Linear Algebra Modulo Tiny Primes David Saunders, Bryan Youse - U Delaware ... using and extending the LinBox library. Jean-Guillaume Dumas - U Grenoble

www.linalg.org

Integer Rank and Rank Modulo Tiny Primes

David Saunders, Bryan Youse - U Delaware Jean-Guillaume Dumas - U Grenoble

... using and extending the LinBox library. www.linalg.org

Outline

- large matrix, small rank conjecture for Dickson SRG family.
- large matrix, large rank
- packing schemes
- small rank algorithm, resources needed
- large rank resources needed
- integration of packing into LinBox

Algebraic graph theory

important role in classification of various graphs and graph families. Ranks and Smith forms of incidence and adjacency matrices play an

 $r < 2^{17} \sim 10^5$. graphs: Matrix order $n = 3^{16} \sim 43 \times 10^6$. 3-Rank to be computed Qing Xiang, Peter Sin, David Chandler, ... strongly regular

Previous case done: $n = 3^{14}, r = 32064, 4$ days single process.

 $n \sim 10^6$. p-Rank to be computed $r \sim n$, smallish p. Andries Brouwer, ... distance regular graphs: Matrix order

Previous case done: $n \sim 10^5$, 1 file per row, amusing probs.

Ç

Dickson's Hadamard difference set

where g is a generator, σ an automorphism of $GF(p^e)$. $G = additive group of <math>GF(p^e) \times GF(p^e)$ Difference set $D = \{(a^2 + gb^{2\sigma}, 2ab) | (0,0) \neq (a,b) \in G\}$

(D is the set of non-zero squares of a semi-field multiplication on

Adjacency matrix:

$$a_{i,j} = \left\{ egin{array}{ll} p-1, & ext{if } i=j, \\ & 1, & ext{if } e_i-e_j \in D, \\ & 0, & ext{otherwise.} \end{array}
ight.$$

8 43,046,721	7 4,782,969	6 531,441	5 59,049	4 6,561	3 729	2 81	1 9	$\begin{array}{ c c c c } \hline e & n = 3^{2e} \\ \hline \end{array}$	
?	32064	7283	1654	376	85	20	4	$r \text{ near } 2^{2e}$	
I	ı	46.7h	0.5h	33.3s	0.35s	0.021s	ı	2007t	
ı	1.2h	80s	1.4s	0.046s	0.003s	0.0003	ı	$\parallel 2009 \mathrm{r}$	
ı	96.4h	1.2h	0.017h	0.95s	0.022s	0.0012s	ı	2009t	

certificate. The time units are 's' for seconds, and 'h' for hours. Table 1: The Dickson SRG example computed with summation and

Hankel system

Hankel system

$$\begin{pmatrix} 4 & 20 & 85 & 376 \\ 20 & 85 & 376 & 1654 \\ 85 & 376 & 1654 & 7283 \\ 376 & 1654 & 7283 & 32064 \\ \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -4 \\ 1 \end{pmatrix} = 0$$

Hankel system

$$\begin{pmatrix} 4 & 20 & 85 & 376 \\ 20 & 85 & 376 & 1654 \\ 85 & 376 & 1654 & 7283 \\ 376 & 1654 & 7283 & 32064 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -4 \\ 1 \end{pmatrix} = 0$$

 $x^3 - 4x - 2x + 1.$ Conjecture: Minimal polynomial of Dickson rank sequence is

10

Hankel system

$$\begin{pmatrix} 4 & 20 & 85 & 376 \\ 20 & 85 & 376 & 1654 \\ 85 & 376 & 1654 & 7283 \\ 376 & 1654 & 7283 & 32064 \\ 1654 & 7283 & 32064 & r_8 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -4 \\ 1 \end{pmatrix} = 0$$

It's computation is a challenge. r_8 may strengthen or disprove the conjecture.

3-packing

Three bits per field element.

Thus 21 elements per 64 bit word = 2.625 elements per byte. (unpacked - int or float - 0.25 elements per byte)

(eg. $0\ 010\ \dots\ 000\ 001\ 010\ 011\)$

Normalized values are $0 = 000_2, 1 = 001_2, 2 = 010_2$.

Semi-normalized values are $0 = 000_2$ or 011_2 , $1 = 001_2$, $2 = 010_2$. Intermediate results carry over to the third bit (and no farther).

Semi-normalization consists in clearing the third bit per entry.

12

add 3-packed words

semi-normalized word z. input: packed semi-normalized words x, y. output: packed

```
mask3b = 0 001 001 001 ...

z = x + y

z = z + ((z \& mask3b) >> 2)
```

13

smul - scalar-vector multiplication

input: normal field element a (eg. 0 ... 010), semi-normal packed word x.

output: $z = a^*x$

case a = 0: z = 0; case a = 1: z = x;

case a = 2:

Z = X << 1

z = z | (z & mask3b) >> 2)

packed words. To avoid inner loop branch, apply smul at the level of vector of

axpy (z = ax + y), use smul and add.

3-bitslicing

(in corresponding bit positions). Use two bits per field element, one in each word of a 2 word pair

Thus 64 elements per two 64 bit words = 4 elements per byte.

eg. elements 0,1,2 are represented by first three bits of the word Normalized values are $0 = 00_2, 1 = 01_2, 2 = 11_2$. (all results are normalized to these values), Boothby & Bradshaw.

$$x0 = 011....$$

$$x1 = 001....$$

15

3-bitslicing arithmetic

$$x0 = 011....$$

$$x1 = 001....$$

smul:

case a = 2:

0x = 0

z1 = x0 xor x1

add: 12 bit operations (6 each for z0 and z1).

axpy: smul + add (i.e. again no special tricks)

Semi-normalized values are $0 = 000_2$ or 011_2 , $1 = 001_2$, $2 = 010_2$. dot product: bit-wise mul, then divide and conquer (shift, add)* Intermediate results carry over to the third bit (and no farther)

Semi-normalization consists in clearing the third bit per entry.

packing in mantissa of floats

normalization Use arithmetic more, bit ops less. Less tight packing, less frequent

Emphasis to date is on dot (for matrix mul), Dumas, Fousse, Salvy.

For $n \times n$ matrix and p = 3, choose d such that $B = 2^{d+1} > 4n$.

$$x = \sum_{i=0}^{d} a_i B^i$$

$$y = \sum_{i=0}^{d} b_i B^i$$

$$z = xy$$

Then
$$z_d = \sum_{i=0}^{d} a_i b_{d-i}$$
.

Key point: highly tuned floating point matrix multiply can be used (BLAS) followed by normalization.

17

20k	3226	350.9	3835	10^3	mm
	4168	312.5	468.7	15000	MM
					Matrix Ops
	6165	98.46	77.96	10^{7}	axpy
	21008	136.5	81.15	10^{7}	scalar mul
	4492	165.9	120.65	10^{7}	add
					Vector Ops
pf	packed	int	float	Size	Operation
	$^{\circ} \mathrm{Fops})$. (MegaF	mparison	netic Co	GF(3) Arithmetic Comparison (MegaFFops)

stored as ints, and c) packed. elements that are a) stored as floats and using BLAS for mm, b) Table 2: Speed of vector and matrix operations over GF(3), using

18

Certification Theorem:

Given

A, an $n \times n$ matrix,

H, an $n \times b$ projection matrix, and

V, an random $n \times k$ random dense matrix let B = AH and C = (AH|AV).

 $(B \text{ is } n \times b - k, C \text{ is } n \times (b).)$

If $r = \operatorname{rank}(B) = \operatorname{rank}(C)$

then $r = \operatorname{rank}(A)$

of the field. with probability of error less than $1/q^k$, where q is the cardinality

million. Over GF(3), with k = 13, probability of error is less than 1 in a

19

Corollary - 2 sided version

rows Heuristic: sum by blocks. Certificate: a few extra random cols,

$$\begin{pmatrix} I & I & I \\ U_1 & U_2 & U_3 \end{pmatrix} \begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix} \begin{pmatrix} I & V_1 \\ I & V_2 \\ I & V_3 \end{pmatrix}$$

$$B_i = \sum_j \left(A_{i,j} & A_{i,j}V_j \right) //b \times b + k$$

$$B = \sum_I \begin{pmatrix} B_i \\ U_i B_i \end{pmatrix} //b + k \times b + k$$

Dickson's Hadamard difference set

where g is a generator, σ an automorphism of $GF(p^e)$. $G = additive group of <math>GF(p^e) \times GF(p^e)$ Difference set $D = \{(a^2 + gb^{2\sigma}, 2ab) | (0,0) \neq (a,b) \in G\}$

(D is the set of non-zero squares of a semi-field multiplication on

Adjacency matrix:

$$a_{i,j} = \left\{ egin{array}{ll} p-1, & ext{if } i=j, \\ & 1, & ext{if } e_i-e_j \in D, \\ & 0, & ext{otherwise.} \end{array}
ight.$$

units of scale

arithmetic ops limit	2^{50}	peta 10^{15} 2^{50}	peta
\$ of ARRA bailout	2^{40}	10^{12} 2^{40}	tera
10^9 2^{30} \$ to endow a University, cycles/sec	2^{30}	10^{9}	giga
\$ to retire	2^{20}	$10^6 2^{20}$	mega
\$ to attend ACA	2^{10}	$10^3 2^{10}$	kilo

Big dense matrix, small rank

Case $n = 3^{14}$ and $r \sim 2^{15}$.

Storage: $(3^{14})^2$ (packed) elements ~ 6 terabytes. too much! Time: $n^2r \sim 0.7 \times 10^{18}$. [10¹⁸ nanoseconds ~ 32 years.] too much!

ops is tractable amount of time megabytes (would be 4GB at 32 bit word/element), and $(2^{15})^3$ field But storage of $(2^{15})^2$ (packed 2bits/element) elements is 256

certify (probabilistically). maintaining rank. Strengthened idea: project heuristically, and Idea: project to a matrix of order a little larger than r while

is slightly greater than r. Then in $O(r^3)$ time compute the rank. matrix once and generates a $b \times b$ matrix of the same rank, where b New algorithm uses $O(n^2 + r^3)$ time. In $O(n^2)$ time it scans the big

For time: $n^2 \sim 0.6 \times 2^{45}$, $r^3 \sim 2^{45}$

For storage: $r^2 \sim 2^{30}$.

Actual run times:

Generate $b \times b$ block $(n^2 \text{ part})$ - 4 days. Compute row echelon form $(r^3 \text{ part})$ - 3 hours.

Dickson 3^{16}

Case $n = 3^{16}$ and $r \sim 2^{17}$.

Reduction phase:

 n^2 ops to produce block B of order $b \sim 2^{17}$.

 $n^2 = 3^{32} \sim 0.8 \times 2^{51}$

Rank phase:

Bit-slicing: 32 elements of GF(3) per 64 bit word (= 4 elt per byte).

bit-sliced B of dimension 2^{17} occupies 2^{32} bytes.

Rank computation involves $(2^{17})^3 = 2^{51}$ field ops.

Rank computation, current limits

Large matrix, small rank Dickson problem:

 $r^2 = 2^{30}$. Routine (with packing): $n = 2^{19}, r = 2^{15}, \text{ time } 2^{38} + 2^{45}, \text{ memory}$

Challenge: $n=2^{25}, r=2^{17}$, time $2^{50}+2^{51}$, memory 2^{34} . $2^{22}, 2^{15}$.

 n^3 time, n^2 space. Limit is $n < (2^{45})^{1/3}$, if $r \sim n$. Large matrix, large rank (Brouwer's problem)

Routine: $n = 2^{15}$, time 2^{45} , memory 2^{30} .

Small challenge: $n = 2^{17}$, time 2^{51} , memory 2^{34} .

Challenge: $n=2^{20}$, time 2^{60} , memory 2^{40}

from Field to ...

types, and their properties. concept/interface/archetype which specifies the member functions In linbox the field F is an object of a type FIElD meeting a Field

Field Types are template parameters to generic solutions and to matrix representations..

```
typedef
                                                                                                      template<class
                                                                                                                                         template<class
                                                                                                                                                                                                                                             template<class Element> Modular {
                                 // code using rank
                                                                                                                                                                                                                                                                                 //elsewhere defined
                                                                                                                                                                                                           ... Elt \& mul(Elt \&c, const Elt \&a, const Elt \&b);
  ... Field;
                                                                                                     Field, class Matrix> void rank(integer
                                                                                                                                          Field> DenseMatrix;
                                                                                                       r, const
```

Ma

27

```
DenseMatrix A(F, n, n);
... A.setEntry( i, j, F.mul(x,a,b) )
rank(r, A);
                                                                 Field F(3);
```

Core LinBox Arithmetic: a Suite of Matrix Domains

```
template < class MatrixDomain> void rank(integer r, const MatrixDom
                                                                                                                                                                                                                                                                                                                                                                               class Matrix;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         class MatrixDomain { // BLAS-like functionality
                                                       template<class
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          class Block;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 class Scalar;
                                                                                                                                                                                                                                                                                                                          // Matrix::Entry may be packed word, may be unnormalized.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 // may encapsulate packing, delayed normalizations, parallelism
                                                                                                                                                                                                                                                                       // complexity: two matrix types suffice?
                                                                                                                                                                                                                                                                                                                                                                                                                                   // Block::Entry may be packed word, may be unnormalized.
                                                        MatrixDomain> DenseMatrix;
```