

Towards an efficient implementation for the resolution of structured linear system

Benoît Lacelle – University of Western Ontario ACA 2009 - Montréal

Where are linear systems ?

- Set of equations: A.X=B
 - A is a matrix
 - X and B are vectors
- Example: Extended GCD of (p, q) in K[X]²

p_0			q_0				a_0		[1]	
p_1	•••		q_1	•••			:		0	
:	· .	p_0	•	۰.	q_0	×	a_{m-1}	=	0	
p_n		p_1	q_m		q_1		b_0		:	
	•	•		•••	•		:		:	
		p_n			q_m	į.	b_{n-1} .			

The displacement approach

Matrices neither dense nor sparse

Kailath, Kung, Morf [1979]
Displacement operator : φ(.)
Displacement rank : rank(φ(.))

Low memory representationFast elementary operations

Example: Toeplitz matrices

• A is defined by its first row and first column

• *Displacement operator*: $\phi^+(A) = A - \Im A$

$$\begin{pmatrix} A & & \searrow A & & \phi^+(A) \\ a & b & c & d \\ e & a & b & c \\ f & e & a & b \\ g & f & e & a \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & e & a & b \\ 0 & f & e & a \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ e & 0 & 0 & 0 \\ f & 0 & 0 & 0 \\ g & 0 & 0 & 0 \end{pmatrix}$$

- *Displacement rank*: $rank(\phi^+(A)) \le 2$
- Toeplitz-like: rank(φ⁺(A)) << Dim(A)

Low memory consumption

• O(α.n) elements

$$\operatorname{rank}(\phi^+(A)) = \alpha \implies \phi^+(A) = \sum_{j=1}^{\alpha} y_j z_j^{tr}$$
$$\implies A = \sum_{j=1}^{\alpha} L[y_j] U[z_j^{tr}]$$

where
$$L\begin{bmatrix}a\\b\\c\end{bmatrix} = \begin{bmatrix}a&0&0\\b&a&0\\c&b&a\end{bmatrix}$$
 $U\begin{bmatrix}a&b&c\end{bmatrix} = \begin{bmatrix}a&b&c\\0&a&b\\0&0&a\end{bmatrix}$

• $2\alpha M(n)$ operations $A = \sum_{j=1}^{\alpha} L[y_j]U[z_j^{tr}]$

- M(n) is the cost of a polynomial product in degree n
- FFT: $M(n) = O(n \log n \log \log n)$

$$\begin{bmatrix} a \\ b & a \\ c & b & a \end{bmatrix} \times \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} au \\ av + bu \\ aw + bv + cu \end{bmatrix}$$
$$(a + bX + cX^{2}) \times (u + vX + wX^{2}) \equiv \begin{bmatrix} au & \times X^{0} \\ av + bu & \times X^{1} \\ aw + bv + cu & \times X^{2} \end{bmatrix} \mod X^{3}$$

Divide and Conquer à la Strassen

• If A has generic rank profile (all north-west submatrices are invertible)

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

• Then A_{1,1} is invertible and we have:

$$A^{-1} = \begin{bmatrix} A_{1,1}^{-1} - A_{1,1}^{-1} A^{1,2} \Delta^{-1} A^{2,1} A_{1,1}^{-1} & -A_{1,1}^{-1} A^{1,2} \Delta^{-1} \\ -\Delta^{-1} A^{2,1} A_{1,1}^{-1} & \Delta^{-1} \end{bmatrix}$$

• With the Schur complement

$$\Delta = A_{2,2} - A_{2,1} A_{1,1}^{-1} A_{1,2}$$

The MBA algorithm

- Morf [1980] and Bitmead-Anderson [1980]
 - Inversion in $O(\alpha^2 M(n) \log n)$
 - FFT: $O(\alpha^2 n (\log n)^2 \log \log n)$
 - In the dense case: $O(n^{\omega})$ with $2 < \omega \le 3$
- *Input*: A given by generators
- *Output*: A⁻¹ given by generators
 - 1. Inverse $A_{1,1}$
 - 2. Compute Δ
 - 3. Inverse Δ
 - 4. Recompose A⁻¹
 - 5. Reduce the number of generators defining A⁻¹

Our improvements

Previous work

- Kaltofen [1994]
 - Use of randomization
 - Remove the *generic rank profile* condition
- Our improvements
 - Divide the complexity by a constant
 - 4 to 8 times faster

Where is the cost ?

Matrix-Matrix products:

- Rank($\phi^+(A)$) = α and Rank($\phi^+(B)$)= β
 - $(2\alpha\beta+2) M(n)$
- Return A.B defined by $\alpha + \beta + 1$ generators

Reduction of generators:

- Rank(φ⁺(A)) = α but defined by β generators
 O(α β n)
- Return A defined by α generators

Optimized Schur Inversion

- Reduce the number of multiplications
 - 10 to 6 matrix-matrix multiplications

$$\gamma = A_{1,1}^{-1} A_{1,2}$$

$$\Delta = A_{2,2} - A_{2,1} \gamma$$

$$A^{-1} = \begin{bmatrix} A_{1,1}^{-1} + \gamma B_{2,1} & -\gamma \Delta^{-1} \\ B_{2,1} = -\Delta^{-1} A_{2,1} A_{1,1}^{-1} & \Delta^{-1} \end{bmatrix}$$

- Supplementary reductions
 - Pay for the reduction
 - Save in following matrix-matrix products

Hybrid algorithm

Quadratic inversion:

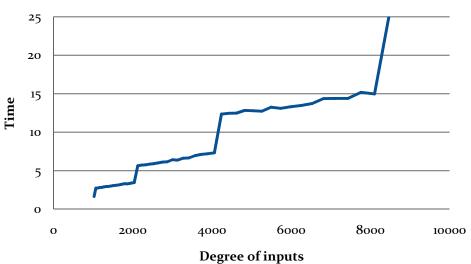
- Heinig, Rost [1984]
 - Inversion in O(αn²) with the solution of α structured systems
 A.X=B with the same A and different B
- Gohberg, Kailath, Koltracht [1986]
 - Resolution in $O(\alpha n^2)$ plus $O(n^2)$ per systems (same A, different B)
- Lead to inversion in $O(\alpha n^2)$
- MBA with FFT: $O(\alpha^2 n (\log n)^2 \log \log n)$

No Staircase Behaviour

Fast Fourier Transformation

~ constant complexity
 between powers of 2

FFT Polynomial Multiplication



• Recursive algorithm based on FFT

- Shall have a staircase behavior? No!
- Unbalanced subproblems

Unbalanced subproblems

Balanced policy

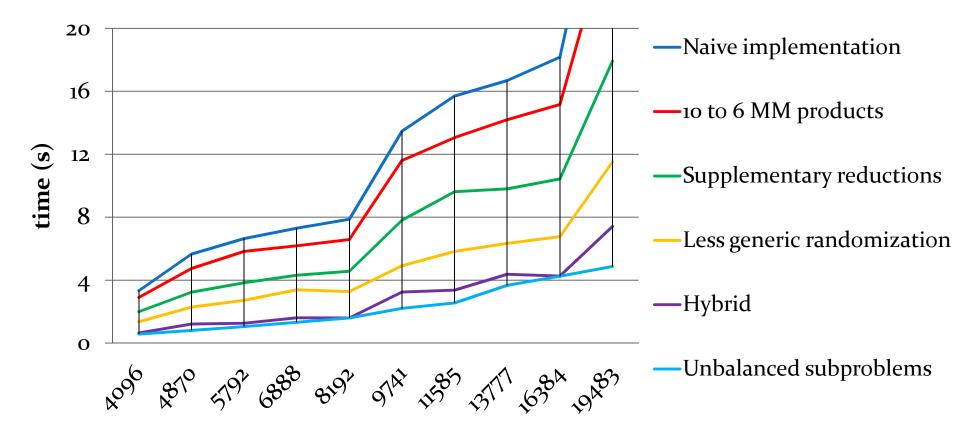
- $C(10) = C(\lceil 10/2 \rceil) + C(\lfloor 10/2 \rfloor) + T(10)$
- C(10) = 2C(5) + T(10)
- C(10) = 2C(2) + 2C(3) + T(10) + 2T(5)
- C(10) = 4C(2) + 2C(1) + T(10) + 2T(5) + 2T(3)
- C(10) = 10C(1) + T(10) + 2T(5) + 2T(3) + 4T(2)
- C(10) = 10C(1) + T(10) + 2T(8) + 2T(4) + 4T(2)

Unbalanced policy

- $C(10) = C(2^{\lfloor \log_2 10 1 \rfloor}) + C(10 2^{\lfloor \log_2 10 1 \rfloor}) + T(10)$
- C(10) = C(8) + C(2) + T(10)
- C(10) = 2C(4) + C(2) + T(10) + T(8)
- C(10) = 5C(2) + T(10) + T(8) + 2T(4)
- C(10) = 10C(1) + T(10) + T(8) + 2T(4) + 5T(2)

C++ implementation based on NTL

Inversion - Random structured matrices in Z/pZ s.t. p = FFTPrime(32 bits) - Rank($\phi^+(M) = 2$



Coming improvements

- Newton iteration adapted to structured matrices
 - Inversion of rational matrices
- C++
 - Generic Programming
 - Handle other structures