 > gi · qj+1 in the monomial order. This guarantees
qj+1 is constructed (by dividing by g1) before any products
involving it need to be in the heap. We can safely drop the
products missing qj+1 as long as they are reinserted before
they could be merged. For example, in our algorithm in [13]
we set bits to indicate which gi have a product in the heap.
When a new quotient term qj+1 is computed we check if g2

has a product in the heap and insert g2 · qj+1 if it does not,
and when we insert gi · qj with i < #g, we also insert the
next product for gi+1 if it is not already in the heap.

In the parallel algorithm the computation of the quotient
is decoupled from the merging of products, so this strategy
does not work. It becomes difficult to maintain consistency
in the algorithm and expensive synchronization is required.
Eventually we made a compromise – if a thread encounters
gi · qj+1 and qj+1 is missing, the thread must wait for qj+1

to be computed or be relieved of the task of merging gi · q.
The idea is to have the global function steal rows from the
threads to allow them to proceed.

Figure 4: The Global Function Steals Rows.

Global

Threads

g

f − q g

q qj

s

qj+1

1

3

2

4

Figure 4 shows the global function in more detail. At the
beginning of the computation it is assigned a strip of s = 4
terms. It uses g1 to construct quotient terms and it merges
(g2 + g3 + g4) · q using a heap. After merging g2 · qj , it sees
that qj+1 has not been computed. It steals g5 · (qj+1 + · · ·)
by incrementing a global bound that is read by all threads.
This bound is initially set to 4, and it will be updated to 5.
When new quotient terms are computed, the current value
of the bound is stored beside them for the threads to read.

Two possibilities can now occur in the Figure 4 example.
If the thread merging g5 · q reaches g5 · qj+1 before qj+1 has
been computed, it checks the global bound and the number
of terms in the quotient. With no more quotient terms and
a global bound greater than or equal to 5, it drops the row
from its heap. Otherwise, if qj+1 is computed first, a bound
of at least 5 is stored beside qj+1. The thread sees this and
again drops the row from its heap.

Stealing rows in the global function allows the threads to
continue merging terms without any extra synchronization.
If used aggressively it also eliminates waiting, at the cost of
serializing more of the computation. This is a bad tradeoff.
We prefer to steal as few rows as possible with a reasonable
assurance that waiting will not occur.

2.3 Implementation
It is a non-trivial matter to sit down and implement this

algorithm given the main idea. With sequential algorithms
one expects the performance of implementations to vary by
a constant factor. This is not the case for complex parallel
algorithms since implementation details may determine the
scalability. These details are a critical aspect of the design.

Our main challenge in designing an implementation is to
minimize contention. This occurs when one core reads data
that is being modified by another. In the division algorithm
the quotient is a point of contention because we compute it
as the algorithm runs and it is used by all of the threads.

We manage contention by using one structure to describe
the global state of the algorithm. Shared variables, such as
the current length of the quotient and the bound are stored
on one cache line and updated together. Each thread reads
these values once and then continues working for as long as
possible before reading them again. This optimization may
reduce contention by up to an order of magnitude.

We first used the trick of caching shared variables in the
circular buffers of the parallel multiplication algorithm [11].
Those buffers are reused here. They reach 4.4 GB/s on our
Intel Core i7 920 with this optimization, but only 1.2 GB/s
without it. This shows just how high the cost of contention
is for only two threads, and with more threads it is worse.

107

We now present the algorithm. The first function sets up
the global state and creates the threads. When the threads
terminate, it could be because the algorithm has completed
or because the global function has stolen every row. In the
latter case we continue to call the global function until the
division is complete.

Just like our multiplication algorithm [11] we run at most
one thread per core to avoid context switches. For X cores
we compute t = 3

√
#g, create p = min(t/2, X) threads, and

give each thread strips of size s = t2/p terms. This value is
a compromise between large strips which are fast and small
strips which uniformly distribute the work.

The next function is the local merge that we run on each
thread. It creates a heap and tries to add the first product.
If the necessary quotient term does not exist yet, it tries to
enter the global function and compute more quotient terms.
It also discards any products stolen by the global function.

A product gi × qj has been stolen if qj exists (j < t) and
i ≤ bound(qj), or if qj does not exist (j ≥ t) and i ≤ b. The
function will block in the case j ≥ t and i > b, i.e. when qj

does not exist and the row has not yet been stolen.
An important detail of the algorithm is that it must use

memory barriers to ensure correctness. For example, as the
algorithm runs, the global function computes new quotient
terms and steals rows by incrementing a bound. Imagine if
both were to happen in quick succession. A thread may see
the bound modified first and discard a row before it merges
all of the terms. Memory barriers enforce the correct order.

We use a simple rule: ‘first written, last read’ to logically
eliminate race conditions from our program. With this rule
threads can read a volatile global state and act consistently
as long as the variables are monotonic. Here the number of
rows stolen and quotient terms computed only increase.

The global function is shown on the next page. It inserts
terms from the buffers to update the global heap G, but at
the start of the division there is no quotient and mergeG is
set to false. It performs a three way comparison to decide
which of the dividend, local heap, and global heap have the
largest monomial that must be merged. We write this step
in a clear but inefficient way. Our implementation performs
at most two ternary comparisons that return <, >, or =.

The global function then merges the maximal terms. The
local heap case contains additional logic to add stolen rows.
After merging gi × qj , we check to see if gi+1 has a term in
the heap. If not and i + 1 ≤ bound(qj) we insert the row for
gi+1 starting at qj . Otherwise gi+1× qj will be merged by a
thread so we set mergeG := true to start the global heap.

The global function can steal a row if gi · qj is merged by
the local heap and qj+1 does not exist, or if terms from the
global heap are merged when the local heap is empty. This
second case is needed at the end of the division when there
are no more quotient terms. The global function must keep
stealing rows to allow the threads to progress.

The general idea is to maintain a gap of s− 1 monomials
between the global function and all the threads. When the
global function merges the last term of row gi, it steals row
gi+s−1 if it has not already done so. This allows a thread to
merge to the end of row gi+s. Once all of its assigned terms
have been merged, the global function steals a row for each
distinct monomial it encounters. This allows the threads to
continue merging terms without any extra synchronization,
as long as they send zero terms to the global function to be
merged.

Algorithm: Parallel Sparse Polynomial Division.
Input: f, g ∈ Z[x1, . . . , xn], number of threads p.
Output: quotient q = f/g, boolean saying if division failed
Globals: heap F , heap G, set Q, lock L, quotient q,

booleans terminate, failed, mergeG,
slack S, gap s, bound b.

F := an empty heap ordered by < with max element F1

for merging the top strip in the global function
G := an empty heap ordered by < with max element G1

for merging the results from all the threads
Q := a set of p empty buffers

from which we insert terms into G
L := an unheld lock to protect the global function
terminate := false // set to terminate threads
mergeG := false // set to merge terms from G
failed := false // set if exact division fails
q := 0 // the quotient q = f/g
b := p // rows owned by global function
s := b // initial height of the top strip
S := 0 // “slack” before a row is stolen
for i from 1 to p do

spawn local merge(i, p)
wait for all threads to complete
while not terminate do

merge global()
return (q, failed)

Subroutine: Local Merge.
Input: thread number r, total number of threads p.
Output: a subset of terms of q · g are written to B.
Locals: heap H, set E, monomial M , coefficient C

rows stolen b1, number of quotient terms t1.
Globals: quotient q and divisor g in Z[x1, . . . , xn],

rows stolen b, number of quotient terms t,
lock L, boolean terminate

H := an empty heap ordered by < with max element H1

E := {} // terms extracted from H
t1 := 0 // number of quotient terms
b1 := p // number of rows stolen
// {g1, · · · , gp} owned by global function, we start at gp+r

(i, j) := (p + r, 0) // try to insert gp+r × q1

goto check term:
while |H| > 0 do

// merge all products with largest monomial M
M := mon(H1); C := 0; E := {};
while |H| > 0 and mon(H1) = M do

(i, j, M) := extract max(H)
C := C + cof(gi) · cof(qj)
E := E ∪ {(i, j)}

insert term (C, M) into the buffer B
// for each extracted term insert next term into heap
for all (i, j) ∈ E do

// insert first element of next row
if j = 1 and i + p ≤ #g and bound(q1) < i + p then

insert gi+p × q1 into H
check term:
// loop until gi × qj+1 can be inserted or discarded
while j = t1 and i > b1 do

if trylock(L) then
global merge()
release(L)

else
sleep for 10 microseconds

b1 := b // update rows stolen
read barrier()
t1 := t // update number of quotient terms
if terminate then return

if j < t1 and bound(qj+1) < i then
insert gi × qj+1 into H

close(B)
return

108

Subroutine: Global Merge.
Output: terms of the quotient are written to q.
Locals: coefficient C, monomial M , buffer B,

booleans stealG, stealL.
Globals: heaps F and G, sets P and Q, polynomials f, g, q,

rows stolen b, number of quotient terms t,
booleans terminate, failed, mergeG,
index k into f , initial height s, slack S.

if terminate then return
if mergeG then // insert terms into global heap G

for all B in Q do
if B is not empty then

extract next term (C, M) from buffer B
insert [B, C, M] into heap G
Q := Q \ {B}

else if not is closed(B) then goto done:
// 3-way comparison of dividend, local heap, global heap
// u, v, w is set to true or false to merge terms from each
C := 0; u := (k ≤ #f); v := (|F | > 0); w := (|G| > 0);
stealG := w and not v; stealL := false;
if u and v and mon(fk) < mon(F1) then u := false
if u and w and mon(fk) < mon(G1) then u := false
if v and u and mon(F1) < mon(fk) then v := false
if v and w and mon(F1) < mon(G1) then v := false
if w and u and mon(G1) < mon(fk) then w := false
if w and v and mon(G1) < mon(F1) then w := false
if not (u or v or w) then // no terms to merge

terminate := true // division complete
if u then // merge a term from the dividend

C := C + cof(fk)
M := mon(fk)
k := k + 1

if v then // merge terms from local heap F
P := {}
M := mon(F1)
while |F | > 0 and mon(F1) = M do

(i, j, M) := extract max(F)
C := C + cof(gi) · cof(qj)
P := P ∪ {(i, j)}

for all (i, j) ∈ P do
if j < #q then

insert gi × qj+1 into F
else stealL := true
if i < #g and gi+1 has no term in F then

if i + 1 ≤ bound(qj) then
insert gi+1 × qj into F

else // start merging global heap
mergeG := true

if w then // merge terms from global heap G
Q := {}
M := mon(G1)
while |G| > 0 and mon(G1) = M do

(B, K, M) := extract max(G)
C := C −K
Q := Q ∪ {B}

if C = 0 then goto done:
// compute a new quotient term
if LM(g) |M and LC(g) | C then

qt+1 := (C/LC(g), M/LM(g))
bound(qt+1) := b
write barrier() // commit term to memory
t := t + 1 // make term visible
S := b− s // set slack
if #g > 1 and g2 has no product in G then

insert g2 × qt into G
else // division failed

terminate := true
failed := true

done: // steal row if local heap empty or product dropped
if (stealG or stealL) and b < #g then

if S > 0 then S := S − 1 // reduce slack
else b := b + 1 // steal a new row

return

3. BENCHMARKS
We retained the benchmark setup of [11] to allow for easy

comparison of the parallel sparse polynomial multiplication
and division algorithms. We use two quad core processors:
an Intel Core i7 920 2.66GHz and a Core 2 Q6600 2.4GHz.
These processors are shown below. The Core i7 has 256KB
of dedicated L2 cache per core. We get superlinear speedup
by using more of the faster cache in the parallel algorithms.
In all of the benchmarks our time for one thread denotes a
sequential time for an algorithm from [13].

32K L1

256K L2

32K L1

256K L2

32K L1

256K L2

32K L1

256K L2

8MB Shared L3

Core i7

4MB Shared L2

32K L132K L1

4MB Shared L2

32K L1 32K L1

Core 2

3.1 Sparsity and Speedup
We created random univariate polynomials with different

sparsities and multiplied them modulo 32003 as in [11]. The
polynomials have 8192 terms. We then divide their product
by one of the polynomials modulo 32003. The graph shows
the speedup obtained at different sparsities on the Core i7.

For division we measure sparsity as the work per term to
multiply the quotient and the divisor. That is, for f/g = q
W (q, g) = (#q ·#g)/#(q · g). This makes our graph below
directly comparable to the one for multiplication in [11].

Figure 5: Sparsity vs. Parallel Speedup over Zp

(totally sparse) 1 ≤W (q, g) ≤ 4096.25 (totally dense)

threads

p
ar

al
le

l
sp

ee
d
u
p

2 3 4

5

4

3

2

1
1

6
W(q,g) = 2737

W(q,g) = 2040

W(q,g) = 133.7

W(q,g) = 41.11

W(q,g) = 21.72

W(q,g) = 11.16

W(q,g) = 5.912

W(q,g) = 3.637

W(q,g) = 2.054

W(q,g) = 1.361

W(q,g) = 1.021

The results in Figure 5 are generally good, but the curve
for extremely sparse problems flattens out. We are not able
to fully utilize all the cores to maintain parallel speedup as
W (q, g)→ 1. Otherwise, our results here are comparable to
those for parallel multiplication in [11]. We obtained linear
speedup in the completely dense case.

109

Our throughput here is limited by the dependencies of q,
which are triangular in shape. The computation of quotient
terms is thus tightly coupled to the merging in the threads,
and our global function can not stay ahead. This forces the
threads to wait for quotient terms.

3.2 Dense Benchmark
Let g = (1 + x + y + z + t)30. We compute f = g · (g + 1)

and divide f/g. The quotient and divisor have 46376 terms
and 61 bit coefficients. The dividend has 635376 terms and
128 bit coefficients. This problem is due to Fateman [3].

Unlike [11], we also test graded lexicographical order with
x > y > z > t. This choice of order produces the monomial
structure below. The upper left block is 5456× 5456 terms
consisting of all the products of total degree 60. It must be
merged in its entirety to compute the 5457th quotient term,
which forces our global function to steal 5455 rows. Despite
this difficulty, the performance of our algorithm was good.

Figure 6: Fateman Benchmark

graded lex order (tricky) lexicographical order

In addition to our software sdmp, we timed Magma 2.16,
Singular 3-1-0, and Pari 2.3.3. Magma now also uses heaps
to do polynomial multiplication and division. Singular uses
a divide-and-conquer algorithm to multiply and a recursive
sparse algorithm to divide. Pari uses recursive dense and it
supports division only in the univariate sense.

Table 1: Dense benchmark Z32003, W (f, g) = 3332.

Core i7 threads f = q · g q = f/g

sdmp

4 11.68 s 5.87x 15.10 s 5.42x
3 16.52 s 4.15x 21.94 s 3.73x
2 27.83 s 2.46x 37.07 s 2.21x
1 68.59 s 81.93 s

sdmp (grlex)

4 11.20 s 6.12x 15.37 s 5.43x
3 15.94 s 4.30x 21.22 s 3.93x
2 27.56 s 2.49x 35.01 s 2.38x
1 68.59 s 83.54 s

Singular 3-1-0 1 152.65 s 105.26 s
Magma 2.16-7 1 134.29 s 299.29 s
Pari 2.3.3 1 795.22 s 438.62 s

Core 2 threads f = q · g q = f/g

sdmp

4 13.86 s 4.25x 17.82 s 3.80x
3 19.06 s 3.09x 23.93 s 2.83x
2 29.82 s 1.97x 35.24 s 1.92x
1 58.91 s 67.69 s

sdmp (grlex)

4 13.93 s 4.34x 18.42 s 3.74x
3 19.19 s 3.15x 23.97 s 2.87x
2 27.58 s 2.19x 35.06 s 1.96x
1 60.50 s 68.87 s

Singular 3-1-0 1 273.05 s 150.36 s
Magma 2.16-7 1 139.98 s 446.57 s
Pari 2.3.3 1 942.78 s 520.15 s

Table 2: Dense benchmark Z, W (f, g) = 3332.

Core i7 threads f = q · g q = f/g

sdmp

4 11.33 s 6.25x 15.18 s 5.78x
3 16.30 s 4.34x 21.94 s 4.00x
2 28.01 s 2.53x 37.03 s 2.37x
1 70.81 s 87.68 s

sdmp (grlex)

4 11.50 s 6.15x 15.57 s 5.72x
3 16.33 s 4.33x 21.36 s 4.17x
2 28.31 s 2.50x 35.34 s 2.52x
1 70.75 s 89.11 s

Singular 3-1-0 1 817.43 s 296.75 s
Magma 2.16-7 1 359.98 s 441.43 s
Pari 2.3.3 1 651.02 s 354.82 s

Core 2 threads f = q · g q = f/g

sdmp

4 14.20 s 4.25x 17.88 s 4.28x
3 19.48 s 3.10x 24.15 s 3.17x
2 30.35 s 1.99x 35.29 s 2.17x
1 60.38 s 76.59 s

sdmp (grlex)

4 14.27 s 4.24x 18.59 s 4.20x
3 19.69 s 3.07x 24.20 s 3.22x
2 28.11 s 2.15x 35.39 s 2.20x
1 60.50 s 78.09 s

Singular 3-1-0 1 1163.49 s 349.06 s
Magma 2.16-7 1 361.42 s 597.51 s
Pari 2.3.3 1 692.59 s 382.74 s

Tables 1 and 2 present times to multiply and divide with
coefficients in Z/32003 and Z. The parallel heap algorithms
generally achieve superlinear speedup on the Core i7 due to
their use of extra L2 cache. On the Core 2 architecture the
speedup is still fairly good. The sdmp times are similar for
Z and Zp because our integer arithmetic assumes word size
coefficients. Magma and Singular use faster representations
for Zp when p is less than 24 or 31 bits.

3.3 Sparse Benchmark
Our last benchmark is a sparse problem with an irregular

block pattern. Let g = (1 + x + y + 2z2 + 3t3 + 5u5)12 and
q = (1 + u + t + 2z2 + 3y3 + 5x5)12. We compute f = q · g
and divide f/g in lexicographical order x > y > z > t > u.
The quotient q and the divisor g have 6188 terms and their
coefficients are 37 bits. The dividend f has 5.8× 106 terms
and its coefficients are 75 bits.

Table 3: Sparse benchmark Z32003, W (f, g) = 6.577.

Core i7 threads f = q · g q = f/g

sdmp

4 0.547 s 2.67x 0.589 s 3.40x
3 0.658 s 2.22x 0.707 s 2.83x
2 0.915 s 1.60x 1.004 s 1.99x
1 1.462 s 2.006 s

Singular 3-1-0 1 10.520 s 20.860 s
Magma 2.16-7 1 4.710 s 66.540 s
Pari 2.3.3 1 113.786 s 65.314 s

Core 2 threads f = q · g q = f/g

sdmp

4 0.663 s 2.67x 0.741 s 3.16x
3 0.813 s 2.18x 0.858 s 2.73x
2 1.081 s 1.64x 1.196 s 1.96x
1 1.774 s 2.343 s

Singular 3-1-0 1 16.940 s 26.140 s
Magma 2.16-7 1 5.770 s 127.750 s
Pari 2.3.3 1 132.388 s 74.991 s

We were surprised that the speedup for division could be
higher than for multiplication, but the sequential algorithm
for division seems to have lower relative performance. This
could be due to the extra work it performs to maintain low
complexity. Unlike the parallel algorithm, the method from
[13] is highly efficient if the quotient is small.

110

Table 4: Sparse benchmark Z, W (f, g) = 6.577.

Core i7 threads f = q · g q = f/g

sdmp

4 0.584 s 2.65x 0.675 s 3.23x
3 0.738 s 2.10x 0.791 s 2.76x
2 1.002 s 1.54x 1.102 s 1.75x
1 1.548 s 2.182 s

Singular 3-1-0 1 25.660 s 32.400 s
Magma 2.16-7 1 7.780 s 80.200 s
Pari 2.3.3 1 59.823 s 34.566 s

Core 2 threads f = q · g q = f/g

sdmp

4 0.752 s 2.33x 0.817 s 3.02x
3 0.903 s 1.95x 0.951 s 2.60x
2 1.205 s 1.46x 1.289 s 1.91x
1 1.759 s 2.468 s

Singular 3-1-0 1 36.840 s 40.090 s
Magma 2.16-7 1 9.930 s 137.460 s
Pari 2.3.3 1 65.362 s 37.582 s

4. CONCLUSION
We presented a fast new parallel algorithm for division of

sparse polynomials on multicore processors. The algorithm
was designed to achieve very high levels of performance and
superlinear speedup on a problem that could be considered
inherently sequential. Our benchmarks show that with few
exceptions, this was achieved in practice. This has made us
cautiously optimistic towards parallel computer algebra.

Our next task is to integrate the routines into the Maple
computer algebra system. By parallelizing basic operations
at a low level, we hope to obtain noticable parallel speedup
for users and library code at the top level.

Acknowledgements
We gratefully acknowledge the MITACS NCE of Canada
and NSERC of Canada for funding this work, and we thank
the anonymous referees for their helpful comments.

5. REFERENCES
[1] D. Bini, V. Pan. Improved parallel polynomial

division. SIAM J. Comp. 22 (3) 617–626, 1993.

[2] W. Bosma, J. Cannon, and C. Playoust. The Magma
algebra system. I. The user language. J. Symb. Comp.,
24 (3-4) 235–265, 1997

[3] R. Fateman. Comparing the speed of programs for
sparse polynomial multiplication. ACM SIGSAM
Bulletin, 37 (1) 4–15, 2003.

[4] M. Gastineau, J. Laskar. Development of TRIP: Fast
Sparse Multivariate Polynomial Multiplication Using
Burst Tries. Proc. ICCS 2006, Springer LNCS 3992,
446–453.

[5] G.-M. Greuel, G. Pfister, and H. Schönemann.
Singular 3.1.0 – A computer algebra system for
polynomial computations, 2009.
http://www.singular.uni-kl.de

[6] L.H. Harper, T.H. Payne, J.E. Savage, E. Straus.
Sorting X+Y. Comm. ACM 18 (6), pp. 347–349, 1975.

[7] S.C. Johnson. Sparse polynomial arithmetic. ACM
SIGSAM Bulletin, 8 (3) 63–71, 1974.

[8] X. Li and M. Moreno Maza. Multithreaded parallel
implementation of arithmetic operations modulo a
triangular set. Proc. of PASCO ’07, ACM Press,
53–59.

[9] T. Mattson, B. Sanders, B. Massingill. Patterns for
Parallel Programming. Addison-Wesley, 2004.

[10] M. Matooane. Parallel Systems in Symbolic and
Algebraic Computation. Ph.D Thesis, Cambridge,
2002.

[11] M. Monagan, R. Pearce. Parallel Sparse Polynomial
Multiplication Using Heaps. Proc. of ISSAC 2009,
295–315.

[12] M. Monagan, R. Pearce. Polynomial Division Using
Dynamic Arrays, Heaps, and Packed Exponent
Vectors. Proc. of CASC 2007, Springer LNCS 4770,
295–315.

[13] M. Monagan, R. Pearce. Sparse Polynomial Division
Using a Heap. submitted to J. Symb. Comp., October
2008.

[14] A. Norman, J. Fitch. CABAL: Polynomial and power
series algebra on a parallel computer. Proc. of PASCO
’97, ACM Press, pp. 196–203.

[15] P. Wang. Parallel Polynomial Operations on SMPs. J.
Symbolic. Comp., 21 397–410, 1996.

111

A high-performance algorithm for calculating cyclotomic
polynomials.

Andrew Arnold
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

ada26@sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
The nth cyclotomic polynomial, Φn(z), is the monic poly-
nomial whose φ(n) distinct roots are the nth primitive roots
of unity. Φn(z) can be computed efficiently as a quotient
of terms of the form (1 − zd) by way of a method the au-
thors call the Sparse Power Series algorithm. We improve
on this algorithm in three steps, ultimately deriving a fast,
recursive algorithm to calculate Φn(z). The new algorithm,
which we have implemented in C, allows us to compute Φn(z)
for n > 109 in less than one minute.

Categories and Subject Descriptors:
G.0 [Mathematics of Computing]: General
General Terms: Algorithms
Keywords: Cyclotomic Polynomials

1. INTRODUCTION
The nth cyclotomic polynomial, Φn(z), is the minimal

polynomial over Q of the nth primitive roots of unity.

Φn(z) =

nY
j=1

gcd(j,n)=1

`
z − e

2πi
n
j´. (1.1)

We let the index of Φn(z) be n and the order of Φn(z) be
the number of distinct odd prime divisors of n. The nth in-
verse cyclotomic polynomial, Ψn(z), is the monic polynomial
whose roots are the nth non-primitve roots of unity.

Ψn(z) =

nY
j=1

gcd(j,n)>1

`
z − e

2πi
n
j´ =

zn − 1

Φn(z)
. (1.2)

We denote by A(n) the height of Φn(z), that is, the largest
coefficient in magnitude of Φn(z). It is well known that for
n < 105, A(n) = 1 but for n = 105, A(n) = 2. The smallest
n with A(n) > 2 is n = 385 where A(n) = 3. Although
the heights appear to grow very slowly, Paul Erdős proved
in [2] that A(n) is not bounded above by any polynomial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

in n, that is, for any constant c > 0, there exists n such
that A(n) > nc. Maier showed that the set of n for which
A(n) > nc has positive lower density. A natural question to
ask is, what is the first n for which A(n) > n?

In earlier work [1], we developed two asymptotically fast
algorithms to compute Φn(z). The first algorithm, which
we call the FFT algorithm, uses the Fast Fourier Transform
to perform a sequence of polynomial exact divisions in Z[z]
modulo a prime q. Using this algorithm we found the small-
est n such that A(n) > n, namely for n = 1, 181, 895, the
height A(n) = 14, 102, 773. Here n = 3 · 5 · 11 · 13 · 19 · 29. To
find Φn(z) with larger height, we tried simply multiplying
this n by additional primes. In this way we found an n with
A(n) > n2 and several n > 109 with A(n) > n4, the latter
requiring the use of a supercomputer with a lot of RAM.

The second algorithm, which we call the Sparse Power Se-
ries (SPS) algorithm, does a sequence of sparse series multi-
plications and divisions in O(2kφ(n)) integer arithmetic op-
erations. Although not asymptotically faster than the FFT
algorithm, it turns out that because the SPS algorithm only
needs integer additions and subtractions, it is considerably
faster (more than 20 times - see section 4) than the FFT
algorithm. Using the SPS algorithm we found the small-
est n with A(n) > n2, A(n) > n3 and A(n) > n4, namely
n = 43, 730, 115, n = 416, 690, 995, and 1, 880, 394, 945, re-
spectively, as well as other new results. One of the difficulties
when n > 109 is space. For such n, even storing Φn(z) re-
quires many gigabytes of memory. The SPS algorithm has a
substantial space advantage over the FFT algorithm. It has
now been implemented in the Sage and Maple 13 computer
algebra systems.

In this paper we present a fast recursive algorithm to cal-
culate Φn(z) and Ψn(z). It improves on the sparse power
series (SPS) algorithm by approximately another factor of
10 (see section 4). To give one specific benchmark; Yoichi in
[4, 5] found A(n) for n the product of the first 7 odd primes
but was unable to determine A(n) for n the product of the
first 8 primes. We used the FFT algorithm to find A(n) for
n the product of the first 9 odd primes in approx. 12 hours.
The SPS algorithm takes 7 minutes and our new algorithm
takes 50 seconds. A challenge problem given to us by Noe
[6] is to compute Φn(z) for n = 99, 660, 932, 085 which we
expect will have a huge height. The main difficulty now is
space; for the mentioned unsolved problem, the set of coeffi-
cients of Φn(z), stored as 320-bit integers (which we estimate
will be sufficient) requires over 750 GB of space.

Our paper is organized as follows. Section 2 presents iden-
tities involving zn − 1, Φn(z) and Ψn(z) used in the algo-
rithms, and the basic algorithm used for the FFT approach.

112

Section 3 details the Sparse Power Series algorithm for com-
puting Φn(z) and introduces a similar algorithm for comput-
ing Ψn(z), then develops improvements in three steps. The
third step makes the algorithm recursive. Section 4 presents
some timings comparing the FFT algorithm, the original
SPS algorithm, and the three improvements.

2. USEFUL IDENTITIES OF CYCLOTOMIC
POLYNOMIALS

Before describing the algorithms, we establish some basic
identities of cyclotomic polynomials. First, as the roots of
Φn(z) and Ψn(z) consist of all nth roots of unity, we have

Φn(z)Ψn(z) =

n−1Y
j=0

(z − e
2πj
n
i) = zn − 1. (2.1)

Every nth root of unity is a dth primitive root of unity for
some unique d|n. Conversely, if d|n, every dth primitive root
of unity is trivially an nth root of unity. As such,

Y
d|n

Φd(z) = zn − 1. (2.2)

Applying the Möbius inversion formula to (2.2), we have

Φn(z) =
Y
d|n

(zd − 1)µ(
n
d

), (2.3)

where µ is the Möbius function. From (2.1) and (2.3) we
obtain a similar identity for Ψn(z).

Ψn(z) =
Y

d|n,d<n
(zd − 1)−µ(

n
d

), (2.4)

and from (2.1) and (2.2), we have that

Ψn(z) =
Y

d|n,d<n
Φd(z). (2.5)

Thus Ψn(z) is a product cyclotomic polynomials.
Given Φ1(z) = z − 1 and Ψ1(z) = 1, we can compute all

cyclotomic polynomials using the following lemmas.

Lemma 1. If p, q primes such that p - n and q|n then

Φnp(z) =
Φn(zp)

Φn(z)
, (2.6a)

Φnq(z) = Φn(zq), (2.6b)

Ψnp(z) = Ψn(zp)Φn(z), and (2.6c)

Ψnq(z) = Ψn(zq). (2.6d)

Lemma 2. If n > 1 is odd then

Φ2n(z) = Φn(−z) and (2.7a)

Ψ2n(z) = −Ψn(−z)(zn + 1). (2.7b)

Lemmas 1 and 2 are well-known. One can prove these
identities by equating roots of both sides of the respective
equations. Given Φn(z)Ψn(z) = zn − 1, the identities for
Ψn(z) (2.6c), (2.6d) and (2.7b) can be easily derived from
(2.6a), (2.6b) and (2.7a), their respective analogs for Φn(z).

These lemmas give us a means to calculate Φn(z). For ex-
ample, for n = 150 = 2 · 3 · 52 we have

Φ3(z) = Φ1(z3)
Φ1(z)

= z3−1
z−1

= z2 + z + 1, and

Φ15(z) = Φ3(z5)
Φ3(z)

= z10+z5+1
z2+z+1

= z8 − z7 + z5 − z4 + z3 − z + 1, by (2.6a).

Φ75(z) = Φ15(z5) by (2.6b),

= z40 − z35 + z25 − z20 + z15 − z5 + 1.

Φ150 = Φ75(−z) by (2.7a),

= z40 + z35 − z25 − z20 + z15 + z5 + 1

We formally describe this approach in algorithm 1.

Algorithm 1: Computing Φn(z) by repeated polynomial
division

Input: n = 2e0pe11 p
e2
2 · · · pe

k

k , where 2 < p1 < · · · < pk,
e0 ≥ 0, and ei > 0 for 1 ≤ i ≤ k

Output: Φn(z)
1 m←− 1
2 Φm(z)←− z − 1
3 for i = 1 to k do
4 Φmpi(z)←− Φm(zpi)/Φm(z) // By (2.6a)
5 m←− m · pi
6 if e0 > 0 then
7 Φ2m(z)←− Φm(−z) // By (2.7a)
8 m←− 2m

// m is the largest squarefree divisor of n now

9 s←− n/m
10 Φn(z)←− Φm(zs) // By (2.6b)

return Φn(z)

While algorithm 1 is beautifully simple, it is not nearly the
fastest way to compute Φn(z), particularly if we use classi-
cal polynomial division to calculate the polynomial quotient
Φm(zpi)/Φm(z) (line 4). For even though the numerator is
sparse, the denominator and quotient are typically dense.

We implemented algorithm 1 using the discrete fast Fourier
transform (FFT) to perform Φm(zpi)/Φm(z) fast. This is
done modulo suitably chosen primes qj . The cost of comput-
ing one image of Φn(z) modulo a prime q is O(φ(n) log φ(n))
arithmetic operations in Zq. With each iteration of the loop
on line 3, the degree of the resulting polynomial grows by a
factor. As such the cost of this approach is dominated by
the last division. For a description of the discrete FFT, we
refer the reader to [3].

We compute images of Φn(z) modulo sufficiently many
primes and recover the integer coefficients of Φn(z) using
Chinese remaindering. In order to apply the FFT modulo q,
we need a prime q with 2k|q−1 and 2k > φ(n), the degree of
the output Φn(z). Since for n > 109 there are no such 32 bit
primes, we used used 42-bit primes with arithmetic modulo
q coded using 64-bit machine integer arithmetic.

It follows from lemma 1 that for primes p|n, the set of
nonzero coefficients of Φnp(z) and Φn(z) are the same. Sim-
ilarly, by lemma 2 we have A(n) = A(2n) for odd n. Thus
Φn(z) for even or nonsquarefree n, for our purposes, are
uninteresting. Moreover, if n̄ is the largest odd squarefree
divisor of n, then it is easy to obtain Φn(z) from Φn̄(z).

113

For the remainder of this paper, we only consider Φn(z) for
squarefree, odd n.

3. HIGH-PERFORMANCE ALGORITHMS
FOR COMPUTING ΦN (Z)

Our C implementation of the FFT-based approach proved
to be faster than methods available via computer algebra
systems at the time. Using this method we were able to
compute examples of Φn(z) of degree in the billions and
height well beyond that. However, the FFT approach was
eclipsed by a faster algorithm.

For n > 1, the number of squarefree divisors of n is even.
As such we can rewrite (2.3) as

Φn(z) =
Y
d|n

(1− zd)µ(
n
d

). (3.1)

As Φn(z)Ψn(z) = zn − 1 we also have, for n > 1,

Ψn(z) = −
Y

d|n,d<n
(1− zd)−µ(

n
d

). (3.2)

In our implementation of every algorithm presented in sec-
tion 3, we compute Φn(z) as the product of terms (1−zd)±1

appearing in (3.1); however, in the identities we present in
this section it is often less cumbersome to express Φn(z) in
terms of (zd−1)±1. We refer to the (1−zd)±1 (alternatively
(zd − 1)±1) comprising Φn(z) as the subterms of Φn(z).

Given that the power series expansion of (1 − zd)−1 is
(1 + zd + z2d + z3d + . . .), it becomes equally easy to either
multiply or divide by (1− zd). Φn(z) can thus be computed
as the truncated power series ofY

µ(
n
d

)=1

(1− zd) ·
Y

µ(
n
d

)=−1

(1 + zd + z2d + . . .), (3.3)

as described in procedure SPS.

Procedure SPS(n), computing Φn(z) as a quotient of
sparse power series

The Sparse Power Series (SPS) Algorithm

Input: n a squarefree, odd integer

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

// we compute terms up to degree D

1 D ←− φ(n)
2

, a(0)←− 1
2 for 1 ≤ i ≤M do a(i)←− 0
3 for d|n such that d < n do
4 if µ(n

d
) = 1 then // multiply by 1− zd

5 for i = D down to d by −1 do
6 a(i)←− a(i)− a(i− d)

7 else // divide by 1− zd
8 for i = d to D do
9 a(i)←− a(i) + a(i− d)

return a(0), a(1), . . . a(D)

The brunt of the work of the SPS algorithm takes place
on lines 6 and 9, where we multiply by (1 − zd) and (1 −
zd)−1 respectively. In either case, computing this product,
truncated to degree D = φ(n)/2, takes O(D− d) ∈ O(φ(n))

arithmetic operations in Z. As n, a product of k distinct
primes, has 2k positive divisors, the SPS method requires
some O(2k · φ(n)) operations to compute Φn(z) of order k.
Note that while 1− zn appears in (3.1), we do not multiply
by 1− zn is algorithm SPS, as it does not affect our result.
This is because 1− zn ≡ 1 (mod zD) for D = φ(n)/2.

Using the analog identity for Ψn(z), (3.2), we derive a very
similar method for Ψn(z), described by procedure SPS-Psi.

Procedure SPS-Psi(n), computing Ψn(z) as a quotient
of sparse power series

A Sparse Power Series Algorithm for Ψn(z)

Input: n a squarefree, odd integer

Output: b(0), . . . , b(bn−φ(n)
2
c), the first half of the

coefficients of Ψn(z)

1 D ←− bn−φ(n)
2
c, b(0)←− 1

2 for 1 ≤ i ≤ D do b(i)←− 0
3 for d|n such that d < n do
4 if µ(n

d
) = −1 then // multiply by 1− zd

5 for i = D down to d by −1 do
6 b(i)←− b(i)− b(i− d)

7 else // divide by 1− zd
8 for i = d to D do
9 b(i)←− b(i) + b(i− d)

return b(0), b(1), . . . , b(D)

By a similar analysis as for SPS, we see that procedure
SPS-Psi requires O(2k(n− φ(n)) ∈ O(2k · n) arithmetic op-
erations.

3.1 The palindromic property of cyclotomic co-
efficients

In the SPS and SPS-Psi methods we truncate to half the
degree of Φn(z) and Ψn(z) respectfully. This is because it
is trivial to obtain the ter,s of higher degree. For n > 1 the
coefficients of Φn(z) are palindromic and those of Ψn(z) are
antipalindromic. That is, given

Φn(z) =

φ(n)X
i=0

a(i)zi and Ψn(z) =

n−φ(n)X
i=0

b(i)zi,

we have that a(i) = a(φ(n)− i) and b(i) = −b(n−φ(n)− i).
We prove a related result, which will bode useful in subse-
quent algorithms.

Lemma 3. Let

f(z) = Φn1(z) · Φn2(z) · · ·Φns(z) =

DX
i=0

c(i)zi (3.4)

be a product of cyclotomic polynomials such that nj is odd
for 1 ≤ j ≤ s. Then c(i) = (−1)Dc(D− i) for 0 ≤ i < D. In
other words, if D is odd f(z) is antipalindromic, and if D is
even f(z) is palindromic.

Proof. Clearly f(z) is monic. If ω is a root of f , then
ω is an (nj)th primitive root of unity for some j such that
1 ≤ j ≤ s. In which case, ω−1 is also an (nj)th primitive
root of unity and hence is also a root of f(z). Set

g(z) = zDf(z−1) =

DX
i=0

c(D − i)(z). (3.5)

114

g(z) is a polynomial of degree D with leading coefficient
c(0) whose roots are the roots of f . Thus f(z) and g(z) only
differ by the constant factor c(0)/c(D) = c(0). We need only
resolve c(0). To that end, we observe that φ(n) is even for
odd n > 1, and φ(1) = 1. Thus r ≡ D (mod 2), where r is
the cardinality of

{j : 1 ≤ j ≤ s and nj = 1}. (3.6)

The constant term of f , c(0), is the product of the constant
terms of the Φnj (z) in (3.4). Since the constant term of
Φ1(z) = z − 1 is −1, and by (3.1), the constant term of
Φn(z) is 1 for n > 1, we have that c(0) = (−1)r = (−1)D,
completing the proof.

We note that lemma 3 does not hold if we relax the re-
striction that nj must be odd in (3.4). Consider the trivial
counterexample Φ2(z) = z+1. By (2.5), we have that Ψn(z)
is a product of cyclotomic polynomials, and so lemma 3 ap-
plies to Ψn(z) for odd n, or any product of the form

Ψn1(z) ·Ψn2(z) · · ·Ψns(z), (3.7)

where n1, n2, . . . , ns are all odd.

3.2 Improving the sparse power series method
by further truncating degree

The sparse power series algorithm slows appreciably as
we calculate Φn(z) for n with increasingly many factors.
The slowdown in computing Φnp(z) compared to Φn(z) is
twofold. By introducing a new prime factor p we double the
number of subterms (1−zd)±1 in our product (3.1). In addi-
tion, the degree of Φnp(z) is p− 1 times that of Φn(z), thus
increasing the cost of multiplying one subterm (1 − zd)±1

by a factor. For Φn(z) of larger degree the algorithm also
exhibits poorer locality.

In procedure SPS, we effectively compute 2k distinct power
series, each a product of subterms (1−zd)±1, each truncated
to degree φ(n)/2. We can improve the SPS algorithm if we
truncate any intermediate power series to as minimal degree
necessary, thereby reducing the number of arithmetic op-
erations and leveraging locality where possible. We let the
degree bound refer to the degree we must truncate to at some
stage in the computation of Φn(z) using the SPS algorithm
or a variant thereof.

Depending on the order in which we multiply the subterms
of Φn(z), some of the intermediate products of subterms we
compute may be polynomials as well. If, at some point of
our computation of Φn(z), we have a product of subterms
that is a polynomial f(z) of degree D, then f(z) is a product
of cyclotomic polynomials satisfying lemma 3 (provided n is
odd and squarefree), and we need only truncate to degree at
most bD/2c at previous stages of the computation.

Once we have computed f(z), our degree bound may in-
crease. In which case we can generate higher-degree terms
of f(z) as necessary using lemma 3.

More generally, if we have some product of subterms of
Φn(z) and we know polynomials f1(z), f2(z), . . . fs(z) of de-
grees D1, D2, . . . , Ds will occur as products of subterms at
later stages of our computation, then we can truncate to
bD/2c, where D = min1≤j≤sDs. Our aim is to order the
subterms in an intelligent manner which minimizes the growth
of the degree bound over the computation of Φn(z).

To further our aim, we let n = mp, where p is the largest
prime divisor of n and m > 1. In which case

Φmp(z) =
Φm(zp)

Φm(z)
by lemma 1,

=Ψm(z) · Φm(zp) · (zm − 1)−1.

(3.8)

By (3.1) and (3.2), we can break Ψm(z) and Φm(z) into
respective products of subterms.

Φn(z) = Y
d|m,d<m

(zd− 1)−µ(
m
d

)

! Y
d|m

(zdp− 1)µ(
m
d

)

!
(zm− 1)−1.

(3.9)

Thus to compute Φn(z), we can first compute Ψm(z), the

leftmost product of (3.9) to degree m−φ(m)
2

, use the an-
tipalindromic property of Ψm(z) to reconstruct its remain-
ing coefficients, and then multiply the remaining subterms
as we would in algorithm SPS. Algorithm SPS2 describes
the method.

Procedure SPS2(n) : First revision of algorithm SPS

Algorithm SPS2: Improved Sparse Power Series

Input: n = mp, a squarefree, odd integer with greatest
prime divisor p

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

// Compute first half of Ψm(z)

1 a(0), a(1), . . . , a(bn−φ(m)
2
c)←− SPS-Psi(m)

// Construct other half of Ψm(z) using lemma 3

2 D ←− m− φ(m)

3 for i = dm−φ(m)
2
e to D do a(i)←− −a(m− φ(m)− i)

// Multiply by Φm(zp)

4 D ←− φ(n)
2

5 a(m− φ(m) + 1), a(m− φ(m) + 2), . . . , a(D)←− 0
6 for d|m do
7 if µ(n

d
) = 1 then

8 for i = D down to d by −1 do
9 a(i)←− a(i)− a(i− dp)

10 else
11 for i = d to D do
12 a(i)←− a(i) + a(i− dp)

// Divide by zm − 1 = (−1− zm − z2m − . . .)
13 for i = m to D do a(i)←− −a(i)− a(i−m)

return a(0), a(1), . . . a(D)

For n = mp with k distinct prime divisors, Ψm(z) com-
prises 2k−1 − 1 of the 2k subterms of Φn(z). For each of
these subterms appearing in Ψm(z) we truncate to degree
(m−φ(m))/2. The asymptotic operation cost of SPS2 is no
different than that of SPS; however, in practise this method
cuts the running time in half (see table 1 for timings).

We note that the speed-up is not as substantial for m with
very few prime factors. In the event that n is prime, we have
m = 1 and Ψm(z) = 1. In such case the execution of SPS
and SPS2 are effectively the same. For n = qp, a product

115

of two primes with q < p, Φn(z) has only four subterms
and we only get gains on the single subterm appearing in
Ψq(z) = z − 1. For Φn(z) of low order, the proportion of
subterms of Φn(z) appearing in Ψm(z) is further from 1/2
compared to Φn(z) for highly composite n (i.e. n for which
k is larger). That said, however, Φn(z) is already easy to
compute by the original SPS method for Φn(z) of low order,
as these cyclotomic polynomials have very few subterms.

3.3 Calculating Φn(z) by way of a product of
inverse cyclotomic polynomials

In algorithm SPS2 we bound to a smaller degree than in
SPS when multiplying the first 2k−1 − 1 subterms of Φn(z).
We are able to lower the degree bound for many of the re-
maining 2k−1+1 subterms of Φn(z). To that end we establish
the next identity.

Let n = p1p2 · · · pk, a product of k distinct odd primes.
For 1 ≤ i ≤ k, let mi = p1p2 · · · pi−1 and ei = pi+1 · · · pk.
We set m1 = ek = 1, and let e0 = n. Note that n = eipini
for 1 ≤ i ≤ k. In addition, ei−1 = piei and mi+1 = mipi.
We restate (3.8), which was key to SPS2, as

Φn(z) =
Ψmk (zek)

(zn/pk − 1)
Φmk (zek−1). (3.10)

By repeated application of lemma 1, we have

Φn(z) =
Ψmk (zek)

(zn/pk − 1)

Ψmk−1(zek−1)

(zn/pk−1 − 1)
Φmk−1(zek−2),

. . .

=
Ψmk (zek)

(zn/pk − 1)
· · · Ψm2(ze2)

(zn/p2 − 1)

Ψm1(ze1)

(zn/p1 − 1)
Φm1(ze0),

=

kY
j=1

Ψmj (zej)

(zn/pj − 1)

!
· Φm1(ze0).

(3.11)

As Ψm1(ze1) = Ψ1(ze1) = −1, and Φ1(ze0) = Φ1(zn) =
zn − 1, this simplifies to

Φn(z) =

kY
j=2

Ψmj (zej) ·
kY
j=1

(zn/pj − 1)−1 · (zn − 1) (3.12)

For example, for n = 105 = 3 · 5 · 7,

Φ105(z) =

Ψ15(z)Ψ3(z7)(z15 − 1)−1(z21 − 1)−1(z35 − 1)−1(z105 − 1)

As with algorithm SPS2, we first calculate half the terms
of Ψmk (zek) = Φp1p2...pk−1(z), those with degree at most

bφ(mk)
2
c. We then iteratively compute the product

Ψmk (zek) · · ·Ψm2(ze2) (3.13)

from left to right. When calculating the degree of Ψmj (zej)
we truncate to degree at most$

1

2

kY
i=j

(mi − φ(mi))ei

%
, (3.14)

half the degree of the product in (3.13). As our intermediate
product grows larger we have to truncate to larger degree.
The term Ψmi(zei), comprises 2i−1 − 1 subterms of Φn(z).
We compute Ψmk (zek) first because that contains 2k−1 sub-
terms, nearly half of the 2k we must multiply by to compute

Φn(z), so it is best that we multiply these subterms first
before the degree bound swells.

We leverage lemma 3 again when computing the product
(3.13). Suppose we have half the terms of

f(z) =

kY
i=j+1

Ψmi(zei),

for some j ≥ 2 and we want to compute

g(z) = f(z) ·Ψmj (zej),

towards the aim of obtaining Φn(z). As both f(z) and g(z)
have the (anti)palindromic property of lemma 3, when com-
puting g(z) we need to truncate to degree at most bD/2c,
where D is the lesser of

Dg =

kY
i=j−1

(mi − φ(mi))ei and φ(n),

the former of which is the degree of g(z), the latter being
the degree of Φn(z). Thus we apply lemma 3 to generate
the higher-degree terms of f(z) up to degree D. Once we
have the product (3.13) we then apply the palindromic prop-
erty again to generate the coefficients up to degree φ(n)/2,
provided we do not have them already. We then divide by
the subterms (1 − zn/pj) for 1 ≤ j ≤ k, truncating, again,
to degree φ(n)/2. We describe this approach in procedure
SPS3. We assume the ei and mi were precomputed.

For n a product of one or two primes, SPS3 executes the
same as in SPS2, and we see no gains. We only begin to
see improved performance for n a product of three primes.
In practise, we see the biggest improvement in performance
when computing Φn(z) with many distinct prime factors.
These are the cyclotomic polynomials which are most diffi-
cult to compute.

We do not have an intelligible analysis of the asymptotic
operation cost of algorithm SPS3. We try to answer, how-
ever, for what subterms of Φn(z) do we truncate to lower
degree using SPS3 versus SPS2? For the 2k−1 − 1 subterms
appearing in Ψmk (zek) we truncate to the same degree as in
SPS2. These are exactly the subterms for which SPS2 had
gains over SPS. For the k subterms of the form (1 − zn/p),
we truncate to degree φ(n)/2 in SPS3. Moreover, the degree
of the product in (3.13) is, by (3.12),

φ(n)− n+
X
p|n

n/p. (3.15)

Thus (3.13) potentially has degree greater than that of Φn(z),
provided

1/p1 + 1/p2 + · · ·+ 1/pk > 1. (3.16)

So, for some n there may exist additional subterms for which
we do not have gains. For n = p1p2 · · · pk for which Φn(z)
is presently feasible to compute, however, it is seldom the
case that (3.16) holds. The smallest odd, squarefree n for
which (3.16) holds is n = 3, 234, 846, 615, the product of
the first nine odd primes. Thus for n a product of k < 9
distinct primes we have gains for all the remaining subterms.
In any case, we always truncate to a lower degree than in
procedure SPS2 when calculating Ψmi(zei) for k−8 < i < k.
As Ψmk (zek) · · ·Ψmk−7(zek−7) comprise 2k−1 − 2k−8 − 8, or

close to half of the 2k subterms.
Quantifying these gains is more difficult. Timings suggest,

however, that for n with 6 or more factors, computing Φn(z)

116

Procedure SPS3(n) : Second revision of algorithm SPS

Algorithm SPS3: Iterative Sparse Power Series

Input: n = p1p2 . . . pk, a squarefree product of k primes

Output: a(0), . . . , a(φ(n)
2

), the first half of the
coefficients of Φn(z)

1 a(0), a(1), a(2), . . . , a(φ(n)/2)←− 1, 0, 0, . . . , 0
2 Df ←− 0, Dg ←− mk − φ(mk), D ←− min(Dg, φ(n))
3 for j = k down to 2 do

// × by Ψmj (zej); truncate to degree bD/2c
4 for d|mj such that d < mj do
5 if µ(n

d
) = −1 then

6 for i = D down to d by −1 do
7 a(i)←− a(i)− a(i− d)

8 else
9 for i = d to D do

10 a(i)←− a(i) + a(i− d)

11 Df ←− Dg
12 if j > 2 then
13 Dg ←− Dg + (mj+1 − φ(mj+1))ej+1

14 D ←− min(Dg, φ(n))

15 else D ←− φ(n)
// Use lemma 3 to get higher-degree terms

16 for i←− bDf/2c+ 1 to bD/2c do
17 a(i)←− (−1)Df a(Df − i)

// ÷ by (1− zn/pj); truncate to degree φ(n)/2
18 for j = 1 to k do
19 for i = n/pj to φ(n)/2 do
20 a(i)←− a(i) + a(i− n/pj)

return a(0), a(1), . . . , a(φ(n)/2)

using SPS3 is between 3 and 5 times faster than SPS2 (see
section 4). The speed-up is typically larger for n with more
prime factors.

3.4 Calculating Φn(z) and Ψn(z) recursively.
Algorithm SPS3 depended on the identity (3.12), which

describes Φn(z) in terms of a product of inverse cyclotomic
polynomials of decreasing order and index. We derive a sim-
ilar expression for Ψn(z). Let mi and ei be as defined in
section 3.3, and again let n = p1p2 · · · pk be a product of
k distinct odd primes where p1 < p2 < . . . pk. Again by
repeated application of lemma 1,

Ψn(z) = Φmk (zek)Ψmk (zek−1),

= Φmk (zek)Φmk−1(zek−1)Ψmk−1(zek−2),

. . .

= Φmk (zek) · · ·Φm1(ze1)Ψm1(ze1).

(3.17)

As m1 = 1 and Ψ1(z) = 1, we thus have that

Ψn(z) =

kY
j=1

Φmj (zej). (3.18)

(3.12) and (3.18) suggest a recursive method of computing
Φn(z). Consider the example of Φn(z), for n = 1155 =
3 · 5 · 7 · 11. To obtain the coefficients of Φ1105(z), procedure

SPS3 constructs the product

Ψ105(z)Ψ15(z11)Ψ3(z77)(1− z385)−1·
· (1− z231)−1(1− z165)−1(1− z105)−1(1− z1155) (3.19)

from left to right. However, in light of (3.18), we know
this method computes Ψ105(z) in a wasteful manner. We
can treat Ψ105(z) as a product of cyclotomic polynomials of
smaller index:

Ψ105(z) = Φ15(z)Φ5(z7)Φ1(z35).

One could apply (3.12) yet again, now to Φ15(z), giving us

Φ15(z) = Ψ5(z)(1− z5)−1(1− z3)−1(1− z15).

Upon computing Ψ105(z), we can break the next term of
(3.19), Ψ15(z11) into smaller products in a similar fashion.
We effectively compute Φn(z) by recursion into the factors
of n. We call this approach the recursive sparse power series
method, and we describe our implemetation in procedure
SPS4.

SPS4 effectively takes a product of cyclotomic polynomi-
als f(z), and multiplies by either Φm(ze) (or Ψm(ze)), by
recursion described above. If we are to multiply by Ψm(ze),
upon completion of our last recursive call, we are finished
(line 8 of SPS4). This is because Ψm(ze) is exactly a prod-
uct of cyclotomic polynomials by (3.18). If, however, we
are to multiply by Φm(ze), once we have completed our last
recursive call, we need to divide and multiply by some ad-
ditional subterms (lines 10 and 13), as is necessary by the
identity (3.13).

Obtaining the degree bound in the recursive SPS method
is not as immediate as in the previous SPS algorithms. In
the iterative SPS our algorithm produces a sequence of in-
termediate polynomials. With the possible exception that
the output polynomial Φn(z), these polynomials are in or-
der of increasing degree. In the recursive SPS, however, we
no longer have this monotonic property.

The difference between the degree bound in the iterative
SPS and the recursive SPS, is that in the former we truncate
to the least degree of two polynomials, whereas in the recur-
sive sparse power series case, we may bound by the least
degree of many polynomials. Moreover, we need to know
what degree to bound to at each level of recursion. Proce-
dure SPS4 has an additional parameter, D, which serves as
a bound on the degree.

As before, let f(z) be a product of cyclotomic polynomials.
Let Df be the degree of f(z) and suppose, while we are
in some intermediate step of the computation of Φn(z) or
Ψn(z), that we have the first bDf/2c+ 1 terms of f(z), and
we want next to compute the terms of

g(z) = f(z) · Φm(ze) (or f(z) · Φm(ze)), (3.20)

up to degree bD/2c, for some D ∈ N. D is effectively the
degree of some product of cyclotomic polynomials we will
eventually obtain later at some previous level of recursion.
If we let Dg be the degree of g(z), then when computing g(z)
from f(z) we need only compute terms up to bD∗/2c, where
D∗ = min(D,Dg) (line 3). Thus when we recurse in SPS4,
if Dg < D we lower the degree bound from D to Dg.

To guarantee that we can obtain higher-degree terms when-
ever necessary we impose the following rule: If SPS4 is given
f(z) and is to output g(z), we require that f(z) is truncated
to degree bD′/2c on input, where D′ = min(D,Df), and

117

Procedure SPS4(m, e, λ, Df , D, a) : Multiply a prod-
uct of cylotomic polynomials by Φm(ze) or Ψm(ze)

SPS4: A Recursive Sparse Power Series Algorithm.
Input:

• m, a positive, squarefree odd integer; λ, a boolean;
D ∈ Z, a bound on the degree
• Df , the degree of f(z), a product of cyclotomic

polynomials partially stored in array a. Df is passed
by value.
• An array of integers a = [a(0), a(1), . . .], for which,

given f(z), a(0),a(1), . . . , a(bD′/2c) are the first
bD′/2c+ 1 coefficients of f , where D′ = min(Df , D).
a is passed by reference.

Result:
If λ is true, we compute g(z) = f(z)Φm(ze), otherwise,
we compute g(z) = f(z)Ψm(ze). In either case we
truncate the result to degree bD∗/2c, where
D∗ = min(D,Dg). We write the coefficients of g to
array a, and return the degree of g, Dg.

1 if λ then Df ←− D + φ(m)e
2 else Df ←− D + (m− φ(m))e

3 D∗ ←− min(Dg, D) // D∗ is our new degree bound

4 e∗ ←− e, m∗ ←− m, D∗ ←− D

5 while m∗ > 1 do
6 p←− (largest prime divisor of m∗), m∗ ←− m/p
7 Df ←− SPS4(m∗, e∗, not λ, Df , D

∗, a), e∗ ←− e∗p
8 if not λ then // We have multiplied by Ψm(ze)

return Dg

// Get higher degree terms as needed

9 for bDf/2c+ 1 to bD∗/2c do a(i)←− (−1)Df a(Df − i)

// Divide by (1− zme/p) for p|m
10 for each prime p|m do
11 for i = (me/p) to bD∗/2c do
12 a(i)←− a(i) + a(i−me/p)

// multiply by 1− zme
13 for i = bD∗/2c down to d do
14 a(i)←− a(i)− a(i−me)

return Dg

that g(z) is truncated to degree bD∗/2c on output. Note
that the degree bound on g(z) is always at least the bound
on f(z); it will only increase over the computation of Φn(z).

To calculate the first half of the coefficients of Φn(z), one
would merely set

(a(0), a(1), a(2), . . . , a(φ(n)/2) = (1, 0, 0, . . . , 0)

and call SPS4(n,1,true,0,φ(n), a)). Similarly, to calculate the
first half of Ψn(z) we would call SPS4(n,1,false,0,n−φ(n),a).

3.4.1 Implementing the recursive SPS algorithm
In procedure SPS4 we often need the prime divisors of

input m. It is obviously wasteful to factor m every time

we recurse. To compute Φn(z) or Ψn(z) for squarefree n,
we first precompute the factorization of n and store it in a
global array P = [p1, p2, . . . , pk]. Upon calling SPS4, every
subsequent recursive call will multiply by some (inverse) cy-
clotomic polynomial of index m|n. Our implementation of
the recursive sparse power series algorithm has an additional
argument, B = [b1, b2, . . . , bk], a series of bits, that, given P ,
gives us the factorization of m. We set bi to 1 if pi divides
m, and zero otherwise. For all tractable cases, B can fit in
two bytes and in most practical cases, one byte.

Thus, in the while loop on line 5 in SPS4, we take a copy
of B, call it B∗, and scan it for nonzero bits. Each time we
find a nonzero bit we set that bit to zero, and pass B∗ by
value to the recursive call occuring on line 7 of procedure
SPS4. We continue in this fashion until all the bits of B∗

are set to zero. We similarly scan the bits of B again to
later obtain the prime divisors of n, as is needed on line 10
of procedure SPS4.

We find that the recursive SPS is slightly faster than the it-
erative SPS; however, this improvement is not nearly as sub-
stantial as was the iterative SPS over prior versions. While
the degree bound computing Φn(z) with the recursive SPS
is always less than or equal to that using the iterative SPS,
the recursive structure of the program results in additional
overhead. We could program the recursive SPS iteratively;
however, we would effectively have to create our own stack
to mimic recursion.

4. PERFORMANCE AND TIMINGS
We first provide a visual comparison of the SPS algorithms

computing explicit examples of Φn(z). Figures 1 and 2 show
how the degree bound grows in algorithms SPS1-4 over the
computation of Φn(z) for

n = 43730115 = 3 · 5 · 11 · 13 · 19 · 29 · 37 and

n = 3234846615 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29.

respectively. In both figures, the horizontal axis represents
how many subterms we have in our intermediate product. As
n = 43730115 has 7 unique prime divisors, there are some
27 − 1 = 127 intermediate products of subterms produced
over the computation, excluding the final result Φn(z). As
the computation of Φn(z) progresses we traverse from left to
right in figures 1 and 2, and the degree bound increases.

We should note that in SPS2-4, the degree bound in each
is at most the degree bound of its predecessor. In figure 1,
we associate the darkest green region with SPS4; the two
darkest green regions with SPS3; the three darkest green
regions with SPS2; and all four green areas represent the
degree bound for SPS. The height of the regions associated
with a version of the SPS algorithm represents its degree
bound at that stage of the computation. Figure 2, in red,
should be interpreted similarly. In the case of SPS the degree
bound is always the constant φ(n)/2.

We think of the area of the regions in figure 1 associated
with a version of the SPS algorithm as a heuristic measure
of its time cost. One could think of the savings of SPS4 over
SPS3, for instance, as the area of the second darkest green
region. The area of the three darker green regions is slightly
over half the area of all four. As such, we expect that SPS2
would take roughly half as much time as SPS. Moreover, by
this measure we expect that SPS3 should be considerably
faster than SPS2, and SPS4 should be marginally faster than
SPS3. This is comparable with our timings in table 1. The

118

Figure 1: Growth of the degree bound over the com-
putation of Φ43730115(z) using SPS1-4

degree bounds in figure 2 show a similar, albeit more clearly
defined shape.

We timed our implementations on a system with a 2.67GHz
Intel Core i7 quad-core processor and 6 GB of memory.
All of our aglorithms are implemented in C and are single-
threaded. Here we time our 64-bit precision implementa-
tions of procedures SPS1-4, each of which check for integer
overflow using inline assembly. Our implementation of al-
gorithm 1 calculates Φn(z) modulo two 32-bit primes and
reconstructs Φn(z) by Chinese remaindering.

Table 1: Time to calculate Φn(z) (in seconds*)
algorithm

n FFT SPS SPS2 SPS3 SPS4
255255 0.40 0.00 0.00 0.00 0.00

1181895 1.76 0.01 0.00 0.00 0.00
4849845 7.74 0.12 0.06 0.02 0.01

37182145 142.37 1.75 0.95 0.23 0.19
43730115 140.62 1.69 0.93 0.23 0.19

111546435 295.19 6.94 3.88 1.45 0.94
1078282205 - 105.61 58.25 12.34 9.29
3234846615 - 432.28 244.44 81.32 49.18

*times are rounded to the nearest hundredth of a second

As the number of distinct prime factors of n plays a signif-
icant role in the cost of computing Φn(z), we list the factors
of n (table 2) and A(n) (table 3) for n appearing in table 1.

For the SPS and SPS4 algorithms, we have implemented,
in addition to the 64-bit version, 8-bit, 32-bit, and 128-bit
precision versions. We do not use GMP multiprecision in-
teger arithmetic. It was easy to implement multiprecision
arithmetic for our specific purpose as we only add and sub-
tract coefficients in the SPS algorithms. We also have a
version of SPS and SPS4 which calculates images of Φn(z)
modulo 32-bit primes, writes the images to the harddisk, and
then reconstruct Φn(z) from the images by way of Chinese
remaindering. This implementation is most useful for Φn(z)

Figure 2: Growth of the degree bound over the com-
putation of Φ3234846615(z) using SPS1-4

Table 2: Factorization of n, for n from table 1
n factorization of n

255255 3 · 5 · 7 · 11 · 13 · 17
1181895 3 · 5 · 11 · 13 · 19 · 29
4849845 3 · 5 · 7 · 11 · 13 · 17 · 19

37182145 5 · 7 · 11 · 13 · 17 · 19 · 23
43730115 3 · 5 · 11 · 13 · 19 · 29 · 37

111546435 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23
1078282205 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29
3234846615 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29

Table 3: A(n) for n from table 1
n height A(n)

255255 532
1181895 14102773
4849845 669606

37182145 2286541988726
43730115 862550638890874931

111546435 1558645698271916
1078282205 8161018310
3234846615 2888582082500892851

which we cannot otherwise fit in main memory.

5. CURRENT WORK
We have implemented the algorithms in this paper to cre-

ate a library of data on the heights and lengths of cyclotomic
polynomials. This data is available at

http://www.cecm.sfu.ca/~ada26/cyclotomic/

A 64-bit implementation of the SPS4 algorithm, written in
C but without overflow check, is also made available at the
website.

We aim to compute the coefficients of Φn(z), for

n = 3 · 5 · 11 · 13 · 19 · 29 · 37 · 43 · 53 = 99660932085.

119

We expect that this cyclotomic polynomial will have very
large height. We have previously verified that

A(n
53

) = 64540997036010911566826446181523888971563 and

A(n
43

) = 67075962666923019823602030663153118803367

are the smallest two examples of k such that A(k) > k4.
Both A(n

53
) and A(n

43
) are greater than 2135.

We previously attempted to compute Φn(z) using an im-
plementation of the SPS algorithm. We computed images
of Φn(z) modulo 32-bit primes. Storing half of Φn(z) to
32-bit precision takes roughly 76 GB of space. We do not
have enough RAM to store these images in main memory,
so we read and wrote intermediate results to the hard disk.
This proved to be slow, as each image required us to make
29 = 512 passes over the hard disk. We computed four im-
ages of Φn(z), after which the hard disk crashed.

In light of the development of the new variants of the SPS
algorithms, we have a new approach to compute Φn(z). We
want to minimize hard disk reads and writes. This is because
performing the computation on the harddisk is appreciably
slower and potentially more error-prone than in memory. We
are limited to 16 GB of RAM. We expect that A(n) < 2320;
that is, 320-bit precision will be sufficient to construct Φn(z).
Towards our aim, let

f(z) = Ψm9(z)Ψm8(z53) (5.1)

where m9 = n
53

= 1, 880, 394, 945 and
m8 = n

43·53
= 43, 730, 115. By (3.11), we have

Φn(z) = f(z)(1− zn/53)−1(1− zn/43)−1Φm8(z43·53). (5.2)

f(z) has degree less than 2.55 · 109. We can compute
images of f(z) modulo 64-bit primes using roughly 10 GB of
RAM, then extract f(z) from its images by way of Chinese
remaindering. After which we will compute the coefficients
of the truncated power series

g(z) =

φ(n)/2X
i=0

c(i)zi,

= f(z)(1− zn/53)−1(1− zn/43)−1 mod zφ(n)/2+1.

(5.3)

This will entail two passes over the hard disk, one per di-
vision by 1 − zn/53 or 1 − zn/43. We produce the coeffi-
cients of g(z) in order of ascending degree during the second
pass of the harddisk. Storing g(z) or Φn(z) at this precision
up to degree φ(n)/2 requires more than 750 GB of storage.
We can reorganize the terms of g(z) in a manner which al-
lows us to compute the coefficients of Φn(z) in memory. For
0 ≤ j < 43 · 53 = 2279, let

gj(z) =
X

0≤i·2279+j≤φ(n)/2

c(i)zi (5.4)

We can construct the gj(z) as we sequentially produce the
terms of g(z). We have that

g(z) =

2278X
j=0

zj · gj(z2279),

and thus by (5.2),

Φn(z) ≡
2278X
j=0

zj · gj(z2279)Φm8(z2279) (mod zφ(n)/2+1).

Thus to produce the first half of the coefficients of Φn(z), it
suffices to compute gj(z) · Φm8(z), for 0 ≤ j < 2279. Each
polynomial has degree less than 2.6 · 106, and can be com-
puted to 320-bit precision with less than a GB of memory.

6. REFERENCES
[1] A. Arnold and M. Monagan. Calculating cyclotomic

polynomials. Submitted to Mathematics of
Computation, available at
http://www.cecm.sfu.ca/~ada26/cyclotomic/.

[2] P. Erdős. On the coefficients of the cyclotomic
polynomial. Bull. Amer. Math. Soc., 52:179–184, 1946.

[3] K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms
for Computer Algebra. Kluwer Academic Publishers,
Boston, 1992.

[4] Y. Koshiba. On the calculations of the coefficients of
the cyclotomic polynomials. Rep. Fac. Sci. Kagoshima
Univ., (31):31–44, 1998.

[5] Y. Koshiba. On the calculations of the coefficients of
the cyclotomic polynomials. II. Rep. Fac. Sci.
Kagoshima Univ., (33):55–59, 2000.

[6] T.D. Noe. Personal communication.

120

Accuracy Versus Time:
A Case Study with Summation Algorithms∗

Philippe Langlois
Equipe de Recherche DALI

Université de Perpignan
52 Avenue Paul Alduy

66860 Perpignan, France
langlois@univ-perp.fr

Matthieu Martel
Equipe de Recherche DALI

Université de Perpignan
52 Avenue Paul Alduy

66860 Perpignan, France
matthieu.martel@univ-perp.fr

Laurent Thévenoux
Equipe de Recherche DALI

Université de Perpignan
52 Avenue Paul Alduy

66860 Perpignan, France
laurent.thevenoux@univ-perp.fr

ABSTRACT
In this article, we focus on numerical algorithms for which,
in practice, parallelism and accuracy do not cohabit well.
In order to increase parallelism, expressions are reparsed,
implicitly using mathematical laws like associativity, and
this reduces the accuracy. Our approach consists in focusing
on summation algorithms and in performing an exhaustive
study: we generate all the algorithms equivalent to the orig-
inal one and compatible with our relaxed time constraint.
Next we compute the worst errors which may arise during
their evaluation, for several relevant sets of data. Our main
conclusion is that relaxing very slightly the time constraints
by choosing algorithms whose critical paths are a bit longer
than the optimal makes it possible to strongly optimize the
accuracy.

We extend these results to the case of bounded parallelism
and to accurate sum algorithms that use compensation tech-
niques.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Optimization; G.1.0 [Ma-
thematics of Computing]: Numerical Analysis, Computer
Arithmetic; I.2.2 [Automatic Programming]: Program
transformation.

General Terms
Algorithms, Design, Experimentation, Performance, Relia-
bility.

Keywords
Parallelism, Summation, Floating-point numbers, Precision.

∗This work was partly supported by the project
”Compil’HD” of Région Languedoc-Roussillon (”Chercheur
d’Avenir” programme) and by the ANR project ”EvaFlo”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

1. INTRODUCTION
Symbolic-numeric algorithms have to manage the a priori

conflicting numerical accuracy and computing time. Perfor-
mances and accuracy of basic numerical algorithms for scien-
tific computing have been widely studied, as for example the
central problem of summing floating point values – see the
numerous references in [5] or more recently in [20, 14, 19].
Instruction level parallelism is commonly used to speed-up
these implementations during compilation steps. One could
also expect that compilers improve accuracy

However as already noticed by J. Demmel [2], in practice
parallelism and accuracy do not cohabit well. To exploit
the parallelism within an expression, this one is reparsed
implicitly using mathematical laws like associativity. The
new expression is then more balanced to benefit for as much
parallelism as possible. In our scope, such re-writing should
yield algorithms that sum n numbers in a logarithmic time
O(logn). The point is that the numerical accuracy of some
algorithms is strongly sensitive to reparsing. In IEEE754
floating-point arithmetic, additions are not associative and,
in general, most algebraic laws like associativity and dis-
tributivity do not hold any longer. As a consequence, while
increasing the parallelism of some expression, its numeri-
cal accuracy may decrease and, conversely, improving the
accuracy of some computation may reduce its parallelism.
Moreover, in architectures, instruction level parallelism is
bounded and it may possible to execute an algorithm less
parallel than the optimum in the same (or very similar) ex-
ecution time.

In this article, we address the following question: How can
we improve the accuracy of numerical summation algorithms
if we relax slightly the performance constraints? More pre-
cisely, we examine how accurate can be algorithms which
are k times less efficient than the optimal one or with a con-
stant overhead with respect to the optimal one, e.g. for the
summation of n values, in k× blog(n)c or k+ blog(n)c for a
constant parameter k.

For example, let us consider the sum

s =

NX
i=1

ai, with ai =
1

2i
, 1 ≤ i ≤ N (1)

Two extreme algorithms compute s

s1:=
`

((a1 + a2) + a3) + . . . aN−1

´
+ aN (2)

and, assuming N = 2k,

121

s2:=
“`

(a1 + a2) + (a3 + a4)
´

+ . . .+ (aN
2 −1 + aN

2
)
”

+

“`
(aN

2 +1 + aN
2 +2) + (aN

2 +3 + aN
2 +4)

´
+ . . .+ (aN−1 + aN)

”
(3)

Clearly, the sum s1 is computed sequentially while s2 corre-
sponds to a reduction which can be computed in logarithmic
time. However, in double precision, we have, for N = 10 :

s = 0.9990234375 s1 = 0.9990234375 s2 = 0.99609375

and it happens that s1 is far more precise than s2.
Our approach consists in performing an exhaustive study.

First we generate all the algorithms equivalent to the orig-
inal one and compatible with our relaxed time constraint.
Then we compute the worst errors which may arise during
their evaluation for several relevant sets of data. Our main
conclusion is that relaxing very slightly the time constraints
by choosing algorithms whose critical paths are a bit longer
than the optimal one makes it possible to strongly optimize
the accuracy. This matter of fact is illustrated using vari-
ous datasets, most of them being ill-conditioned. We extend
these results to the case of bounded parallelism and to com-
pensated algorithms. For bounded parallelism we show that
more accurate algorithms whose critical path is not optimal
can be executed in as many cycles as optimal algorithms,
e.g. on VLIW [7] architectures. Concerning compensation,
we show that elaborated summation algorithms can be dis-
covered automatically by inserting systematically compen-
sations and then reparsing the resulting expression.

This article is organized as follows. Section 2 gives an
overview of summation algorithms. It also introduce our
technique to bound error terms. Section 3 presents our
main results concerning the time versus precision compro-
mise. Section 4 describes how we generate exhaustively
the summation algorithms of interest and Section 5 intro-
duces further examples involving larger sums, accuracy ver-
sus bounded parallelism and compensated sums. Finally,
some perspectives and concluding remarks are given in Sec-
tion 6.

2. BACKGROUND
In floating-point arithmetic accuracy is a critical matter,

for scientific computing as well as for critical embedded sys-
tems [11, 12, 3, 7, 6, 4]. Famous examples alas illustrate
that bad accuracy can cause human damages [13] and money
loses [10]. If accuracy is critical so is parallelism but usually
these two domains are considered separately. While focusing
on summation, this section compares the most well-known
algorithms with respect to their accuracy and parallelism
characteristics.

In Subsection 2.1 we recall background material on sum-
mation algorithms [5, 14] and we explain how we measure
the error terms in Subsection 2.2.

2.1 Summation Algorithms
Summation in floating-point arithmetic is a very rich re-

search domain. There are various algorithms that improve
accuracy of a sum of two or more terms and similarly, there
are many parallel summation algorithms.

2.1.1 Two Extreme Algorithms for Parallelism

+

+ +

+

+

+

O(log(n)) O(n)

Figure 1: Graphical representation of Algorithm 1
and Algorithm 2 by dataflow graphs.

Basically, there are two extreme algorithms with respect to
parallelism properties to compute the sum of (n+ 1) terms.
The first following algorithm is fully sequential whereas the
second one benefits from the maximum degree of parallelism.

• Algorithm 1 is the extreme sequential algorithm. It
computes a sum in O(n) operations successively sum-
ming the n + 1 floating-point numbers (see Equation
(2)).

• Pairwise summation Algorithm 2 is the most parallel
algorithm. It computes a sum in O(log(n)) successive
stages (see Equation (3)).

These algorithms are represented by dataflow graphs in
Figure 1.

Algorithm 1 Sum: Summation of n + 1 Floating-Point
Numbers
Input: p is (a vector of) n+ 1 floating-point numbers
Output: sn is the sum of p
s0 ← p0

for i = 1 to n do
si ← si−1 ⊕ pi

end for

Algorithm 2 SumPara: Parallel Summation of n + 1
Floating-Point Numbers

Input: p[l : r] is (a vector of) n+ 1 floating-point numbers
Output: the sum of p
m← b(l + r)/2c
if l = r then

return pl

else
return SumPara(p[l : m]) ⊕ SumPara(p[m+ 1 : r])

end if

Mixing Algorithm 1 and Algorithm 2 yields many algo-
rithms of parallelism degrees between those two extreme
ones.

2.1.2 Merging Parallelism and Accuracy
It is well known that these two extreme algorithms do not

verify the same worst case error bounds [5]. Nevertheless
to improve the accuracy of one computed sum, it is usual
to sort the terms according to some of their characteristics
(increasingly, decreasingly, negative or positive sort, etc.).

Summation accuracy varies with the order of the inputs.
Increase or decrease orders of the absolute values of the
operands are the first two choices for the simplest Algorithm

122

1. If the inputs are both negative and positive, the decrease
order is better, otherwise other orders are equivalent. If all
the inputs are of the same sign, the increase order is more
interesting than others [5]. More dynamic inserting methods
consist in sorting the inputs (in a given order), in summing
the first two numbers and in inserting the result within the
inputs conserving the initial order. Such sorting is more dif-
ficult to implement while conserving the parallelism level of
Algorithm 2.

2.1.3 More Accuracy with Compensation
A well known and efficient techniques to improve accuracy

is compensation which uses some of the following error-free
transformations [14].

Algorithm 3 computes the sum of two floating-point num-
ber x = a⊕ b and the absolute error y due to the IEEE754
arithmetic [1].

Algorithm 3 TwoSum, Result and Absolute Error in Sum-
mation of Two Floating-Point Numbers (Introduced by
Knuth [8])

Input: a and b, two floating-point numbers
Output: x = a⊕ b and y the absolute error on x
x← a⊕ b
z ← x	 a
y ← (a	 (x	 z))⊕ (b	 z)

When |a| ≥ |b| Algorithm 4 is faster than Algorithm 3.
Obviously it will be necessary to check this condition to ap-
ply it. The overcost of such practice on modern computing
environments is not so clear [19, 9]. In both cases the key
point is the error-free transformation x+ y = a+ b.

Algorithm 4 FastTwoSum, Result and Absolute Error in
Summation of Two Floating-Point Numbers

Input: a and b two floating-point numbers such that |a| ≥
|b|

Output: x = a⊕ b and y the absolute error on x
x← a⊕ b
y ← (a	 x)⊕ b

To improve the accuracy of Algorithm 1, VecSum Algo-
rithm applies this error-free transformation. Algorithm 6
uses this error-free vector transformation and yields a twice
more accurate summation algorithm [14]. Hence Sum2 com-
putes every rounding error y and adds them together before
compensating the classic Sum computed result. In other
words, Sum Algorithm applies twice, once to the n+ 1 sum-
mand and then once to the n error terms, the compensated
summation being the last addition between these two values.

Algorithm 5 VecSum, Error-Free Vector Transformation of
n+ 1 Floating-Point Numbers [14]

Input: p is (a vector of) n+ 1 floating-point numbers
Output: pn is the approximate sum of p, p[0 : n − 1] is (a

vector of) the generated errors
for i = 1 to n do

[pi, pi−1]← TwoSum(pi, pi−1)
end for

Algorithm 6 Sum2, Compensated Summation of n + 1
Floating-Point Numbers

Input: p is (a vector of) n+ 1 floating-point numbers
Output: s the sum of p
p← V ecSum(p)
e← Sum(i = 0, n− 1, p[i])
s← pn ⊕ e

These error-free transformations have been used differ-
ently within several other accurate summation algorithm.
Previous Sum2 was also considered by [15]. A slight varia-
tion is the famous Kahan compensated summation: in Al-
gorithm 7, every rounding error e is added to the next sum-
mand (the compensating step) before adding it to the pre-
vious partial sum.

It exists many other algorithms for accurate summation
that use these error-free transformations, as for example
Priest double-compensated summation [16] or the recursive
SumK algorithms of [14] or also the very fast AccSum and
PrecSum of [19]. We do not detail these any longer.

Algorithm 7 SumComp, Compensated Summation of n
Floating-Point Numbers (Kahan [5])

Input: p is (a vector of) n+ 1 floating-point numbers
Output: s the sum of input numbers
s← p0

s← 0
for i = 1 to n do
tmp← s
y ← pi ⊕ e
s← tmp⊕ y
e← (tmp	 s)⊕ y

end for

2.2 Measuring the Error Terms
Let x and y be two real numbers approximated by floating-

point numbers x̂ and ŷ such that x = x̂+ εx and y = ŷ + εy
for some error terms εx ∈ R and εy ∈ R. Let us consider
the sum S = x + y. In floating-point arithmetic this sum is
approximated by

Ŝ = x̂⊕ ŷ
where ⊕ denotes the floating-point addition. We write the
difference εS between S and Ŝ as in [21],

εS = S − Ŝ = εx + εy + ε+, (4)

where ε+ denotes the round-off error introduced by the op-
eration x̂⊕ ŷ itself.

In the rest of this article, we use intervals x, y, . . . instead
of floating-point numbers x̂, ŷ, . . . as well as for the error
terms εx, εy, . . . for the next two different reasons.

(i) Our long-term objective is to perform program trans-
formations at compile-time [12] to improve the numeri-
cal accuracy of mathematical expressions. It comes out
that our transformations have to improve the accuracy
of any dataset or, at least, of a wide range of datasets.
So we consider inputs belonging to intervals.

(ii) The error terms are real numbers, not necessarily rep-
resentable by floating-point numbers as εS in Equation

123

(4). We approximate them by intervals, using rounding
modes towards outside. Clearly, the towards outside
rouding mode correspond, in this case, at the rounding
mode towards −∞ for the lower bound of the interval
and towards +∞ for the upper bound.

An interval x with related interval error εx denotes all the
floating-point numbers x̂ ∈ x with a related error εx ∈ εx.
This means that the pair (x, εx) represents the set X of exact
results:

X = {x ∈ R : x = x̂+ εx, x̂ ∈ x, εx ∈ εx}.
Let x and y be two sets of floating-point numbers with error
terms belonging to the intervals εx ⊆ R and εy ⊆ R. We
have

S = x⊕I y (5)

where ⊕I is the sum of intervals with the same rounding
mode than ⊕ (generally to the nearest) and

εS = εx ⊕O εy ⊕O ε+ (6)

where ⊕O denotes the sum of intervals with rounding mode
towards outside. Per example:`

[x, x]; [εx, εx]
´

+
`
[y, y]; [εy, εy]

´
=

`
[x+−∞ y, x++∞ y]; [εx +−∞ εy, εx ++∞ εy]

´
In addition, ε+ denotes the round-off error introduced by
the operation x̂⊕I ŷ. Let ulp(x) denote the function which
computes the unit in the last place of x [5], i.e. the weight of
the least significant digit of x and let S = [S, S]. We bound
ε+ by the interval [−u, u] by:

u =
1

2
max(ulp(|S|), ulp(|S|)).

Using the notations of equations (4), (5) and (6), it follows
that for all x̂ ∈ x, εx ∈ εx, ŷ ∈ y, εy ∈ εy

S ∈ S and εS ∈ εS.

3. NUMERICAL ACCURACY OF NON-TIME-
OPTIMAL ALGORITHMS

The aim of this section is to show how we can improve
accuracy while relaxing the time constraints. In Subsection
3.1, we illustrate our approach using as an example a sum of
random values. We generalize our results to some significant
sets of data in Subsection 3.2.

3.1 The General Approach
In order to evaluate the algorithms to compute one sum

expression, associativity and distributivity are only needed
hereafter. Basically, while in exact arithmetic all the al-
gorithms are numerically equivalent, in floating-point arith-
metic the story is not the same. Indeed, many things may
arise like absorption, rounding errors, overflow, etc. and then
floating-point algorithms return various different results.

One mathematical expression yields a huge amount of
evaluation schemes. We propose to analyse this huge set of
algorithms with respect to accuracy and parallelism. First
we search the most accurate algorithms among all levels of
parallelism, and then we search among them the ones with
the best degrees of parallelism. We aim at finding the more

interesting ratio between accuracy and parallelism.

In this section, we use random data (generated using an
uniform random distribution) defined as interval [a, a]. We
measure the interval that represents the maximum error
bound [e, e] applying the previously described error model.
Let ai = [ai, ai], 1 ≤ i ≤ n. This means that for all a1 ∈
ai, . . . , an ∈ an, the error on Σn

1ai belongs to [e, e]. We
focus the maximum error which is defined as max(|e|, |e|).
Algorithms which have the smaller maximum error are called
optimal algorithms. This maximum error is a pertinant op-
timization criteria in the compilation domain. With this
criteria we want to guarantee the maximum error which can
arise during any execution of a program.

Figure 2: Maximum errors for each algorithms for a
six terms summation reparsings.

Figure 3: Error repartition when summing ten
terms.

Each dot of Figure 2 shows the absolute error of every al-
gorithms, i.e. every parsing of the summing expression with
six terms. X-axis represents the algorithms numbered from
0 to 1,170 and Y-axis represents the maximal absolute error
which can be encounter during the algorithm evaluation. It
is not a surprise that errors are not uniformly distributed and

124

that the errors belong to a small number of stages. Figure
3 shows the distribution of the errors for the different stages
of a ten terms summation. The proportion of algorithms
with very few small or very large errors is small. Most of the
algorithms present an average accuracy between small and
large errors. We guess that it will be difficult to find the best
accurate algorithms (as well as the worst one), most having
an average accuracy.

It exists 46,607,400 different algorithms for an expression
of ten terms. Among this huge set, many of them are se-
quential or almost sequential. So we propose to restrict the
search to a certain level of parallelism. Let n be the num-
ber of additions and k a constant chosen arbitrarily e.g. here
k = 2. In the following of this article, if it is not precisely
defined, we sum ten terms and k is equal to two. We re-
strict our search of accurate algorithms within three included
sets: algorithms having a computing tree of height smaller or
equal to blog(n)c+ 1, blog(n)c+ k and k × blog(n)c. Using
these restrictions, there are 27,102,600 algorithms of level
k×blog(n)c, 13,041,000 algorithms of level blog(n)c+ k and
2,268,000 algorithms of level blog(n)c+ 1.

Results are given in Figure 4 and in Table 1. We observe
that the highest level of parallelism, the level blog(n)c +
1, does not allow us to compute the most accurate results.
Nevertheless if we use a less high but still reasonable level
of parallelism, e.g. levels O(blog(n)c+k) or O(k×blog(n)c),
we can compute accurate results.

The more the level of parallelism is, the harder it is to find
the more accurate algorithms among all of them. In tables 2
and 3 we observe that the level blog(n)c+k presents a better
proportion of accurate algorithms (stages with small num-
bers) than the higher parallelism level k × blog(n)c. More-
over the most accurate algorithms within the first set are
less accurate than the ones of the second set — see Figure
4.

Parallelism Error of Optimal Algorithm Percent
no parallelism 2.273e−13 0.006
blog(n)c+ 1 4.547e−13 0.007
blog(n)c+ k 2.273e−13 0.006
k × blog(n)c 2.273e−13 0.007

Table 1: Optimal error value and percentage of al-
gorithms reaching this precision.

3.2 Larger Experiments
We study a more representative sets of data using various

kinds of values chosen as well-known error-prone problems,
i.e. ill-conditioned set of summands. The condition number
for computing s =

PN
i=1 xi, is defined as following,

cond(s) =

PN
i=1 |(xi)|
|s| .

The larger this number is, the more ill-conditioned the sum-
mations are, the less the result is accurate.

Summation suffers from the two following problems:

• Absorption arises when adding a small and a large val-
ues. The smallest values are absorbed by the largest
ones. In our context (IEEE-754 double precision): 1016⊕

Stage Example of expression %
1 (i + (f + g)) + ((c + d) + ((h + j) + (e +

(a + b))))

0.006

2 (i + (f + g)) + (j + ((c + d) + ((e + h) +

(a + b))))

0.024

3 (i + (f + g)) + (j + ((e + (a + h)) + (b +

(c + d))))

0.001

...
...

...
141 (j + ((c + g) + (b + h))) + (e + (a + (d +

(f + i))))

0.001

142 (j + (h + (g + (c + e)))) + (b + (a + (d +

(f + i))))

0.005

143 (j + (h + (e + (c + g)))) + (b + (a + (d +

(f + i))))

0.002

Table 2: Repartition of the algorithms according to
their precision at the parallelism level O(blog(n)c+ k)
on ten terms summation (stages with small numbers
are the smallest errors).

Stage Example of expression %
1 (i + (f + g)) + ((c + d) + ((h + j) + (e +

(a + b))))

0.008

2 (i + (f + g)) + (j + ((c + d) + (h + (e +

(a + b)))))

0.039

3 (i + (f + g)) + (j + ((e + (a + h)) + (b +

(c + d))))

0.004

...
...

...
171 (j + (g + (b + h))) + (e + (c + (a + (d +

(f + i)))))

0.007

172 (j + (h + (e + g))) + (c + (b + (a + (d +

(f + i)))))

0.015

173 (j + (h + (c + g))) + (e + (b + (a + (d +

(f + i)))))

0.001

Table 3: Repartition of the algorithms according to
their precision at the parallelism level O(k×blog(n)c)
on ten terms summation (stages with small numbers
are the smallest errors).

10−16 = 1016. In general absorption is not so danger-
ous while adding values of the same sign: its condi-
tion number equals roughly one. Nevertheless a large
amount of small errors accumulates in large summa-
tions — this was the case in the well known Patriot
Missile failure [13].

• Cancellation arises when absorption appears within data
with different sign. In this case, the condition number
can be arbitrarily large. We will call such case as sum-
mation with ill-conditioned data. In our context an
example is : (1016 ⊕ 10−16)	 1016 = 0.

We introduce 9 datasets to generate different types of ab-
sorptions and cancellations. These two problems are clear
with scalar values. So we first use intervals with small varia-
tions around such scalar values. Every dataset is composed
of ten samples that share the same numerical characteris-
tics. We recall that these experiments are limited to ten
summands. In the following, we say that a floating-point
value is a small, medium or large when it is, respectively, of
the order of 10−16, 1 and 1016. This is justified in double

125

Figure 4: Error repartition with three different degrees of parallelism for ten terms summation.

precision IEEE-754 arithmetic.

• Dataset 1. Positive sign, 20% of large values among
small values. There are absorptions and accurate algo-
rithms should first sum the smallest terms (increasing
order).

• Dataset 2. Negative sign, 20% of large values among
small values. Results should be the same as in Dataset
1.

• Dataset 3. Positive sign, 20% of large values among
small and medium values. The best results should be
obtained with algorithms which sum in increase order.

• Dataset 4. Negative sign, 20% of large values among
small and medium values. Results should be equivalent
to the results of Dataset 3.

• Dataset 5. Both signs, 20% of large values that can-
cel, among small values. The most accurate algorithms
should sum the two largest values first. In a more gen-
eral case, the best algorithms should sum in decrease
order of absolute values. It is a classic ill-conditioned
summation.

• Dataset 6. Both signs, few small values and same pro-
portion of large and medium values. Only large values
cancel. The best algorithms should sum in decrease
order of absolute values.

• Dataset 7. Both signs, few small values and same
proportion of large and medium values. Large and
medium values are ill-conditioned. Results should be
the same than in Dataset 6.

• Dataset 8. Both signs, few small values and same pro-
portion of large and medium values. Only medium val-
ues cancel. Results should be the same than in Dataset
6.

• Dataset 9. In order to simulate data encounted in em-
bedded systems, this dataset is composed of intervals
defined by [0.4, 1.6]. This is representative of values
sent by a a sensor to an accumulator. This dataset is
well-conditioned.

Example of data generated for Dataset 1:
a = [2.667032062476577e16, 3.332967937523422e16]
b = [1.778021374984385e−16, 2.221978625015614e−16]
c = . . . etc.

Figure 5 shows the proportion of optimal algorithms, i.e.
the ones which return the smallest error with each dataset
for the corresponding level of parallelism. Each proportion
is the average value for the ten samples within each dataset.
Parallelism degrees are O(blog(n)c + 1), O(blog(n)c + k),
O(k×blog(n)c), and O(n) which describe all the algorithms
of all levels of parallelism, as defined in Subsection 3.1.

Figure 5: Proportion of the optimal algorithm on
ten terms summation (average on 10 datasets).

First, we can observe that the proportion of optimal al-
gorithms is tiny: the average of optimal algorithms with
respect to the best accuracy is less than one percent except
for the well-conditioned Dataset 9. Results in Table 1 match
those displayed in Figure 5. In most cases, among all the
levels of parallelism, the highest degree in O(blog(n)c+ 1) is
not able to keep the most accurate algorithms, particularly
when there is absorption (percentage equals zero and no bar
is plotted). We observe that the more the level of parallelism
is, the harder it is to find a good algorithm. But if we relax

126

the time constraint, i.e. the parallelism, it is easier to get an
optimal algorithm.

For example, results of Dataset 1 show that if we limit the
algorithms to all the algorithms of complexity O(blog(n)c+
1) there are no algorithm with the best error. If the level of
parallelism is not so good, for example O(blog(n)c + k) or
O(k × blog(n)c) there are algorithms with the best errors.

Results in Figure 5 show that for Dataset 9, the proportion
of optimal algorithms with the highest degree of parallelism
is larger than the ones with less parallelism. In this case of
well-conditioned summation, it reflects that whereas there
are less algorithms of this parallelism level, these ones do
not particularly suffer from inaccuracy. For well-conditioned
summation, it seems that it is easier and easier to find an
optimal algorithm as parallelism increases.

4. GENERATION OF THE ALGORITHMS
In this section, we describe how our tool generates all the

algorithms. Our program, written in C++, builds all the
reparsing of an expression. In the case of summation, the
combinatory is huge, so it is very important to reduce the
reparsing to the minimum.

The combinatory of summation is important, this was of-
ten studied but no general solution exists. For example, see
CGPE [17] which computes equivalent polynomial expres-
sions.

Intuitively, to generate all the expressions for a sum of n
terms we process as follows.

• Step 1 : Generate all the parsings using the associativ-
ity of summation ((a+b)+c = a+(b+c)). The number
of parsings is given by the Catalan Number Cn [18]:

Cn =
(2n)!

n! (n+ 1)!

• Step 2 : Generate all the permutations for all the ex-
pressions found in Step 1 using the commutativity of
summation (a+b = b+a). There is n! ways to permute
n terms in a sum.

So, the total number of equivalent expressions for a n
terms summation is

Cn · n! (7)

Figure 6 shows this first combinatory result.
Our tool finds all the equivalent expressions of an original

expression but it only generates the different equivalent ex-
pressions. For example, a+(b+c) is equivalent to a+(c+b)
but it is not different because it corresponds to the same al-
gorithm: these expressions correspond to the same sequence
of operation. In Subsection 4.1, we present how we generate
the structurally different trees and in Subsection 4.2, how
we generate the permutations.

Table 4 and Figure 6 represent the number of algorithms
generated for n terms as n grows.

The summation is a complex case, for example CGPE [17]
generate equivalent polynomial expressions using heuristics
to find a result as fast as possible. We want to do a study
on exhaustive expressions reparsings, so because the combi-
natory is huge, we use ten terms during this work.

Terms All expressions Different expressions
5 1680 120
10 1.76432e+10 4.66074e+07

15 3.4973e+18 3.16028e+14

20 4.29958e+27 1.37333e+22

Table 4: Number of terms and expressions.

Figure 6: Number of trees when summing n terms.

4.1 Exhaustive Generation of Structurally Dif-
ferent Trees

We represent one algorithm with one binary tree. Nodes
are sum operators and leaves are values. We describe how to
generate all the structurally different trees. It is a recursive
method defined as follows.

• We know that the number of terms is n ≥ 1. An
expression is composed of one term at least.

• A leaf x has only one representation, it is a tree of one

term represented like this: 1 .

x

Then the number of structures for one term trivially
reduces to one.

• Expression x1 + x2 is a tree of two terms 2 . It has
the following structural representation.

+

1 1

With two terms we can create only one tree. So again
the number of structures for two terms equals 1.

+

x1 x2

127

• Recursively, we apply the same rules. For a tree of n
terms, we generate all the different structural trees for
all the possible combinations of sub-trees, i.e. for all
i ∈ [1, n − 1], two sub-trees with, respectively, i and
(n − i) terms. Because summation is commutative, it
is sufficient to generate these (i;n− i)-sub-trees for all
i ∈ [1, bn

2
c]. This is represented as follows:

∀i ∈ [1, bn
2
c],

+

i n− i

• So, for n terms, we generate the following numbers of
structurally different trees,

Struct(1) = Struct(2) = 1, (8)

Struct(n) =

bn
2 cX

i=1

Struct(n− i) · Struct(i). (9)

4.2 Generation of Permutations
To generate only different permutations, the leaves are

related to the tree structure. For example, we do not wish
to have the following two permutations, a+ (d+ (b+ c)) and
a+ ((c+ b) + d).

+

a +

d +

b c

Indeed, these expressions have the same accuracy and the
same degree of parallelism.

In order to generate all the permutations, we use a similar
algorithm as in the previous subsection.

• Firstly, we know that for an expression of one term, we
may generate only one permutation. Perm(1) = 1.

• Using our permutation restriction, it is sufficient to
generate one permutation for an expression of two terms;
so, again, Perm(2) = 1.

• Permutations are related to the tree structures and we
count them with the following recursive relation,

Perm(1) = Perm(2) = 1, (10)

Perm(n) =

bn
2 cX

i=1

i

n

!
· Perm(n− i) · Perm(i). (11)

Equations Struct(n) and Perm(n) are asymptotically ex-
ponential.

5. FURTHER EXAMPLES
In this section, we present results for larger or more so-

phisticated examples. Subsection 5.1 introduces a sum of
twenty terms, Subsection 5.2 focuses on compensation and
we discuss about bounded parallelism in Subsection 5.3

5.1 An Example Over More Terms
We now consider a sum of 20 terms. We chose a dataset

where all the values belong to the interval [0.4, 1.6]. Again
this is representative, for example, of what may happen in
an embedded system when accumulating values provided by
a sensor, like a sinusoidal signal.

Critical path Average of optimal algorithms (%)
blog(n)c+ 1 54.08

k = 2 k = 3
blog(n)c+ k 19.75 12.41
k × blog(n)c 5.26 4.15

n 4.13

Table 5: Proportion of optimal algorithms.

We can see that the results in Table 5 are similar to the
results of Dataset 9. We obtain the same repartition of op-
timal algorithms with ten or twenty terms. This confirms
that the sum length does not govern the accuracy – at least
while overflow does not appear.

In this case, we show that for a sum of identical intervals,
the more parallelism, the easier to find an algorithm which
preserves the maximum accuracy.

5.2 Compensated Summation
Now we present an example to illustrate one of the core

motivation of this work. The question is the following: Start-
ing from the simplest sum algorithm, are we able to auto-
matically generate a compensated summation algorithm that
improves the evaluation ? Here we describe how to introduce
one level of compensation as in the algorithms presented in
Section 2 (TwoSum, Sum2, SumComp).

To improve the accuracy of expression E, we compute an
expression Ecmp.

For values X and Y , we introduce the function C(X,Y)
which computes the compensation of X ⊕ Y (like in Algo-
rithm TwoSum, see section 2.1).

For example, for three terms we have:
E = (X ⊕ Y)⊕ Z
Ecmp =

ˆ
((X ⊕ Y)⊕ C(X,Y))⊕ Z˜⊕ C(X + Y,Z)

Ecmp is the expression we obtain automatically by system-
atically compensating the original sums. It could be gener-
ated by a compiler. To illustrate this, we present one exam-
ple with a summation of five terms ((((a+ b) + c) + d) + e).
Terms are defined as follows,

a = −9.5212224350e−18

b = −2.4091577979e−17

c = 3.6620086288e+03

d = −4.9241247828e+16

e = 1.4245601293e+04

As before we can identify the two followings cases. The
maximal accuracy which can be obtained, among all the
reparsing of this five terms expression, is given by the follow-
ing algorithm: (((a+b)+c)+e)+d. It generates the absolute
error ∆ = 4.0000000000020472513. We observe that this al-
gorithm is Algorithm 1 at Section 2 with increase order.

The maximal accuracy given by the maximal level of par-
allelism is obtained by the algorithm ((a+ c) + (b+ e)) + d.

128

a b c d e f g h i j

+ +

+ +

++

++

+

1

2

3

4

5

a b c de f gh ij

+ +

+ +

+ +

+ +

+

1

2

3

4

5

a) Fully Parallel and Non-Fully Accurate Algorithm. b) Fully Accurate and Non-Fully Parallel Algorithm.

Figure 7: Dataflow Graphs of Algorithms in Bounded Parallelism on 2sums/cycle architecture.

a b c d e f g h i j

+ + + +

+++

+

+

1

2

3

4

a b c de f gh ij

+ + ++

+ +

+

+

+

1

2

3

4

5

i bc d ef g hj a

+++

++

+

+

+

+

1

2

3

4

5

6

a) Fully Parallel and Non-Fully Accu-
rate Algorithm.

b) Fully Accurate and log(n) + k Par-
allelism Degree Algorithm.

c) Fully Accurate and k× log(n) Par-
allelism Degree Algorithm.

Figure 8: Dataflow Graphs of Algorithms in Bounded Parallelism on 4sums/cycle architecture.

In this case, the absolute error is

δnocomp = 4.0000000000029558578.

When applying compensation on this algorithm, we obtain
the following algorithm :

(f + (g + (h+ i))) + (d+ ((b+ e) + (a+ c))),

with :

f = C(a, c) = −9.5212224350000e−18

g = C(b, e) = −2.4091577978999e−17

h = C(f, g) = −1.8189894035458e−12

i = C(h, d) = 3.6099218000017

Now, we measure the improved absolute error δcomp =
4.0000000000000008881. It happens that this algorithm found
with the application of compensation is actually the Sum2
algorithm –Algorithm 6 at Section 2. This results illustrates
that we can automatically find algorithms existing in the
bibliography and that the transformation improves the ac-
curacy.

5.3 Bounded Instruction Level Parallelism
Section 3 showed that in the case of maximum parallelism,

maximum accuracy is not possible (or very difficult) to have.
The fastest algorithms (O(blog(n)c+ 1) are rarely the most
accurate but by relaxing the time constraint, it becomes pos-
sible to find an optimally accurate algorithm.

This subsection is motivated by the following fact. In pro-
cessor architectures, parallelism is bounded. So it is possible
to execute an algorithm less parallel in the same execution
time, or in a very closed time, as the fastest parallel one. We
show here two examples to illustrate this. Firstly we use a

processor which executes two sums per cycle and secondly
one which executes four sums per cycle.

For an expression of ten terms :

• 2 sums/cycle:

The execution of the fastest algorithm (blog(n)c + 1)
for the expression does not provide the maximum ac-
curacy. It takes five cycles to compute the expression
as shown in a), in Figure 7. Now we take another al-
gorithm, with less parallelism but that provides the
maximum accuracy (See Line 1, Table 2, Subsection
3.1). In bounded parallelism this algorithm takes the
same time than the more parallel one as shown in b),
in Figure 7.

• 4 sums/cycle:

Again, execution of the fastest algorithm (blog(n)c+1)
of this expression, do not have the maximum accuracy.
It takes four cycles to compute the expression (See a),
in Figure 8). We take two other algorithms, both with
less parallelism but with the maximum accuracy. The
first algorithm is described at Line 1, Table 2, Subsec-
tion 3.1. It takes one more cycle than the most parallel
one (See b), in Figure 8). The second algorithm is in
k × blog(n)c; it corresponds to Line 2, Table 3, Sub-
section 3.1. This one takes two more cycles than the
most parallel one (See c), in Figure 8).

This confirms our claim that in current architectures, we
can improve accuracy without lowering too much the execu-
tion.

129

6. CONCLUSION AND PERSPECTIVES
We have presented our first steps towards the development

of a tool that aims at automatically improving the accuracy
of numerical expressions evaluated in floating-point arith-
metic. Since we target to embed such tool within compiler,
introducing more accuracy should not jeopardize the im-
provement of running-time performances provided by the op-
timization steps. This motivates to study the simultaneous
improvement of accuracy and timing. Of course we exhibit
that a trade-off is necessary to generate optimal transformed
algorithms. We validated the presented tool with summation
algorithms; these are simple but significant problems in our
application scope. We have shown that this trade-off can be
automatically reached, and the corresponding algorithm gen-
erated, for data belonging to intervals – and not only scalars.
These intervals included ill-conditioned summations. In the
last section, we have shown that we can automatically gener-
ates more accurate algorithms that use compensation tech-
niques. Compared to the fastest algorithms, the overcost
of these automatically generated more accurate algorithms
may be reasonable in practice. Our main conclusion is that
relaxing very slightly the time constraints by choosing algo-
rithms whose critical paths are a bit longer than the optimal
makes it possible to strongly optimize the accuracy.

Next step needs to increase the complexity of the case
study both performing more operations and different ones.
One of the main problem to tackle is the combinatory of
the possible transformations. Brute force transformation
should be replaced using heuristics or more sophisticated
transformations as, e.g. the error-free ones we introduced to
recover the compensated algorithms. Another point to ex-
plore is how to develop significant datasets corresponding to
any data intervals provided by the user of the expression to
transform. A further step will be to transform any expres-
sion up to a prescribed accuracy and to formally certified
it. Such facility is for example necessary to apply such tool
for symbolic-numeric algorithms. In this scope, this project
plans to use static analysis and abstract interpretation as in
[12].

7. REFERENCES
[1] ANSI/IEEE. IEEE Standard for Binary Floating-point

Arithmetic, revision of std 754-1985 edition, 2008.

[2] James Demmel. Trading off parallelism and numerical
stability, 1992.

[3] Stef Graillat and Philippe Langlois. Real and complex
pseudozero sets for polynomials with applications.
Theoretical Informatics and Applications, 41(1):45–56,
2007.

[4] Nicholas J. Higham. The accuracy of floating point
summation. SIAM Journal on Scientific Computing,
14:783–799, 1993.

[5] Nicholas J. Higham. Accuracy and Stability of
Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second
edition, 2002.

[6] Claude-Pierre Jeannerod, Hervé Knochel, Christophe
Monat, and Guillaume Revy. Faster floating-point
square root for integer processors. In IEEE Symposium
on Industrial Embedded Systems (SIES’07), Lisbon,
Portugal, July 2007.

[7] Claude-Pierre Jeannerod and Guillaume Revy.
Optimizing correctly-rounded reciprocal square roots
for embedded VLIW cores. In Proceedings of the 43rd
Asilomar Conference on Signals, Systems, and
Computers (Asilomar’09), Pacific Grove, CA, USA,
november 2009.

[8] Donald E. Knuth. The art of computer programming,
volume 2 (3rd ed.): seminumerical algorithms.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[9] Philippe Langlois. Compensated algorithms in floating
point arithmetic. In 12th GAMM - IMACS
International Symposium on Scientific Computing,
Computer Arithmetic, and Validated Numerics,
Duisburg, Germany, September 2006. (Invited plenary
speaker).

[10] Jean Louis Lions, Remy Hergott (CNES),
Bernard Humbert (Aerospatiale), and Eric Lefort
(ESA). Ariane 5, flight 501 failure, report by the
inquiry board. european space agency, 1996.

[11] Matthieu Martel. Semantics of roundoff error
propagation in finite precision calculations. Journal of
Higher Order and Symbolic Computation, 19:7–30,
2006.

[12] Matthieu Martel. Enhancing the implementation of
mathematical formulas for fixed-point and
floating-point arithmetics. Journal of Formal Methods
in System Design, 35:265–278, 2009.

[13] United States General Accounting Office. Patriot
missile defense: Software problem led to system failure
at Dhahran, Saudi Arabia. Report
GAO/IMTEC-92-26, Information Management and
Technology Division, Washington, D.C., February
1992.

[14] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi
Oishi. Accurate sum and dot product. SIAM Journal
on Scientific Computing, 26, 2005.

[15] Michèle Pichat. Correction d’une somme en
arithmétique à virgule flottante. Applied Numerical
Mathematics, 19:400–406, 1972.

[16] Douglas M. Priest. Algorithms for arbitrary precision
floating point arithmetic. In Peter Kornerup and
David W. Matula, editors, Proc. 10th IEEE
Symposium on Computer Arithmetic, pages 132–143.
IEEE Computer Society Press, Los Alamitos, CA,
USA, 1991.

[17] Guillaume Revy. Implementation of binary
floating-point arithmeric on embedded integer
processors. PhD thesis, École Normale Supérieure de
Lyon, 2009.

[18] Fred S. Roberts. Applied combinatorics. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1984.

[19] Siegfried M. Rump. Ultimately fast accurate
summation. SIAM Journal on Scientific Computing,
31(5):3466–3502, 2009.

[20] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi
Oishi. Accurate floating-point summation –part I:
Faithful rounding. SIAM Journal on Scientific
Computing, 31(1):189–224, 2008.

[21] Josef Stoer and Roland Bulirsch. Introduction to
Numerical Analysis. Springer-Verlag, New York,
second edition, 1993.

130

Polynomial Homotopies on Multicore Workstations∗

Jan Verschelde
Dept of Math, Stat, and CS

University of Illinois at Chicago
851 South Morgan (M/C 249)
Chicago, IL 60607-7045, USA

jan@math.uic.edu

Genady Yoffe
Dept of Math, Stat, and CS

University of Illinois at Chicago
851 South Morgan (M/C 249)

Chicago, IL 60607-7045, USA.
gyoffe2@uic.edu

ABSTRACT
Homotopy continuation methods to solve polynomial sys-
tems scale very well on parallel machines. We examine its
parallel implementation on multiprocessor multicore work-
stations using threads. With more cores we speed up pleas-
ingly parallel path tracking jobs. In addition, we compute
solutions more accurately in about the same amount of time
with threads, and thus achieve quality up. Focusing on poly-
nomial evaluation and linear system solving (key ingredients
of Newton’s method) we can double the accuracy of the re-
sults with the quad doubles of QD-2.3.9 in less than double
the time, if all available eight cores are used.

Categories and Subject Descriptors
G.1.5 [Roots of Nonlinear Equations]: Continuation (ho-
motopy) methods

General Terms
Experimentation, Performance

Keywords
homotopy, path following, polynomial system, thread, task.

1. INTRODUCTION
PHCpack is an open source software package for homotopy

continuation methods to solve polynomial systems. For sur-
veys and general introductions on homotopy continuation
methods, see [32], [35], and [43].

The first public release of PHCpack is archived in [45].
Parallel implementations of various homotopy algorithms in
PHCpack have been developed jointly with Yusong Wang [46,
48], Yan Zhuang [31, 47, 50], Yun Guan [23], and Anton
Leykin [29, 30, 31]. All parallel homotopy algorithms in [23,

∗Date: 17 June 2010. This material is based upon work
supported by the National Science Foundation under Grant
No. 0713018.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

29, 30, 31, 46, 47, 48, 50] use the message passing library
MPI [41] for interprocess communication on clusters of Linux
nodes, developed on personal clusters and tested on the
NCSA supercomputers. Other continuation software for poly-
nomial systems (Bertini [8], HOM4PS-2.0para [34], PHoM-
para [24], and POLSYS GLP [44]) use MPI.

PHCpack is developed with the aid of the GNU-Ada com-
piler which maps tasks [13] to kernel threads, The multitask-
ing implementation of homotopies could complement the ex-
isting parallel versions in a multi-tiered approach: each node
could run a more efficient multithreaded finer-grained homo-
topy algorithm, while the communication between the nodes
happens with message passing in a coarser grain. Granular-
ity issues in homotopy algorithms are discussed in [3].

We first describe multithreaded versions of the most com-
monly used homotopy continuations in PHCpack. As ex-
pected from pleasingly parallel computations, the speedup of
the multithreaded code is close to optimal. The second part
of this paper is devoted to a“quality up”(defined in [2]) using
multiprecision arithmetic instead of the standard hardware
floats. Because of locks placed on memory allocations of the
existing multiprecision of PHCpack, we have started to use
the quad doubles as available in the software QD-2.3.9 [25].
A quad double is an unevaluated sum of four doubles and
quadruples the working precision from ε = 2.204× 10−16 to
ε4 = 2.430× 10−63. Extending the precision in this manner
was introduced in [17], see also [38] and [40].

Performing arithmetic with operations defined by software
instead of hardware multiplies the cost with a certain factor.
Experimentally we report in this paper that the multiplica-
tion factors in raising the level of precision from double to
double double, and from double to quad double are close
to the number eight, which is the number of available cores
on our computer. Using all available cores properly, we can
compensate for the extra cost of working with extended pre-
cision and thus obtain a quality up.

Our computations happened on a on a Mac OS X Pro with
2 Quad-Core Intel Xeons at 3.2 Ghz, bus speed at 1.6 Ghz,
12 Mb L2 cache per processor and 8Gb memory. We used
the GNAT GPL 2009 edition of the GNU-Ada compiler. The
code is available in version 2.3.56 of PHCpack. We also use
QD-2.3.9 via its C interface, compiled with the g++ compiler
(gcc version 4.0.1), including the pthread library.
Acknowledgements. Preliminary versions of this work
were presented by the first author at a session of ACA 2009
and at a minisymposium of the SIAM PP10 conference. The
first author is grateful to the organizers of these meetings.
We thank the reviewers for their comments.

131

2. SPEEDING UP PATH TRACKERS
In this section we describe the use of threads to speedup

three different types of homotopies: cheater [33] [36], poly-
hedral [26], and monodromy breakup [42]. First we outline
the manager/worker paradigm applied to multithreading.

2.1 Job Scheduling Algorithms
When we use the MPI library, we typically apply the

manager/worker paradigm. One manager node (or process)
maintains a job queue. Worker nodes (or processes) send
messages to request jobs. If the received job is not the ter-
mination signal, then after computing the job, the results of
the job are sent back to the manager. This paradigm scales
very well for thousands of nodes and for systems of millions
of solutions.

On smaller multiprocessor multicore computers, one could
of course also run MPI, but in that case one may lose one
entire process to the manager. Because of the irregularities
of the path tracking jobs – it is hard to predict in advance
how much work one job will take – the manager must always
be available to serve the worker processes with a new job.
Therefore one of the available cores must be assigned to the
manager and is therefore unavailable for computational jobs.
On a system with 8 cores, this leaves only 7/8 or at most
87.5% of the total capacity available for computation.

The multithreaded version of the manager/worker paradigm
uses one main thread to launch the worker threads. The
main thread initializes the job queue but leaves the man-
agement of the pointer to the current job to the worker
threads. If a worker needs a new job, it will request a lock
(or semaphore) and adjust the pointer to the current job in
a critical section. After adjusting the pointer, the lock is
released [13]. Semaphores are supported in the GNU-Ada
compiler [1].

Starting worker tasks in Ada is relatively simple and il-
lustrated with code in Figure 1. The procedure Workers

calls the Job procedure, which executes code based on the
id number.

procedure Workers (n : in natural) is

task type Worker (id,n : natural);

task body Worker is

begin

Job(id,n);

end Worker;

procedure Launch_Workers (i,n : in natural) is

w : Worker(i,n);

begin

if i < n

then Launch_Workers(i+1,n);

end if;

end Launch_Workers;

begin

Launch_Workers(1,n);

end Workers;

Figure 1: Launching n workers. Each worker is an
Ada task and calls the procedure Job with its iden-
tification number id.

The GNU-Ada compiler maps the Ada tasks to kernel
threads. The implementation of the task scheduler is de-
scribed in [39]. While our development platform is a Mac

Pro with 2 Quad-Core processors, our multicore implemen-
tations have also been tested on dual core computers running
Linux and Windows (win32 thread model). Also there – us-
ing the same source code – we observed good speedups.

2.2 Multitasking Polynomial Continuation
Table 1 lists preliminary timings on tracking all 924 paths

in a cheater homotopy for the cyclic 7-roots problem [4].
Although the system overhead increases as we go from one
to 8 threads, it constitutes only about 1% of the total wall
clock time. The timings were obtained using version 2.3.45
of PHCpack, typing at the command prompt $

$ time phc -p -t8 < /tmp/input8

where the 8 was replaced subsequently by 4, 2, and 1.

#workers real user sys speedup
1 15.478s 15.457s 0.010s 1
2 7.790s 15.483s 0.010s 1.987
4 3.926s 15.445s 0.011s 3.942
8 1.992s 15.424s 0.015s 7.770

Table 1: Real, user, and system time in seconds (s)
for tracking 924 paths of the cyclic 7-roots system
using 1, 2, 4, and 8 worker threads. The speedup is
the real time for one worker thread divided by the
real time for 2, 4, and 8 workers.

Since version 2.3.46 of PHCpack, the blackbox solver called
as phc -b -t8 will use 8 tasks to run the polyhedral homo-
topies [26]. To run MPI programs, the environment of the
user must be configured for mpirun or mpiexec. In contrast,
using threads is done just by adding the -t8 option to the
phc executable.

2.3 Multitasking Polyhedral Continuation
To approximate all isolated solutions of a given system

f(x) = 0 with as many equations as unknowns, using poly-
hedral homotopies [26] we distinguish three stages:

1. Compute the mixed volume MV (aka the BKK bound)
of the Newton polytopes spanned by the supports A of
f via a regular mixed-cell configuration ∆ω.

2. Given ∆ω, solve a generic system g(x) = 0, using poly-
hedral homotopies [26]. Every cell C ∈ ∆ω defines one
homotopy

hC(x, s) =
X
a∈C

caxa +
X

a∈A\C
caxasνa , νa > 0, (1)

tracking as many paths as the mixed volume of the
cell C, as s goes from 0 to 1.

3. Use (1− t)g(x) + tf(x) = 0 to solve f(x) = 0.

Stages 2 and 3 are computationally most intensive. For
example, for cyclic 10-roots (MV = 35940): stage 1 takes 21
seconds (using the version of MixedVol [22] as integrated in
PHCpack) whereas stage 2 lasts 39 minutes.

We point out that PHoMpara [24] provides a parallel com-
putation of the mixed volume.

A static distribution of the workload (as used in mpi2cell_s

developed with Yan Zhuang [47]) is shown in Figure 2.

132

manager worker 1 worker 2 worker 3
V(c1) = 5
V(c2) = 4
V(c3) = 4
V(c4) = 6
V(c5) = 7
V(c6) = 3
V(c7) = 4
V(c8) = 8
#p : 41

#p(c1) : 5
#p(c2) : 4
#p(c3) : 4
#p(c4) : 1

#p : 14

#p(c4) : 5
#p(c5) : 7
#p(c6) : 2

#p : 14

#p(c6) : 1
#p(c7) : 4
#p(c8) : 8

#p : 13

Figure 2: Static workload distribution of polyhedral
continuation, for 8 cells c1, c2, . . . , c8, where V() is the
mixed-volume function and #p stands for the num-
ber of paths.

In a static workload distribution, we assume that every
path takes about the same amount of work. Because poly-
hedral homotopies solve a generic system g(x) = 0, this
assumption may hold, although we experienced better per-
formance with a dynamic load balancing [47]. Table 2 shows
timings for running polyhedral homotopies on a random co-
efficient system, distributing mixed cells, for the cyclic n-
roots problems.

#tasks, times in seconds
n MV 1 2 4 8
7 924 12 6 3 2
8 2560 58 29 15 8
9 11016 417 209 104 52

10 35940 2156 1068 534 270

Table 2: Running polyhedral homotopies on cyclic
n-roots, with 1, 2, 4, and 8 tasks, tracking a total of
MV (mixed volume) many paths.

On the same random coefficient system g(x) = 0 used
to solve the cyclic 10-roots problem, we compared the MPI
implementation with the new multitasked code, on our 8-
core Mac Pro:

• mpirun -n 9 mpi2cell_d: total wall time = 270.5 sec-
onds,

• phc -m -t8: elapsed wall clock time is 233 seconds.

Both implementations use the same tolerances and the same
numerical settings for the parameters.

In defense of the implementation using MPI, one must
point out the differences in managing the list of solutions.
Because the MPI implementation was set up to work for
millions of solutions, the complete list of solutions is not kept
in memory: start solutions are read from a file or computed
when needed and after tracking a path, the end solution is
also directly written to a file. This jumpstarting mechanism
is described in greater detail in [31].

Rather than advocating for the exclusive use of either
MPI or threads, MPI and threads should be combined in
a multi-tiered implementation on supercomputers with mul-
ticore nodes.

2.4 Multitasking Monodromy Breakup
Many polynomial system arising in practical applications

have positive dimensional solution sets. Keeping to our run-
ning examples, the cyclic 8-roots problem [11] has a curve
of degree 144. This curve factors into 16 irreducible compo-
nents, 8 factors have degree 16 and the other 8 are quadrics.

The application of monodromy to factor polynomials first
appeared in [6], mainly to derive a complexity result. Actual
computations were described in [15, 16] and [42]. See [14] for
a nice introduction, [20], [21], [37] for recent developments,
and to [28] for an application.

In Table 3 we show the outcome of running the real, user,
and system timing on running ten monodromy loops. The
fluctuations in the times are due to taking different random
slices between the runs.

#workers real user sys speedup
1 61.203s 61.137s 0.046s 1
2 30.179s 59.888s 0.044s 2.028
4 15.472s 60.551s 0.050s 3.958
8 7.874s 59.469s 0.070s 7.773

Table 3: Real, user, and system time in seconds (s)
for running 10 random loops, tracking a total of 20×
144 paths to factor the solution curve of the cyclic
8-roots system, using 1, 2, 4, and 8 worker threads.
The speedup is the real time for one worker thread
divided by the real time for 2, 4, and 8 workers.

Using a basic parallel implementation as in [29], the exper-
iments in Table 3 show a very good speedup. For larger num-
ber of workers, the overhead caused by scheduling and man-
aging the irreducible decomposition leads to performance
losses, remedied by the scheduling algorithms in [30].

Although we have no formal complexity bounds on the
number of loops in the monodromy breakup algorithm seems
to scale very well. One limiting factor — relevant for the
second part of this paper — is that factoring polynomials of
high degrees requires multiprecision arithmetic.

2.5 Granularity Issues
All parallel computations described in this section are

coarse grained. We have many more paths to track than
the available cores. Every task is in charge of multiple paths
and every path can be tracked independently.

So far we obtained nice speedups with relatively little ef-
fort on multicore workstations. In addition, because the
number of cores is limited and the jobs remain pleasingly
parallel, there is no significant job scheduling overhead. If
we can compute benchmark problems faster, then we can of
course claim that we can solve more problems, but can we
improve the quality of the solutions as well? Questions like
these are addressed in [2] which defines “quality up”.

Shifting our attention from speedup to quality up, what
if we have to track, instead of many solution paths, only a
few, or even only one path? Often it occurs that there are
a couple of solution paths that require extra care, for which
the use multiprecision arithmetic is necessary [7]. The pa-
per [5] surveys applications of high-precision computations.
As software driven arithmetic is more expensive than hard-
ware arithmetic, we want to offset this expense using multi-
ple cores.

133

3. QUALITY UP
In this section we examine quality up: given 8 cores and

roughly the same amount of time, can we increase the quality
of our computations? Applied to polynomial system solving,
we interpret quality as accuracy. We investigate the cost of
obtaining more accurate solutions using Newton’s method
in quad double complex arithmetic. Experiments in this
section were done with an Ada translation of QD-2.3.9 [25],
available in PHCpack since version 2.3.55.

3.1 Cost Overhead of Arithmetic
Complex arithmetic is standard practice in all homotopy

solvers for polynomial systems and the overhead compared
to real arithmetic is taken for granted. Since Ada 95, com-
plex arithmetic is part of the language. However, PHCpack
has its own packages for complex arithmetic and does not use
the arithmetic provided by the language. The complex arith-
metic in PHCpack happens via a generic package (generic is
the equivalent to template in C++), suitable to work over
any real number field. The experiment below applies the
same code for all complex operations, over hardware dou-
bles, double doubles, and quad doubles.

Fully optimized code on one core of a 3.2 Ghz Intel Xeon,
performed one thousand times the following steps:

1. generate a 100-by-100 random matrix A and corre-
sponding right hand side random vector b;

2. solve Ax = b via LU factorization and substitutions
Ly = b, Ux = y;

3. print ||b−Ax||∞ with 3 decimal places.

User CPU times are recorded in Table 4.

type of arithmetic user CPU seconds

double real 2.026s
double complex 16.042s

double double real 20.192s
double double complex 140.352s
quad double real 173.769s
quad double complex 1281.934s

Table 4: CPU user time for solving a random lin-
ear system one thousand times, using double real
and complex, double double real and complex, quad
double real and complex arithmetic on one core.

Even as we take complex arithmetic for granted, we first
measure the overhead factor as 16.042/2.026 = 7.918,
140.352/20.192 = 6.951, and 1281.934/173.769 = 7.377.
The three factors average to 7.415.

Going from double complex to double double complex
gives a factor of 140.352/16.042 = 8.749 and the multipli-
cation factor in the cost of quad double complex over double
double complex arithmetic is 1281.934/140.352 = 9.134.

Although fluctuations in these computational experiments
happen, we observe that the multiplication factors in the
cost of using double double and quad double are of the same
magnitude as the multiplication factor in the cost of complex
arithmetic. In addition, as we have 8 cores at our disposal,
we could offset the extra cost of more accurate arithmetic
mapping threads of execution to all available 8 cores.

3.2 Newton’s Method with QD
To illustrate quality up, we consider a pleasingly paral-

lel computation. Given a polynomial system and a list of
isolated solution, we apply Newton’s method till either a
specified tolerance on the size of the residual is achieved, or
till the maximum number of iterations is exhausted.

As an example system, we take the cyclic 10-roots sys-
tem. Because of symmetry, we refine only the generating
solutions, starting at 1747 solutions accurate up to double
precision. With double double complex arithmetic we set
the tolerance to 1.0E-30 and we allow at most 3 iterations
of Newton’s method. With quad double complex arithmetic,
the tolerance is set to 1.0E-60 and we allow at most 5 iter-
ations. The results are shown in Table 5.

double double complex

#workers real user sys speedup
1 4.818s 4.790s 0.015s 1
2 2.493s 4.781s 0.013s 1.933
4 1.338s 4.783s 0.015s 3.601
8 0.764s 4.785s 0.016s 6.306

quad double complex

#workers real user sys speedup
1 58.593s 58.542s 0.037s 1
2 29.709s 58.548s 0.054s 1.972
4 15.249s 58.508s 0.053s 3.842
8 8.076s 58.557s 0.058s 7.255

Table 5: Real, user, and system time in seconds (s)
for refining 1747 solutions with Newton’s method in
double double and quad double complex arithmetic,
using 1, 2, 4, and 8 threads.

Entries in speedup columns of Table 5 are the real time
on the same row divided by the real time for one worker.
We observe an improved speedup as we move from double
double to quad double.

Comparing the cost of quad double over double double
arithmetic, we compute the factor 58.593/4.818 = 12.161.
As 12.161 is larger than the multiplication factor of 9.134
(based on the data in Table 4) we point out that to achieve
an accuracy of 1.0E-60, typically one extra iteration of New-
ton’s method will be required, explaining the higher multi-
plication factor.

Considering quality up, we compare the first real time of
Table 5 with the last real time: 4.818s with 8.076s. We
conclude: if we can afford to wait twice as long, we can
double the accuracy of our solutions from double double to
quad double precision. As the cost overhead of using quad
double complex arithmetic is compensated by the 8 cores,
we have achieved quality up.

3.3 Granularity and Memory
Although threads were used in the previous section, the

granularity is coarse, as the 1747 solutions were mapped to
the threads (8 at most). Because the layout of quad dou-
bles is restricted in size, one quad double is regarded as four
local variables of type double and there is no memory al-
location and deallocation of arrays of variable size like in
general types of multiprecision. Memory (de)allocations im-
pose locks on threads, preventing speedups.

134

4. TRACKING ONE PATH FASTER
AND MORE ACCURATELY

In this section we focus on tracking one path with threads
using double double or quad double complex arithmetic.

4.1 Multitasking Newton’s Method
The computational effort to execute one step of Newton’s

method can be broken up into two main parts:

1. evaluate the system and the Jacobian matrix;

2. solve a linear system to update the solution.

There is more to path tracking than Newton’s method, al-
though Newton’s method is the most computationally inten-
sive ingredient. Complexity questions often reduce to esti-
mating bounds on the domains of quadratic convergence [12].
A report on practical work of certified homotopies appears
in [9]. Parallel algorithms for linear algebra are explained
in [10] and [18].

Sparse and low degree polynomials can be evaluated fast
and the cost of solving the linear system will dominate the
total cost of Newton’s method. The situation may be re-
versed for large degree polynomials. From the perspective
of achieving good speedups, we better assume we are dealing
with either dense and/or large degree polynomial systems.

A detailed study of the efficient evaluation of polynomials
for homotopy methods appeared in [27].

4.2 Polynomial System Evaluation
If we store all monomials of a polynomial system in one

vector and its coefficients in a matrix (with proper corre-
spondence to the monomial vector), then polynomial system
evaluation is turned into a matrix-vector product. While ef-
fective for dense polynomials (all monomials up to a certain
degree appear with nonzero coefficient), sparse polynomials
will generate sparse coefficient matrices. Our running ex-
ample starts with 30 polynomials, each with 30 monomials
with nonzero random complex coefficients in 30 variables.
Along with the Jacobian matrix, this leads to a system of
930 polynomials with a total of 11540 distinct monomials.

We represent a sparse polynomial

f(x) =
X
a∈A

caxa, ca ∈ C \ {0}, xa = xa11 xa22 · · ·xan
n , (2)

collecting the exponents in the support A in a matrix E, as

F (x) =

mX
i=1

cix
E[ki,:], ci = ca, a = E[ki, :] (3)

where k is an m-vector linking exponents to rows in E:
E[ki, :] denotes all elements on the kith row of E. Stor-
ing all values of the monomials in a vector V , evaluating F
(and f) is equivalent to making an inner product:

F (x) =

mX
i=1

ciVki , V = xE . (4)

Because we consider also all derivatives of all polynomi-
als, we could exploit relations between the monomials and
put evaluated powers in cache. In our first parallel evalua-
tion algorithm, all monomials are evaluated independently,
potentially by different tasks. In our running example, eval-
uating 11540 monomials of degree 30 requires about 346200
multiplications, more than ten times the inner products of

the 930 coefficient vectors with the corresponding 30 values
of the monomials. Since the evaluation of the monomials
dominates the entire calculation, in our first parallel evalu-
ation algorithm, we do not interlace the computation of the
inner products with the evaluation of the monomials.

If p threads (or tasks) are labeled as 0, 1, . . . , p − 1, then
the ith entry in the monomial vector is computed by the
thread t for which i mod p = t.

In Table 6, we summarize the computational results.

double double complex

#tasks real user sys speedup
1 1m 9.536s 1m 9.359s 0.252s 1
2 0m 37.691s 1m 10.126s 0.417s 1.845
4 0m 21.634s 1m 10.466s 0.753s 3.214
8 0m 14.930s 1m 12.120s 1.711s 4.657

quad double complex

#tasks real user sys speedup
1 9m 19.085s 9m 18.552s 0.563s 1
2 4m 43.005s 9m 19.402s 0.679s 1.976
4 2m 24.669s 9m 20.635s 1.023s 3.865
8 1m 21.220s 9m 26.120s 2.809s 6.884

Table 6: Real, user, and system time in minutes (m)
and seconds (s) for evaluating a random system of
930 polynomials in 30 variables (at most 30 mono-
mials of degree at most 30 in each polynomial), with
double double and quad double complex arithmetic,
at one thousand randomly generated points, using
1, 2, 4, and 8 threads.

Our first observation in Table 6 is that the system time
grows as the number of tasks increase. Threads were created
anew and destroyed twice for every evaluation as the eval-
uation of the monomial vectors was done separately from
the computation of the inner products. While for double
double complex arithmetic, the speedup is not so good, it is
acceptable for quad double arithmetic.

Concerning quality up, we compare the sequential time of
69.536 seconds (first real time in Table 6) for double doubles
with the 81.220 seconds (last real time) for quad double
computations using 8 cores. Without parallel algorithms,
the doubling of the accuracy takes an eightfold increase of
computing time, as 559.085/69.536 = 8.040. With 8 cores,
the cost of extra accuracy is reduced to an increase of 17%
of the real time, as 81.220/69.536 = 1.168.

The system times of Table 6 are cut in half if we do not
destroy and create threads between the evaluation of the
monomial vector and the multiplication with the coefficient
vectors. Rather than giving updated tables of timings, we
describe how we avoid thread destruction and creation.

To synchronize jobs performed by p threads we maintain
p flags bi of boolean values, for i = 0, 1, . . . , p − 1. The
ith flag bi is true if and only if the ith thread is busy with
a computational job. Before starting the next job, threads
must wait till all threads are finished with their current job.
The first thread manages the job counter k. When thread
i finishes its job k, it sets its flag bi to false and then waits
to continue to the next job till k is increased. The first
thread will increase k only when no jobs are busy. After
increasing k, the first thread sets all busy flags to true.

135

4.3 Multithreaded Linear Algebra
with real Quad Doubles

In this section we consider real quad doubles and work
with the original QD library. Runs are done on the same
computer, but the software environment is different. We use
QD-2.3.9 via its C interface, compiled with the g++ compiler
(gcc version 4.0.1), including the pthread library. Optimiza-
tion flags were left off.

The operations we consider are (1) matrix-vector product;
(2) solving a triangular linear system (back substitution);
and (3) Gaussian elimination.

The setup for the matrix-vector product is as follows. We
launch a number of threads and then divide the work to do
one matrix-vector product among the threads. Because do-
ing only one product goes too fast, we run multiple instances
of multiple threaded matrix-vector products. As the matrix-
vector products simulate polynomial evaluations, during the
tracking of one solution path in our simulation we assume
that one thousand evaluations of the system and all its par-
tial derivatives are performed.

#threads real user sys speedup
1 28.990s 28.444s 0.022s 1
2 14.598s 28.205s 0.021s 1.986
4 7.537s 28.197s 0.017s 3.846
8 4.231s 28.394s 0.026s 6.852

Table 7: Real, user, and system time in seconds (s)
to multiply a 700-by-200 matrix of quad doubles with
a vector 1000 times, using 1, 2, 4, and 8 threads.

In Table 7 we report on timings with a multithreaded im-
plementation of a matrix-vector product. The threads are
created only once, when performing multiple jobs by many
threads, but they wait on each other before moving on to
the next job. While not optimal, the speedup attained in
Table 7 is still acceptable. In Table 8, we consider matri-
ces of smaller sizes. We observe decreasing speedups as the
dimensions of the matrices decrease.

The sequel to Table 7 in our simulated path tracking with
multiple threads is the solution of a triangular linear sys-
tem, with times reported in Table 9. As the linear system
is already in triangular form, it can be solved via back sub-
stitutions. Our parallel implementation of the algorithm for
solving a triangular system is inspired by [49, §5.3.4].

Let a lower triangular n-by-n matrix L with entries `i,j
and an n-vector b define the system Lx = b. The solution
vector x is computed via the formulas

xi :=
1

`i,i

bi −

i−1X
j=1

`i,jxj

!
, i = 1, 2, . . . , n. (5)

The calculation of xi needs the values for all previous com-
ponents xj , for j = 1, 2, . . . , i− 1.

Labeling p threads by 0, 1, . . . , p− 1, the ith thread com-
putes first the value xi and then computes successively all
values of xi+jp for all j: i+ jp ≤ n−1. Starting to calculate
xi+jp, the ith thread does not wait until all values of xk, for
all k: k < i + jp are computed. At first, without waiting,
the ith thread computes the partial sum

m−1X
j=1

`i+jp,jxj of

i+jp−1X
j=1

`i+jp,jxj , (6)

100-by-100 matrix
#threads real user sys speedup

1 2.031s 2.028s 0.003s 1
2 1.020s 2.030s 0.004s 1.991
4 0.514s 2.031s 0.004s 3.951
8 0.272s 2.129s 0.005s 7.467

50-by-50 matrix
#threads real user sys speedup

1 0.510s 0.508s 0.002s 1
2 0.257s 0.508s 0.003s 1.984
4 0.137s 0.532s 0.003s 3.723
8 0.078s 0.590s 0.004s 6.538

20-by-20 matrix
#threads real user sys speedup

1 0.085s 0.083s 0.002s 1
2 0.045s 0.085s 0.002s 1.889
4 0.025s 0.086s 0.002s 3.340
8 0.016s 0.104s 0.003s 5.313

Table 8: Real, user, and system time in seconds (s)
for 1000 matrix-vector multiplications with matrices
of quad doubles, using 1, 2, 4, and 8 threads.

#threads real user sys speedup
1 41.877s 41.770s 0.018s 1
2 21.365s 42.631s 0.026s 1.960
4 10.986s 43.376s 0.026s 3.812
8 5.984s 47.097s 0.030s 6.998

Table 9: Real, user, and system time in seconds (s)
for 10,000 on solving a 200-by-200 triangular matrix
of quad doubles, using 1, 2, 4, and 8 threads.

where m is the number of xk values computed by the time it
starts calculation of xi+jp. Then the thread merely proceeds
with the computing the remaining part of the sum for xi+jp
as long as each next xk appearing in it is computed.

To synchronize the calculations, we keep an array of sta-
tus flags associated to the variables. The status flag of a
variable is updated by the processor which computes that
particular variable after the calculation of the variable is
complete. Other threads which need the value of the vari-
able must wait till the status flag of the variable has been
updated.

Adjusting the algorithm described above to solve upper
triangular linear systems happens by reversing the indices of
x, i.e.: xi = xn−i, for i = 1, 2, . . . , n.

Larger values of n/p lead to larger speedups, since then for
large indexes i+jp by the time the ith thread starts comput-
ing xi+jp almost all xk with k < i+jp are already computed,
thus the computations of xi+jp with large indexes are done
almost uninterruptedly with relatively very few short breaks
for the ith thread to wait until several preceding values of
xk to xi+jp are calculated.

The analogue to Table 8 for back substitutions is Table 10.
In Table 10 we display times for back substitutions of various
dimensions. As before, we observe decreasing speedups in
Table 10 as the dimensions of the matrices decrease. How-
ever, it seems that the threshold dimension for achieving

136

150-by-150 matrix
#threads real user sys speedup

1 23.661s 23.650s 0.009s 1
2 12.167s 24.311s 0.014s 1.945
4 6.370s 24.974s 0.014s 3.714
8 3.530s 27.590s 0.022s 6.703

100-by-100 matrix
#threads real user sys speedup

1 10.752s 10.743s 0.009s 1
2 5.588s 11.069s 0.007s 1.924
4 2.868s 11.451s 0.007s 3.749
8 1.866s 14.624s 0.012s 5.762

50-by-50 matrix
#threads real user sys speedup

1 2.802s 2.799s 0.003s 1
2 1.487s 2.963s 0.006s 1.884
4 0.859s 3.420s 0.004s 3.262
8 0.640s 5.088s 0.006s 4.378

20-by-20 matrix
#threads real user sys speedup

1 0.510s 0.509s 0.002s 1
2 0.310s 0.614s 0.002s 1.645
4 0.220s 0.866s 0.003s 2.318
8 0.264s 2.066s 0.005s 1.932

Table 10: Real, user, and system time in seconds (s)
for solving 10,000 triangular systems of quad dou-
bles, using 1, 2, 4, and 8 threads.

good speedups lies higher with multithreaded back substi-
tution than with matrix-vector products. Note that path
tracking typically uses complex arithmetic, whereas the com-
putations with quad double are fully real: the threshold di-
mension for good speedups is lower for complex arithmetic.

To solve a linear system Ax = b, we apply row reduction
on the augmented matrix [A b]. Denoting the entries of A by
ai,j , formulas using pivot row i, for i ranging from 1 to n−1
are

aj,k := aj,k − aj,i
ai,i

ai,k, k = j, j + 1, . . . , n, (7)

and on b: bj := bj − (aj,i/ai,i)bi, for j ranging from i to n.
Note that these formulas do not perform row interchanges
(partial pivoting) to increase the numerical stability. Partial
pivoting is done by the algorithms in the next section.

To achieve an equal workload among p threads, we assign
rows to threads as follows: the first thread will work on
rows 1, p+ 1, 2p+ 1, . . ., the second thread will work on rows
2, p+ 2, 2p+ 2, . . ., in general: the ith thread works on rows
i+pj for all natural values of j starting at 0 and increasing as
long as i+pj ≤ n. As the pivot row increases, the difference
between workloads among the threads is never more than
one.

For correctness, threads are synchronized so no threads
starts updating rows for the next pivot until all threads have
finished updating their rows for the current pivot row. This
synchronization is the same as described at the end of sec-
tion 4.2.

Timings on our multithreaded code for Gaussian elimi-

100-by-100 matrix
#threads real user sys speedup

1 71.464s 71.436s 0.023s 1
2 37.129s 74.222s 0.026s 1.925
4 18.903s 75.557s 0.031s 3.781
8 10.721s 84.655s 0.116s 6.666

50-by-50 matrix
#threads real user sys speedup

1 9.354s 9.345s 0.009s 1
2 5.049s 10.086s 0.007s 1.853
4 2.583s 10.314s 0.008s 3.621
8 1.522s 12.001s 0.026s 6.146

20-by-20 matrix
#threads real user sys speedup

1 0.655s 0.653s 0.002s 1
2 0.368s 0.731s 0.003s 1.780
4 0.219s 0.864s 0.003s 2.991
8 0.166s 1.290s 0.006s 3.946

Table 11: Real, user, and system time in seconds
(s) for performing 1000 times Gaussian elimination,
using 1, 2, 4, and 8 threads.

nation are reported in Table 11. We observe a very good
speedup for dimensions 50 and 100. Even with a small num-
ber of variables such as 20, the speedup is still acceptable.
Compared to the timings for the back substitutions in Ta-
ble 10 (where we had to do ten thousand runs), it is definitely
worthwhile to use multiple threads for the row reduction
stage of Newton’s method.

4.4 Multithreaded Linear Algebra
with Complex Quad Doubles

The routines to solve linear systems in PHCpack are based
on LINPACK [19], and in particular on ZGEFA and ZGESL to
solve linear systems via an LU factorization.

In this section we report on experiments with a basic mul-
tithreaded version of our LU factorization routines. Follow-
ing the same synchronization mechanism as described with
polynomial evaluation, the first thread is in charge of up-
dating the column counter. The first thread also takes care
of the pivoting, i.e.: the selection of the largest element in
the current column used as the denominator in formulas (7).
The computational results are summarized in Table 12.

In Table 12 we observe a significant increase in the user
and system time for 8 tasks. The increase could be due
to threads spending a significant amount of time in busy
waiting loops, waiting for the pivoting.

Looking at speedups, we see that for double double com-
plex arithmetic, results start to deteriorate once we go past
four threads. The speedups are better with quad double
complex arithmetic. Comparing the first real time with the
last one in Table 12, we see that the expense of doubling the
precision from double double to quad double is compensated
by the 8 threads.

4.5 Newton’s Method with Threads
Comparing Tables 6 and 12 we see that a LU factorization

of an 80-by-80 matrix takes only slightly more time than
the evaluation of a sparse system in 30 variables with all

137

double double complex

#tasks real user sys speedup
1 1m 8.173s 1m 8.074s 0.131s 1
2 0m 36.712s 1m 13.061s 0.249s 1.857
4 0m 21.565s 1m 25.035s 0.455s 3.161
8 0m 20.986s 1m 42.156s 2.270s 3.248

quad double complex

#tasks real user sys speedup
1 10m 12.216s 10m 11.900s 0.311s 1
2 5m 12.753s 10m 24.774s 0.477s 1.958
4 2m 42.653s 10m 48.795s 0.699s 3.764
8 1m 33.234s 12m 17.653s 1.930s 6.566

Table 12: Real, user, and system time in minutes
(m) and seconds (s) for computing one thousand
times the LU factorization of an 80-by-80 matrix
of random double double and quad double complex
numbers, using 1, 2, 4, and 8 threads.

its 900 partial derivatives. If we perform the operations for
the same number of variables, e.g.: at 30, then the time for
linear algebra shrinks significantly, or e.g.: at 80, then the
time for polynomial evaluation will increase significantly. In
either case, the time for polynomial evaluation dominates
and leads already in relatively low number of variables to
good speedups.

Because the cost of LU factorization and triangular linear
system solvers is respectively O(n3) and O(n2), for n vari-
ables, and because the number of threads is typically much
smaller than n, the cost of the LU factorization will remain
dominant, even if we would not run the back substitution on
multiple cores.

To avoid the overhead from thread destruction and cre-
ation, threads will stay alive for all iterations of Newton’s
method along a path. The synchronization algorithm is the
same as described above, with one thread managing a job
counter. There is a second level of job counters to coordi-
nate the stages inside a Newton iteration.

5. CONCLUSIONS
As expected, using threads for pleasingly parallel compu-

tations leads rather directly to good speedups. Because the
number of cores remains limited on workstations, we do not
encounter problems to scale the calculations to hundreds or
thousands of processors.

The more convenient thread model offers the opportunity
for quality up: can we compute the solutions more accurately
with multiple cores in roughly the same amount of time?
Arbitrary multiprecision arithmetic with dynamic memory
allocation imposes locks, preventing speedups, so we turned
to the quad double arithmetic implemented by the software
library QD-2.3.9.

Experimental results on solving linear systems, showed
that going from double complex to double double complex
increased the computation time by a factor of about 8.7.
Using quad double complex arithmetic over double double
arithmetic multiplied the user CPU times by a factor of 9.1.
These experimental factors are slightly above eight, the num-
ber of available cores on our workstation, so we may poten-
tially offset these factors using all available cores.

Placing the focus on polynomial evaluation and linear sys-

tem solving — the computational ingredients of Newton’s
method — we experienced good speedups using quad dou-
ble arithmetic. In particular, doubling the accuracy from
double double to quad double can be done in less than dou-
ble the time if we use all eight cores.

6. REFERENCES
[1] AdaCore. The GNAT Reference Manual. At

http://gcc.gnu.org/onlinedocs/gnat_rm.

[2] S.G. Akl. Superlinear performance in real-time parallel
computation. The Journal of Supercomputing,
29(1):89–111, 2004.

[3] D.C.S. Allison, A. Chakraborty, and L.T. Watson.
Granularity issues for solving polynomial systems via
globally convergent algorithms on a hypercube. J. of
Supercomputing, 3:5–20, 1989.

[4] J. Backelin and R. Fröberg. How we proved that there
are exactly 924 cyclic 7-roots. In Proceedings of the
1991 International Symposium on Symbolic and
Algebraic Computation (ISSAC’91), pages 101–111.
ACM, 1991.

[5] D.H. Bailey, R. Barrio, and J.H. Borwein. High
precision computation: Mathematical physics and
dynamics. Joint SIAM-RSME-SCM-SEMA Meeting on
Emerging Topics in Dynamical Systems and Partial
Differential Equations (DSPDEs’10), 31 May 2010,
Barcelona, Spain.

[6] C. Bajaj, J. Canny, T. Garrity, and J. Warren.
Factoring rational polynomials over the complex
numbers. SIAM J. Comput., 22(2):318–331, 1993.

[7] D. J. Bates, J.D. Hauenstein, A.J. Sommese, and
C.W. Wampler. Adaptive multiprecision path
tracking. SIAM J. Numer. Anal., 46(2):722–746, 2008.

[8] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W.
Wampler. Bertini: Software for numerical algebraic
geometry. Available at
http://www.nd.edu/∼sommese/bertini/.

[9] C. Beltran and Leykin. A. Certified numerical
homotopy tracking. Preprint arXiv:0912.0920v1

[math.NA].

[10] R.H. Bisseling. Parallel Scientific Computation. A
structured approach using BSP and MPI. Oxford
University Press, 2004.

[11] G. Björck and R. Fröberg. Methods to “divide out”
certain solutions from systems of algebraic equations,
applied to find all cyclic 8-roots. In M. Gyllenberg and
L.E. Persson, editors, Analysis, Algebra and
Computers in Math. research, volume 564 of Lecture
Notes in Mathematics, pages 57–70. Dekker, 1994.

[12] L. Blum, F. Cucker, M. Shub, and S. Smale.
Complexity and Real Computation. Springer–Verlag,
1998.

[13] A. Burns and A. Wellings. Concurrent and Real-Time
Programming in Ada. Cambridge University Press,
2007.

[14] G. Chèze and A. Galligo. Four lectures on polynomial
absolute factorization. In Solving Polynomial
Equations. Foundations, Algorithms and Applications,
volume 14 of Algorithms and Computation in
Mathematics, pages 339–394. Springer–Verlag, 2005.

[15] R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M.
Watt. A geometric-numeric algorithm for factoring

138

multivariate polynomials. In T. Mora, editor,
Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2002),
pages 37–45. ACM, 2002.

[16] R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S.
Kotsireas, and S.M. Watt. Towards factoring bivariate
approximate polynomials. In B. Mourrain, editor,
Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2001),
pages 85–92. ACM, 2001.

[17] T.J. Dekker. A floating-point technique for extending
the available precision. Numerische Mathematik,
18(3):224–242, 1971.

[18] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A.
van der Vorst. Numerical Linear Algebra for
High-Performance Computers. SIAM, 1998.

[19] J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W.
Stewart. LINPACK Users’ Guide. SIAM, 1979.

[20] A. Galligo and A. Poteaux. Continuations and
monodromy on random Riemann surfaces. In H. Kai
and H. Sekigawa, editors, SNC’09: Proceedings of the
2009 conference on Symbolic-Numeric Computation,
pages 115–124. ACM, 2009.

[21] A. Galligo and M. van Hoeij. Approximate bivariate
factorization: a geometric viewpoint. In J. Verschelde
and S.M. Watt, editors, SNC’07: Proceedings of the
2007 international workshop on Symbolic-Numeric
Computation, pages 1–10. ACM, 2007.

[22] T. Gao, T. Y. Li, and M. Wu. Algorithm 846:
MixedVol: a software package for mixed-volume
computation. ACM Trans. Math. Softw.,
31(4):555–560, 2005.

[23] Y. Guan and J. Verschelde. Parallel implementation of
a subsystem-by-subsystem solver. In Proceedings of the
22th High Performance Computing Symposium,
Quebec City, 9-11 June 2008, pages 117–123. IEEE
Computer Society, 2008.

[24] T. Gunji, S. Kim, K. Fujisawa, and M. Kojima.
PHoMpara – parallel implementation of the
Polyhedral Homotopy continuation Method for
polynomial systems. Computing, 77(4):387–411, 2006.

[25] Y. Hida, X.S. Li, and D.H. Bailey. Algorithms for
quad-double precision floating point arithmetic. In
15th IEEE Symposium on Computer Arithmetic
(Arith-15 2001), 11-17 June 2001, Vail, CO, USA,
pages 155–162. IEEE Computer Society, 2001.
Shortened version of Technical Report LBNL-46996,
software at http://crd.lbl.gov/∼dhbailey/
mpdist/qd-2.3.9.tar.gz.

[26] B. Huber and B. Sturmfels. A polyhedral method for
solving sparse polynomial systems. Math. Comp.,
64(212):1541–1555, 1995.

[27] M. Kojima. Efficient evaluation of polynomials and
their partial derivatives in homotopy continuation
methods. Journal of the Operations Research Society
of Japan, 51(1):29–54, 2008.

[28] A Leykin and F. Sottile. Galois groups of Schubert
problems via homotopy continuation. Mathematics of
Computation, 78(267):1749–1765, 2009.

[29] A. Leykin and J. Verschelde. Factoring solution sets of
polynomial systems in parallel. In T. Skeie and C.-S.
Yang, editors, Proceedings of the 2005 International

Conference on Parallel Processing Workshops. 14-17
June 2005. Oslo, Norway. High Performance Scientific
and Engineering Computing, pages 173–180. IEEE
Computer Society, 2005.

[30] A. Leykin and J. Verschelde. Decomposing solution
sets of polynomial systems: a new parallel monodromy
breakup algorithm. The International Journal of
Computational Science and Engineering, 4(2):94–101,
2009.

[31] A. Leykin, J. Verschelde, and Y. Zhuang. Parallel
homotopy algorithms to solve polynomial systems. In
N. Takayama and A. Iglesias, editors, Proceedings of
ICMS 2006, volume 4151 of Lecture Notes in Computer
Science, pages 225–234. Springer-Verlag, 2006.

[32] T.Y. Li. Numerical solution of polynomial systems by
homotopy continuation methods. In F. Cucker, editor,
Handbook of Numerical Analysis. Volume XI. Special
Volume: Foundations of Computational Mathematics,
pages 209–304. North-Holland, 2003.

[33] T.Y. Li, T. Sauer, and J.A. Yorke. The cheater’s
homotopy: an efficient procedure for solving systems
of polynomial equations. SIAM J. Numer. Anal.,
26(5):1241–1251, 1989.

[34] T.Y. Li and C.-H. Tsai. HOM4PS-2.0para:
Parallelization of HOM4PS-2.0 for solving polynomial
systems. Parallel Computing, 35(4):226–238, 2009.

[35] A. Morgan. Solving polynomial systems using
continuation for engineering and scientific problems.
Prentice-Hall, 1987. Volume 57 of Classics in Applied
Mathematics Series, SIAM 2009.

[36] A.P. Morgan and A.J. Sommese. Coefficient-parameter
polynomial continuation. Appl. Math. Comput.,
29(2):123–160, 1989. Errata: Appl. Math. Comput.
51:207(1992).

[37] A. Poteaux. Computing monodromy groups defined by
plane curves. In J. Verschelde and S.M. Watt, editors,
SNC’07. Proceedings of the 2007 International
Workshop on Symbolic-Numeric Computation, pages
239–246. ACM, 2007.

[38] D.N. Priest. On Properties of Floating Point
Arithmetics: Numerical Stability and the Cost of
Accurate Computations. PhD thesis, University of
California at Berkeley, 1992.
ftp://ftp.icsi.berkeley.edu/pub/theory/

priest-thesis.ps.Z.

[39] J.F. Ruiz. GNAT Pro for on-board mission-critical
space applications. In T. Vardanega and A. Wellings,
editors, Reliable Software Technology – Ada-Europe
2005. 10th Ada-Europe International Conference on
Reliable Software Technologies. York, UK, June 20-24,
2005. Proceedings, volume 3555 of Lecture Notes in
Computer Science, pages 248–259, 2005.

[40] J.R. Shewchuk. Adaptive precision floating-point
arithmetic and fast robust geometric predicates.
Discrete Comput. Geom., 18(3):305–363, 1997.

[41] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI - The Complete Reference Volume
1, The MPI Core. Massachusetts Institute of
Technology, second edition, 1998.

[42] A.J. Sommese, J. Verschelde, and C.W. Wampler.
Using monodromy to decompose solution sets of
polynomial systems into irreducible components. In

139

C. Ciliberto, F. Hirzebruch, R. Miranda, and
M. Teicher, editors, Application of Algebraic Geometry
to Coding Theory, Physics and Computation, pages
297–315. Kluwer Academic Publishers, 2001.
Proceedings of a NATO Conference, February 25 -
March 1, 2001, Eilat, Israel.

[43] A.J. Sommese and C.W. Wampler. The Numerical
solution of systems of polynomials arising in
engineering and science. World Scientific, 2005.

[44] H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T.
Watson. Algorithm 857: POLSYS GLP: A parallel
general linear product homotopy code for solving
polynomial systems of equations. ACM Trans. Math.
Softw., 32(4):561–579, 2006.

[45] J. Verschelde. Algorithm 795: PHCpack: A
general-purpose solver for polynomial systems by
homotopy continuation. ACM Trans. Math. Softw.,
25(2):251–276, 1999. Software available at
http://www.math.uic.edu/~jan/download.html.

[46] J. Verschelde and Y. Wang. Computing feedback laws
for linear systems with a parallel Pieri homotopy. In
Y. Yang, editor, Proceedings of the 2004 International
Conference on Parallel Processing Workshops, 15-18
August 2004, Montreal, Quebec, Canada. High
Performance Scientific and Engineering Computing,
pages 222–229. IEEE Computer Society, 2004.

[47] J. Verschelde and Y. Zhuang. Parallel implementation
of the polyhedral homotopy method. In T.M. Pinkston
and F. Ozguner, editors, Proceedings of the 2006
International Conference on Parallel Processing
Workshops. 14-18 Augustus 2006. Columbus, Ohio.
High Performance Scientific and Engineering
Computing, pages 481–488. IEEE Computer Society,
2006.

[48] Y. Wang. Computing Dynamic Output Feedback Laws
with Pieri Homotopies on a Parallel Computer. PhD
thesis, University of Illinois at Chicago, 2005.

[49] B. Wilkinson and M. Allen. Parallel Programming.
Techniques and Applications Using Networked
Workstations and Parallel Computers. Prentice Hall,
2nd edition, 2005.

[50] Y. Zhuang. Parallel Implementation of Polyhedral
Homotopy Methods. PhD thesis, University of Illinois
at Chicago, 2007.

140

Parallel computations in modular group algebras

A. Konovalov, S. Linton
Centre of Interdisciplinary Research

in Computational Algebra
School of Computer Science, University of St Andrews

{alexk,sal}@cs.st-and.ac.uk

ABSTRACT
We report about the parallelisation of the algorithm to com-
pute the normalised unit group V (FpG) of a modular group
algebra FpG of a finite p-group G over the field of p elements
Fp in the computational algebra system GAP. We present its
distributed memory implementation using the new remote
procedure call framework based on the the Symbolic Com-
putation Software Composability Protocol (SCSCP). Using
it, we were able for for the first time to perform practical
computations of V (FpG) for groups of orders 29 and 36.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Miscella-
neous

Keywords
Group algebra, unit group, OpenMath, remote procedure
call, SCSCP

1. INTRODUCTION
GAP [18] is an open-source system for computational dis-

crete algebra, with particular emphasis on Computational
Group Theory. It provides a programming language, an
extensive library of functions implementing algebraic algo-
rithms written in the GAP language, as well as large data
libraries of algebraic objects. The GAP language has rather
unique object oriented features invented to model math-
ematical objects. In particular, GAP objects accumulate
information about themselves during their lifetime and, as
a consequence, may subsequently change their type. The
method selection is dynamically polymorphic and depends
on the current type of all arguments. This type system, de-
scribed in details in [8], is central to the organisation of the
GAP library which is the main part of GAP system and is
implemented in the GAP language. Another part of the sys-
tem – its kernel – is implemented in the C language. The
kernel provides the GAP runtime environment and also a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

set of time-critical basic functions. In the current release of
GAP both the kernel and the library are sequential and do
not support parallelism. In this setup, GAP users may be in-
terested in various options to parallelise their computations
without changing the core system.

One of the attempts to provide an infrastructure for dis-
tributed parallel computations in GAP was made in the Par-
GAP package [10], which is based on the MPI standard, and
includes a subset implementation of MPI. Another example
of a purpose-build C application that was used to orchestrate
multiple GAP instances to solve some specific problems of
computational algebra was described in [23]. Finally, one can
use various job submission systems to submit tasks e.g. on
Condor pools or grids, and organise, if necessary, file-based
communication between tasks, but while being completely
suitable for some applications, this does not provide enough
interactivity and insights into the coordination of the work-
load for our problem, so such technologies are beyond the
scope of this paper.

We present another tool that enables distributed paral-
lel computations in GAP, and has been developed in the
EU FP6 project “SCIEnce – Symbolic Computation Infras-
tructure in Europe” (www.symbolic-computation.org) is a
major 5-year project that brings together developers of com-
puter algebra systems (CAS), experts in computational al-
gebra, OpenMath, and parallel computations. One of the
project’s outcomes is the development of a common standard
interface that may be used for combining CAS and any other
compatible software. This interface is a lightweight XML-
based remote procedure call protocol called SCSCP (Sym-
bolic Computation Software Composability Protocol, [16]) in
which both data and instructions are represented as Open-
Math objects [26]. At the time of writing, SCSCP has been
implemented in several computer algebra systems, includ-
ing GAP, KANT, Macaulay2, Maple, MuPAD, TRIP (see
[15, 17] for details) and has APIs to simplify adding SCSCP
interface to more systems.

We implemented SCSCP support in GAP in the SCSCP
package [21]. In the present paper, we would like to in-
troduce the package and demonstrate how it can speed up
a computation of certain giant algebraic structures from the
theory of group rings. Our achievement makes feasible build-
ing a database of such objects to be used in a search for
interesting examples or counterexamples.

We proceed as follows. First we give basic definitions nec-
essary to explain the main algorithm in section 2.1. The
reader may however wish to skip details from the theory of
group rings and go straight to section 2.2 where we describe
its implementation in the GAP package LAGUNA. To ex-

141

plain our motivation, section 2.2 provides some examples of
research that can be carried out using the LAGUNA package.
Then section 2.3 presents the UnitLib package providing a
database of objects computed using the main algorithm. Af-
ter that we will describe the SCSCP package and compare it
with the ParGAP package in section 3.1, and then explain
our approach to the parallelisation in sections 3.2 and 3.3.
After analysing parallel performance in section 3.4, we con-
clude with final remarks. We assume that the reader who
uses GAP in another areas will be able to concentrate less on
group ring related details but still see how the package may
be used for the own research. Moreover, the reader from a
parallel community who does not use GAP may skip these
details and find more interesting technical aspects on design
imposed by the context of the problem and the performance
analysis.

2. BACKGROUND

2.1 Group rings
The theory of group rings is a branch of algebra that arose

as a meeting point of group theory and ring theory. Group
rings are not only of a purely theoretical interest in algebra
and several other fundamental branches in mathematics, but
they also have applications in several scientific fields, such as
quantum physics and coding theory. They were introduced
by Frobenius and Schur at the beginning of the 20th cen-
tury and initially were primarily used as tools for studying
representations of finite groups, becoming objects of special
systematic studies only in the last 40-50 years.

For an associative ring R with multiplicative identity ele-
ment and a multiplicatively written group G, the group ring
RG of the group G over the ring R is defined as the set of
all finite formal sums

RG =

(X
g∈G

λgg

˛̨̨̨
λg ∈ R,

˛̨{g ∈ G | λg 6= 0}˛̨ <∞)

with respect to a component-wise defined addition, and mul-
tiplication induced by the rule (λg)(µh) = (λµ)(gh) for
λ, µ ∈ R and g, h ∈ G extended by the distributivity law
on the whole of RG.

The set of all elements of RG which are invertible with
respect to the multiplication forms a group, which is called
the unit group of RG. It is denoted by U(RG), and its
subgroup

V (RG) =

(X
g∈G

λgg ∈ U(RG)

˛̨̨̨ X
g∈G

λg = 1

)

is called the normalised unit group, or the group of nor-
malised units.

A group ring is called a group algebra if R is a field. Fur-
thermore, if R is a field of characteristic p > 0 and G has
an element of order p, then RG is called a modular group
algebra. For a finite group G, the dimension of its group
algebra RG over the field R equals to the order of G. For
more details, we refer to some monographs on group rings,
e.g. [2] or [27].

We are interested in a special case when R = Fp is a field
of p elements, and G is a finite p-group (that is, the order
of G is pn for some n > 0). In this case, the order of its

group algebra over the field of p elements is pp
n

, and the

order of V (FpG) is pp
n−1 (so it is a multiplicative p-group,

which allows access to some special algorithms for this class
of groups). Because of their huge orders, modular group al-
gebras of finite p-groups are sources of very challenging ex-
amples. Remarkably, it is still possible to perform efficient
computations in V (FpG) provided it has an efficient repre-
sentation that allows to use fast algorithms. Such presenta-
tion is called a power-commutator presentation. It consists
of generators y1, . . . , y|G|−1, relations for powers

ypi = (yi+1)αi,i+1 · · · (y|G|−1)αi,|G|−1

for 1 ≤ i ≤ |G| − 1 and relations for commutators

(yj , yi) = (yj+1)αj,i,j+1 · · · (y|G|−1)αj,i,|G|−1

for 1 ≤ i < j ≤ |G| − 1, where exponents αi,k and αi,j,k are
elements of the set {0, . . . , p−1}. We will say that the group
is a pc-group if it is represented using the power-commutator
presentation, and call the set of generators y1, . . . , y|G|−1 the
polycyclic generating set of G.

In our case V (FpG) has a natural polycyclic generating set
1 + S, where S is a weighted basis of the augmentation ideal
of FpG. We will briefly describe it here, referring to [6] for
complete details. First we recursively define the Jennings
series of G

G = G1, Gi+1 = [Gi, G]Gjp

where j has to be the smallest non-negative integer such that
j ≥ i/p. Then the dimension basis for G is the list

x1,1, . . . , x1,l1 , . . . , xk,1, . . . , xk,lk

of elements of the group G such that

{xi,1Gi+1, . . . , xi,liGi+1}
is a minimal generating set for the elementary abelian group
Gi/Gi+1. Now the weighted basis consists of |G|−1 standard
products of the form

(x1,1 − 1)α1,1 · · ·(x1,l1 − 1)α1,l1 · · ·
(xk,1 − 1)αk,1 · · · (xk,lk − 1)αk,lk ,

where 0 ≤ αi,j ≤ p− 1 and at least one of αi,j is non-zero.
For example, if F2 is the field of two elements and D8

is the dihedral group of order 8, given by the presentation
D8 = 〈 a, b | a4 = b2 = 1, ab = ba−1 〉, the dimension basis
of D8 is the set {a, b, a2}, and the weighted basis of F2D8 is
the set

{(a− 1), (b− 1), (a2 − 1), (a− 1)(b− 1), (a− 1)(a2 − 1),

(b− 1)(a2 − 1), (a− 1)(b− 1)(a2 − 1)}.
For a practical implementation of this algorithm in GAP, it
is very fast to compute 1 + S as the set consisting of explic-
itly written elements of a group algebra. However, one then
needs to compute the canonical form of every power and
commutator relation with respect to this polycyclic generat-
ing set, and this is a very time-consuming step which requires
extensive computations in a group algebra, whose complex-
ity grows with the growth of the order of the underlying
group. We refer to the LAGUNA manual [7] for further
details.

2.2 LAGUNA package
The algorithm to compute V (FpG) for a finite p-group

G and a field of p elements Fp has been implemented by

142

the first author and Cs. Schneider in the LAGUNA pack-
age [7] for the computational algebra system GAP since its
first release in 2003. The title LAGUNA is an acronym for
Lie AlGebras and UNit groups of group Algebras. The
package was started by R. Rossmanith as the LAG pack-
age for GAP 3.4.4 to compute Lie algebras of group alge-
bras, and then was taken over and extended (including unit
groups functionality) by other authors. LAGUNA can com-
pute V (FpG) in two representations: natural (slow, operates
with explicitly written group algebra elements), and abstract
(fast, operates with elements of a pc-group). Using the bi-
jection between these two representations, one can compute,
for example, the centre of V (FpG) given as a pc-group and
then find corresponding group algebra elements.

To demonstrate a sample calculation with LAGUNA, we
may check a counterexample reported in [9] to the conjec-
ture that V (KG) and a group constructed in a special way
(namely, the wreath product Cp oG ′) have the same value of
the invariant called the nilpotency class of the group. First
we retrieve from the GAP Small Groups Library the group
G that we need, compute its derived subgroup and then con-
struct the group W that is the desired wreath product. After
checking that W has the nilpotency class 3, we create a mod-
ular group algebra of G, compute its normalised unit group
V in the pc-presentation, and immediately verify that unlike
W, the group V has the nilpotency class 4.

gap> G := SmallGroup(32, 6);
<pc group of size 32 with 5 generators>
gap> D := DerivedSubgroup(G);
Group([f3, f5])
gap> W := WreathProduct(CyclicGroup(2), D);
<group of size 64 with 3 generators>
gap> NilpotencyClassOfGroup(W);
3
gap> FG := GroupRing(GF(2) , G);
<algebra-with-one over GF(2), with 5 generators>
gap> V := PcNormalizedUnitGroup(FG);
<pc group of size 2147483648 with 31 generators>
gap> NilpotencyClassOfGroup(V);
4

Note that without the computation of the pc-presentation
of V (FpG) GAP would be forced to operate with explicitly
written group ring elements, and a computation as in the
example would not be feasible at all.

Another exemplar application of LAGUNA is related with
the Modular Isomorphism Problem (MIP) asking whether a
finite p-group is determined by its modular group algebra
over a field of p elements; in other words, is it true that

FpG ∼= FpH ⇒ G ∼= H ?

This problem is still widely open in general (for an overview
of the current status of MIP, see [13]), although there are
counterexamples for its analogs for integral group rings and
for modular group algebras for a wider class of groups [12,
19]. However, even less is known for its stronger variation
– the Modular Isomorphism Problem of Normalised Unit
Groups (UMIP). The latter problem is asking whether a fi-
nite p-group is determined by the normalised unit group of
its modular group algebra over a field of p elements; in other
words, is it true that

V (FpG) ∼= V (FpH)⇒ G ∼= H ?

A positive answer was obtained for p-groups with cyclic
Φ(G) for p > 2 in [3] and for 2-groups of maximal class

Table 1: Sequential computation of V (FpG)
IdGroup Structure Runtime

description
8,3 D8 23 ms
16,7 D16 135 ms
32,18 D32 1.8 s
64,52 D64 41 s
128,161 D128 21 m 44 s
256,539 D256 13 hr 8 m
27,3 (C3xC3) : C3 0.8 s
81,8 (C9xC3) : C3 1 m 36 s
243,26 (C9xC9) : C3 5 hr 8 m

in [4]. Using the LAGUNA package, it was also verified
that UMIP holds for all groups of order 32 (see [20]). Re-
markably, for the hardest pair, consisting of groups with
catalogue numbers (32,13) and (32,14), both automorphism
groups Aut(V (KG)) had the same order 2149, and only by
using the AutPGrp package [14] was it determined that their
minimal numbers of generators were 15 and 16 respectively,
so they can not be isomorphic. Again, this computation
became possible only due to operating with V (KG) in pc-
presentation.

The runtime to compute the pc-presentation of the nor-
malised unit group may vary dependently on the structure
of the group G, but certainly the main factor is the order of
G which is equal to the dimension of the group algebra. We
illustrate this dependency for some series of groups in the
table 1 (the measurements were performed in GAP 4.4.12
on an 8-core Intel server: dual quad-core Intel Xeon 5570
2.93GHz / RAM 48 GB / CentOS Linux 5.3). In all tables
in this paper, Cn denotes the cyclic group of order n, that
is the group given by the presentation 〈a | an = 1〉, D2n

denotes the dihedral group of order 2n, given by the presen-
tation 〈a, b | an = b2 = 1, ab = ba−1〉, G x H denotes the
direct product of G and H, and G : H denotes the semi-
direct product of G and H, following the convention used by
the GAP function StructureDescription.

2.3 Library of unit groups
The significant time needed to compute V (RG) for G of

order 128 stimulated the first author to start the develop-
ment of the GAP package UnitLib [22]. This package allows
to save precomputed normalised unit groups for groups from
the GAP Small Groups Library in a database. The current
version of the package covers all p-groups of order not greater
than 243, occupying 21.5 MB of local storage for all these
groups except those of order 243 and additional 32 MB of
online available data for groups order 243.

During the development of the package, many technical is-
sues related with saving and retrieving the data were solved,
including deciding to store CodePcGroup (large integer en-
coding the structure of the group) in hexa-decimal format;
storing the dimension basis of the group to avoid further in-
terfering with random methods used by GAP; gzipping large
files and unzipping them “on fly”; providing online access to
the data, proper embedding of G into the retrieved pc-group,
etc. We refer to the UnitLib manual [22] for further technical
details.

The package uses the same catalogue numbers for groups
as the GAP Small Group Library. In the example below, we

143

Table 2: Retrieving precomputed V (FpG)
Group Runtime Runtime Speedup Data file
Id (compute) (retrieve) (bytes)
8,3 23 ms 3 ms 6.7 78
16,7 135 ms 6 ms 33.3 225
32,18 1.8 s 26 ms 96.2 1518
64,52 41 s 273 ms 219.8 12958
128,161 21m 44 s 7 s 192.9 110737
256,539 13 hr 8 m 9 m 3 s 102.5 925019
27,3 0.8 s 13 ms 107.7 793
81,8 1 m 36 s 673 ms 237.7 27865
243,26 5 hr 8 m 4 m 15 s 89.4 895391

will retrieve a normalised unit group from the library, and
then show that it has some interesting property (specifically,
its sets of bicyclic units of 1st and 2nd kind generate different
subgroups of V (FpG)):

gap> V:=PcNormalizedUnitGroupSmallGroup(64,9);
<pc group of size 9223372036854775808 with 63 generators>
gap> V1:=BicyclicUnitGroupType(V,1); #auxiliary function
<pc group with 154 generators>
gap> V2:=BicyclicUnitGroupType(V,2);
<pc group with 154 generators>
gap> Size(V1); Size(V2);
268435456
268435456
gap> Size(Intersection(V1,V2));Size(ClosureGroup(V1,V2));
134217728
536870912

In the table 2 we compare the runtime of retrieving V (RG)
from the library with the runtime require for its computa-
tion from scratch, for the same groups as in the table 1. Ad-
ditionally, we display the size of the resulting data file that
must be stored for the future usage. The measurements were
performed in GAP 4.4.12 on an 8-core Dell Poweredge 2950
server: dual quad-core Intel Xeon 5355 2.66 GHz / RAM
16 GB / CentOS Linux 4.5 for the current version of the
package as cited in [22]. As one can see from the table 2,
using the UnitLib database allows dramatic time savings.
However, in order to create this database, anyway first we
need to compute each normalised unit group. Since with
the increasing of the order of the group this becomes more
and more time-consuming, parallelisation of this computa-
tion becomes more and more important to enable efficient
computation of V (KG), for example, for groups of orders
like 512 or 729 which are also available in the GAP Small
Groups Library. Clearly, we want to make use of the avail-
able GAP codebase and we need to produce an output com-
patible with GAP. The tools presented in the next session
made such parallelisation cost-effective and feasible without
programming in any other languages except GAP.

3. PARALLELISATION WITH SCSCP

3.1 SCSCP and ParGAP
The Symbolic Computation Software Composability Pro-

tocol (SCSCP) is a protocol by which a CAS may offer ser-
vices to a variety of possible clients, for example, another
CAS running on the same or remote system; another in-
stance of the same CAS (in a parallel computing context
or in case of an installation with a limited functionality);

Grid middleware; visualisation tool to display mathematical
objects, e.g. graphs or lattices of subgroups; a Web server
which passes on the same services as Web services using
SOAP/HTTP to another clients, etc. In this setup it is im-
portant to agree about common encoding for the mathemat-
ical objects, and the obvious choice here was OpenMath [26],
a standard of representing mathematical objects according
to their semantics. Though there may be a first impres-
sion that the usage of OpenMath may be limited to func-
tionality/data types for which OpenMath representation is
defined in an existing OpenMath Content Dictionary (CD),
the SCSCP server may have private transient CDs, specific
to the service and obtainable from the server on request.
Furthermore, the user may define private CDs with more
efficient representation of some objects (e.g. matrices over
finite fields) or pass the data in some private formats encoded
as OMSTRING, OMBYTES or OMFOREIGN elements.

In the GAP system, support for OpenMath and SCSCP
is implemented in two GAP packages with the same names.
The OpenMath package [11], development of which was taken
over by the first author in 2007, is an OpenMath phrasebook
for GAP: it converts OpenMath to GAP and vice versa, and
provides a framework that users may extend with their pri-
vate content dictionaries. The SCSCP package [21], started
by the authors in 2007, provides a socket-based SCSCP im-
plementation using the GAP packages OpenMath, IO [25]
and GAPDoc [24]. This allows GAP to run as either an
SCSCP server or client. The server may be started interac-
tively from the GAP session or as a GAP daemon. When
the server accepts a connection from the client, it starts the
“accept-evaluate-return” loop:

• accepts the "procedure_call" message and looks up
the appropriate GAP function (which should be de-
clared by the service provider as an SCSCP procedure);

• evaluates the result (or produces a side-effect);

• replies with a "procedure_completed" message or re-
turns an error in a "procedure_terminated" message.

The SCSCP client performs the following basic actions:

• establishes connection with server;

• sends the "procedure_call" message to the server;

• waits for its completion or checks it later;

• fetches the result from a "procedure_completed" mes-
sage or enters the break loop in the case of a "proce-

dure_terminated" message.

We have used this basic functionality to build a set of in-
structions for parallel computations using the SCSCP frame-
work. This allows the user to send several procedure calls to
multiple instances of the same of different computer algebra
systems in parallel and then collect all results, or to pick up
the first available result.

One of applications built on top of SCSCP is the master-
worker skeleton, which is implemented purely in GAP. It
allows to run parallel computations with one master dis-
tributing individual tasks to multiple (local or remote) work-
ers. The pool of workers must be specified by the user as
a list of their hostnames and ports and may vary from a
set of workers on the same multi-core server to a variety

144

of geographically distributed workers running in various ar-
chitectures. The client (i.e. master, which orchestrates the
computation) works in any operating system that is able to
run GAP, and it may orchestrate both GAP based and non-
GAP based SCSCP servers. It uses dynamic scheduling to
allocate tasks to workers at the runtime and stays idle while
waiting for the next available worker. The master-worker
skeleton offers basic fault-tolerance for stateless services: if
a server (i.e. worker) disappears, the job will be resubmit-
ted to another available server (it is the user’s responsibil-
ity to ensure that this will not break the consistency of the
result). Furthermore, it allows new workers (from a previ-
ously declared pool of potential workers) to be added dur-
ing the computation. It has flexible configuration options
and produces parallel trace files that can be visualised using
EdenTV [5]. In our experiments, this implementation of the
master-worker skeleton demonstrated almost linear (e.g. 7.5
on 8-core machine) speedup on irregular applications with
low task granularity and no nested parallelism.

These features make SCSCP different from the ParGAP
package, since the latter is based on MPI, has both GAP
and C parts of code and requires UNIX environment to work.
The master-worker computation in ParGAP will be broken if
one of workers is lost, and there is no way to add new workers
in the middle of computation. Finally, ParGAP currently
uses string representation of GAP objects to transmit them,
and SCSCP package uses OpenMath representation. Both
representations allow different fallbacks in order to transmit
objects which do not have a meaningful string representation
or are not supported in OpenMath. We refer to the SCSCP
package manual [21] for further details and examples.

The next two sections serve as a tutorial in GAP code
parallelisation with SCSCP and provide some arguments to
support our model. Note that the SCIEnce project also offers
other parallel tools whose suitability may depend on particu-
lar user scenarios. One of such tools is the SymGrid-Par [1],
which also builds on SCSCP in an essential way. It is imple-
mented using the functional programming language Haskell,
and has many advanced features including work stealing and
task migration. While SymGrid-Par requires additional con-
figuration, the GAP package SCSCP offers a parallel toolkit
for those users who want to stay within the GAP system and
modify a minimum of their code.

3.2 Parallelising GAP code with SCSCP
Parallelising sequential GAP code with the SCSCP pack-

age, the user should make the following interconnected de-
cisions: which functionality should be moved from the mas-
ter to the remote procedures on the worker; which argu-
ments these procedures will accept; which results these pro-
cedures must return. Among others, the following design
goals should be taken into account: achieving the best possi-
ble workload distribution; efficient marshalling of arguments
and results; and eliminating, if possible, dependencies across
tasks.

For example, consider a parallel search in the GAP Small
Groups Library (assume that it is included at every worker’s
GAP installation). Let IsGoodGroup(n,k) be a remote pro-
cedure that takes two integers n and k, tests whether certain
property holds for the SmallGroup(n,k) and returns true

or false dependently on the result. Let the goal is to find
all groups, for which that property holds. Communications
costs here are minimal, tasks are completely independent,

and when the property to be tested is non-trivial enough to
make workers busy, a call like

ParListWithSCSCP(List([1..NrSmallGroups(128)],

i -> [128,i]), "IsGoodGroup");

is destined to work well (of course, if the property is very
simple to check, one may redesign the remote procedure to
tests several groups at once with some chunk size giving a
better performance).

In another situation there may be some global data that
should be sent to every worker before the call of the master-
worker skeleton. For example, different workers may work
with different cosets or different conjugacy classes of the
group. In this case the group may be distributed to ev-
ery worker prior to the computation, and then a reference
to it may be passed on each procedure call together with
a coset or conjugacy class representative. Again, it is the
GAP programmer’s responsibility to ensure that the data
are consistent; for example, it may happen that randomised
algorithms will be applied to this group at each worker and
e.g. the ordering of conjugacy classes may be different. This
will not be a problem if an argument of the remote pro-
cedure will be a representative of the conjugacy class, but
may be unsafe if the argument will be the number specifying
the position of a particular conjugacy class in the list of all
conjugacy classes of a group.

In a more complicated scenario, certain events may re-
quire an update of the global data required at every worker.
This is also possible: observe that a worker, as an SCSCP
server, may be able to perform a variety of procedures, so
one may implement one or several procedures to update its
data. Moreover, a remote procedure itself may involve proce-
dure calls to other SCSCP servers outside the workers pool,
for example to calls to dedicated servers to store distributed
hash tables in the orbit computation.

One final warning should be given about the specific of
sending GAP objects across the network in any format (which
also explains why there is no straightforward way to use ex-
isting parallel libraries). For example, GAP objects may
share their subobjects, and may learn information about
themselves during their lifetime. In the first case, it may
happen that the OpenMath representation will not express
the sharing (though we resolved this problem for polyno-
mials in GAP, there may be other examples). In the second
case the default OpenMath representation for an object may
not include all information about it that is known at the mo-
ment. This should be taken into account in the design and
testing of SCSCP procedures, as well as the potentially high
costs of data marshalling that may reduce speedup (trans-
mitting only required information about an object may be
more efficient than transmitting the whole object).

3.3 Unit group in parallel
Now let us return to our problem of computing the pc-

presentation of the normalised unit group of a modular group
algebra of a finite p-group over the field of p elements. Ob-
viously, the computation of every single relation does not
depend on other relations, and can be performed in paral-
lel. We should expect that the computation may be quite
irregular depending on the particular group and on the par-
ticular weighted basis elements. Furthermore, we had to
decide about the data representation and delegation of work
from master to workers to ensure that the global data on

145

Table 3: Parallel computation of V (FpG)
Group Total Final non- Overall runtime Overall runtime Overall runtime Overall runtime
Id runtime parallelisable and speedup and speedup and speedup and speedup

(sequential) step duration (M+7LW) (M+8LW) (M+8LW+8RW) (M+8LW+16RW)
8,3 23 ms < 1 ms 440 ms / 0.05 414 ms / 0.06 335 ms / 0.07 292 ms / 0.79
16,7 135 ms < 2 ms 1824 ms / 0.07 1703 ms / 0.08 1397 ms / 0.10 1445 ms / 0.09
32,18 1.8 s < 5 ms 9.6 s / 0.19 9.2 s / 0.20 8.7 s / 0.21 8.3 ms / 0.22
64,52 41 s 0.3 s 43 s / 0.95 39 s / 1.05 35 s / 1.17 35 s / 1.17
128,161 21 m 44 s 1 s 5 m 25 s / 4.01 4 m 55 s / 4.42 3 m 9 s /6.90 2 m 40 s / 8.15
256,539 13 hr 8 m 2 m 57 s 2 hr 17 m / 5.75 2 hr 2 m / 6.43 1 hr 4 m / 12.31 45 m / 17.51
27,3 0.8 s < 3 ms 6.6 s / 0.12 6.6 s / 0.12 5.7 s / 0.14 5.8 s / 0.14
81,8 1 m 36 s 0.3 s 1 m 9 s / 1.39 1 m 6 s / 1.45 55 s / 1.75 54 s / 1.78
243,26 5 hr 8 m 6 s 58 m 7 s / 5.31 52 m 3 s / 5.92 27 m 23 s / 11.25 19 m 31 s / 15.92

the master and each worker are consistent and the intervals
when workers may be idle are reduced to a minimum.

First of all, receiving request to compute power or com-
mutator relation, every worker must compute it in the group
algebra of the same group, which should be distributed to
workers prior to the computation. Despite SCSCP allowing
us to do this using remote objects, the specific of our appli-
cation (providing the library of normalised unit groups for
groups from the GAP Small Groups Library) allows another
solution that reduces communication costs avoiding the ne-
cessity of sending group algebra over the network.

Since every master is supposed to have the GAP Small
Groups Library as a part of its GAP installation, the group
algebra for the required group may be recreated indepen-
dently on each worker. Since the underlying group will be re-
trieved from the library, this guarantees that all these group
algebras will be completely identical. The worker is keeping
a pool of group algebras stored as global variables, and the
catalogue number of the group is passed as an additional
argument in each procedure call to ensure that the compu-
tation is performed in the right object.

Moreover, each worker will compute the same weighted
basis WB for the group algebra (since this is completely de-
terministic procedure which does not call randomised algo-
rithms). Thus, we need to design two remote procedures,
one to compute the power relation for 1+WB[i] and another
compute the commutator relation for 1+WB[i] and 1+WB[j].
Their arguments are {i} or {i,j} respectively, and also the
catalogue number of the underlying group.

The result returned by these procedures is the string rep-
resenting the product of powers of elements of the polycyclic
generating set of the group, e.g F1^2*F2^-1*F3*F1^-2*F2.
Such string representation is more compact that correspond-
ing OpenMath code, and it can be straightforwardly evalu-
ated on the master as an element of the appropriate group
constituting a part of the corresponding relation; this shows
the flexible setup of SCSCP allowing private data formats
to be embedded in SCSCP messages.

Inevitably, at the end of the algorithm there is sequential
phase which is needed to combine all collected data into a pc-
presentation and create the resulting pc-group. This phase
may take quite substantial time for groups of orders larger
or equal 29 or 36.

To check that the parallel implementation works correctly,
we computed normalised unit groups for groups of order 8.
For such a group, V (KG) has order 128, so we can check
that groups computed sequentially and in parallel are iso-

morphic by computing their catalogue number in the GAP
Small Groups Library.

The sequential implementation of the algorithm by the
first author and Cs. Schneider is contained in the LAGUNA
package in the file laguna/lib/laguna.gi. Its parallel ver-
sion developed by the first author is contained in the UnitLib
package in the file unitlib/lib/parunits.g. It contains
two remote procedures called NormalizedUnitCFpower and
NormalizedUnitCFcommutator to compute the power and
the commutator relation respectively, and the main function
ParPcNormalizedUnitGroup with two calls to the master-
worker skeleton in lines

rels1:=ParListWithSCSCP(

listargs, "NormalizedUnitCFpower");

...

rels2:=ParListWithSCSCP(

listargs, "NormalizedUnitCFcommutator");

Modification of the sequential code required identifying
parts of the code that should be moved to the remote pro-
cedure, rearranging loops in the main function to create a
list of arguments for ParListWithSCSCP, and adding a short
code to convert the results of procedure calls into relations
of the pc-group.

3.4 Analysing performance
In table 3 we compare the wall clock time needed to com-

pute the normalised unit group in sequential and parallel
implementations for the same groups as we used in the ta-
bles above. We used a cluster of three 8-core Intel servers
(dual quad-core Intel Xeon 5570 2.93GHz / RAM 48 GB /
CentOS Linux 5.3) and run parallel computations in four
different combinations: the master and seven workers run-
ning on the same server (M+7LW); the master and eight
workers running on the same server (M+8LW); the master,
eight workers running on the same server and eight worker
running on another server (M+8LW+8RW); and, finally, the
master, eight workers running on the same server and sixteen
workers running on two other servers (M+8LW+16RW).

Not surprisingly, for small groups parallelisation does not
help at all since the cost of data marshalling and coordi-
nating workers is too high. However, we are not concerned
about this, since the time required for the sequential compu-
tation is very small and we do not need to repeat it multiple
times in the context of our problem. Furthermore, starting
from order 64 (in this particular example for groups of this
type), the parallel version becomes faster than sequential.

146

Figure 1: Scalability of the parallel computation of
V (FpG) for some groups of orders 128, 243 and 256

The best speedup equal to 17.51 was observed for the dihe-
dral group of order 256 with 24 workers. Clearly, with the
growth of the group order the dimension of the group algebra
(which is the order of G) increases, so increases the complex-
ity of the computation of an individual power or commutator
relation. This forces workers to spend more time in the job
and helps to optimise the load balancing and improve the
performance.

Comparison of M+7LW and M+8LW configurations shows
that it is more efficient to run one worker per each core and
a master rather than to run a master on a dedicated core by
the cost of having one less worker. This is explained by the
fact that the master is idle while it waits for the next avail-
able worker using select, and this allows workers to make
the maximum use of the available CPU power.

Figure 1 shows the dependency between the number of
workers and the speedup for orders 128, 243 and 256.

Adding new workers does not speed up very much the
computation for order 128. The scheduler tries first to al-
locate jobs to the workers residing locally and having lower
latency, so even when the pool of workers is increased, re-
mote workers do not get enough jobs since their competitors
running on the same server with the master will be discov-
ered and given a task earlier. However, the longer average
runtime of individual jobs for orders 243 and 256 allows the
master to keep all workers in the cluster sufficiently busy.
Good scalability for groups of larger orders allows optimistic
predictions that computations for targeted groups of orders
512 and 729 may scale well on the same cluster and even on
a bigger heterogeneous network.

To further investigate the performance, below we demon-
strate trace diagrams produced with the help of the EdenTV
utility [5] to visualise the calculation of the normalised unit
group for the dihedral group of order 128 (we changed colours
from the original EdenTV output to fit a black-and-white
printer). The first diagram shows the whole computation,
the next two – its initial and final stages respectively.

The top row on Figure 2 corresponds to the master, and
next 8 rows correspond to workers. The green colour marks
intervals when the master or worker is performing some com-
putation, while the blue colour corresponds to the waiting
time, when master is waiting for the next response about the

Figure 2: Parallel computation of V (F2D128)

Figure 3: Initial stage of the computation of
V (F2D128)

task completion or the worker is waiting for the next proce-
dure call. Ideally, the master should be mostly blue, while
workers should be mostly green; however, this is not always
the case because of the irregularity and the final sequential
phase.

Figure 3 shows a more detailed view of the initial stage
of the computation. It is easy to detect the moment when
the computation of the power relation was finished and the
computation of the commutator relations was started (after
4.58 seconds). After that in the beginning workers are kept
busy sufficiently well and their colour is mostly green.

Figure 4 shows more detailed view of the final stage of
the computation. As the algorithm goes down the powers
of augmentation ideal, individual tasks become shorter since
the latter is nilpotent and many products evaluate to zero.
This is why the load on the master increases, while some
workers are being idle more often. At the end, the final
sequential phase can be clearly seen, when the master uses
all data collected from workers to create the resulting pc-
group.

The similar situation could be also seen from the trace di-
agram for the computation of V (F3G) in the configuration
M+8LW+16RW for G=SmallGroup(243,26). In the begin-
ning, the load distribution is equal and workers are idle only
for short intervals. At the end, the majority of tasks goes

147

Figure 4: Final stage of the computation of V (F2D128)

to the workers in the bottom part of the diagram, where
workers 1–8 are residing on the same server with the master.

4. CONCLUSIONS AND FURTHER WORK
Using the parallel implementation of the algorithm to com-

pute V (FpG), for the first time we were able to deal with
groups of such large orders as 512 and 729. For example, for
G = SmallGroup(729,13) = (C3 x (C27 : C3)) : C3 it takes
about 18.5 hours to compute V (FpG) with one master and
24 workers on a cluster of three Intel servers (dual quad-core
Intel Xeon 5570 2.93GHz/RAM 48 GB/CentOS Linux 5.3).

Our nearest goal is to complete the library for all 504
groups of order 729, and part of it is already computed. The
runtime varies irregularly for different groups and we do not
provide more precise measurements in this paper since it
could be speeded up in the coming soon GAP 4.5 release
with GMP support due to its faster integer arithmetic and,
as a consequence, faster work with CodePcGroup (for larger
groups, it might be faster/shorter to store the presentation
itself rather then CodePcGroup that was originally designed
to encode smaller groups and not those “monsters” as we
generate).

In the future, with larger computational facilities to come,
we may anticipate that it will be feasible to complete the li-
brary for the order 256 (56092 groups) and 55 (77 groups),
probably even for 56 (684 groups). Doing this for groups of
order 29 (10494213 groups) could be still a challenge, but
even now the crucial fact is that using the provided func-
tionality the user can compute such groups and save their
description for further usage.

This computation may be revisited in the future with
the outcome of the HPC-GAP project (http://www-circa.
mcs.st-and.ac.uk/hpcgap.php) which will reengineer the
GAP system to provide opportunities to use shared and dis-
tributed memory parallel programming models, and hope-
fully can be reimplemented with better scalability/efficiency.

We hope that GAP users from various domains will find
this paper helpful in parallelising their GAP applications
using SCSCP. We also hope that the feasibility of computing
larger unit groups and making their database will lead to new
theoretical insights into modular group algebras.

5. ACKNOWLEDGMENTS
This work has been supported by the EU FP6 project

26133 “SCIEnce – Symbolic Computation Infrastructure for
Europe” (http://www.symbolic-computation.org).

6. REFERENCES
[1] A. Al Zain, P. Trinder, K. Hammond, A. Konovalov,

S. Linton, and J. Berthold. Parallelism without pain:
Orchestrating computational algebra components into
a high-performance parallel system. In Proc. IEEE
Intl. Symp. on Parallel and Distributed Processing with
Applications (ISPA 2008), Sydney, Australia, pages
99–112, 2008.

[2] V. A. Artamonov and A. A. Bovdi. Integral group
rings: groups of invertible elements and classical
K-theory. In Algebra. Topology. Geometry, Vol. 27
(Russian), Itogi Nauki i Tekhniki, pages 3–43, 232.
Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform., Moscow, 1989. Translated in J. Soviet Math.
57 (1991), no. 2, 2931–2958.

[3] Z. Balogh and A. Bovdi. Group algebras with unit
group of class p. Publ. Math. Debrecen,
65(3-4):261–268, 2004.

[4] Z. Balogh and A. Bovdi. On units of group algebras of
2-groups of maximal class. Comm. Algebra,
32(8):3227–3245, 2004.

[5] J. Berthold and R. Loogen. Visualizing parallel
functional program runs: Case studies with the eden
trace viewer. In Proc. PARCO 2007: Intl. Conf. on
Parallel Computing: Architectures, Algorithms and
Applications, volume 15 of Advances in Parallel
Computing, pages 121–128. IOS Press, 2007.

[6] A. Bovdi. Generators of the units of the modular
group algebra of a finite p-group. In Methods in ring
theory (Levico Terme, 1997), volume 198 of Lecture
Notes in Pure and Appl. Math., pages 49–62. Dekker,
New York, 1998.

[7] V. Bovdi, A. Konovalov, R. Rossmanith, and
C. Schneider. LAGUNA – Lie AlGebras and UNits of
group Algebras, Version 3.5.0, 2009. http:
//www.cs.st-andrews.ac.uk/~alexk/laguna.htm.

[8] T. Breuer and S. Linton. The GAP 4 type system:
organising algebraic algorithms. In ISSAC ’98:
Proceedings of the 1998 international symposium on
Symbolic and algebraic computation, pages 38–45, New
York, NY, USA, 1998. ACM.

[9] D. B. Coleman. Computer investigations of group
algebras. In Infinite groups and group rings
(Tuscaloosa, AL, 1992), volume 1 of Ser. Algebra,
pages 7–12. World Sci. Publ., River Edge, NJ, 1993.

[10] G. Cooperman. ParGAP – Parallel GAP, Version
1.1.2, 2004. GAP package,
http://www.ccs.neu.edu/home/gene/pargap.html.

[11] M. Costantini, A. Konovalov, and A. Solomon.
OpenMath – OpenMath functionality in GAP, Version
10.1, 2010. GAP package, http:
//www.cs.st-andrews.ac.uk/~alexk/openmath.htm.

[12] E. C. Dade. Deux groupes finis distincts ayant la
même algèbre de groupe sur tout corps. Math. Z.,
119:345–348, 1971.

[13] B. Eick and A. Konovalov. The modular isomorphism
problem for the groups of order 512. In Groups St.

148

Figure 5: Parallel computation of V (F3G) for G=SmallGroup(243,26)

Andrews 2009, London Math. Soc. Lecture Note Ser.
(Accepted).

[14] B. Eick and E. O’Brien. AutPGrp – Computing the
Automorphism Group of a p-Group, Version 1.4, 2009.
http://www-public.tu-bs.de:8080/~beick/so.html.

[15] S. Freundt, P. Horn, A. Konovalov, S. Lesseni,
S. Linton, and D. Roozemond. OpenMath in SCIEnce:
Evolving of symbolic computation interaction. In
proceedings of OpenMath Workshop 2009 (to appear).

[16] S. Freundt, P. Horn, A. Konovalov, S. Linton, and
D. Roozemond. Symbolic Computation Software
Composability Protocol (SCSCP) specification.
http://www.symbolic-computation.org/scscp,
Version 1.3, 2009.

[17] S. Freundt, P. Horn, A. Konovalov, S. Linton, and
D. Roozemond. Symbolic computation software
composability. In AISC/MKM/Calculemus, Springer
LNCS 5144, pages 285–295, 2008.

[18] The GAP Group. GAP – Groups, Algorithms, and
Programming, Version 4.4.12, 2008.
http://www.gap-system.org.

[19] M. Hertweck. A counterexample to the isomorphism
problem for integral group rings. Ann. of Math. (2),
154(1):115–138, 2001.

[20] A. Konovalov and A. Krivokhata. On the isomorphism
problem for unit groups of modular group algebras.
Acta Sci. Math. (Szeged), 73(1-2):53–59, 2007.

[21] A. Konovalov and S. Linton. SCSCP – Symbolic
Computation Software Composability Protocol, Version

1.2, 2010. GAP package, http:
//www.cs.st-andrews.ac.uk/~alexk/scscp.htm.

[22] A. Konovalov and E. Yakimenko. LAGUNA – Library
of normalized unit groups of modular group algebras,
Version 3.0, 2009. http:
//www.cs.st-andrews.ac.uk/~alexk/unitlib.htm.

[23] F. Lübeck and M. Neunhöffer. Enumerating large
orbits and direct condensation. Experiment. Math.,
10(2):197–205, 2001.

[24] F. Lübeck and M. Neunhöffer. GAPDoc – A Meta
Package for GAP Documentation, 2008. http://www.
math.rwth-aachen.de/~Frank.Luebeck/GAPDoc.

[25] M. Neunhöffer. IO – Bindings for low level C library
IO, 2009. http://www-groups.mcs.st-and.ac.uk/
~neunhoef/Computer/Software/Gap/io.html.

[26] The OpenMath Society. The OpenMath Standard,
Version 2.0, 2004. http://www.openmath.org.

[27] C. Polcino Milies and S. K. Sehgal. An introduction to
group rings, volume 1 of Algebras and Applications.
Kluwer Academic Publishers, Dordrecht, 2002.

149

Cache-Oblivious Polygon Indecomposability Testing

Fatima K. Abu Salem
∗

Computer Science Department, American University of Beirut
P.O. Box 11-0236, Riad El Solh Beirut 1107 2020

Lebanon
fatima.abusalem@aub.edu.lb

ABSTRACT
We examine a cache-oblivious reformulation of the (itera-
tive) polygon indecomposability test of [19]. We analyse the
cache complexity of the iterative version of this test within
the ideal-cache model and identify the bottlenecks affecting
its memory performance. Our analysis reveals that the it-
erative algorithm does not address data locality and that
memory accesses progress with arbitrarily sized jumps in
the address space. We reformulate the iterative computa-
tions of [19] according to a DFS traversal of the computa-
tion tree and obtain, as a result, a cache-oblivious variant
which exhibits asymptotically improved spatial and tempo-
ral locality over the original one. In particular, we show
that the DFS variant ensures spatial locality, and describe
quantitatively the asymptotic improvements in spatial and
temporal locality. In an extension to this work appearing in
[3], the DFS variant is implemented in relation to absolute
irreducibility of bivariate polynomials over arbitrary fields,
and tested against both the original version as given in [19]
and the powerful computer algebra system MAGMA. The
results demonstrate significantly improved performance for
the DFS variant as indicated by L1 misses, L2 misses, and
total execution time.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures; G.4 [Mathematical Software]: algorithm design
and analysis; I.1.2 [Symbolic and Algebraic Manipula-
tion]: Algorithms—Analysis of Algorithms

General Terms
Algorithms

Keywords
Cache-oblivious algorithms, computer algebra, symbolic com-

∗The author is supported by LNCSR grant 111135-522312
and AUB-URB grant 111135-988119.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

puting, Newton polygons, Convex polygon indecomposabil-
ity testing, bivariate polynomials, absolute irreducibility test-
ing

1. INTRODUCTION
With actual computers containing an ever-growing mem-

ory hierarchy, it is becoming increasingly important to aim
for more than reducing the asymptotic operational count of
algorithms, by also addressing their scalability, in the sense
of efficient processor power utilisation. Even for algorithms
which are not a “bottleneck” in practice, scalability in this
context may be adversely affected if data transfer consumes a
large component of the overall running time. Caching serves
to optimise on data access across the different levels of the
memory hierarchy in order to minimise the effect of I/O la-
tency, the latter amplified by the growing gap between pro-
cessor speed and that of an external memory access.

Two main paradigms for caching are the external (cache-
aware) model, and the ideal-cache (cache-oblivious) model.
The cache-aware model requires tuning cache parameters,
such as the cache size and the cache-line length. In contrast,
the cache-oblivious model does not require knowledge of,
and hence tuning the algorithm according to, the cache pa-
rameters. Cache-oblivious programs thus allow for resource
usage not to be programmed explicitly, and for algorithms
to be portable across varying architectures, making such a
paradigm “cheaper” from a software engineering viewpoint.

Cache-oblivious data structures have been extensively de-
veloped in [6, 7, 9, 10, 11, 12, 13, 21], to name a few. There
is also considerable work on cache-oblivious algorithms in
scientific computing, such as for matrix multiplication (e.g.
[8, 15]), linear algebra and numerical solvers (e.g. [18, 22,
23]), and the FFT (e.g. [16, 17]), amongst many others.
Yet, this work has little parallel in computer algebra, even
though the memory hierarchy effects on scalability here are
just as compelling.

In this context, we address the algorithm of [19] for inte-
gral polygon indecomposability testing, with consequences
relating to the following:

1. Absolute irreducibility testing of bivariate polynomials
with coefficients from an arbitrary field: This forms
an important part in computer algebra systems today
with applications in algebra, geometry, and number
theory. It is also largely regarded as complementary to
polynomial factorisation, in that it is essential to invest
in an efficient test for irreducibility before resorting to
the usually more expensive factorisation kernels.

2. Recovery of summands of decomposable integral poly-

150

gons in the sense of the Minkowski sum, which can be
achieved via a simple generalisation of the indecom-
posability testing algorithm of [19]: The summands
obtained comprise the input to the bivariate polyno-
mial factorisation algorithm of [2], one of the fastest
methods available that are tailored for sparse polyno-
mials ([1]). Algebraic simplification, proving combi-
natorial identities, and solving systems of polynomial
equations using Gr

..
obner bases are applications which

benefit from bivariate polynomial factorisation ([14]).

The contributions of this paper are constrained to theoreti-
cal cache complexity analysis. In particular, we analyse the
cache complexity of the iterative test of [19] as well as its
recursive reformulation obtained via a DFS traversal of the
computation tree. We show that the DFS variant ensures
spatial locality in the sense that it totally avoids jumps in
the access to all data structures employed. Our analysis also
determines the cache complexity of the DFS variant given by
Eq. (15), and we derive that this is an asymptotic improve-
ment under specific conditions affecting the input size, given
in Eq. (21). In this paper we do not report on empirical
results, which instead are reported in the manuscript [3]. In
contrast, the latter manuscript does not provide theoretical
cache complexity analysis, and is exclusively dedicated to
empirical performance assessment using execution runtime
metrics. The present paper and [3] complement each other
in the study of cache oblivious polygon indecomposability
testing.

2. BACKGROUND

2.1 Caching and the ideal-cache model [17]
We assume the reader is familiar with the notions of mem-

ory hierarchies, caches, cache misses and hits, and memory
transfer delays. The cache is organised using cache lines,
each consisting of B consecutive words. All words in a single
line are transferred together between cache and main mem-
ory in one round, an operation referred to as a block transfer,
memory transfer, or an I/O operation. If the cache is full
and a cache miss occurs, a block gets evicted to make space.
To assess the cost of I/O’s, we measure two types of locality.
Spatial locality refers to code being able to reference data
items that are close to recently accessed ones. Temporal lo-
cality refers to code being able to re-use recently accessed
data. The cache complexity is an asymptotic measure of the
growth of temporal locality, and it captures the total num-
ber of I/O’s taking place between any two consecutive levels
of the memory hierarchy.

Several models exist for assessing the cache complexity of
algorithms. Some of the simpler models (e.g. [5, 17]) rea-
son about a two-level memory hierarchy: an internal (data)
cache consisting of M computer words, connected to an ex-
ternal main memory of indefinite size. Here, the cache com-
plexity is expressed as a function of the cache size M , the
cache line length B, and the input size N . The ideal-cache
model of [17] is a two-level memory model suitable for cache-
oblivious algorithms. Here both cache parameters M and B
need not be known in order to achieve an optimal memory
performance. Thanks to the model’s attributes, program-
mers can achieve a certain level of portability and automated
optimisation. The two-level ideal cache is fully associative,
is tall (or that M = Ω(B2)), operates under an optimal

replacement strategy, and operates under an automatic re-
placement strategy. These assumptions can all be simulated
in real at no asymptotic overhead ([17]). Unlike the ex-
ternal (also two-level) memory model of [5], the ideal-cache
model measures throughput using the work complexity and
the cache complexity, rather than cache complexity alone.
Cache-oblivious algorithms thus achieve optimal cache per-
formance using also an optimal amount of work.

2.2 Polytope indecomposability testing
For an extensive review on the theory of convex polytopes

we refer the reader to [20]. Given two polytopes Q and
R, their Minkowski sum is defined to be the set Q + R :=
{q + r | q ∈ Q, r ∈ R}. The Minkowski sum of two convex
polytopes is also a convex polytope. A polytope with all
vertices pairs of integers is called an integral polytope. When
Q and R are integral polytopes, so is their Minkowski sum. If
an integral polytope P can be expressed as a Minkowski sum
Q+R for some integral polytopes Q and R, then we call this
expression an integral decomposition. The decomposition is
trivial if Q or R has only one point, and P is integrally
decomposable if it has at least one non-trivial decomposition;
else, it is integrally indecomposable. A polytope of dimension
2 is a polygon, where the only proper faces are edges and
vertices.

Higher dimensional integral polytope indecomposability
testing can be achieved probabilistically by performing a
number of deterministic polygon indecomposability testings,
as described in [19]. We thus restrict our attention to in-
tegral convex polygons. Consider an integral convex poly-
gon P with m vertices in Z2, and vertices v0, ..., vm−1 or-
dered cyclically in a counter-clockwise direction around a
chosen pivot v0. Express the edges of P as vectors of the
form Ei = v(i+1) mod m − vi = (ai, bi), for 0 ≤ i < m,

where ai, bi ∈ Z. A vector v = (a, b) ∈ Z2 is called a
primitive vector if gcd(a, b) = 1. If ni = gcd(ai, bi) and
ei = (ai/ni, bi/ni), then Ei = niei, where ei is a primitive
vector, for 0 ≤ i < m. Each edge Ei contains ni + 1 integral
points including its endpoints, and so we can think of ni
as representing the “length” of Ei. The sequence of vectors
{niei}0≤i<m is called the edge sequence of P and uniquely
identifies the polygon up to translation determined by v0.
Since the boundary of a polygon forms a closed path, we
have that

P
0≤i<m niei = (0, 0). For convenience, an edge

sequence can be identified with that obtained by extending
the sequence by inserting an arbitrary number of zero vec-
tors. Thus, we can assume that the edge sequence of a sum-
mand of P has the same length as that of P . The algorithm
below depends on the fact that, if a non-trivial summand of
P were to exist, it would possess an edge sequence of the
form

P
0≤i<m kiei, where 0 ≤ ki ≤ ni, ki 6= 0 for at least

one i, and ki 6= ni for at least one i. The algorithm attempts
to trace such summands as follows:

Algorithm 1. [19]

Input: The edge sequence {niei}0≤i<m of an integral convex
polygon P starting at a vertex v0, and ei ∈ Z2 primitive
vectors.
Output: Whether P is decomposable.
Step 1: Compute the set of all the integral points in P . Make
use of this set to answer queries on whether arbitrary points
in the plane belong to P . Set A−1 = ∅.

151

Step 2: For i = 0, ...,m − 2, compute the set of points in P
that are reachable via the vectors e0, ..., ei:

2.1: For each k = 1, ..., ni, if v0 + kei ∈ P , then add it
to Ai.

2.2: For each u ∈ Ai−1 and k = 0, ..., ni, if u+ kei ∈ P ,
then add it to Ai.
Step 3: Compute the last set Am−1 as follows. For each
u ∈ Am−2 and k = 0, ..., nm−1 − 1, if u + kem−1 ∈ P and
u+ kem−1 is not already in Am−1, then add it to Am−1.
Step 4: Return “Decomposable” if v0 ∈ Am−1, and “Inde-
composable” otherwise.

Theorem 1. [19] Algorithm 1 decides decomposability cor-
rectly in O(tmN) operations on two dimensional vectors with
integer coordinates. Here, t is the number of integral points
in P , m is the number of its edges, and N = max{ni}0≤i<m.

2.3 Example
Consider the polygon P consisting of the triangle T with

vertices v0 = (0, 0), v1 = (2, 0), and v2 = (2, 2). The edges
of T can be expressed using the vectors

E0 = 2 (1 0)T , E1 = 2 (0 1)T , and E2 = 2 (−1 − 1)T .

By Alg. 1, the following sequence of vector operations is
issued:

Iteration 1 Compute α0 = v0 + e0 = (1, 0) ∈ T ⇒ store
α0. Compute α1 = v0 + 2e0 = (2, 0) ∈ T ⇒ store α1.

Iteration 2 Compute β0 = v0 + e1 = (0, 1) /∈ T ⇒
discard β0. Compute β1 = v0 + 2e1 = (0, 2) /∈ T ⇒ discard
β1. Store α0 and α1. Compute β2 = α0 + e1 = (1, 1) ∈ T ⇒
store β2. Compute β3 = α0 +2e1 = (1, 2) /∈ T ⇒ discard β3.
Compute β4 = α1 + e1 = (2, 1) ∈ T ⇒ store β4. Compute
β5 = α1 + 2e1 = (2, 2) ∈ T ⇒ store β5.

Iteration 3 Store α0, α1, β2, β4, and β5. Compute
γ0 = α0 + e2 = (0,−1) /∈ T ⇒ discard γ0. Compute γ1 =
α1+e2 = (1,−1) /∈ T ⇒ discard γ1. Compute γ2 = β2+e2 =
(0, 0) ∈ T ⇒ store γ2. Compute γ3 = β4 + e2 = (1, 0) ∈ T
⇒ store γ3. Compute γ4 = β5 + e2 = (1, 1) ∈ T ⇒ store γ4.

Finally, it turns out v0 = (0, 0) is in A2, from which one
concludes that T is decomposable.

3. MEMORY PERFORMANCE ANALYSIS
Theorem 1 makes implicit the following assumptions:

Assumption 1. Given an arbitrary point in the plane, it
is assumed that the query whether or not this point belongs
to P can be answered in constant time.

Assumption 2. Redundancies in vector computations aris-
ing in any one iteration of Alg. 1 are assumed to be elimi-
nated before the start of the next iteration. It is also assumed
that one can eliminate each redundant vector computation in
constant time.

Refer to [4] for a discussion on how these assumptions can
be simulated for free in a strictly computational model such
as the RAM model. This is no longer the case, however,
if one were to address the memory access costs associated
with testing for inclusion and eliminating redundancies. We
elaborate on the implications for each of Assump. 1 and 2
and we provide an account of the memory performance of
Alg. 1 by analysing its temporal locality.

Proposition 1. Under assumptions of the ideal-cache
model, and when none of the data structures employed fits in
cache, Alg. 1 incurs O (dt/Bem) +O(tmN) I/O’s in total,
assuming worst case scenario.

Proof. We analyse each iteration i of the loop in Step 2,
whose instructions are mimicked in Step 3. A sequence of
batches of related memory accesses affecting four data struc-
tures takes place as follows. A vector point in the plane is
read from (or written to) each of the arrays Ai using two
memory accesses (corresponding to the respective vector co-
ordinates being read or written). For every vector point that
one reads from array Ai−1, one checks whether this point
is in the given polygon by reading two records from array
E (see Assump. 1 above). If the point is in the polygon,
the corresponding record in the flag matrix F is read to de-
termine whether or not the point has been written to Ai
already. If the flag is off, the corresponding record in F is
flagged as on, and the vector point is written to array Ai.
This batch of at most eight memory operations will be cru-
cial in our present proof and so we label it as B for further
use below.

We elaborate on the resulting worst-case memory perfor-
mance when none of the data structures fits in cache. The
vector points in set Ai−1 are always read contiguously. In
the worst-case analysis, new vector points will get produced
in an order such that their y coordinates follow an arbitrary
pattern in the plane. In this case, no two or more vector
points produced in succession will require records in the one
dimensional array E that are found in the same block from
E. Now, the flag matrix F is a two dimensional array, which
is typically stored in row- (or column-) major layout. Yet, in
the worst-case analysis, new vector points will get produced
in an order such that their Cartesian coordinates trace an
arbitrary pattern, so that every time a vector point is pro-
duced and its flag needs to be checked, a new block of F
needs to be accessed. Finally, all vector points which pass
the inclusion test get copied contiguously to the set Ai. We
now build the count per each iteration in Step 2 and per
Step 3. One reads at most t vector points from Ai−1. As
a result, one also produces at most tN vector points to be
tested for inclusion and redundancy. In the worst-case anal-
ysis, every such vector point requires that two new blocks
from E and F respectively be brought into the cache. When
the cache is full, the optimal replacement strategy chooses to
evict the cache line which is to be used furthest away in the
future. Following the order of operations in every batch B
defined above, such a line will be the one containing the lat-
est records retrieved from E or F , but not Ai−1 or Ai. Thus,
words in the lines belonging to Ai−1 and Ai will be consumed
entirely (and contiguously) in cache before their respective
lines are evicted, bringing the total number of I/O’s due to
the core vector computations to O(dt/Be). On the other
hand, the arbitrary memory accesses to E and F may cause
a new block from E or F to be brought into cache, for ev-
ery record needed. Since at most O(tN) new vector points
are tested for inclusion and redundancy, the total number
of I/O’s required for those tasks is O(tN). Assuming the
worst-case scenario defined per iteration is sustained in all
m iterations of Alg. 1, we obtain the total asymptotic count
in Prop. 1.

We observe the following consequent ramifications of the
proof above. Firstly, we note that memory accesses resulting

152

from the core vector computations on one hand and from
testing for inclusion and eliminating redundancies on the
other, are independent of each other. Secondly, only accesses
to the arrays {Ai} are dictated by the order of vector compu-
tations taking place, in contrast to those accesses associated
with Assump. 1 and 2, which follow a random pattern in-
dependently of the order of vector computations. We limit
ourselves in this paper to improving on the cache behaviour
associated with the core vector computations only. To do
this in isolation comes at the expense of increased vector
computations and consequently increased memory accesses
to the arrays {Ai} as a result of the following strategy: To
eliminate the effect of memory accesses associated with As-
sump. 2, we allow the redundant vector points to propagate
from one iteration to the next. Alternatively, one must seek
ways by which to predict the redundancies in vector com-
putations before they actually happen, but this option is
beyond the scope of the current work and is only slightly in-
vestigated in [3]. We eliminate the effect of memory accesses
associated with Assump. 1 by allowing more vector points
not necessarily belonging to the input polygon to propagate
from one iteration to the next. We achieve this by resorting
to a less strict inclusion test than the exact one, but which
does not require any auxiliary data structures. We label
the new test as crude, because of the way it works. Recall
that the smallest rectangle embedding our given polygon P
– call it R – is of dimensions xmax × ymax, where ymax and
xmax denote the maximum vertex coordinates in y and x
respectively, and ymin and xmin denote the minimum vertex
coordinates in y and x respectively. Consequently, we can
accept crudely that an arbitrary point (a, b) propagate to
the next iteration if it belongs to R, or that a ≤ xmax and
b ≤ ymax. We show that this does not compromise correct-
ness as follows:

Proposition 2. In Alg. 1 above, if one replaces the exact
test for inclusion in P with the crude test which decides for
inclusion within the smallest rectangle R containing P , then
the algorithm remains correct.

Proof. If the crude test accepts a point that is already
in P , then there is nothing to prove. We thus need to show
that the algorithm remains correct even if the crude test
accepts a point α = (a, b) that is in R but not in P . In
this case, if P is decomposable, we claim that we continue
to get v0 ∈ Am−1: By Thm. 16 of [19], whenever there
exists a non-trivial summand of P , Alg. 1 will detect this
summand using points already in P . Obviously, such points
get accepted by the crude test. On the other hand, if P is
indecomposable, we claim that no point in R \ P will cause
v0 to be in Am−1. To see this, let α = (a, b) ∈ R \ P be a
point that is produced (and accepted) in some iteration j.
Then α should have been found as α = v0 +

P
0≤i≤j kiei for

some j < m − 1. Suppose that further iterations produce a
vector point of the form

q = (a, b) +
X

j<i<m

kiei = v0 +
X

0≤i<m
kiei (1)

such that q = v0. This implies that we were able to ob-
tain

P
0≤i<m kiei = (0, 0) with at least one ki not equal to

zero and at least one ki not equal to ni. By Lemma 13 of
[19], this implies that a summand of P has been detected, a
contradiction, since P is indecomposable.

Thereafter, we are concerned with memory accesses trig-

gered only by the core vector computations. We begin by
re-casting the run time, space requirements, temporal local-
ity measure, and spatial locality measure of Alg. 1 using the
following assumptions:

1. The crude inclusion test is employed.

2. The redundancies are propagated.

3. The number of vector points in P is bounded loosely
from above, as a result of the worst-case scenario de-
fined by that all vector points produced in Steps 2 and
3 of Alg. 1 are accepted by the inclusion test.

Let LA(n) denote the access locality function introduced in
[8], which returns the maximal possible distance between
two records (of some array A) that are accessed within n
contiguous operations. We now have:

Proposition 3. Let N ′ = min{ni}0≤i<m and
N = max{ni}0≤i<m. In the worst-case analysis, and as-
suming all redundancies in computation are propagated and
the crude inclusion test is employed, Alg. 1 requires(

Ω(N ′
m −m) if m ≥ 2

Ω(N ′
2 −m) if m = 1.

(2)

operations and O(Nm) space. Furthermore, the algorithm
requires the following number of I/O’s in total:8><>:

Ω
“l

N′
m−m
B

m”
if m ≥ 2

Ω

„‰
N′

2−m
B

ı«
if m = 1.

(3)

Its spatial locality is characterised by the access locality func-
tion satisfying

LA(p) = p/N ′. (4)

Proof. The calculations below correspond to the worst-
case scenario, when all vector points produced turn out to
be in the polygon. We also recall that all reads and writes to
arrays {Ai} happen contiguously. Also, we consider that the
input polygon is non-trivial so thatm ≥ 3. The total number
of vector operations can be computed as follows. Recall that
ni denotes the length of edge Ei, for 0 ≤ i < m. In the
first iteration of Step 2, one produces at most C(0) = n0

vector points. In the second iteration of Step 2, one produces
at most C(1) = n1 + n0n1 points. Generally, in the i’th
iteration of Step 2, one produces at most

C(i− 1) = ni−1

+ (ni−2 + (. . .+ (n2 + (n1 + n0n1)n2) . . .)ni−2)ni−1

(5)
vector points, for i = 3, . . . ,m − 1. In Step 3 (the m’th
iteration), one produces at most

C(m− 1)
= (nm−1 − 1) · (nm−2 + (nm−3 + (. . .
+ (n2 + (n1 + n0n1)n2) . . .)nm−3)nm−2)

(6)

vector points. In the worst case, the total number of vec-
tor points produced at termination is equal to

Pm−1
i=0 C(i).

153

Write

m−1P
i=0

C(i) =
m−2P
i=0

C(i) + C(m− 1)

∈ Θ

„
m−2P
i=0

C(i)

+ nm−1 (nm−2 + (. . .+ (n2 + (n1 + n0n1)n2) . . .)nm−2))
∈ Θ (n0

+n1 + n0n1

+n2 + n1n2 + n0n1n2

...
+nm−2 + nm−3nm−2 + nm−4nm−3nm−2 + . . .

+n0n1n2 · · ·nm−2

+ nm−2nm−1 + nm−3nm−2nm−1 + . . .+ n0n1n2 · · ·nm−1) ,

where the expansions follow from (5) and (6). Rearranging
terms we get:

m−1P
i=0

C(i) ∈ Θ (n0 + n1 + . . .+ nm−2

+ n0n1 + n1n2 + . . .+ nm−2nm−1

+ n0n1n2 + n1n2n3 + . . .+ nm−3nm−2nm−1

...
+ (n0n1 . . . nm−2) + (n1n2 . . . nm−1)
+ (n0n1 . . . nm−1)) ,

Let N ′ = min{ni}0≤i<m. We can then continue as

m−1P
i=0

C(i)

∈ Ω
“

(m− 1)N ′ + (m− 1)N ′
2

+ (m− 2)N ′
3

+ . . .+ 2N ′
m−1

+N ′
m
”

= Ω
“
N ′ +N ′

2
+N ′

3
+ . . .+N ′

m

+N ′ +N ′
2

+N ′
3

+ . . .+N ′
m−1

+N ′ +N ′
2

+N ′
3

+ . . .+N ′
m−2

...

+N ′ +N ′
2

+N ′
3
+

2(N ′ +N ′
2
)
”
.

We now use the value of each of the geometric series above„Pk
j=0N

′j = N′
k+1−1
N′−1

«
and obtain:

m−1P
i=0

C(i) ∈ Ω

„„
N′
m+1−1
N′−1

− 1

«
+
“
N′
m−1

N′−1
− 1
”

+ . . .+

„
N′

4−1
N′−1

− 1

«
+ 2

„
N′

3−1
N′−1

− 1

««
.

Using N′
i+1−1
N′−1

= Θ(N ′
i

), we write N′
i+1−1
N′−1

= ciN
′i for some

positive constant ci > 0 and sufficiently large N ′, and we let
c = min{ci}2≤i≤m. We get:

m−1P
i=0

C(i)

∈ Ω
“
cmN

′m + cm−1(N ′
m−1

+ . . .+ c3N
′3 + 2c2N

′2 −m
”

∈ Ω
“
c
“
N ′

m

+N ′
m−1

+ . . .+N ′
3

+ 2N ′
2
”
−m

”
= Ω

„
c

„
N′
m+1−1
N′−1

+N ′
2 −N ′ − 1

«
−m

«
=

(
Ω(N ′

m −m) if m ≥ 2

Ω(N ′
2 −m) if m = 1

and Eq. (2) is now obtained. To determine the space com-
plexity, note that in the worst-case analysis, all vector points
generated during each iteration of Step 2 and during Step
3 are accepted by the inclusion test. The size of each array
Ai corresponds to the number of vector vector points in R
generated at the end of the i’th iteration. The largest such
set is required for Step 3, during which C(m− 1) = O(Nm)
vector points are produced and stored.

To assess temporal locality, recall that all memory accesses
to the one dimensional arrays Ai happen contiguously, and
start at the first array location. We proceed iteratively, still
assuming worst-case scenario. In the first iteration of Step
2, one writes at most n0 vector points to A0, and so has
to perform at most R(0) = dn0/Be I/O’s. In the second
iteration of Step 2, one reads at most n0 vector points, and
then writes at most (n1 + n0n1) vector points to A1. For
this, one has to perform at most

R(1) =
ln0

B

m
+
ln1 + n0n1

B

m
=

‰
C(0)

B

ı
+

‰
C(1)

B

ı
(7)

I/O’s. Continuing in this fashion, one has to perform at
most

R(i− 1) =

‰
C(i− 2)

B

ı
+

‰
C(i− 1)

B

ı
(8)

I/O’s in total, during any i’th iteration of Step 2, for i = 3,
. . ., m− 1, and at most

R(m− 1) =

‰
C(m− 2)

B

ı
+

‰
C(m− 1)

B

ı
(9)

I/O’s in total, during the m’th iteration in Step 3. Let
Q(N,m;M,B) denote the worst-case cache complexity in-
curred on an ideal-cache of size M and of cache-line length
equal to B. Then

Q(N,m;M,B) =

m−1X
i=0

R(i) =

m−1X
i=0

dC(i)/Be .

Proceeding similarly as for the calculations leading up to Eq.
(2) one obtains the worst-case cache complexity in Eq. (3)
above.

To characterise data locality, note that the algorithm is
such that one has to access t consecutive records from each
of the vector arrays Ai in order to perform at most tN and
at least tN ′ operations per one iteration of Step 2 and in
Step 3. Put differently, one needs to access at least p/N and
at most p/N ′ contiguous records of each array Ai in order
to perform p vector operations, for some p ∈ Z+. We thus
have LA(p) = p/N ′.

The implications of Prop. 3 can be informally stated as fol-
lows: The frequency within which one re-visits vector points
in the sets Ai is high with respect to computation. Specif-
ically, we do not seem to be maximising on the presence of
data in cache, as the iterative nature of the algorithm causes
points to be moved in and out of cache too often. This can
be re-phrased that there are too many jumps over the data
structure, and paves the way for a (natural) recursive refor-
mulation to which we dedicate the remainder of this paper.

4. CACHE-OBLIVIOUS POLYGON
INDECOMPOSABILITY TESTING

154

v0

β1 β0 α1 α0

β5 β4 γ0 β3 β2γ
1

γ
4

γ
3

γ
2

Figure 1: Computation tree.

4.1 The computation tree and DFS traversal
We begin by recasting the vector computations in a tree-

like fashion. In all of the following, we let Nj = nj if 0 ≤ j <
m− 1 and Nj = nj − 1 if j = m− 1. Initially, let the root of
the computation tree be v0, positioned in level 0. By Step
2.1 of Alg. 1, consider all the independent computations on
v0 given by

µi = v0 +kiei, for i = 0, . . . ,m−2, and ki = 1, . . . , Ni.
(10)

This generates level 1 of the tree where each child node of v0
corresponds to some µi defined as in (10). Thereafter, level
` ≥ 2 of the tree can be constructed using all nodes in level
`− 1 as follows. Each node µ in level `− 1 can be expressed
using the vector sum

µ = v0 +

iµX
j=0

kjej , for some iµ < m and kj = 1, . . . , Nj .

(11)
By Steps 2.2 and 3 of Alg. 1, each child node of µ in level
` will correspond to the vector

τ = µ+kjej , for j = iµ + 1, . . . ,m− 1 and k = 1, . . . , Nj .

The nodes in the sub-tree rooted at any one node µ` in level
` correspond to all vector computations that can be issued
using µ`. For ` ≥ 1, the maximum number of nodes in any
such sub-tree is given by:

n` · n`+1 · · ·nm−1 ≤ Nm−`. (12)

The bound in (12) can be derived using an argument close
to the proof of Prop. 3. Using the same example of Sect. 2.3
above, our tree structure is given in Fig. 1 and the sequence
of computations in that example:

v0, α0, α1, β0, β1, β2, β3, β4, β5, γ0, γ1, γ2, γ3, γ4

proceeds in a breadth first manner through the tree. This is
precisely why one has to keep record of all nodes computed
in any one level in order to proceed to the next, whence the
asymptotic costs in Thm. 3. However, if we were to re-cast
those same computations in a depth first fashion, benefiting
from the independence among vector computations in any
one level of the tree, we generate recursively the following
alternative sequence of computations:

v0, β0, β1, α0, γ0, β2, γ2, β3, α1, γ1, β4, γ3, β5, γ4.
(13)

This simple trick has crucial consequences: The recursive
variant is correct since it sweeps over the same number of
potential summands of the given polygon. It also has the
same work complexity, since it spans the same vector com-
putations as in the original algorithm, but with a different
pattern which still respects the dependencies between var-
ious operations. The recursive variant organises the data
without requiring knowledge of the size of the cache or cache
lines, and hence is cache-oblivious. Finally, the change in the
data structures and pattern of computations can be shown
to result in improved temporal and spatial locality. In par-
ticular, the recursive version ensures that memory addresses
across the new data structures it will require change with
step-size at most one.

We shall speak (and possibly abuse the terminology) of
a DFS-based polygon indecomposability testing algorithm
to mean a depth first generation of the computation tree,
as opposed to a breadth first generation of the same tree.
The generic results in the literature which tackle BFS work
performance as opposed to DFS (depending on the likely po-
sition of the target(s) being sought) do not carry on to our
application: The computation tree being treated is not to
be searched, but rather generated in its entirety, and so the
number of nodes to be produced (and thus“traversed”) is the
same for both types of traversal, unlike the case for a tree
search. Similarly, we caution against confusing the present
work with cache-aware or cache-oblivious BFS and DFS al-
gorithms on graphs and trees. Our goal is to analyse how
polygon indecomposability testing can be performed cache-
obliviously with the help of a natural and recursive depth
first traversal of its computation tree. The input, interme-
diary output, and final output of polygon indecomposability
testing require data structures that are different from those
required to instantiate a tree (graph) and perform a search
on it. Moreover, as we go from a breadth first to a depth first
generation of the computation tree, the data structures re-
quired to perform indecomposability testings change, which
precludes us from drawing the analogy with studies casting
cache-efficient BFS versus DFS algorithms on graphs.

In the following sections we formalise our DFS variant and
establish all the claims above.

4.2 The DFS variant
We introduce three one-dimensional arrays K, U , and V ,

each of size m, as follows: Give each node µ = v0+
Piµ
j=0 kjej

(as in (11)) of the computation tree of Sect. 4.1, we write
to array K such that K[j] = kj for each kj in the tuple
characterising µ as in (11). We also read from array U such
that U [j] = Nj for 0 ≤ j ≤ iµ (recall Nj from Sect. 4.1).
Finally, we read from array V such that V [j] contains the
coordinates in Z2 of the primitive vector ej .

Algorithm 2. Input: The edge sequence {niei}0≤i<m of
an integral convex polygon P starting at a vertex v0 where
ei ∈ Z2 are primitive vectors.
Output: Whether P is decomposable.
A. Main()

Step 1: Initialise a global vector u← v0, and a global boolean
variable b← FALSE. Call DFS-compute(0).
Step 2: Return “Decomposable” if v0 is found in any of the
leaves, and “Indecomposable” otherwise.
B. DFS-compute(j)

Step 1: K[j] = 0.
Step 2: While K[j] ≤ U [j] do:

155

2.1: If b = FALSE and j = m− 1:
Set b← TRUE and exit the loop.
// i.e. do not compute v0 + kem−1 for any given k

2.2: Compute u← u+K[j] · V [j].
2.3: If u ∈ P (or R) and j 6= m − 1: Call DFS-

compute(j + 1).
2.4: u← u−K[j] · V [j], K[j]← K[j] + 1.

4.3 Cache complexity analysis
The three arrays K, U , and V require Θ(m) space. We

begin by assessing the spatial locality of the DFS variant
using the operation graph representation (see [8]). Let each
node in the graph represent a triple (jK , jU , jV) such that
a particular vector operation is requiring access to K[jK],
U [jU] and V [jV], in succession. An edge in this graph will
connect two nodes µ = (jK , jU , jV) and µ′ = (j′K , j

′
U , j
′
V) iff

max(|jK − j′K | , |jU − j′U | , |jV − j′V |) ≤ 1. Informally speak-
ing, an edge will connect two nodes of the graph iff the index
jump in either of the three indices does not exceed 1. A close
inspection of the DFS variant shows that for any given node
µ in the graph, we have jK = jU = jV , so that it suffices to
keep track of the index jumps affecting either of the three ar-
rays, say K. Using an illustration from our example in Sect.
2.3, we trace the vector computations v0, β0, γ1, β1, and α0

in (14). We also show the associated memory accesses to
array K in Fig. 2. Because of the inherent DFS traversal,
we identify the following key characteristics:

1. C1: After each vector operation, we always either re-use
an array record, or else move to its direct neighbour.

2. C2: As a result of C1, we can traverse the entire graph
forward starting from the node [0] without any jumps in the
access of array record. This is so in the sense that such ac-
cesses progress with step-size at most one, across all records
of any one array and which are positioned in contiguous
chunks of memory.

Continuing in this fashion, one can even verify that the
two observations still hold until the algorithm produces all
vectors in (13), thus ensuring spatial locality. We prove this
claim and establish the cache complexity in Prop. 4, 5 and
6. We conclude with Corollary 1.

op 1 : K[0]← 0⇒ u← v0 + 0 · e0 = v0 Accept .
op 2 : K[1]← 0⇒ u← v0 + 0 · e0 + 0 · e1 = v0 Accept .
op 3 : K[2]← 0⇒ . . . Exceeds the bounds.
op 4 : K[1]← 1⇒ u← v0 + 0 · e0 + 1 · e1 = β0 Reject .
op 5 : K[1]← 2⇒ u← v0 + 0 · e0 + 2 · e1 = β1 Reject .
op 6 : K[1]← 3⇒ . . . Exceeds the bounds.
op 7 : K[0]← 1⇒ u← v0 + e0 = α0 Accept .
op 8 : K[1]← 0⇒ u← v0 + e0 + 0e1 = α0 Accept .

(14)

Proposition 4. Alg. 2 ensures spatial locality.

Proof. Firstly, note that this result does not get affected
by the fact that redundant vector points are propagated,
as is evident from our analysis below. Recall that we are
tracking only the sequence of writes to array K. We prove
that spatial locality is ensured by showing that, given any
input, the operation graph representation will always satisfy
the criteria C1 and C2 above. We proceed by induction on the
number of nodes in the operation graph for a given polygon
with m edges. Consider the first two nodes of the graph.
Those correspond to operations 1 and 2, causing the updates
K[0]← 0 and K[1]← 0. Clearly, criterion C1 holds. Assume
now that the first i operations in the graph satisfy C1, and

0 1 121

op 1

op 5

op 2 op 3 op 4

op 6op 7

1101

op 8

Figure 2: Operation graph representation

assume that the i’th operation causes an update on some
K[j]. We distinguish the following three cases:

• Operation i triggers a recursive call, leading to the
(i + 1)’st operation: K[j + 1] ← 0 – e.g. operations
i = 1, 2, and 7 in Fig. 2. A new edge will be added
connecting node [j] to node [j + 1], which establishes
C1 for operation i+ 1.

• Operation i triggers a return from some recursive call,
leading to the (i + 1)’st operation: K[j − 1] ← K[j −
1] + 1 – e.g. operations i = 3 and 6 in Fig. 2. A new
edge will be added connecting node [j] to node [j − 1],
which establishes C1 for operation i+ 1.

• Operation i does not trigger either a new recursive call
or a return from a recursive call, leading to the (i+1)’st
operation: K[j] ← K[j] + 1 – e.g. operations 4 and 5
in Fig. 2. A new edge will be added connecting node
[j] to itself, which establishes C1 for operation i+ 1.

This concludes the inductive proof. Criterion C2 can now be
deduced from C1.

Proposition 5. In the worst-case analysis, and assum-
ing all redundancies in computation are propagated and the
crude inclusion test is employed, Alg. 2 decides decompos-
ability correctly using

O
„

Nm

N (1−ε)B−i

«
I/O’s, (15)

where ε = dm/Be−m/B, and i = 0, . . . , B−1, assuming the
ideal-cache model. Here, i denotes the alignment parameter.

Proof. As before, we obtain worst-case scenario when
all vector points get accepted by the inclusion test. Assume
that none of the three arrays K, U , and V , fits in cache. By
Alg. 2, the total number of reads to all of the three arrays
is a constant times the total number of writes to array K.
Hence, it suffices, for our asymptotic analysis, to focus on
the sequence of writes to array K.

First, note that we write to K[s] upon each call to DFS-
compute(s), and each return from DFS-compute(s+ 1). We
will shorten expression by referring to calls to DFS-compute(s)
and returns from DFS-compute(s+ 1) as simply calls to [s]
and returns from [s+ 1] respectively. We proceed as follows:

(i) We first calculate the total number of calls to [s], and
the total number of returns from [s], for 0 ≤ s < m.

(ii) We then determine how many of such calls and returns
require I/O’s between cache and main memory.

(iii) We finally use (ii) to determine the worst-case cache
complexity of the DFS variant.

We elaborate as follows:

156

0
KK−1 K

b−1

h
0 0

h
b−1

t
b−1

ti−10

Figure 3: The blocks {Kj}b−1
j=−1

(i) We begin by calculating the total number of calls to
[s], for 0 ≤ s < m, always recalling the worst-case scenario.
By Step A.1 of Alg. 2, the number of calls to [0] is equal to
one. Upon this call, the bound on the loop in Step 2 triggers
a number of (n0 + 1) calls to [1]. Thus, the total number
of calls to [1] is equal to (n0 + 1). Similarly, upon each call
to [1], one encounters (n1 + 1) calls to [2]. Thus, the total
number of calls to [2] is equal to (n0 +1)(n1 +1). Proceeding
iteratively, one obtains that the total number of calls to [s]
is equal to

(n0 + 1) · (n1 + 1) · · · (ns−1 + 1), (16)

for 1 ≤ s < m. Note that the number of calls to each [s] is
equal to the number of returns from [s].

(ii) By Prop. 4, accesses toK happen contiguously. Hence,
not all of the writes to K resulting from the total number
of calls and returns as in (16) trigger an I/O operation be-
tween cache and main memory, and we need to determine
which of them actually do. Recall that B denotes the size of
the cache-line as well as of the block of records that can be
transferred simultaneously between cache and main memory.
We reason about array K as a list of blocks of contiguous
records. We define a head in K to be that record which,
when loaded into cache, falls at the beginning of a cache-line
boundary, and the associated tail in K to be that record
which falls at the end of that same cache-line. All the B
records starting at the head and ending at the tail make up
a full block . Contiguous records of K which occupy part (i.e.
less than B words) of a cache-line make up a partial block .

Considering all possible alignments, the first head in K,
denoted by h0, can only be one of the records at i = 0, . . .,
B−1. This fixes the alignment parameter i in the remainder
of the present discussion. The first head h0 defines the first
block K0 of B contiguous records, ending with the first tail
t0 = h0 + B − 1. Let b = dm/Be. In the worst case, array
K will be partitioned into at most b − 1 full blocks and
two partial blocks as follows. Once we have defined K0, the
remainder of the full blocks Kj , for j = 1, . . ., b − 2, are
defined by the head hj = i + jB and tail tj = hj + B − 1.
The two non-full blocks – which we label K−1 and Kb−1 –
are as follows:

• When K[0] does not fall at the beginning of a cache-
line boundary, we get the partial block K−1 of size
less than B, with (atypical1) head h−1 = 0 and tail
t−1 = i− 1.

• When K[m− 1] does not fall at the end of a cache-line
boundary, we get the partial block Kb−1 of size less
than B, with head hb−1 = i+ (b− 1)B and (atypical)
tail tb−1 = m− 1.

We now claim the following properties:

1Atypical here refers to the head not falling at the beginning
of a cache-line boundary. Analogously for the tail.

• P1: Each call to [0] or a block head requires an I/O
operation, but each call to a non-head does not.

• P2: Each return from a block head requires an I/O
operation, but each return from a non-head does not.

The proofs of P1 and P2 depend on the following rule:

Remark 1. Assuming worst-case scenario when all vec-
tor points produced get accepted by the inclusion test, the
condition in Step 2.3 of Alg. 2 will always hold true. This,
along with the DFS pattern of the computations, result in the
following:

1. A call to each [s] has to be followed by a chain of calls
up to and including the call to [m− 1], uninterrupted by any
function returns.

2. A return from each [s] has to be preceded by a chain
of returns emanating from [m − 1], uninterrupted by any
function calls.

We can prove the two properties P1 and P2 by induction on
the number of blocks. We start with P1. Consider the initial
call issued to [0]. Based on the alignment of the blocks of K
as explained above, the initial call requires access to either
K−1 or K0, depending on how K[0] is situated with respect
to a cache-line boundary:

Case (a): If K[0] falls at the beginning of a cache-line
boundary, we have K[0] = h0, in which case K0 will be
transferred to occupy one full cache-line of length B, upon
the call to [0]. We now examine each subsequent call to a
non-head [k] of block K0, for k = 1, . . ., B − 1. Because of
the DFS traversal, each such call can only follow immediately
after a sequence of calls and returns affecting the previous
records at k − 1, k − 2, . . ., k − h, for h = 1, . . ., k. But
these records belong to the local block K0. Thus, no call to
the non-head node [k] of K0 requires an I/O operation, for
all k = 1, . . ., B − 1, and so P1 holds initially.

Case (b): if K[0] does not fall at the beginning of a cache-
line boundary, we have K[0] = h−1, and a proof of the base
case can be sketched similarly to case (a) above, with K−1

instead of K0. We leave the details for the reader.
We now assume that P1 holds for the next j blocks –

i.e. that each call to the heads h1, . . ., hj requires an I/O
operation but each call to the non-heads preceding hj+1 does
not. We show that P1 is maintained for block Kj+1 – i.e.
that each call to hj+1 requires an I/O operation but each call
to the non-heads preceding hj+2 does not. A call is issued
to hj+1 only immediately after a call to the preceding tail tj
of Kj . In turn, and because of the DFS traversal, the call
to tj can only follow after a sequence of calls and returns
affecting the preceding records at hj , hj + 1, . . ., tj − 1. But
these records belong to the block Kj , which, by induction,
should have been loaded into cache the moment the call to
its head hj was issued. By the address alignment properties
of Kj , the tail of this block is found at the end of the cache-
line containing Kj . Therefore, the call to the adjacent head
hj+1 requires an I/O operation in order to load Kj+1 into
cache. One can further show, similarly to the base case, that
all calls to non-heads of block Kj+1 do not require an I/O
operation. This establishes P1.

To prove P2, we proceed by induction starting at the last
block of K and working backwards across the blocks. As-
suming worst-case scenario when all vector points produced
get accepted by the inclusion test, the first return in the
course of the algorithm is issued from [m − 1]. Depending

157

on how K[m − 1] is situated with respect to a cache-line
boundary, we have one of two cases:

Case (c): If K[m− 1] does not fall at the end of a cache-
line boundary, this record will be the tail of block Kb−1. In
this case, the return issued from [m − 1] follows only im-
mediately after a sequence of operations triggered by a call
to hb−1. By property P1 above, the call to hb−1 requires
that Kb−1 be loaded into cache, so that the first return from
[m− 1] accesses data that is already local. We now examine
each subsequent return from a non-head [k] of Kb−1, where
k = m− 2, m− 3, . . ., hb−1 + 1. By Remark 1, each such re-
turn can only follow immediately after a sequence of returns
emanating from [m − 1], [m − 2], . . ., [k + 1], which affect
records in the local block Kb−1. Thus, none of the returns
from the non-heads of Kb−1 require an I/O operation. How-
ever, the return from hb−1 requires access to the tail tb−2

of Kb−2, which, because of the alignment property of Kb−1,
is not found in the cache-line containing Kb−1. Thus, an
I/O operation is required, by which the entire block Kb−2 is
loaded into cache. With this, P2 holds initially.

Case (d): If K[m−1] falls at the end of a cache-line bound-
ary, this record will be the tail of either block Kb−2 or Kb−1

(depending on the alignment parameter i). A similar proof
of the base case can be sketched similarly to case (c) above.
We leave the details for the reader.

We now assume that P2 holds for the next penultimate j
blocks, for j < b − 1 – i.e. that each return from a head hj
requires an I/O operation, but each return from a non-head
located after hj−1 does not. We show that P2 is maintained
for block Kj−1 – i.e. that each return from the head hj−1

requires an I/O operation, but each return from a non-head
located after hj−2 does not. A return is issued from the tail
tj−1 of Kj−1 only immediately after a return from hj . By
induction, at the point of invocation of a return from hj ,
the block Kj is already in cache. By the address alignment
property of block Kj , hj is found at the beginning of the
cache-line containing this block, so that the return from hj
requires an I/O operation by which the entire block Kj−1 is
loaded into cache. No subsequent return from the non-head
nodes of block Kj−1 would then require an I/O operation.
This establishes P2.

(iii) Let Q′(N,m;M,B) denote the worst-case cache com-
plexity incurred on an ideal-cache of size M and of cache-line
length equal to B. We use (ii) to determine Q′(N,m;M,B).
Write ε = b−m/B. By Properties P1 and P2, Q′(N,m;M,B)
is obtained by summing up all the numbers of calls to and re-
turns from the block heads {hj}−1≤j<b, with the total num-
ber of calls to and returns from the first head h−1 equal to 2.
For the remaining heads, the total number of calls to each of
them (also equal to the total number of returns from each of
them) is given by (16), and by (h−1 = 0, {hj = i+ jB}0≤j<b),
we have

Q′(N,m;M,B)

< 2
“

1 +
Pb−1
j=0 (n0 + 1) (n1 + 1) . . . (ni+jB−1 + 1)

”
≤ 2

“
1 +

Pb−1
j=0 (N + 1)i+jB

”
= 2

“
1 + (N + 1)i ·Pb−1

j=0 (N + 1)jB
”

= 2
“

1 + (N + 1)i · (N+1)bB−1

(N+1)B−1

”
= Θ

“
N i · N((m/B)+ε)·B

NB

”
= Θ

“
Nm

N(1−ε)B−i

”
.

Proposition 6. In the worst-case analysis, and assum-
ing all redundancies in computation are propagated and the
crude inclusion test is employed, the spatial locality of Alg.
2 is characterised by the access locality function satisfying

LK(p) = logN′ p. (17)

Proof. As earlier, it suffices to focus on the writes to
array K. We examine each record K[m−s] of K, for s = m,
. . ., 1. Between each two consecutive updates on K[m − s],
one has to perform all the vector computations in the sub-
tree whose root corresponds to some vector µ in level m− s.
By Sect. 4.1 we know that, in the worst-case analysis, the
number of such vector computations is at most

n(m−s) · n(m−s+1) · · ·n(m−1). (18)

To perform all of these operations, only records K[m − s],
. . ., K[m−1] need to be accessed, spanning a range of length
s. The maximum such range occurs for s = m− 1, in which
case m− 1 records are accessed, in order to perform

p = n1 · n2 · · ·n(m−1) (19)

vector operations. With

(N ′)m−1 ≤ p ≤ Nm−1, (20)

it follows that one traverses a maximum range of m − 1
contiguous records of K in order to perform at least Nm−1

and at most Nm−1 vector operations. We now apply the
appropriate logarithms to bases N and N ′ respectively, and
rephrase that one needs to access at least logN p and at most
logN′ p contiguous records of array K in order to perform p
vector operations, for some p ∈ Z+. We thus have LK(p) =
logN′ p.

Corollary 1. The cache-oblivious DFS variant outper-
forms Alg. 1 with respect to spatial locality for all given poly-
gons. It outperforms Alg. 1 with respect to temporal locality
for polygons satisfying

m = O
„
N ′

m − BNm

N (1−ε)B−i

«
, (21)

where ε = dm/Be −m/B, and i = 0, . . . , B − 1.

Proof. For the spatial complexity, the claim is evident
from inspecting (4) versus (17). For the temporal locality,
recall the functions Q(N,m;M,B) and Q′(N,m;M,B) de-
noting the worst-case cache complexity depicted in (3) versus
(15) respectively. Recall that we are considering non-trivial
input polygons such that m ≥ 3. For the DFS variant to
perform asymptotically less cache misses, we require that

Nm

N (1−ε)B−i = O

N ′

m −m
B

!
,

applicable when

m = O
„
N ′

m − BNm

N (1−ε)B−i

«
.

Remark 2. We remark that the requirement in (21) is
realistic to achieve in several instances. We sketch one sce-
nario when this is possible. Take for example the case where

158

the alignment parameter i is incorporated in code such that
i = 0 (note that this can be done independently of cache pa-
rameters). Consider also the less stringent requirement on
the input size such that N ′ = Θ(N). For (1) we would re-

quire that m = O
“
Nm

“
1−

“
B/N (1−ε)B

”””
, which is very

realistic to achieve, since N grows much faster than B for
sufficiently large input polygons that one may encounter fre-
quently in practice.

5. CONCLUSION
The cache-oblivious reformulation of the polygon indecom-

posability test of [19] allows access to its data structures to
progress with step-size at most one, thus ensuring spatial
locality. Also, under conditions governing the input size and
the alignment of data, our analysis reveals that the DFS
variant achieves improved temporal locality over the original
one. The practical ramifications are significant as confirmed
through the experiments and benchmarks produced in [3].
Some issues remain to be tackled before the full scale of the
DFS variant is realised. Specifically, one needs to investigate
means to resolve the redundancies in vector computations
at a un-compelling cost. One possibility is to seek ways by
which redundant vector computations can be predicted be-
fore they actually happen. In [3], we obtain that this can
be done at least for the naive indecomposability testing al-
gorithm.

6. ACKNOWLEDGMENTS
The author thanks the Lebanese National Council for Sci-

entific Research for supporting phases of this work.

7. REFERENCES
[1] F. K. Abu Salem. An efficient sparse adaptation of the

polytope method over Fp and a record-high binary
bivariate factorisation. Journal of Symbolic
Computation, 43(5):311–341, 2008.

[2] F. K. Abu Salem, S. Gao, and A. G. B. Lauder.
Factorisation algorithms for univariate and bivariate
polynomials over finite fields. In Proc. 2004
International Symposium on Symbolic and Algebraic
Computation. ACM Press, pages 4–1, 2004.

[3] F. K. Abu Salem and R. N. Soudah. An empirical
study of cache-oblivious polygon indecomposability
testing. To appear in Computing (DOI:
10.1007/s00607-010-0086-z), 2010.

[4] F. K. Abu Salem. Brief supplement to the manuscript
on cache-oblivious polygon indecomposability testing.
Technical report (available from
www.cs.aub.edu.lb/fa21/Papers/COIrredTheor.pdf),
2010.

[5] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[6] L. Arge, M. A. Bender, E. D. Demaine,
B. Holland-minkley, and J. I. Munro. Cache-oblivious
priority queue and graph algorithm applications.
SIAM Journal on Computing, 36(6):1672–1695, 2007.

[7] L. Arge, M. de Berg, and H. Haverkort.
Cache-oblivious R-trees. In Proc. of the 21st ACM
Symposium on Computational Geometry, pages
170–179, 2005.

[8] M. Bader and C. Zenger. Cache oblivious matrix
multiplication using an element ordering based on the
Peano curve. In Proc. PPAM 2006, pages 1042–1049,
2006.

[9] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A
locality-preserving cache-oblivious dynamic dictionary.
In Proc. of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 29–38, 2002.

[10] M. A. Bender, M. Farach-colton, J. T. Fineman,
T. Fogel, B. C. Kuszmaul, and J. Nelson.
Cache-oblivious streaming B-trees. In Proc. of the 19th
ACM Symposium on Parallelism in Algorithms and
Architectures, pages 81–92, 2007.

[11] M. A. Bender, M. Farach-colton, and B. C. Kuszmaul.
Cache-oblivious string B-trees. In Proc. of the 25th
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 223–242, 2006.

[12] G. S. Brodal and R. Fagerberg. Funnel heap – a cache
oblivious priority queue. In Proc. of the 13th
International Symposium on Algorithms and
Computation, pages 219–228, 2002.

[13] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache
oblivious search trees via binary trees of small height.
In Proc. of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 39–48, 2002.

[14] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 1999.

[15] J. D. Frens and D. S. Wise. Auto-blocking
matrix-multiplication, or tracking BLAS3 performance
from source code. SIGPLAN Not., 32:206–216, 1997.

[16] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005.

[17] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 285–297,
1999.

[18] M. Frigo and V. Strumpen. Cache oblivious stencil
computations. In Proc. of the 19th ACM International
Conference on Supercomputing, pages 361–366, 2005.

[19] S. Gao and A. G. B. Lauder. Decomposition of
polytopes and polynomials. Discrete and
Computational Geometry, 26:89–104, 2001.

[20] B. Grünbaum. Convex Polytopes. John Wiley and
Sons, 1967.

[21] R. E. Ladner, R. Fortna, and B.-H. Nguyen. A
comparison of cache aware and cache oblivious static
search trees using program instrumentation. In
Experimental Algorithmics, From Algorithm Design to
Robust and Efficient Software, pages 78–92, 2002.

[22] R. C. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimizations of software and
the ATLAS project. Parallel Computing, 27(1–2):3–35,
2001.

[23] D. S. Wise, C. L. Citro, J. J. Hursey, F. Liu, and
M. A. Rainey. A paradigm for parallel matrix
algorithms: Scalable Cholesky. In Euro-Par 2005,
pages 687–698, 2005.

159

Parallel Sparse Polynomial Interpolation over Finite Fields ∗

Seyed Mohammad Mahdi Javadi
School of Computing Science

Simon Fraser University
Burnaby, B.C. Canada.

sjavadi@cecm.sfu.ca.

Michael Monagan
Department of Mathematics

Simon Fraser University
Burnaby, B.C. Canada.

mmonagan@cecm.sfu.ca.

ABSTRACT
We present a probabilistic algorithm to interpolate a sparse
multivariate polynomial over a finite field, represented with
a black box. Our algorithm modifies the algorithm of Ben-
Or and Tiwari from 1988 for interpolating polynomials over
rings with characteristic zero to characteristic p by doing
additional probes.

To interpolate a polynomial in n variables with t non-zero
terms, Zippel’s (1990) algorithm interpolates one variable at
a time using O(ndt) probes to the black box where d bounds
the degree of the polynomial. Our new algorithm does O(nt)
probes. It interpolates each variable independently using
O(t) probes which allows us to parallelize the main loop
giving an advantage over Zippel’s algorithm.

We have implemented both Zippel’s algorithm and the
new algorithm in C and we have done a parallel implementa-
tion of our algorithm using Cilk [2]. In the paper we provide
benchmarks comparing the number of probes our algorithm
does with both Zippel’s algorithm and Kaltofen and Lee’s
hybrid of the Zippel and Ben-Or/Tiwari algorithms.

Categories and Subject Descriptors:
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms

General Terms: Algorithms, Theory.

Keywords: sparse polynomial interpolation, parallel inter-
polation algorithms, Ben-Or Tiwari.

1. INTRODUCTION
Let p be a prime and let f ∈ Zp[x1, . . . , xn] be a multi-

variate polynomial with t > 0 non-zero terms which is rep-
resented with a black box Znp → Zp. On input (α1, . . . , αn) ∈
Znp , the black box evaluates and outputs f(x1 = α1, . . . , xn =
αn). Given also a degree bound d on the degree of f , our goal
is to interpolate the polynomial f with minimum number of
evaluations (probes to the black box).

∗This work was supported by NSERC of Canada and the
MITACS NCE of Canada

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

Sparse interpolation is a key part of many algorithms in
computer algebra such as polynomial GCD computation [17,
7, 13] over Z. Here one computes the GCD modulo p where
p is chosen to be a machine size prime. We are interested in
algorithms whose computational complexity is polynomial
in t, n, d and log p. In 1979 Richard Zippel presented the
first such algorithm. Zippel’s algorithm is probabilistic. It
relies heavily on the assumption that if a polynomial is zero
at a random evaluation point, then it is the zero polynomial
with high probability. Zippel’s algorithm interpolates f one
variable at a time, sequentially. It makes O(ndt) probes
to the black box. In 1990, Zippel in [18] improved his 1979
algorithm to use evaluation points of the form (αi1, . . . , α

i
k) ∈

Zkp so that the linear systems to be solved become transposed
Vandermonde systems which can be solved in O(t2) time
instead of O(t3) – see [8].

In 1988, Ben-Or and Tiwari [1] presented a determin-
istic algorithm for interpolating a multivariate polynomial
with integer, rational, real or complex coefficients. Given
a bound T on the number of terms t of the polynomial f ,
the algorithm evaluates the black box at powers of the first
n primes; it evaluates at the points (2i, 3i, 5i, . . . , pin) for
0 ≤ i < 2T . If Mj(x1, . . . , xn) are the monomials of the t
non-zero terms of f , it then uses Berlekamp/Massey algo-
rithm [12] from coding theory to find the monomial evalua-
tions Mj(2, 3, 5, . . . , pn) for 1 ≤ j ≤ t and then determines
the degree of each monomial Mj in xk by trial division of
Mj(2, 3, 5, . . . , pn) by pk. This algorithm is not variable by
variable. Instead, it interpolates the polynomial f with 2T
probes to the black box which can all be computed in paral-
lel. The major disadvantage of the Ben-Or/Tiwari algorithm
is that the evaluation points are large (O(T logn) bits long
− see [1]) and computations over Q encounter an expression
swell which makes the algorithm very slow. This problem
was addressed by Kaltofen et al. in [9] by running the algo-
rithm modulo a power of a prime of sufficiently large size;
the modulus must be greater than maxjMj(2, 3, 5, . . . , pn).

In [6], Huang and Rao describe how to make the Ben-
Or/Tiwari approach work over finite fields GF(q) with at
least 4t(t − 2)d2 + 1 elements. Their idea is to replace the
primes 2, 3, 5, . . . , pn in Ben-Or/Tiwari by linear (hence ir-
reducible) polynomials in GF(q)[y]. Their algorithm is Las
Vegas and does O(dt2) probes. Although the authors dis-
cuss how to parallelize the algorithm, the factor of t2 may
limit this approach.

In 2000, Kaltofen et al. in [10, 11] design a hybrid algo-
rithm, a hybrid of the Zippel and Ben-Or Tiwari algorithms,
which they call a “racing algorithm”. To reduce the number

160

of probes when interpolating the next variable in Zippel’s
algorithm, their algorithm runs a Newton interpolation and
a univariate Ben-Or/Tiwari simultaneously, stopping when
the first succeeds. However, this further sequentializes the
algorithm. In Section 5, we compare the number of probes
made by this algorithm to our new algorithm.

In 2009, Giesbrecht, Labahn and Lee in [4] present two
new algorithms for sparse interpolation for polynomials with
floating point coefficients. The first is a modification of the
Ben-Or/Tiwari algorithm that uses O(t) probes. In princi-
ple, this algorithm can be made to work over finite fields
GF (q) for applications where one can choose q. One needs
q − 1 to have n distinct prime factors all > d. One would
also need q − 1 to have no large prime factors so that the
discrete logarithms needed could be done efficiently using
the Pohlig-Hellman algorithm [14]. We have not explored
the feasibility of this approach.

Our approach for sparse interpolation over Zp is to use
evaluation points of the form (αi1, . . . , α

i
n) ∈ Znp and modify

the Ben-Or/Tiwari algorithm to do extra probes to deter-
mine the degrees of the variables in each monomial in f .
We do a factor of at most 2n more evaluations in order to
recover the monomials from their images. A motivation for
our new algorithm is to use the Ben-Or/Tiwari approach in
modular algorithms (e.g. GCD computations in characteris-
tic 0 – see [7]) where the prime p is chosen to be a machine
prime so that arithmetic in Zp is efficient.

Our paper is organized as follows. In Section 2 we present
an example showing the main flow and the key features of
our algorithm. We then identify possible problems that can
occur and how the new algorithm deals with them in Sec-
tion 3. In Section 4 we present our new algorithm and ana-
lyze its sequential time complexity. Finally, in Section 5 we
compare the C implementations of our algorithm and Zip-
pel’s algorithm with the racing algorithm of Kaltofen and
Lee [11] on various sets of polynomials.

2. THE IDEA AND AN EXAMPLE
Let f =

Pt
i=1 aiMi ∈ Zp[x1, . . . , xn] be the polynomial

represented with the black box with ai ∈ Zp\{0}. Here t is
the number of non-zero terms in f . Mi = xei1

1 ×xei2
2 ×· · ·×

xein
n is the i’th monomial in f where Mi 6= Mj for i 6= j.

Let d ≥ deg f be a bound on the degree of f so that eij ≤ d
for all 1 ≤ i, j ≤ n.

We demonstrate our algorithm on the following example.
Here we use x, y and z for variables instead of x1, x2 and x3.

Example 1 Let f = 91yz2 + 94x2yz + 61x2y2z + 42z5 + 1
and p = 101. Given the number of terms t = 5, the number
of variables n = 3, a degree bound d = 5 and the black box
that computes f , we want to find f .

The first step is to pick n = 3 generators α1, α2, α3 of Z∗p.
We evaluate the black box at the points β0, . . . , β2t−1 where
βi = (αi1, α

i
2, . . . , α

i
n). Thus we make 2t probes to the black

box. The reason to use generators instead of random values
from Zp is that it decreases the probability of two distinct
monomials having the same evaluation. For our example,
let the generators be α1 = 66, α2 = 12 and α3 = 3 and let
vi be the output of the black box on input βi and let V =
(v0, . . . , v2t−1). In this example we obtain

V = (87, 78, 65, 41, 49, 38, 87, 29, 23, 86).

Now we use the Berlekamp/Massey algorithm [12] (See [10]
for a more accessible reference). The input to this algorithm
is a sequence of elements b0, b1, . . . , b2t−1, . . . where bi ∈ Zp.
The algorithm computes a linear generator for the sequence,
i.e. the univariate polynomial Λ(z) = zt−λt−1z

t−1−· · ·−λ0

such that

bt+i = λt−1bt+i−1 + λt−2bt+i−2 + · · ·+ λ0bi

for all i ≥ 0. In our example the input is V = (v0, . . . , v2t−1)
and the output is

Λ1(z) = z5 + 28z4 + 62z3 + 54z2 + 11z + 46.

The next step is to find the roots of Λ1(z). We know (see [1])
that this polynomial is the product of exactly t = 5 linear
factors. The roots are r1 = 1, r2 = 7, r3 = 41, r4 = 61 and
r5 = 64. Ben-Or and Tiwari prove that for each 1 ≤ i ≤ t,
there exists 1 ≤ j ≤ t such that

mi = Mi(α1, . . . , αn) ≡ rj mod p.

The main step now is to determine the degrees of each mono-
mial in f in each variable. Consider the first variable x. Let
αn+1 be a new random generator of Z∗p. In this example we
choose α4 = 34. This time we choose the evaluation points
β′0, . . . , β

′
2t−1 where β′i = (αin+1, α

i
2, . . . , α

i
n). Note that this

time we are evaluating the first variable at powers of αn+1

instead of α1. We evaluate the black box at these points
and apply the Berlekamp/Massey algorithm on the sequence
of the outputs to compute the linear generator for the new
sequence

Λ2 = z5 + 45z3 + 54z2 + 60z + 42.

Let r̄1, . . . , r̄5 be distinct roots of Λ2.
We know that Mi(αn+1, α2, . . . , αn) is a root of Λ2 for 1 ≤
i ≤ n. On the other hand we have

Mi(αn+1, α2, . . . , αn)

Mi(α1, α2, . . . , αn)
= (

αn+1

α1
)
ei1
. (1)

Let rj = Mi(α1, α2, . . . , αn) and r̄k = Mi(αn+1, α2, . . . , αn).
From Equation 1 we have

r̄k = rj × (
αn+1

α1
)
ei1
,

i.e. for every root rj of Λ1, rj × (
αn+1
α1

)
ei1 is a root of Λ2

for some ei1 which is the degree of some monomial in f
with respect to x. This gives us a way to compute the degree
of each monomial Mi in the variable x. In this example we
have

αn+1
α1

= 25. We start with the first root of Λ1 and check

if r1 × (
αn+1
α1

)
i

is a root of Λ2 for 0 ≤ i ≤ d. For r1 = 1 we

have that r1 × (
αn+1
α1

)
0

is a root of Λ2 and for 0 < i ≤ d,

r1 × (
αn+1
α1

)
i

is not a root of Λ2, hence we conclude that the
degree of the first monomial of f in x is 0. We continue this
to find the degrees of all the monomials in f in the variable
x. We obtain

e11 = 0, e21 = 0, e31 = 0, e41 = 2, e51 = 2.

We proceed to the next variable y. This time we evaluate the
black box at β′′0 , . . . , β

′′
2t−1 where β′′i = (αi1, α

i
n+1, α

i
3, . . . , α

i
n)

and apply the Berlekamp/Massey algorithm on the sequence
of the outputs to compute

Λ3 = z5 + 5z4 + 27z3 + 36z2 + 93z + 40

161

the linear generator for the new sequence. Let r̃1, . . . , r̃5

be distinct roots of Λ3. Again using the same approach as
above, we find that the degrees of the monomials in the sec-
ond variable y to be

e12 = 0, e22 = 1, e32 = 0, e42 = 2, e52 = 1.

Finally we proceed to the last variable z. This time we eval-
uate z at powers of αn+1 instead of α3 and compute the fol-
lowing linear generator for the sequence of outputs obtained
by probing the black box

Λ4 = z5 + 27z4 + 99z3 + 18z2 + 16z + 41.

We compute the degrees with the same technique and obtain

e13 = 0, e23 = 2, e33 = 5, e43 = 1, e53 = 1.

The reader may observe that determining the degrees of
the monomials Mi in each variable represent n independent
tasks which can therefore be done in parallel. At this point we
have computed all the monomials. Recall that Mi = xei1

1 ×
xei2

2 × · · · × xein
n hence we have

M1 = 1,M2 = yz2,M3 = z5,M4 = x2y2z and M5 = x2yz.

Now we need to compute the coefficients. We do this by
solving one linear system of equations. We computed the
roots of Λ1 and we have computed the monomials such that
Mi(α1, . . . , αn) = ri. Recall that vi is the output of the black
box on the input βi = (αi1, . . . , α

i
n) hence we have

vi = a1r
i
1 + a2r

i
2 + · · ·+ atr

i
t

for 0 ≤ i ≤ 2t−1. Note that the system of equations obtained
from the above set of equations is a Vandermonde system
which can be solved in O(t2) time and O(t) space (See [18]).
After solving we obtain

a1 = 1, a2 = 91, a3 = 42, a4 = 61 and a5 = 94

and hence f = 1 + 91yz2 + 42z5 + 61x2y2z + 94x2yz is
interpolated and we are done.

3. PROBLEMS
The evaluation points α1, . . . , αn, αn+1 must satisfy cer-

tain conditions for our new algorithm to work properly. Here
we identify all problems.

3.1 Distinct Monomials
The first condition is that for i 6= j

Mi(α1, . . . , αn) 6= Mj(α1, . . . , αn) in Zp

so that deg(Λ1(z)) = t. Also, at the k’th step of the algo-
rithm, when computing the degrees of the monomials in xk,
we must have

∀ 1 ≤ i 6= j ≤ t, mi,k 6= mj,k in Zp

where mi,k = Mi(α1, . . . , αk−1, αn+1, αk+1, . . . , αn) so that
deg(Λk+1(z)) = t. To reduce the probability of monomial
evaluations colliding, we pick αi to have order > d. The
easiest way to do this is to use generators of Z∗p. There are
φ(p− 1) generators where φ is Euler’s totient function. We
now give an upper bound on the probability that no mono-
mial evaluations collide when we use generators for evalua-
tions.

Theorem 1 Let α1, ..., αn be generators from Zp chosen at
random and let mi = Mi(α1, . . . , αn). Then the probability
that two or more monomials evaluate to the same value (we
get a collision) is

≤

t

2

!
d

φ(p− 1)
<

dt2

2φ(p− 1)
.

Proof. Consider the polynomial

A =
Y

1≤i<j≤t
(Mi(x1, . . . , xn)−Mj(x1, . . . , xn)) .

Observe that A(α1, . . . , αn) = 0 iff two monomial evalua-
tions collide. Recall that the Schwartz-Zippel lemma ([16,
17]) says that if r1, . . . , rn are chosen at random from any
subset S of a field K and F ∈ K[x1, . . . , xn] is non-zero then

Prob(F (r1, . . . , rn) = 0) ≤ deg f

|S| .

Our result follows from noting that d ≥ deg f and thus
degA ≤ `t

2

´
d and |S| = φ(p − 1), the number of primitive

elements in Zp.

3.2 Root Clashing
Let r1, . . . , rt be the roots of Λ1(z) which is the output

of the Berlekamp/Massey algorithm on the sequence of the
outputs from the black box on the first set of evaluation
points α1, . . . , αn. Suppose at the k’th step, we want to
compute the degrees of all the monomials in the variable xk.
As mentioned in the Example 1, the first step is to compute
Λk+1. Then if degxk

(Mi) = eik we have r̄i = ri × (
αn+1
αk

)eik

is a root of Λk+1. If ri× (
αn+1
αk

)e
′
, 0 ≤ e′ 6= eik ≤ d is also a

root of Λk+1 then we may not be able to uniquely identify
the correct degree of the i’th monomial in the k’th variable
xk. We will illustrate this with an example.

Example 2 Consider the polynomial given in Example 1.
Suppose instead of choosing α4 = 34, we choose α4 = 72
which is another generator of Z∗p. Since α1, α2 and α3 are
the same as before, Λ1 does not change and hence the roots
of Λ1 are r1 = 1, r2 = 7, r3 = 41, r4 = 61 and r5 = 64.
In the next step we substitute α4 = 72 for α1 and compute
Λ2 = z5 + 61z4 + 39z3 + 67z2 + 37z + 98. We proceed to
compute the degrees of the monomials in x but we find that

r4 × (
α4

α1
)2 = 15 and r4 × (

α4

α1
)4 = 7

are both roots of Λ2 and hence we can not decide the correct
degree of the last monomial in x.

Theorem 2 If deg Λ1(z) = deg Λk+1(z) = t then the prob-
ability that we cannot uniquely compute the degrees of all

Mi(x1, . . . , xn) in xk is at most d2t2

4φ(p−1)
.

Proof. Let Si = {rj × (
αn+1
αk

)i | 1 ≤ j ≤ t} for 0 ≤
i ≤ d. We assume that ri 6= rj for all 1 ≤ i 6= j ≤ t. We
will not be able to uniquely identify the degree of the j’th

monomial in xk if there exists d̄ such that rj × (
αn+1
αk

)d̄ = r̄i
is a root of Λk+1(z) and 0 ≤ d 6= ejk ≤ d where ejk is
degxk

(Mj). But we have r̄i = ri × (
αn+1
αk

)eik thus rj ×
(
αn+1
αk

)d̄ = ri×(
αn+1
αk

)eik . Without loss of generality, assume

d̃ = d̄ − eik > 0. We have ri = rj × (
αn+1
αk

)d̃ and hence

162

ri ∈ Sd̃ ⇒ S0 ∩ Sd̃ 6= ∅. Hence we will not be able to
compute the degrees in xk if S0 ∩Si 6= ∅ for some 1 ≤ i ≤ d.
Let

g(x) =
Y

1≤l 6=j≤t
(rjx

i − rlαik).

We have rl = rj × (
αn+1
αk

)i ∈ S0 ∩ Si iff g(αn+1) = 0. Using

the Schwartz-Zippel lemma, the probability that g(αn+1) =

0 is at most deg g
φ(p−1)

=
(t
2)i

φ(p−1)
< it2

2φ(p−1)
. If we sum this quan-

tity for all 1 ≤ i ≤ d we obtain that the overall probability

is at most d2t2

4φ(p−1)
.

Using Theorem 2, the probability that we will not be able
to uniquely identify the degrees of the monomials in all the

variables is at most nd2t2

4φ(p−1)
, i.e. for p, s.t. φ(p− 1) > nd2t2

2

with probability at least half, the algorithm succeeds with-
out dealing with any problem. We will now discuss our solu-
tion to this problem. Note that we assume the images of the
monomials are distinct, i.e. ∀ 1 ≤ i 6= j ≤ t, mi,k 6= mj,k.
Suppose we have computed Λk+1 and we want to compute
the degrees of the monomials in xk and let R1 = {r1, . . . , rt}
be the set of all the roots of Λ1 and Rk = {r̄1, . . . , r̄t} be
the set of all the distinct roots of Λk+1. Let

Dj = {(i, r) | 0 ≤ i ≤ d, r = rj × (
αn+1

α1
)i ∈ Rk}.

Dj contains the set of all possible degrees of the j’th mono-
mial Mj in the k’th variable xk. We know that (ejk, r̄j) ∈ Dj
and hence |Dj | ≥ 1. If |Dj | = 1 for all 1 ≤ j ≤ t, then the
degrees are unique and this step of the algorithm is complete.
Let Gk be a balanced bipartite graph defined as follows. Gk
has two independent sets of nodes U and V each of size t.
Nodes in U and V represent elements in R1 and Rk respec-
tively, i.e. ui ∈ U and vj ∈ V are labeled with ri and r̄j . We
connect ui ∈ U to vj ∈ V with an edge of weight (degree)
dij if and only if (dij , r̄j) ∈ Di.
Lemma 1 We can uniquely identify the degrees of all the
monomials in xk, if and only if the bipartite graph Gk has a
unique perfect matching.

The proof of this lemma is immediate by looking at the
structure of the graph Gk. We illustrate with an example.

Example 3 Let f be the polynomial given in Example 1 and
suppose for some evaluation points α1, . . . , α4 we obtain the
graph G1 as shown in Figure 1. This graph has a perfect
matching, i.e. the set of edges {(ri, r̄i) | 1 ≤ i ≤ 5}. If there
was an edge connecting r1 to r̄2 then the new graph would
no longer have a unique perfect matching and we would fail
to uniquely compute the degrees of monomials in x.

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

0 4 0 3 0

5
5

2

2

Figure 1: The bipartite graph G1

We now give a solution for the case where Gk does not
have a unique perfect matching for some 1 ≤ k ≤ n. The
solution involves 2t more probes to the black box. Suppose
we choose a random element αn+2 ∈ Zp such that γ =

αn+2
αn+1

is a generator of Z∗p (or is of order greater than d). Let

βi = (αi1, . . . , α
i
k−1, α

i
n+2, α

i
k+1, . . . , α

i
n) and let vi be the

output of the black box on input βi (0 ≤ i ≤ 2t − 1). On
input V = (β0, . . . , β2t−1), the Berlekamp/Massey algorithm
computes a linear generator Λ′k+1(z) for V . Let {r̃1, . . . , r̃t}
be the set of distinct roots of Λ′k+1. Let G′k be the balanced
bipartite graph, obtained from Λ1 and Λ′k+1.

Definition 1. We define Ḡk, the intersection of G′k and
Gk, as follows. Ḡk has the same nodes as G′k and there is an
edge between ri and r̃j with weight (degree) dij if and only
if ri is connected to r̄j in Gk and to r̃j in G′k, both with the
same degree dij .

Lemma 2 Let eij = degxj
(Mi). The two nodes ri and r̃i

are connected in Ḡk with degree eij.

We take advantage of the following theorem which implies
we need at most one extra set of probes.

Theorem 3 Let Ḡk = Gk ∩ G′k. Ḡk has a unique perfect
matching.

Proof. Let U and V be the set of independent nodes in
Ḡk such that ui ∈ U and vj ∈ V are labeled with ri and
r̃j respectively where r̃j is a root of Λ′k+1. We will prove
that each node in V has degree exactly 1 and hence there
is a unique perfect matching. The proof is by contradiction.
Suppose the degree of vj ∈ V is at least 2. With out loss of
generality assume that r1 and r2 are both connected to r̃j
with degrees d1j and d2j respectively (See Figure 2).

1r 2r

rj

2j
d

1j
d

~

Figure 2: Node r̃j of graph Ḡk

Using Definition 1 we have

r̄j = r1 × (
αn+1

αk
)d1j = r2 × (

αn+1

αk
)d2j and

r̃j = r1 × (
αn+2

αk
)d1j = r2 × (

αn+2

αk
)d2j .

Dividing the two sides of these equations results in

(
αn+2

αn+1
)d1j = (

αn+2

αn+1
)d2j .

Since we chose αn+2 such that
αn+2
αn+1

has a sufficiently large

order (greater than the degree bound d) we have d1j = d2j ⇒
r1 = r2. But this is a contradiction because both r1 and r2

are roots of Λ1 which we assumed are distinct.

Lemma 2 and Theorem 3 prove that the intersection of Gk
and G′k will give us the correct degrees of all the monomials
in the k’th variable xk. We will illustrate with an example.

163

Example 4 Let f = −10 y3 − 7x2yz − 40 yz5 + 42 y3z5 −
50x7z2+23x5z4+75x7yz2−92x6y3z+6x3y5z2+74xyz8+4
and p = 101. We choose the first set of evaluation points
to be α1 = 66, α2 = 11, α3 = 48 and α4 = 50. For the first
variable x we will obtain the bipartite graph G1 shown in
Figure 3.

2
r

3
r

4
r

5
r

6
r

8
r

9
r

10
r

11
r

1
r

7
r

2
r

3
r

4
r

5
r

6
r r r r r

11
r

1
r

0

7 8 9 10

5 1 0 0 3 72 6 7

3 9

34

10

0

2 9 3 8
6 1

Figure 3: The bipartite graph G1

This graph does not have a unique perfect matching, so we
proceed to choose a new evaluation point α5 = 89. This time
we will get the bipartite graph G′1 shown in Figure 4.

2
r

3
r

4
r

5
r

6
r

8
r

9
r

10
r

11
r

1
r

7
r

2
r

3
r

4
r

5
r

6
r r r r r

11
r

1
r

0

7 8 9 10

5 1 0 0 3 72

6 0

7

664

7

5

13

1 8

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Figure 4: The bipartite graph G′1

Again G′1 does not have a unique perfect matching. We com-
pute the intersection of G1 and G′1: Ḡ1 = G1 ∩ G′1. Ḡ1 is
shown in Figure 5.

2
r

3
r

4
r

5
r

6
r

8
r

9
r

10
r

11
r

1
r

7
r

2
r

3
r

4
r

5
r

6
r r r r r

11
r

1
r

0

7 8 9 10

5 1 0 0 3 72 6 70

~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~

Figure 5: The bipartite graph Ḡ1

As stated by Theorem 3, Ḡ1 has a unique perfect matching
and the degree of every monomial in x is correctly computed.

In this section we proved that if the prime p is sufficiently
large (φ(p− 1) must be approximately dt2 for us to be able
to get distinct images of monomials with reasonable prob-
ability), we will be able to compute the degrees of all the
t monomials in each variable xk using up to 4t evaluation
points. If the graph Gk has a unique perfect matching, we
will be able to compute the degrees in xk with only 2t probes
to the black box.

We conclude this section with the following lemma which we
will later use in Section 4.

Lemma 3 Let Gk be the bipartite graph for the k’th vari-
able. Let ui1 → vj1 → ui2 → vj2 → · · · → vjs → ui1 be a
cycle in Gk where ul ∈ U is labeled with rl (a root of Λ1)
and vm ∈ V is labeled with r̄m (a root of Λk+1). Let dlm be
the weight (degree) of the edge between ul and vm. We havePs
m=1 dimjm −

Ps
m=1 dim+1jm = 0.

Proof. It is easy to show that ri1 = (
αn+1
αk

)d̄ris where

d̄ = di1j1 − di2j1 + di2j2 − di3j2 + · · · + dis−1js−1 − disjs−1 .
Also both ui1 and uis are connected to vjs in Gk hence we
have ri1 = (

αn+1
αk

)di1js r̄is and ris = (
αn+1
αk

)disjs r̄is . These

three equations yield to ri1 = (
αn+1
αk

)d̃ri1 where d̃ = di1j1 −
di2j1 +di2j2 −di3j2 + · · ·+dis−1js−1 −disjs−1 +disjs −di1js .

But if
αn+1
αk

is of sufficiently high order, d̃ must be zero thusPs
m=1 dimjm −

Ps
m=1 dim+1jm = 0.

Example 5 In G′1 shown in Figure 4, there is a cycle r3 →
r̃4 → r7 → r̃7 → r3. The weights (degrees) of the edges in
this cycle are as 7, 3, 0 and 4. We have 7− 3 + 0− 4 = 0.

4. THE ALGORITHM
Algorithm: Interpolation
Input: A black box B : Znp → Zp that on input α1, . . . , αn ∈ Znp

outputs f(α1, . . . , αn) where f ∈ Zp[x1, . . . , xn].
Input: A degree bound d ≥ deg(f).
Input: A bound T ≥ t on the number of terms in f .
Output: The polynomial f or FAIL.

1: Choose n+ 1 generators α1 6= . . . 6= αn+1 of Z∗p randomly.
2: repeat choose γ to be a random generator of Z∗p and let

αn+2 = αn+1 × γ until αn+2 /∈ {α1, . . . , αn+1}.
3: Let βi = (αi1, . . . , α

i
n) for 0 ≤ i ≤ 2T − 1.

4: for k from 1 to n+ 1 in parallel do
5: Compute Λk(z):
6: Compute vi = B(βi) for 0 ≤ i ≤ 2t− 1 using αin+1 instead

of αik−1 when k > 1.

7: Use the Berlekamp/Massey algorithm to compute a linear
generator Λk ∈ Zp[z] for the sequence v0, . . . , v2t+1.

8: end for
9: Set t = max(deg Λ1(z), . . .Λn+1(z)). If the degree of the Λ’s

are not all equal to t then repeat steps 1 through step 8 once.
If this does not yield equal degree Λ’s then (p is likely too
small so) return FAIL.

10: Compute {r1, . . . , rt} the set of distinct roots of Λ1(z).
11: for k from 1 to n in parallel do
12: Determine degxk

(Mi) for 1 ≤ i ≤ t:
13: Construct the graph Gk as described in Section 3.
14: if Gk has a unique perfect matching then
15: Set eik = dil where dil is the weight (degree) of the edge

that matches the node ri to r̄l in the perfect matching.
16: else
17: Construct the graph G′k as described in Section 3.

Note, this requires 2t more probes to B.
18: Find the intersection of Gk and G′k: Ḡk = Gk ∩G′k.
19: Set eik = dil where dil is the weight (degree) of the edge

that matches the node ri to r̃l in the perfect matching
of graph Ḡk.

20: end if
21: end for
22: Let S = {a1ri1 + a2ri2 + · · · + atrit = vi | 0 ≤ i ≤ 2t′ − 1}.

Solve the linear system S for (a1, . . . , at) ∈ Ztp.

23: Let g =
Pt
i=1 aiMi where Mi =

Qn
j=1 x

eij

j .

24: Pick non-zero a1, . . . , an from Zp at random.
If B(a1, . . . , an) 6= g(a1, . . . , an) then return FAIL.

25: return g.

Remark 1 The algorithm is probabilistic. If the degrees of
the Λ′s are all equal to t then the algorithm will compute f
with probability 1. If the degrees of the Λ′s are all equal but
less than t then the algorithm cannot compute f ; that is, g 6=
f . The check in step 24 detects incorrect g with probability
at least 1 − d/(p − 1) (the Schwartz-Zippel lemma). Thus
by doing one additional probe to the black box, we verify
the output g with high probability. Kaltofen and Lee in [11]
also use additional probes to verify the output this way.

164

Remark 2 For simplicity, our presentation of the algorithm
assumes the term bound T is good. In applications where a
good term bound is not available, one should first compute
Λ1(z) using T , and then use t = deg Λ1(z) when computing
Λ2, . . . ,Λn+1.

4.1 Complexity Analysis
We now discuss the sequential complexity of the algorithm

assuming t = T . We need to consider the cost of probing the
black box. Let E(n, t, d) be the cost of one probe to the black
box. If Gk has a unique perfect matching for 1 ≤ k ≤ n then
we can correctly compute the degrees using only Gk. In this
case the total number of probes is 2(n+1)t in the first loop.
In the worst case where Gk does not have a unique perfect
matching for all 1 ≤ k ≤ n, we need to do additional 2nt
probes to the black box in the second loop to construct all
G′k graphs. In this case the total number of probes to the
black box is 2(n + 1)t + 2nt = 2(2n + 1)t. Hence the total
cost of probes to the black box is O(ntE(n, t, d)).
The n + 1 calls to the Berlekamp/Massey algorithm in the
first loop (as presented in [10]) cost O(t2) time each. The
Vandermonde system of equations at Step 22 can be solved
in O(t2) using the technique given in [18]. Note that as
mentioned in [18], when inverting a t×t Vandemonde matrix
defined by k1, . . . , kt, one of the most expensive parts of
this technique is to compute the master polynomial M(z) =Qt
i=1(z−ki). However, in our algorithm we can use the fact

that M(z) =
Qt
i=1(z − ri) = Λ1(z).

To compute the roots of Λ1(z) at Step 10 of the algorithm,
we use Rabin’s Las Vegas algorithm [15]. If f ∈ Zp[z]
is a product of linear factors, Rabin’s algorithm tries to
split it into two factors of lower degree by computing the
gcd((z − β)(p−1)/2 − 1,Λ1(z)) for randomly chosen β ∈ Zp.
Since degz(Λ1) = t, the cost of finding the t roots of Λ1(z),
assuming classical algorithms for polynomial arithmetic in
Zp[z] are used, is O(t2 log p). See Algorithm 14.15 of [3].

We can compute the information needed to construct the
bipartite graph Gk in O(dt2) time. This involves evaluating
Λk+1(z) at d points for each monomial and testing if it is
zero or not. Also computing the intersection of Gk and G′k
can be done in O(td log d) time. This is because we know
that each node in the intersection is of degree one (See proof
of Theorem 3). Thus the overall time complexity is

O(t2(log(p) + nd) + ntE(n, t, d)).

Remark 3 The algorithm, as presented, corresponds to our
parallel implementation in Cilk. Further parallelism in the
algorithm could be exploited. For example, one could com-
pute all probes to the black box B in step 6 and step 17
in parallel. When determining the degree of the monomi-
als in step 13 and 17, one can parallelize the evaluations of
Λk+1(z). The most expensive sequential component is the
computation of the roots of Λ1(z) in step 10 which has com-
plexity O(t2 log p). With asymptotically fast arithmetic this

is Õ(t log p).

4.2 Optimizations
Let D = deg(f). If the prime p is large enough, i.e.

p > nD2t2

4ε
then with probability 1 − ε the degree of ev-

ery monomial in xk can correctly be computed using only
Gk and without needing any extra probes to the black box.
In fact in this case, with high probability, every ri will be

matched with exactly only one r̄j and hence every node in
Gk would have degree one (e.g. see Figure 5). But if d� D,
i.e. the degree bound d is not tight, the probability that we
could identify the degrees uniquely drops significantly even
though p is large enough. This is because the probability
that root clashing (see Section 3) happens, linearly depends
on d. In this case, with probability 1 − ε, the degree of
Mi in xk would be min {dij | (dij , ri) ∈ Gk}, i.e. the edge
connected to ri in Gk with minimum weight (degree) is our
desired edge in the graph which will show up in the perfect
matching. We apply the following theorem.

Theorem 4 Let Hk be a graph obtained by eliminating all
edges connected to ri in Gk except the one with minimum
weight (degree) for all 1 ≤ i ≤ t. If the degree of every node
in Hk is exactly one, then eik is equal to the weight of the
edge connected to ri in Hk.

This theorem can be proved using Lemma 3 and the fact
that there can not be any cycle in the graph Hk. We will
give an example.

Example 6 Let f = 25y2z+90yz2+93x2y2z+60y4z+42z5.
Here t = 5, n = 3, dmax = 5 and p = 101. We choose
the following evaluation points α1 = 85, α2 = 96, α3 = 58
and α4 = 99. Suppose we want to construct G2 in order
to compute the degrees of the monomials in y. Suppose our
degree bound is d = 40 which is not tight. The graph G2 and
H2 are shown in Figures 6 and 7 respectively.

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

4 0

21

2

28 26

24
11

6

Figure 6: The bipartite graph G2

1
r

2
r

3
r

4
r

5
r

1
r

2
r

3
r

4
r

5
r

2 21 4 0

Figure 7: The bipartite graph H2

The graph H2 has the correct degrees of the monomials in
variable y.

Theorem 4 suggests the following optimization. In the con-
struction of the bipartite graph Gk, connect ri to r̄j with

degree dij only if there is no d̄ < dij such that ri× (
αn+1
αk

)d̄

is a root of Λk+1, i.e. the degree of the node ri in U is al-
ways one for all 1 ≤ i ≤ n. If there is a perfect matching
in this graph, this perfect matching is unique because this
implies that the degree of each node r̄j in V is also one (e.g.
see Figure 7). If not, go back to and complete the graph
Gk. This optimization makes our algorithm sensitive to the
actual degree of f(x1, ..., xn) in each variable.

165

The second optimization is to compute the degree of each
monomial Mi = xei1

1 xei2
2 . . . xein

n in the last variable xn with-
out doing any more probes to the black box. Suppose we
have computed the degree of Mi in xk for 1 ≤ k < n. We
know that Mi(α1, . . . , αn) is equal to ri, a root of Λ1. Hence
ri = αei1

1 · αei2
2 · · · · · αein

n . Since we know the degrees eij
for 1 ≤ j < n we can determine ein by division by αn. This
reduces the total number of probes from 4(n+ 1)t to 4nt.

5. BENCHMARKS
Here, we compare the performance of our new algorithm,

Zippel’s algorithm and the racing algorithm of Kaltofen and
Lee from [11]. We have implemented Zippel’s algorithm and
our new algorithm in C. We have also implemented an in-
terface to call the interpolation routines from Maple. The
racing algorithm is implemented in Maple in the ProtoBox
package by Lee [11]. Since this algorithm is not coded in C,
we only report (see columns labelled PBox) the number of
probes it makes to the black box.

We give benchmarks comparing the performances on five
problem sets. The polynomials in the first four benchmarks
were generated at random. The fifth set of polynomials are
taken from [11]. We count the number of probes to the black
box and measure the total CPU time (for our new algorithm
and Zippel’s algorithm only). All the timings given in this
section are in CPU seconds and were obtained using Maple
13 on a 64 bit Intel Core i7 920 @ 2.66GHz, running Linux.
This is a 4 core machine. For our algorithm, we report the
real time for 1 core and (in parentheses) 4 cores.

The black box in our benchmarks computes a multivariate
polynomial with coefficients in Zp where p = 3037000453 is
a 31.5 bit prime. In all benchmarks, the black box simply
evaluates the polynomial at the given evaluation point. To
evaluate efficiently we compute and cache the values of xji
mod p in a loop in O(nd). Then we evaluate the t terms in
O(nt). Hence the cost of one black box probe is O(nd+nt))
arithmetic operations in Zp.

Benchmark #1

This set of problems consists of 13 multivariate polynomials
in n = 3 variables. The i’th polynomial (1 ≤ i ≤ 13) is
generated at random using the following Maple command:

> randpoly([x1,x2,x3], terms = 2^i, degree = 30) mod p;

The i’th polynomial will have about 2i non-zero terms. Here
D = 30 is the total degree hence the maximum number of
terms in each polynomial is tmax =

`
n+D
D

´
= 5456. We

run both the Zippel’s algorithm and our new algorithm with
degree bound d = 30. The timings and the number of probes
are given in Table 1. In this table “DNF” means that the
algorithm did not finish after 12 hours.
As i increases, the polynomial f becomes denser. For i > 6,
f has more than

√
tmax non-zero terms. This is indicated

by a horizontal line in Table 1 and also in subsequent bench-
marks. The line approximately separates sparse inputs from
dense inputs. The last polynomial (i = 13) is 99.5% dense.

The data in Table 1 shows that for sparse polynomials
1 ≤ i ≤ 6, our new algorithm does a lot fewer probes to
the black box compared to Zippel’s algorithm. It also does
fewer probes than the racing algorithm (PBox). However, as
the polynomials get denser, Zippel’s algorithm has a better
performance. For a completely dense polynomial with t non-

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 12 0.00 217 20
2 4 0.00 (0.00) 24 0.00 341 39
3 8 0.00 (0.00) 48 0.00 558 79
4 16 0.00 (0.00) 96 0.01 868 156
5 32 0.00 (0.00) 192 0.01 1519 282
6 64 0.01 (0.01) 384 0.03 2573 517
7 128 0.03 (0.02) 768 0.08 4402 962
8 253 0.11 (0.06) 1518 0.21 6417 1737
9 512 0.44 (0.24) 3072 0.55 9734 3119
10 1015 1.66 (0.88) 6090 1.16 12400 5627
11 2041 6.50 (3.44) 12246 2.43 15128 DNF
12 4081 25.3 (13.4) 24486 4.56 16182 DNF
13 5430 44.3 (23.3) 32580 5.93 16430 DNF

Table 1: benchmark #1: n = 3 and D = 30

zero terms, Zippel’s algorithm only does O(t) probes to the
black box while the new algorithm does O(nt) probes.

To show how effective the first optimization described in
Section 4.2 is, we run both our algorithm and Zippel’s algo-
rithm on the same set of polynomials but with a bad degree
bound d = 100. The timings and the number of probes are
given in Table 2. One can see that our algorithm is unaf-
fected by the bad degree bound; the number of probes and
CPU timings are the same.

i t New Algorithm Zippel’s Algorithm
Time Probes Time Probes

1 2 0.00 (0.00) 12 0.01 707
2 4 0.00 (0.00) 24 0.01 1111
3 8 0.00 (0.00) 48 0.02 1818
4 16 0.00 (0.00) 96 0.03 2828
5 32 0.00 (0.00) 192 0.07 4949
6 64 0.01 (0.01) 384 0.14 8383
7 128 0.04 (0.02) 768 0.36 14342
8 253 0.12 (0.07) 1518 0.79 20907
9 512 0.45 (0.24) 3072 1.97 31714
10 1015 1.67 (0.89) 6090 3.97 40400
11 2041 6.50 (3.45) 12246 8.18 49288
12 4081 25.3 (13.4) 24486 15.16 52722
13 5430 44.1 (23.4) 32580 19.62 53530

Table 2: benchmark #1: bad degree bound d = 100

Benchmark #2

In this set of benchmarks the i’th polynomial is in n = 3
variables and is generated at random in Maple using

> randpoly([x1,x2,x3], terms = 2^i, degree = 100) mod p;

This set of polynomials differs from the first benchmark in
that the total degree of each polynomial is set to be 100 in
the second set. We run both the Zippel’s algorithm and our
new algorithm with degree bound d = 100. The timings and
the number of probes are given in Table 3. Comparing this
table to the data in Table 1 shows that the number of probes
to the black box in our new algorithm does not depend on
the degree of the target polynomial.

166

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 12 0.01 707 19
2 4 0.00 (0.00) 24 0.01 1111 45
3 8 0.00 (0.00) 48 0.02 1919 89
4 16 0.00 (0.00) 96 0.04 3434 167
5 31 0.00 (0.00) 186 0.08 6161 320
6 64 0.02 (0.01) 384 0.19 10504 623
7 127 0.05 (0.02) 762 0.49 18887 1149
8 253 0.17 (0.09) 1518 1.38 32219 2137
9 511 0.66 (0.34) 3066 4.36 56863 4103
10 1017 2.54 (1.31) 6102 13.99 98677 7836
11 2037 9.83 (5.09) 12222 43.23 166650 DNF
12 4076 38.7 (19.9) 24456 121.68 262802 DNF
13 8147 152. (78.3) 48882 282.83 359863 DNF

Table 3: benchmark #2: n = 3 and D = 100

Benchmarks #3 and #4

These sets of problems consist of 14 random multivariate
polynomials in n = 6 variables and n = 12 variables all of
total degree D = 30. The i’th polynomial will have about
2i non-zero terms. We run both the Zippel’s algorithm and
our new algorithm with degree bound d = 30. The timings
and the number of probes are given in Tables 4 and 5.

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 24 0.01 496 37
2 3 0.00 (0.00) 36 0.01 651 59
3 8 0.00 (0.00) 96 0.01 1364 140
4 16 0.00 (0.00) 192 0.02 2511 284
5 31 0.00 (0.00) 372 0.05 4340 521
6 64 0.02 (0.01) 768 0.15 8060 995
7 127 0.06 (0.03) 1524 0.44 14601 1871
8 255 0.21 (0.09) 3060 1.51 27652 3615
9 511 0.81 (0.35) 6132 5.19 50530 6692
10 1016 3.10 (1.33) 12192 17.94 90985 12591
11 2037 12.2 (5.21) 24444 65.35 168299 DNF
12 4083 48.1 (20.5) 48996 230.60 301320 DNF
13 8151 189. (80.1) 97812 803.26 532549 DNF

Table 4: benchmark #3: n = 6 and D = 30

To assess the parallel implementation of our algorithm,
Table 6 reports timings for benchmark #4 for our algorithm
running on 1, 2 and 4 cores showing the speedup we ob-
tain using 2 and 4 cores. We report (in column roots) the
time spent computing the roots in step 10 of Λ1(z) using
our implementation of Rabin’s algorithm which uses classi-
cal polynomial arithmetic, and (in column solve) the time
solving the linear system for the coefficients in step 22 and
(in column probes) the total time spent probing the black
box. The data shows that computing the roots will become
a bottleneck for our parallel implementation for more cores.
Thus for 2 cores and 4 cores we report two timings. The
first (in column time 1) is for our parallel algorithm as pre-
sented. For the second (faster) time (in column time 2) we
have parallelized the second and subsequent steps of the root
finding algorithm which yields a modest speedup. The data

i t New Algorithm Zippel PBox

Time Probes Time Probes Probes

1 2 0.00 (0.00) 44 0.03 1736 67
2 4 0.00 (0.00) 96 0.04 3038 121
3 8 0.00 (0.00) 192 0.08 5053 250
4 15 0.00 (0.00) 360 0.20 10230 470
5 32 0.02 (0.01) 768 0.54 18879 962
6 63 0.04 (0.02) 1512 1.79 36735 1856
7 127 0.15 (0.05) 3048 6.10 69595 3647
8 255 0.54 (0.17) 6120 22.17 134664 7055
9 507 2.01 (0.60) 12168 83.44 259594 13440

10 1019 7.87 (2.33) 24456 316.23 498945 26077

11 2041 31.0 (9.16) 48984 1195.13 952351 DNF

12 4074 122.3 (35.9) 97776 4575.83 1841795 DNF

13 8139 484.6 (141.) 195336 >10000 - DNF

Table 5: benchmark #4: n = 12 and D = 30

can be interpreted as follows. For i = 13 the sequential time
is 484.6s. Of this, 34.7s was spent computing the roots of
Λ1(z) and 5.02s was spent solving for the coefficients. Thus
the algorithm has a sequential component of 34.7 + 5.02 =
39.7s and so the maximum possible speedup on 4 cores is a
factor of 484.6/((484.6 − 39.7)/4 + 39.7) = 3.21 compared
with the observed speedup factor of 484.6/152.5 = 3.18.
One way to remove this bottleneck would be to use a fast
multiplication and division algorithm for Zp[z].

Benchmark #5

In this benchmark, we compare our new algorithm and the
racing algorithm on seven target polynomials (below) from
[11, p. 393]. Note, f6 is dense. The number of probes for
each algorithm is reported in Table 7.

f1(x1, . . . , x9) = x2
1x

3
3x4x6x8x

2
9 + x1x2x3x

2
4x

2
5x8x9+

x2x3x4x
2
5x8x9 + x1x

3
3x

2
4x

2
5x

2
6x7x

2
8 + x2x3x4x

2
5x6x7x

2
8

f2(x1, . . . , x10) = x1x
2
2x

2
4x8x

2
9x

2
10 + x2

2x4x
2
5x6x7x9x

2
10+

x2
1x2x3x

2
5x

2
7x

2
9 + x1x

2
3x

2
4x

2
7x

2
9 + x2

1x3x4x
2
7x

2
8

f3(x1, . . . , x9) = 9x3
2x

3
3x

2
5x

2
6x

3
8x

3
9 + 9x3

1x
2
2x

3
3x

2
5x

2
7x

2
8x

3
9+

x4
1x

4
3x

2
4x

4
5x

4
6x7x

5
8x9 + 10x4

1x2x
4
3x

4
4x

4
5x7x

3
8x9 + 12x3

2x
3
4x

3
6x

2
7x

3
8

f4(x1, . . . , x9) = 9x2
1x3x4x

3
6x

2
7x8x

4
10 + 17x3

1x2x
2
5x

2
6x7x

3
8x

4
9x

3
10+

3x3
1x

2
2x

3
6x

2
10 + 17x2

2x
4
3x

2
4x

4
7x

3
8x9x

3
10 + 10x1x3x

2
5x

2
6x

4
7x

4
8

f5(x1, . . . , x50) =
Pi=50
i=1 x50

i

f6(x1, . . . , x5) =
Pi=5
i=1 (x1 + x2 + x3 + x4 + x5)i

f7(x1, x2, x3) = x20
1 + 2x2 + 2x2

2 + 2x3
2 + 2x4

2 + 3x20
3

i n d #fi New Algorithm ProtoBox
1 9 3 5 90 126
2 10 2 5 100 124
3 9 3 5 90 133
4 9 4 5 100 133
5 50 50 50 5000 251
6 5 5 251 2510 881
7 3 20 6 36 41

Table 7: benchmark #5.

167

1 core 2 cores 4 cores
i t time roots solve probe time 1 time 2 (speedup) time 1 time 2 (speedup)

6 63 0.04 0.01 0.00 0.04 0.03 0.02 0.02 0.02
7 127 0.15 0.02 0.00 0.15 0.08 0.08 (1.87x) 0.06 0.05 (3x)
8 255 0.54 0.05 0.00 0.41 0.30 0.28 (1.93x) 0.18 0.17 (3.18x)
9 507 2.02 0.18 0.02 1.48 1.11 1.06 (1.91x) 0.67 0.60 (3.37x)
10 1019 7.94 0.65 0.08 5.76 4.35 4.17 (1.90x) 2.58 2.33 (3.41x)
11 2041 31.3 2.47 0.32 22.7 17.1 16.3 (1.92x) 9.94 9.16 (3.42x)
12 4074 122.3 9.24 1.26 90.0 67.1 64.7 (1.89x) 38.9 35.9 (3.41x)
13 8139 484.6 34.7 5.02 357.3 264.9 255.8 (1.89x) 152.5 141.5 (3.42x)

Table 6: Parallel speedup timing data for benchmark #4 for the new algorithm.

6. CONCLUSION
Our sparse interpolation algorithm is a modification of

the Ben-Or/Tiwari algorithm [1] for polynomials over finite
fields. It does a factor of between n and 2n more probes
where n is the number of variables. Our benchmarks show
that for sparse polynomials, it usually does fewer probes
to the black box than Zippel’s algorithm and the racing
algorithm of Kaltofen and Lee. Unlike Zippel’s algorithm
and the racing algorithm, our algorithm does not interpolate
each variable sequentially and thus can more easily be paral-
lelized. Our parallel implementation using Cilk, which par-
allelized only the main loops, demonstrates a good speedup.
The downside of our algorithm is that it is clearly worse
than Zippel’s algorithm and the racing algorithm for dense
polynomials. This disadvantage is partly compensated for
by the increased parallelism.

Although we presented our algorithm for interpolating
over Zp, it also works over any finite field GF (q). Further-
more, if p (or q) is too small, one can work inside a suitable
extension field. We conclude with some remarks about the
choice of p in applications where one may choose p.

Theorem 1 says that monomial collisions are likely when
dt2

2φ(p−1)
> 1

2
, that is when φ(p−1) < dt2. In our benchmarks

we used the 31.5 bit prime 3037000453. This is the biggest
prime that we can use when programming in C on a 64 bit
machine using signed 64 bit machine integers. Using this
prime, if d = 30, monomial collisions will likely occur when
t > 5, 808 which means 31.5 bit primes are too small for
large applications.

It is not difficult to choose p so that p − 1 = 2q with q
also prime. The largest such 31.5 bit prime is 3037000427.
Solving φ(p − 1) < dt2 for t with d = 30 using this prime
gives t > 7, 114. This choice of prime also makes it easy to
find generators. However, for p−1 = 2q, since −1 is the only
element of order 2, any value from the interval [2, p− 2] will
have order q or 2q. If we use elements of order q as well as
generators in our algorithm, then the probability that two
monomials collide is less than dt2/(2p−6) (using |S| = p−3
in the proof of Theorem 1). Solving p− 3 < dt2 for t using
d = 30 and p = 3037000427 yields t > 10, 061.

The 31.5 bit prime limitation is not a limitation of the
hardware, but of the C programming language. On a 64 bit
machine, one can use 63 bit primes if one programs multi-
plication in assembler. We are presently implementing this.

7. ACKNOWLEDGMENTS
We would like to thank Wen-shin Lee for making the

source code of the ProtoBox Maple package available to us.

8. REFERENCES
[1] M. Ben-Or and P. Tiwari. A deterministic algorithm for

sparse multivariate polynomial interpolation. In Proc. of
the twentieth annual ACM symposium on Theory of
computing, pages 301–309. ACM, 1988.

[2] Cilk 5.4.6 Reference Manual,
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf.
Supercomputing Technologies Group, MIT Lab for
Computer Science. http://supertech.lcs.mit.edu/cilk.

[3] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 2003.

[4] M. Giesbrecht, G. Labahn and W. Lee. Symbolic-numeric
sparse interpolation of multivariate polynomials. J. Symb.
Comput., 44:943–959, 2009.

[5] D. Grigoriev, M. Karpinski, and M. Singer. Fast parallel
algorithms for sparse multivariate polynomial interpolation
over finite fields. SIAM J. Comput. 19:1059–1063, 1990.

[6] M. A. Huang and A. J. Rao. Interpolation of sparse
multivariate polynomials over large finite fields with
applications. Journal of Algorithms, 33:204–228, 1999.

[7] S. M. M. Javadi and M. Monagan. A sparse modular gcd
algorithm for polynomials over algebraic function fields. In
Proc. of ISSAC ’07, pages 187–194. ACM, 2007.

[8] E. Kaltofen and Y. N. Lakshman. Improved sparse
multivariate polynomial interpolation algorithms. In Proc.
of ISSAC ’88, pages 467–474. Springer-Verlag, 1989.

[9] E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular
rational sparse multivariate polynomial interpolation. In
Proc. of ISSAC ’90, pages 135–139. ACM, 1990.

[10] E. Kaltofen, W. Lee, and A. A. Lobo. Early termination in
Ben-Or/Tiwari sparse interpolation and a hybrid of
Zippel’s algorithm. In Proc. of ISSAC ’00, pages 192–201.
ACM, 2000.

[11] E. Kaltofen and W. Lee . Early termination in sparse
interpolation algorithms. J. Symb. Comput.,
36(3-4):365–400, 2003.

[12] J. L. Massey. Shift-register synthesis and bch decoding.
IEEE Trans. on Information Theory, 15:122–127, 1969.

[13] M. Monagan J. de Kleine and A. Wittkopf. Algorithms for
the non-monic case of the sparse modular gcd algorithm. In
Proc. of ISSAC ’05, pages 124–131. ACM, 2005.

[14] S. Pohlig and M. Hellman. An improved algorithm for
computing logarithms over GF(p) and its cryptographic
significance. IEEE Trans. on Information Theory,
24:106−110, 1978.

[15] Michael O. Rabin. Probabilistic algorithms in finite fields.
SIAM J. Comput, 9:273–280, 1979.

[16] Jack Schwartz, Fast probabilistic algorithms for verification
of polynomial identities. J. ACM, 27:701−717, 1980.

[17] Richard Zippel. Probabilistic algorithms for sparse
polynomials. In Proc. of EUROSAM ’79, pages 216–226.
Springer-Verlag, 1979.

[18] Richard Zippel. Interpolating polynomials from their
values. J. Symb. Comput., 9(3):375–403, 1990.

168

Spiral-Generated Modular FFT Algorithms

[Extended Abstract]

Lingchuan Meng
Drexel University

Philadelphia, PA, USA
lm433@drexel.edu

Jeremy R. Johnson
Drexel University

Philadelphia, PA, USA
jjohnson@cs.drexel.edu

Franz Franchetti
Carnegie Mellon University

Pittsburgh, PA, USA
franzf@ece.cmu.edu

Yevgen Voronenko
Carnegie Mellon University

Pittsburgh, PA, USA
yvoronen@ece.cmu.edu

Marc Moreno Maza
University of Western Ontario

London, Canada
moreno@csd.uwo.ca

Yuzhen Xie
University of Western Ontario

London, Canada
yxie@csd.uwo.ca

ABSTRACT
This paper presents an extension of the Spiral system to
automatically generate and optimize FFT algorithms for the
discrete Fourier transform over finite fields. The generated
code is intended to support modular algorithms for multi-
variate polynomial computations in the modpn library used
by Maple. The resulting code provides an order of magni-
tude speedup over the original implementations in the modpn

library, and the Spiral system provides the ability to auto-
matically tune the FFT code to different computing plat-
forms.

Categories and Subject Descriptors
D.1.2 [Software]: Programming Techniques, Automatic Pro-
gramming; G.4 [Mathematics of Computing]: Mathe-
matical Software, Efficiency; I.1.3 [Computing Method-
ologies]: Symbolic and Algebraic Manipulation, Languages
and Systems

General Terms
Algorithms, Performance

Keywords
FFT, modular arithmetic, code generation, vectorization,
high performance computing, autotuning

1. INTRODUCTION
Fast Fourier Transforms (FFTs) are at the core of many

operations in scientific computing. In computer algebra,
FFTs are used for fast polynomial and integer arithmetic and
modular methods (i.e. computation by homomorphic im-
ages). In recent years, the use of fast arithmetic has become
prevalent and has stimulated the development of software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010 Grenoble, France
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

libraries, such as modpn [FLMS06, LM06, LMP09] providing
hand-optimized low-level routines implementing fast algo-
rithms for multivariate polynomial computations over finite
fields, in support of higher-level code. The modpn library has
been integrated into the computer algebra system Maple
and runs on all computer platforms supported by Maple.
The implementation techniques employed in modpn are often
platform-dependent, since cache size, associativity proper-
ties and register sets have a significant impact. In order to
take advantage of platform-dependent optimizations, in the
context of quickly evolving hardware accelaration technolo-
gies, automated performance tuning has become necessary
and should be incorporated into the modpn library.

Spiral [www.spiral.net] is a library generation system that
automatically generates platform-tuned implementations of
digital signal processing algorithms with an emphasis on
fast transforms. Currently, Spiral can generate highly op-
timized fixed-point and floating-point FFTs for a variety of
platforms with automatic tuning, and has support for vector-
ization, threading, and distributed memory parallelization.
The code produced is competitive with the best available
code for these platforms and Spiral is used by Intel for its
IPP (Integrated Performance Primitives) and MKL (Math
Kernel Library) libraries.

In this work, Spiral was extended to generate algorithms
for FFT computation over finite fields. This addition re-
quired adding a new data type, several new rules and a new
transform definition. In addition, the backend was extended
to enable the generation of scalar and vectorized code for
modular arithmetic. With these enhancements, the Spiral
machinery can be applied to modular transforms needed by
the modpn library. In this paper we present preliminary re-
sults showing that the code generated by Spiral is approxi-
mately eleven to twenty-three times faster than the original
FFT code in modpn.

2. SPIRAL
The Spiral system [PMJ05] uses a mathematical frame-

work for representing and deriving algorithms. Algorithms
are expressed symbolically as sparse matrix factorizations
and are derived using rewrite rules; additional rules are used
to symbolically manipulate algorithms into forms that take
advantage of the underlying hardware, including vectoriza-
tion [FVP08] and parallelism [FVP06]. The sequence of ap-

169

plications of breakdown rules is encoded as a ruletree which
can be translated into a formula and compiled with a special-
purpose compiler into efficient code. A search engine with a
feedback loop is used to tune implementations to particular
platforms. New transforms are added by introducing new
symbols and their definitions, and new algorithms can be
generated by adding new rules.

Spiral was developed for floating point and fixed point
computation; however, many of the transforms and algo-
rithms carry over to finite fields. For example, the DFT of
size n is defined when there is a primitive nth root of unity
and many factorizations of the DFT matrix depend only on
properties of primitive nth roots. In this case, the same
machinery in Spiral can be used for generating and opti-
mizing modular transforms. All that is needed is support
for new data types and code generation and the addition of
new transforms and rules.

For the modular FFT, we added a modular data type,
support for modular arithmetic and code generation, and
defined the n-point modular DFT

ModDFTn,p,ω =
h
ωk`

n

i
0≤k,`<n

,

where ωn is a primitive nth root of unity in Zp, and the
Cooley-Tukey factorization (rewrite rule)

ModDFTn,p,ω =

(ModDFTr,p,ωr ⊗ Is) Tn
s (Ir ⊗ModDFTs,p,ωs) Ln

r ,

where n = rs, ⊗ denotes the Kronecker or tensor product,
T is a diagonal matrix called the twiddle matrix, and L is a
special permutation matrix called stride permutation. Ad-
ditional rules for other FFT algorithms can be used, but for
initial experiments this was the only rule used.

3. PERFORMANCE RESULTS
This section reports on preliminary experimental data com-

paring the performance of hand-coded FFTs from the modpn

library and FFTs automatically generated by Spiral. Spi-
ral generated algorithms using the Cooley-Tukey rule, and
dynamic programming to select an“optimal”recursive break-
down strategy. Dynamic programming is only a heuristic
since an optimal algorithm of a given size can depend on
the context in which it is called; however, experience shows
that it makes good choices. All experiments were performed
on an Intel Core i7 965 quad-core processor running at 3.2
GHz with 12 GB of RAM. Generated code was compiled
with gcc version 4.3.4-1 with optimization set to O3. Vector
code used SSE4.1 with 4-way 32 bit integer vectors. Since
there is no vector version of integer division with remainder,
in order to vectorize our Spiral generated FFT code on the
Core i7, Montgomery’s trick [Mont85] was used. Initial ex-
periments were performed using 32 bit integers and 16 bit
primes. Figure 1 compares the performance of power of two
FFTs of size 4 through 4096 using the original modpn code
and scalar and vectorized code generated by Spiral, where
performance is reported in Gops (giga-ops) or billions of op-
erations per second (higher is better), which is calculated as-
suming that the DFT of size N takes a total of (3/2)N lg(N)
additions, subtractions and nontrivial multiplications. The
Spiral generated vector code is between 11 and 23 times
faster than the original modpn code.

Figure 1: Performance Comparison

4. REFERENCES
[FLMS06] A. Filatei, X. Li, M. Moreno Maza, and É.

Schost. Implementation techniques for fast polynomial
arithmetic in a high-level programming environment. In
Proc. ISSAC’06, pp 93–100, New York, NY, USA, 2006.
ACM Press.

[FVP06] Franz Franchetti, Yevgen Voronenko and Markus
Püschel, “FFT Program Generation for Shared Memory:
SMP and Multicore,” Proc. Supercomputing (SC), 2006.

[FVP08] Franz Franchetti, Yevgen Voronenko and Markus
Püschel, “A Rewriting System for the Vectorization of
Signal Transforms,” Proc. High Performance
Computing for Computational Science (VECPAR),
Lecture Notes in Computer Science, Springer, Vol.
4395, pp. 363-377, 2006.

[LM06] X. Li and M. Moreno Maza. Efficient
implementation of polynomial arithmetic in a
multiple-level programming environment. In A. Iglesias
and N. Takayama, editors, Proc. International Congress
of Mathematical Software - ICMS 2006, pp 12–23.
Springer, 2006.

[LMP09] Xin Li, Marc Moreno Maza, and Wei Pan.
Computations modulo regular chains. In ISSAC ’09:
Proceedings of the 2009 international symposium on
Symbolic and algebraic computation, pp 239–246, New
York, NY, USA, 2009. ACM.

[Mont85] P. L. Montgomery. Modular Multiplication
Without Trial Division. Mathematics of Computation,
vol. 44, no. 170, pp. 519–521, 1985.

[PMJ05] Markus Püschel, José M. F. Moura, Jeremy
Johnson, David Padua, Manuela Veloso, Bryan Singer,
Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nick
Rizzolo SPIRAL: Code Generation for DSP Transforms
Proceedings of the IEEE special issue on ”Program
Generation, Optimization, and Adaptation,” Vol. 93,
No. 2, 2005, pp. 232-275.

[www.spiral.net] Spiral project website.
http://www.spiral.net, 2010.

170

High performance linear algebra using interval arithmetic

[Extended Abstract]

Hong Diep NGUYEN
INRIA

Université de Lyon
Laboratoire LIP (UMR 5668 CNRS - ENS de

Lyon - INRIA - UCBL)
École Normale Supérieure de Lyon, 46 allée

d’Italie, 69007 Lyon, France
Hong.Diep.Nguyen@ens-lyon.fr

Nathalie REVOL
INRIA

Université de Lyon
Laboratoire LIP (UMR 5668 CNRS - ENS de

Lyon - INRIA - UCBL)
École Normale Supérieure de Lyon, 46 allée

d’Italie, 69007 Lyon, France
Nathalie.Revol@ens-lyon.fr

ABSTRACT
In this paper, we describe implementations of interval ma-
trix multiplication and verified solution to a linear system,
using entirely BLAS routines, which are fully optimized and
parallelized.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Reliability and Robustness

General Terms
Algorithm, Performance, Reliability, Verification

Keywords
efficient implementation, linear algebra, interval arithmetic,
interval matrix multiplication, certified solution of a linear
system.

1. INTERVAL MATRIX PRODUCT
Rump first proposed a fast and parallel implementation of

interval matrix multiplication based on midpoint-radius in-
terval arithmetic [6]. His implementation uses four floating-
point matrix products to compute an interval matrix times
interval matrix operation. Thus, his implementation of the
interval matrix product relies on the floating-point matrix
product, for which highly optimized implementations exist,
such as in BLAS. Such an implementation is much more effi-
cient than the naive implementation, where the interval op-
erations take place for the product of each pair of coefficients
and for the related additions. Even if, in principle, the naive
approach requires fewer floating-point operations, in prac-
tice it implies to change the rounding mode (downwards or
upwards) before each floating-point operation. This involves
a penalty in terms of performance. Indeed, on many proces-
sors, the only way to change the rounding mode is by setting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

a global flag, and thus changing the context. This prevents
the implementation from using the pipelining capabilities of
the processor. On other processors, such as the 64-bit Intel
Itanium architecture, it is possible to specify the rounding
mode within the code of the operation, and thus it is pos-
sible to exploit the pipeline. However, accessing the code is
possible only at the assembly level, but not at a higher level.
In practice, we know of no library for interval arithmetic
which takes benefit of this possibility. These considerations
explain why Rump’s implementation is one of the most effi-
cient today.

On the other hand, Rump’s approach always provides re-
sults overestimating the exact results. Rumps established in
[6] that the overestimation factor in the worst case is 1.5.

We propose an implementation to reduce this overestima-
tion factor, which trades some of the efficiency of Rump’s
method for accuracy. Our approach is based on an observa-
tion of interval product when one multiplier does not contain
zero. Let a,b be two intervals. Let ma, ra and mb, rb be
their midpoint and radius respectively. If a does not contain
zero, ie. |ma| ≥ ra, then the product between a and b is an
interval c whose midpoint and radius are computed by

mc = ma ∗mb + sign(ma) ∗ ra ∗ |mb + rb| − |mb− rb|
2

rc = |ma| ∗ rb + ra ∗ |mb + rb|+ |mb− rb|
2

This observation leads to another formula for the product of
two interval matrices, which uses six floating-point matrix
products in the case where one of the operands does not
contain zero, i.e. when each coefficient does not contain zero.
However, the coefficients can be of different signs. Let us
remark that this formula is exact in the absence of rounding
errors, ie. there is no overestimation of the result.

For the general case where intervals may contain zero in
their interior, we decompose one of the operand matrices
into two parts, one which is centered in zero and one which
does not contain zero. Let two intervals a and b, represented
by their endpoints: a = [a, ā] and b = [b, b̄]. The formula
for the product of a and b, where a is centered in zero i.e.
a = −ā, is an interval c whose endpoints are c̄ = ā ·mag(b)
and c = −c̄, with mag(b) = max(|b|, |b̄|). Using the sym-
metry of this formula, the product between a centered-in-
zero matrix and another interval matrix can be computed
exactly by only one floating-point matrix product. Again,
the other matrix product requires six floating-point matrix

171

products. Hence in total, the product of two general matri-
ces requires seven floating-point matrix products to compute
the two sub-products. Finally, a matrix addition, which is
negligible in terms of computational time, yields the final
result.

Nonetheless, although each sub-product is computed ex-
actly, the computed result is an overestimation of the exact
result, because of the subdistributive property of interval
operations. We establish, similarly as in [5], that the overes-
timation factor in the worst case of our algorithm is less than
1.18. In some cases, eg. when one of the operand matrices
does not contain zero in its interior, our algorithm provides
results with no overestimation (in exact arithmetic).

2. CERTIFIED SOLUTION OF A LINEAR
SYSTEM

Another fundamental problem addressed here is the cer-
tification of the solution of a linear system. Given a linear
system of equations Ax = b, our goal is to compute an ap-
proximate solution as close as possible to the exact solution,
and at the same time compute an enclosure of the error upon
this computed solution. We call ”certified solution of a linear
system” this pair consisting of an approximate solution and
an enclosure of the error. In particular, the knowledge of
the enclosure of the error enables us to (under-)estimate the
number of exact digits obtained for this solution.

To this end, we base our approach on the iterative re-
finement method, as explained in [2]. At the first step,
an approximate solution x̃ of the linear system Ax = b is
computed by some floating-point method. The classical it-
erative refinement method consists in solving the so-called
residual system, i.e. the linear system satisfied by the error
e = x∗ − x̃ between the exact (unknown) solution s∗ and
the approximate solution x̃: Ae = b − Ax̃. The residual is
the vector b− Ax̃. Then, the computed approximation ẽ of
e is added to x̃ as a correction term: the refined solution is
then x̃+ ẽ. This refinement step can be repeated to improve
further the approximate solution x̃. Our method, detailed
in [4], differs from the floating-point iterative refinement, by
the fact that we use the residual system to refine the error
bound – which is an interval containing the error – using
an interval improvement method, namely Jacobi or Gauss-
Seidel iterations detailed in [3]. Hence, instead of comput-
ing an approximate residual, we must compute an enclosure
of the exact residual. Therefore, the residual is computed
twice in floating-point arithmetic, with upward and down-
ward rounding modes r = [(b−Ax)↓, (b−Ax)↑].

To ensure the convergence property of the interval itera-
tive refinement, the matrix of residual system is first pre-
conditioned by an approximate inverse R of the coefficient
matrix, in order to be transformed into a (hopefully) di-
agonally dominant matrix. If the preconditioned matrix is
not a diagonally dominant matrix, of more precisely if the
method cannot guarantee that it is a H-matrix, then the
process fails. Again, the preconditioned matrix is computed
twice, once with upward and once with downward rounding
modes, K = [(R∗A)↓, (R∗A)↑], before the property of being
a H-matrix is checked. The residual is also preconditioned
by R, z = R ∗ r. Then this preconditioned, interval system
Ke = z will be used to improve and to finally obtain a tight
enclosure of the error.

If it can be established that K is a H-matrix, then the
interval improvement consists in computing a new interval

e’ from the old one e which encloses more closely the exact
value of the error. Let D,L,U be the diagonal, the lower
triangular matrix and the upper triangular matrix of K, re-
spectively. The interval improvement is expressed by:

D * e’ = z - (L + U) * e (Jacobi)
D * e’ = z - (L * e’ + U * e) (Gauss-Seidel)

Each step of interval improvement comprises either an in-
terval matrix-vector product (Jacobi iterations) or the so-
lution of an interval triangular linear system (Gauss-Seidel
iterations), which are in any way costly to perform. To sort
out this problem, we exploit the fact that the product be-
tween an interval matrix centered in zero and an interval
vector can be computed by only one floating-point matrix
vector product. Indeed, we inflate the matrix K in such a
way that it is centered in a diagonal matrix without deterio-
rating noticeably the quality of the result. This technique is
motivated by the fact that the residual system being precon-
ditioned by an approximate inverse of the coefficient matrix,
then the preconditioned matrix should be close to Identity.

Using this relaxation technique, each interval improve-
ment step can be expressed by one floating-point matrix
vector product. Experimental results [4] show that this tech-
nique helps to reduce significantly the execution time mean-
while still achieving the same accuracy as the original one.

As we can see, except for the preconditioning stage, which
is of order O(n3) and which seems unavoidable if using in-
terval arithmetic to solve a linear system, the rest of our
approach is expressed only by floating-point matrix-vector
products, which are of order O(n2) and negligible to the
preconditioning stage. Moreover, the whole method requires
solely floating-point operations, namely matrix-matrix and
matrix-vector products. Thus, in practice, it can be imple-
mented using BLAS routines, which are highly optimized
and parallelized on almost any computer. The use of a
floating-point library such as BLAS alleviates the burden
of optimizing and parallelizing interval routines.

References
[1] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee

and E. J. Riedy. Bounds from Extra Precise Iterative
Refinement, ACM Trans. Mathematical Software, Vol.
32, No. 2, June 2006, pp. 325-351.

[2] N. J. Higham. Accuracy and Stability of Numerical Al-
gorithms, 2nd edition, SIAM Press, 2002. Chapter 12:
Iterative Refinement.

[3] A. Neumaier. Interval methods for systems of equations,
Cambridge University Press, 1990. Chapter 4: The
solution of square linear systems of equations.

[4] H. D. Nguyen and N. Revol. Solve and Certify a Linear
System, Reliable Computing, vol. 15, 2010.

[5] H. D. Nguyen. Efficient implementation of interval ma-
trix multiplication, INRIA Research Report, April 2010,
http://hal.inria.fr/inria-00469472/en/.

[6] S. M Rump. Fast and parallel interval arithmetic, BIT,
Vol. 39, No. 3, 1999, pp. 534–554.

172

Parallel Computation of Determinants of Matrices with
Polynomial Entries for robust control design

[Extended Abstract]

Kinji Kumura
Graduate School of Informatics, Kyoto University

36-1 Yoshida-Honmachi, Sakyo-ku
Kyoto, 606-8501, Japan

kkimur@amp.i.kyoto-u.ac.jp

Hirokazu Anai
Fujitsu Laboratories Ltd / Kyushu University

4-1-1 Kamikodanaka, Nakahara-ku
Kawasaki 211-8588, Japan

h.anai@kyudai.jp

ABSTRACT
In this paper we consider computing determinants of poly-
nomial matrices symbolically. Determinant computation of
matrices with polynomial entries in a small number of vari-
ables is of particular interest since it commonly appears in
solving engineering design problems. A parallel algorithm
based on multivariate Newton polynomial interpolation with
“cut-surface” (total degree bound) is presented and its effi-
ciency is demonstrated by showing computational results for
some practical examples from control system design.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Algorithms;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; J.6 [Computer Applications]:
Computer-Aided Engineering

General Terms
Algorithms, Experimentation

Keywords
parallel determinant computation, polynomial matrix, New-
ton polynomial interpolation, total degree bound

1. INTRODUCTION
Nowadays computer algebra is becoming increasingly com-

mon as an effective tool in many fields i.e., science, engi-
neering and education. In control community, symbolic ap-
proaches have been actually used in a wide variety of con-
texts [4]. We have been developing a parametric robust con-
trol toolbox based on symbolic computation such as quan-
tifier elimination (QE) on MATLAB (also a Maple version)
[3]. A special QE algorithm based on the Sturm-Habicht se-
quence computation is employed in the toolbox for speeding-
up its performance, since it requires solving a particular class

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of formulas: sign definiteness of an univariate polynomial
with parametric coefficients. We note that no parallelized
algorithm is used in the toolbox so far.

In order to boost up the limit of its practical applicability
of computer algebra algorithms, the development of parallel
algorithms are important. Moreover, recent years have seen
the advent of cloud computing, which enables us to use such
a tool on the Internet, as well as services which is provided in
the form of SaaS (software as a service). Thus it appears cer-
tain that parallel algorithms play a significant role in these
context. In this paper we present a parallel algorithm for
determinant computation of polynomial matrices based on
multivariate Newton polynomial interpolation incorporating
total degree bounds, which we call a “cut-surface” from the
their shapes in a Newton polygon of determinants .

The Sturm-Habicht sequence computation consists of many
resultant computations of polynomial matrices and hence the
speeding up of the determinant computation is the crucial
potion (see [2]). Our parametric robust control toolbox aims
at at designing low degree fixed-structure controllers, that is,
the so-called PI (2 design parameters) and PID (3 parame-
ters) controllers. The low degree fixed structure controllers
are frequently used in industry and hence an important class
of control system design problems. So what is required for
our current purpose is to develop the efficient determinant
computation of matrices with polynomial entries in 2 or 3
variables. We show the efficiency of our proposed parallel
algorithm by demonstrating computational results for some
examples from control system design together with the com-
parison other implementations of determinant computation
such as Maple, Singular, and Mathematica.

2. ALGORITHM
There have been several previous works on parallel compu-

tation of determinants of polynomial matrices. For example,
in [5] the method based on multivariate Lagrange interpola-
tion is proposed. We propose yet another parallel algorithm
based on multivariate Newton interpolation. Our approach
is more effective particularly for computing determinants of
matrices with entries of polynomials in a small number of
variables efficiently by virtue of usage of total degree bounds.

Basic idea of our method: In general, an interpolation ap-
proach is quite suitable for parallelization since the evalua-
tions of a determinant at sampling points can be executed
independently. Our parallel algorithm for computing de-
terminants of matrices whose elements are polynomials is

173

based on multivariate Newton interpolation. The key point
to reduce the computational cost is usage of the total degree
bounds on determinants. We can guess the “tighter” form
of the determinant, that is, reduce the number of the can-
didates for supports of the determinant, by using not only
the degree bounds for each variable but also the total degree
bounds. This greatly improves the computational efficiency
of determinant computation. Since the total degree bounds
produce tilted surfaces in the Newton polygon of the de-
terminant, we call them “cut-surfaces”. We note that it is
indicated by H.Werner [7] that the Newton interpolation un-
der the situation of monotonic decrease of the degrees on the
Newton polygon is possible. The novelty of our proposal is
as follows: We provide a useful realization of the remark in
[7], i.e., combination of the Newton interpolation and the
total degree bounds, for efficient parallel determinant com-
putation. Moreover we also combine a modular technique
with our interpolation scheme (in evaluating a determinant
at a sampling point) via the Chinese remainder theorem.

Degree & coefficient bounds: As for the degree bound for
each variable, we employ min(Smaxdr , Smaxdc) where Smaxdr

is the sum of maximum degree of each row and Smaxdc is that
of each column. Then we employ the coefficient bound on
determinants for polynomial matrices proposed by Goldstein
and Graham [1] for using the modular technique.

3. COMPUTATIONAL EXAMPLES
Here we briefly show a part of our experimental results

due to the page limit. We have implemented the proposed
algorithm in C language. All computations are done on a
multi-core processor: Intel Core i5 M520 with 4GB memory
and the OS is Windows 7 (64bit).

Figure 1: A feedback control system

We consider a feedback control system of the form Fig-
ure 1 with a PI(proportional-integral) K(s) = k + m

s
or

PID(proportional-integral-derivative) controller K(s) = k +
m
s

+ s` and a plant P (s). The problem we solve here is
to find feasible parameters (k, m and `) so that the system
satisfies the H∞-norm constraint: ‖ S(s) ‖< 1 for a sensi-
tive function of the system S(s) = 1

1+P (s)K(s)
(see [3]). The

H∞-norm constraint can be recast as a sign definite con-
dition (SDC) given by the following: ∀x > 0 f(x) > 0,
where f is a univariate polynomial with parametric coeffi-
cients. The SDC is solved by a QE using the Sturm-Habicht
sequence. The crucial part in the Sturm-Habicht sequence
computation for the SDC is discriminant computation of f .
We formulated the corresponding SDCs for the feedback sys-
tems with the following practical plants and computed the
discriminants, which requires determinant computation of
polynomial Dixon matrices.
〈1〉 a certain ladder type system for a flexible structure
〈2〉 an large analog integrated circuit from [6]
〈3〉 a swing-arm of a Hard Disk Drive
Here we show the timing data of computing determinants

only for 3 parameter cases for 〈1〉 with results by other

deg(f) Maple Singular Mathematica our method
15 14.617 >1 min 9.672 0.391
17 29.063 >1 min 20.202 0.746
19 55.255 >1 min 37.284 1.433

Table 1: Timing data for a PID controller (sec)

computer algebra systems: Maple 13 (64bit), Singular-3-1-1
(32bit) and Mathematica 6 (32bit) in Table 1.1 We have
three different size systems for 〈1〉, which lead to the SDCs
with degree 15, 17 and 19. From Table 1 we can say that our
approach is effective for computing determinants of polyno-
mial matrices in a small number of variables. Further results
and discussion will be shown at the conference.

4. CONCLUSION
We have shown a parallelized algorithm for computing de-

terminants of polynomial matrices based on the Newton in-
terpolation using total degree bounds and the Chinese re-
mainder theorem. We applied our algorithm to compute
the determinants derived from various robust control design
problems and confirmed that our approach is effective for
computing determinants of matrices with entries of polyno-
mials in a small number of variables through the experimen-
tal results for practical control design problems.

5. REFERENCES
[1] A. Goldstein and R. Graham. A Hadamard-type bound

on the coefficient of a determinant of polynomials.
SIAM Review, 16:394–395, 1974.

[2] L. González-Vega, H. Lombardi, T. Recio, and M.-F.
Roy:. Sturm-Habicht sequence. In Proceedings of
ISSAC’89, pages 136–146, Portland, 1989. ACM Press.

[3] N. Hyodo, M. Hong, H. Yanami, S. Hara, and H. Anai.
Solving and visualizing nonlinear parametric constraints
in control based on quantifier elimination. Appl. Algebra
Eng. Commun. Comput., 18(6):497–512, 2007.

[4] N. P. Karampetakis and A. I. G. V. (Edts). Special issue
on the use of computer algebra systems for computer
aided control system design, International Journal of
Control Vol. 79, No. 1. Taylor & Francis, 2006.

[5] A. Marco and J.-J. Martinez. Parallel computation of
determinants of matrices with polynomial entries. J.
Symb. Comput., 37(3):749–760, 2004.

[6] X.-D. Tan and C.-J. R. Shi. Hierarchical symbolic
analysis of analog integrated circuits via determinant
decision diagrams. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
19(4):401–412, 2000.

[7] H. Werner. Remarks on Newton-type multivariate
interpolation for subsets of grids. Computing,
25:181–191, 1980.

1Note that all computational times by our method here
have been obtained by running the serial version of our im-
plementation for fare comparison. The parallel version is
much faster. We will also report the comparison between
serial and parallel versions of our method at the conference.
For the actual matrices, see http://www-is.amp.i.kyoto-
u.ac.jp/kkimur/SDC/sdc.html

174

Cache Friendly Sparse Matrix-vector Multiplication

[Extended Abstract]

Sardar Anisul Haque
University of Western Ontario

ON N6A 5B7, Canada
shaque4@csd.uwo.ca

Shahadat Hossain
University of Lethbridge
AB T1K 3M4, Canada

shahadat.hossain@uleth.ca

Marc Moreno Maza
University of Western Ontario

ON N6A 5B7, Canada
moreno@csd.uwo.ca

1. INTRODUCTION
Sparse matrix-vector multiplication or SpMXV is an im-

portant kernel in scientific computing. For example, the con-
jugate gradient method (CG) is an iterative linear system
solving process where multiplication of the coefficient ma-
trix A with a dense vector x is the main computational step
accounting for as much as 90% of the overall running time.
Though the total number of arithmetic operations (involving
nonzero entries only) to compute Ax is fixed, reducing the
probability of cache misses per operation is still a challeng-
ing area of research. This preprocessing is done once and
its cost is amortized by repeated multiplications. Comput-
ers that employ cache memory to improve the speed of data
access rely on reuse of data that are brought into the cache
memory. The challenge is to exploit data locality especially
for unstructured problems: modeling data locality in this
context is hard.

Pinar and Heath [8] propose column reordering to make
the nonzero entries in each row contiguous. However, column
reordering for arranging the nonzero entries in contiguous
location is NP-hard [8]. In a considerable volume of work
[2, 6, 8, 9, 10] on the performance of SpMXV on modern
processors, researchers propose optimization techniques such
as reordering of the columns or rows of A to reduce, for
example, indirect access and improving data locality, and
blocking for reducing memory load and loop overhead.

In this extended abstract, we present a new column order-
ing algorithm, based on the binary reflected Gray codes, that
runs in linear time with respect to the number of nonzero
entries. We analyze the cache complexity of SpMXV when
the sparse matrix is ordered by our technique. The results
from numerical experiments, with very large test matrices,
clearly demonstrate the performance gains rendered by our
proposed technique.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; G.1.3 [Numerical Linear Algebra]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

Sparse, structured, and very large systems (direct and iter-
ative methods)

General Terms
Algorithms

Keywords
Sparse Matrix, Cache Complexity, Binary reflected Gray
Code

2. BINARY REFLECTED GRAY CODE OR-
DERING

We develop a new column ordering algorithm based on bi-
nary reflected Gray code (BRGC for short) for sparse matri-
ces. We will call it BRGC ordering. A p-bit binary reflected
Gray code [3] is a Gray code denoted by Gp and defined by
G1 = [0, 1] and

Gp = [0Gp−1
0 , . . . , 0Gp−1

2p−1−1
, 1Gp−1

2p−1−1
, . . . , 1Gp−1

0],

where Gpi is the i-th binary string of Gp. We call i the
rank of Gpi in Gp. For example the rank of 011 in G3 is
2. We consider each column of a m× n sparse matrix A as
a binary string of length m where each nonzero is treated
as 1. Hence, we have n binary strings of length m, say
{b0, b1, . . . , bn−1}. Let Π be the permutation of these strings
satisfying the following property. For any pair of indices i, j
with i 6= j, the rank of bΠ(j) in Gm is less than that of bΠ(i)

if and only if Π(i) < Π(j) holds. We refer to Abrgc as our
sparse matrix A after its columns have been permuted by Π.
One can check that the BRGC ordering sorts the columns of
A according to their ranks in Gm in descending order.

On average, our sorting algorithm proceeds in ρ (the av-
erage number of nonzeros in a column) successive phases,
which are described below. During the first phase, we sort
the columns by increasing position of their first nonzero en-
tries from above, creating equivalence classes where any two
columns are uncomparable for this ordering. During the
second phase, in each equivalence class, we sort the columns
by decreasing position of their second nonzero entries from
above, thus, refining the equivalence classes of the first phase
into new classes where again any two columns are uncom-
parable for this second ordering. More generally, during the
k-th phase, in each equivalence class obtained at the (k−1)-
th phase, we sort the columns by increasing position (resp.
decreasing position) of their k-th nonzero entry from above,
if k is odd, (resp. if k is even) thus, refining again the equiv-
alence classes. Continuing in this manner, we obtain the

175

desired sorted matrix. Observe that whenver an equivalence
class is a singleton, it no longer participates to the next sort-
ing phases.

Based on the above procedure and the counting sort algo-
rithm [4], the matrix Abrgc is obtained from A using O(τ) in-
teger comparisons (on average) and O(n+ τ) data-structure
updates, where τ is the total nonzero entries in A [7].

Let C be an equivalence class obtained after the `-th phase
and before the (` + 1)-th phase. We call nonzero stream at
level (`+1) in C the set of the (`+1)-th nonzero entries from
above in the columns of C. In the nonzero stream at level
(`+ 1) in C, a set of nonzeros having the same row index is
called a step.

3. CACHE COMPLEXITY
Consider the ideal cache [5] of Z words, with cache line of

L words. Assume that n is large enough such that the vector
x does not fit into the cache. During SpMXV, the total num-
ber of accesses in x is τ . These accesses are usually irregular.
Note that n of those accesses are cold misses. Each of the
other τ − n accesses creates a cache miss with probability
(n−Z/L)/n, since no spatial locality should be expected in
accessing x. Therefore, the total number of expected cache
misses in accessing x is computed as follows.

Q1 = Z/L+ (τ − Z/L)n−Z/L
n

.

We claim that Abrgc has at least nonzero streams at level
1 and 2. Indeed, each column has at least some nonze-
ros, which implies that Abrgc has nonzero stream at level
1. Observe that each step of the nonzero stream at level 1
is expected to have ρ entries. Moreover, we assume ρ ≥ 2.
This leads to the formation of the nonzero stream at level 2.
Therefore, the total number of nonzeros, in all the nonzero
streams of level 1 and 2, is 2n. Due to the LRU replace-
ment policy, one can expect that the n multiplications with
the nonzeros in the nonzero stream at level 1 incur the
same amount of cache misses as if x was scanned in a reg-
ular manner during SpMXV. Next, we observe that each
of the accesses in x for multipliying with nonzeros in the
nonzero streams at level 2 creates cache misses with proba-

bility n/ρ−Z/L
n/ρ

. More generally, each of the other access in x

creates cache miss with probability cn/ρ−Z/L
cn/ρ

, where, c is the

average number of nonzero streams under one step of first
level nonzero stream and 1 ≤ c ≤ ρ. Therefore, the expected
cache misses in accessing x is given by:

Q2 = n/L+ Z/L+ (n− Z/L)n/ρ−Z/L
n/ρ

+ (τ − 2n) cn/ρ−Z/L
cn/ρ

.

We apply the computer algebra system MAPLE to ana-
lyze the difference between Q1 and Q2. For the large matri-
ces of [1], the equality n = O(Z2) holds for level 2 cache and
our calculations show that we have, Q1 - Q2 ≈ n.

4. EXPERIMENTAL RESULTS
We selected 10 matrices from [1] for our experimentation.

The basic information for each test matrix is given in Ta-
ble 4. We run our experiments on an intel core 2 processor
Q6600. It has L2 cache of 8MB and the CPU frequency is
2.40 GHz [11]. We measure the CPU time (given in sec-
onds) for 1000 SpMXV s for three variants reported in Ta-
ble 4: with BRGC ordering, without any preprocessing and
after a random re-ordering of the columns. It shows that

Matrix name m n τ
fome21 67748 216350 465294

lp ken 18 105127 154699 358171
barrier2-10 115625 115625 3897557

rajat23 110355 110355 556938
hcircuit 105676 105676 513072
GL7d24 21074 105054 593892
GL7d17 1548650 955128 25978098
GL7d19 1911130 1955309 37322725

wikipedia-20051105 1634989 1634989 19753078
wikipedia-20070206 3566907 3566907 45030389

Table 1: Test matrices.

Matrix name BRGC no random
ordering ordering ordering

fome21 3.6 3.9 4.8
lp ken 18 2.7 3.1 3.3

barrier2-10 19.0 19.1 23.2
rajat23 3.0 3.0 3.4
hcircuit 2.6 2.5 2.9
GL7d24 3.0 3.2 3.1
GL7d17 484.6 625.0 580.7
GL7d19 784.6 799.0 899.2

wikipedia-20051105 258.9 321.0 411.5
wikipedia-20070206 731.5 859.0 1046.0

Table 2: CPU time for 1000 SpMXV s.

the cost of BRGC ordering is amortized by 1000 SpMXV s
for all of the matrices. Our experimental results also show
that the cost of BRGC ordering algorithm, as a preprocess-
ing step, can be much less than

√
n SpMXV s and thus can

improve the performances of CG-type algorithms in practice.
Note that other column ordering algorithms reported in [8]
and their performances are compared with BRGC ordering
algorithm in [6]. As reported in [6], BRGC algorithm out-
performs these other column ordering algorithms on three
different computer architectures.

5. REFERENCES
[1] T. Davis, Uni. of florida sparse matrix collection.

http://www.cise.ufl.edu/research/sparse/

[2] E. Im, Optimizing the performance of sparse matrix-vector
multiplication. PhD Thesis, Uni. of California Berkeley, 2000.

[3] D. Kreher and D. Stinson, Combinatorial Algorithms :Gen.,
Enum., and Search. CRC Press, 1999.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. 2nd Edition McGraw-Hill, 2001.

[5] M. Frigo, C. E. Leiserson, Prokop, Harald, Ramachandran, and
Sridhar, Cache-Oblivious algorithms. FOCS ’99: Proc. of the
40th Annual Symp. on Foundations of Comp. Sc., 1999

[6] S. Haque, A computational study of sparse matrix storage
scheme M.Sc. Thesis, Uni. of Lethbridge , 2008.

[7] S. Haque, and M. Moreno Maza, Algorithms for sorting large
objects, Tech. Report, Uni. of Western Ontario, 2010.

[8] A. Pinar and M. Heath, Improving performance of sparse
matrix-vector multiplication. In Supercomputing ’99: Proc. of
the 1999 ACM/IEEE conf. on Supercomputing (CDROM),
New York, USA, 1999.

[9] S. Toledo, Improving the memory-system performance of
sparse-matrix vector multiplication, In IBM J. Res. Dev., vol.
41, num. 6, 1997.

[10] R. Vuduc, Automatic performance tuning of sparse matrix
kernels. PhD Thesis, Uni. of California Berkeley, 2003.

[11] Intel Webpage, Intel core 2 quad processor q6600.
http://ark.intel.com/Product.aspx?id=29765

176

Parallelising the computational algebra system GAP

[Extended Abstract]

R. Behrends,
A. Konovalov, S. Linton
School of Computer Science

University of St Andrews
{rb,alexk,sal}@cs.st-

and.ac.uk

F. Lübeck
LDFM

RWTH Aachen
frank.luebeck@math.rwth-

aachen.de

M. Neunhöffer
School of Mathematics and

Statistics
University of St Andrews
neunhoef@mcs.st-

and.ac.uk

ABSTRACT
We report on the project of parallelising GAP, a system for
computational algebra. Our design aims to make concur-
rency facilities available for GAP users, while preserving as
much of the existing code base (about one million lines of
code) with as few changes as possible and without requir-
ing users—a large percentage of whom are domain experts
in their fields without necessarily having a background in
parallel programming—to have to learn complicated paral-
lel programming techniques. To this end, we preserve the
appearance of sequentiality on a per-thread basis by con-
taining each thread within its own data space. Parallelism
is made possible through the notion of migrating objects out
of one thread’s data space into that of another one, allowing
threads to interact and via limited use of lockable shared
data spaces.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Miscella-
neous

General Terms
Design, Languages, Performance

Keywords
GAP, shared memory programming, data spaces

1. INTRODUCTION
GAP (http://www.gap-system.org), is an open-source

system for computational discrete algebra, with particular
emphasis on Computational Group Theory. It provides a
programming language, an extensive library of functions im-
plementing algebraic algorithms written in the GAP lan-
guage as well as large data libraries of algebraic objects. The
kernel of the system is implemented in C, and the library is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO 2010, 21–23 July 2010, Grenoble, France.
Copyright 2010 ACM 978-1-4503-0067-4/10/0007 ...$10.00.

implemented in the GAP language. Both the kernel and the
library are sequential and do not support parallelism.

In the 4-year long EPSRC project “HPC-GAP: High Per-
formance Computational Algebra and Discrete Mathemat-
ics” (http://www-circa.mcs.st-and.ac.uk/hpcgap.php),
we aim at reengineering the GAP system to allow parallel
programming in GAP both in shared and distributed mem-
ory programming models. Below we report on the current
progress with extending the system with new functionality
for shared memory programming in GAP (in contrast with
ParGap [5], which assumes a distributed system).

2. CURRENT USERS OF GAP
The main driver for our programming model is that we

have a fairly large user base (estimated in thousands of users
and a large number of package authors) who have a consider-
able investment in the current sequential architecture. While
many of them will likely be interested in leveraging the in-
creased performance of multicore processors, it is unlikely
that they will accept changes that invalidate their existing
code. In addition, the GAP standard library and the pack-
ages distributed with GAP are about one million lines of
code in size, a rewrite of which would be prohibitive.

We are looking at the following types of users as the ones
that a parallel programming model should accommodate.

(1) Domain experts who do not have expertise in parallel
programming or lack the resources to invest into it. These
users range from the student who uses GAP as a desktop
calculator for computational algebra problems to the main-
tainer of an existing GAP package where the rewrite for a
parallel model would be cumbersome. These users do not
get sufficient benefits out of parallel programming to justify
the costs. For them, at least the appearance of a sequential
environment must be maintained and sequential code must
not suffer performance penalties1.

(2) Users who wish to leverage the benefits of parallelism,
but are not expert parallel programmers themselves. These
users need to be provided with a set of high level tools, such
as parallel skeletons [2], to parallelise their algorithms with-
out having to worry about the common pitfalls of parallel
programming.

(3) The third type of user is the parallelism expert. Paral-
lelism experts are familiar with how to optimise algorithms
for parallel programming and need to be provided with the

1Performance concerns [4] are one reason why we have so far
rejected Software Transactional Memory as a programming
model, despite its relative simplicity for non-experts.

177

necessary low-level tools to control how threads interact in
order to optimise performance. At the same time, these low
level tools need to come with reliable error detection to min-
imise the occurrence of race conditions or deadlocks.

3. THE PARALLEL ENVIRONMENT
Our parallel programming model builds on the notion

of segregating threads through disjoint data spaces. Data
spaces form a partition of GAP objects, i.e. each GAP ob-
ject is the member of exactly one data space. Only one
thread at a time can have exclusive access to a data space
(checked at runtime), which ensures mutual exclusion.2

We distinguish between three types of data spaces. First,
there is a thread-local data space associated with each thread,
to which that thread always has exclusive access; second,
there are an indefinite number of shared data spaces to which
threads can gain exclusive or shared access through an as-
sociated read-write lock; finally, there is a single public data
space, to which all threads have shared access at all times.
If a thread has exclusive access to a data space, that means
that it can perform any operation on objects within this data
space; if a thread has shared access to a data space, it can
perform any operation on these objects that does not inter-
fere with other threads performing similar operations. An
example is read-only operations.

In order for threads to interact, objects can be migrated
between data spaces3. An object can only be migrated out of
a data space by a thread if that thread has exclusive access
to that data space. This constraint makes migration a cheap
operation: each object has a descriptor (implemented as a
C pointer) for the data space that contains it; objects are
migrated by updating that descriptor. Because the thread
has exclusive access to the data space (and thus, the object),
this can be implemented as a simple memory write4.

Before performing an operation on an object, a thread
checks the data space descriptor of the object to ensure that
the thread has the proper access to perform an operation.
The most common cases are optimised for: access to the
thread’s thread-local data space; the public data space; and
the most recently used shared data space. Checks that can
be statically shown to be superfluous are eliminated.

Thread-local data spaces accommodate our first type of
users. A piece of code that executes solely within a single
thread-local data space is indistinguishable from a purely
sequential program and is guaranteed to not have race con-
ditions or deadlocks.

Shared data spaces aim primarily at the third type of user,
the parallelism expert. Access to them is controlled by ex-
plicit read-write locks, which may be cumbersome for the
non-expert to use. Our model still protects the programmer
against the two most common types of errors, race condi-
tions, and deadlocks. Shared data spaces are used to im-

2Our programming model intentionally does not prescribe
a specific scheduling algorithm. Scheduling logic can and
should be encapsulated in parallel skeletons [2] to allow
problem-specific optimizations, as well as general schedul-
ing algorithms.
3Programming is meant to be similar to pure message pass-
ing approaches, but allows for multiple threads to share data
(primarily, because we send references of objects between
threads rather than copies of objects). Thus, unlike pure
message passing approaches, we need to protect against race
conditions and other typical shared memory errors.
4For some cases, explicit memory barriers are needed.

plement concurrent data structures (such as a shared cache)
that can then be reused by non-experts.

Race conditions are automatically avoided, because a
thread needs to lock a shared data space before it can access
the objects within. Failure to lock a data space causes the
data space descriptor check to fail with a runtime error.

To avoid deadlocks, we require that there be a partial
order on locks and that locks are acquired following that
order. That means that when a thread acquires a lock B
while holding a lock A, then A must be less than B based on
that partial order. This order does not have to be specified
by the user, but it has to exist. To ensure that it exists,
we record for each lock the set of successor locks that were
acquired while it was being held. Then, when a lock A is
acquired, GAP checks that none of the successor locks of A
are currently being held.

This implementation incurs little or no overhead if there
is no nesting of locks, which is a very common case [1]. It
also requires no explicit annotation (unlike [3], which uses
the same basic idea), which would be cumbersome for the
non-expert user, as such annotations tend to be often re-
quired even in otherwise purely sequential code that uses
parallelised libraries.

The public data space only contains atomic objects, i.e.
objects that support solely atomic operations and thus can
be acted on by any number of threads concurrently (this
includes all fully immutable objects). This is both a con-
venience feature so that the programmer does not have to
write explicit locking code for simple objects and allows more
efficient access to objects that can be implemented without
locking (such as atomic counters or lock-free queues).

A very common use case for atomic objects is that sev-
eral types of GAP objects have attributes that accumulate
and cache information that is often expensive to compute.
Adding to accumulated data is an idempotent operation (the
result is always the same, even if it is calculated repeatedly)
and two threads can perform it concurrently without locking.

4. REFERENCES
[1] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano.

Thin locks: featherweight synchronization for Java. In
PLDI ’98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and
implementation, pages 258–268, New York, NY, USA,
1998. ACM.

[2] G. H. Botorog and H. Kuchen. Efficient parallel
programming with algorithmic skeletons. In Euro-Par
’96: Proceedings of the Second International Euro-Par
Conference on Parallel Processing, pages 718–731,
London, UK, 1996. Springer-Verlag.

[3] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: preventing data races and
deadlocks. In Proceedings of the 17th ACM conference
on Object-oriented programming, systems, languages,
and applications, volume 37 (11) of ACM SIGPLAN
Notices, pages 211–230. ACM, Nov. 2002.

[4] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: why is it only a research toy?
Commun. ACM, 51(11):40–46, 2008.

[5] G. Cooperman. ParGAP – Parallel GAP, Version
1.1.2, 2004. GAP package,
http://www.ccs.neu.edu/home/gene/pargap.html.

178

179

Author Index

Abu Salem, Fatima K. 150
Al Ali, Mohamed 73
Anai, Hirokazu 173
Arnold, Andrew 112

Behrends, Reimer 177
Bertin, Christian 1
Boyer, Brice . 80

Cooperman, Gene63

Dos Reis, Gabriel 98
Dumas, Jean-Guillaume 26, 80

Emeliyanenko, Pavel 35

Faugère, Jean-Charles89
Franchetti, Franz 169

Gastineau, Mickaël44
Gautier, Thierry 26
Giorgi, Pascal .80

Haque, Sardar Anisul 175
Hossain, Shahadat 175

Jacquin, Ludovic73
Javadi, Seyed Mohammad Mahdi 160
Jeannerod, Claude-Pierre 1
Johnson, Jeremy 20, 169
Jourdan-Lu, Jingyan 1

Kaltofen, Erich 10
Kimura, Kinji .173
Knochel, Hervé . 1
Konovalov, Alexander 141, 177
Kunkle, Daniel 22, 63

Lachartre, Sylvain 89
Langlois, Philippe 121
Leiserson, Charles E.53
Lewin-Berlin, Steve 18
Li, Liyun . 53
Li, Yue . 98
Linton, Steve 141, 177
Lübeck, Frank 177

Martel, Matthieu 121
Meng, Lingchuan 169
Monat, Christophe 1
Monagan, Michael105, 112, 160
Moreno Maza, Marc 53, 169, 175
Mouilleron, Christophe 1

Muller, Jean-Michel 1

Neunhöffer, Max 177
Nguyen, Hong Diep 171

Pearce, Roman 105

Revol, Nathalie 171
Revy, Guillaume 1
Roca, Vincent . 73
Roch, Jean-Louis 26, 73

Slavici, Vlad . 63

Thévenoux, Laurent 121

Verschelde, Jan 131
Voronenko, Yevgen 169

Xie, Yuzhen 53, 169

Yoffe, Genady 131

