ACA 2009Jun

Linear Algebra Modulo Tiny Primes

David Saunders, Bryan Youse - U Delaware
Jean-Guillaume Dumas - U Grenoble

... using and extending the LinBox library.

www.linalg.org

ACA 2009Jun

Integer Rank and Rank Modulo Tiny Primes

David Saunders, Bryan Youse - U Delaware
Jean-Guillaume Dumas - U Grenoble

... using and extending the LinBox library.

www.linalg.org

ACA 2009Jun

Outline

e large matrix, small rank conjecture for Dickson SRG family.
e large matrix, large rank

e packing schemes

e small rank algorithm, resources needed

e large rank resources needed

e integration of packing into LinBox

ACA 2009Jun

Algebraic graph theory

Ranks and Smith forms of incidence and adjacency matrices play an

important role in classification of various graphs and graph families.

Qing Xiang, Peter Sin, David Chandler, ... strongly regular
graphs: Matrix order n = 3% ~ 43 x 10°. 3-Rank to be computed
r <217 ~ 10°.

Previous case done: n = 34, r» = 32064, 4 days single process.

Andries Brouwer, ... distance regular graphs: Matrix order

n ~ 10%. p-Rank to be computed r ~ n, smallish p.

Previous case done: n ~ 10°, 1 file per row, amusing probs.

ACA 2009Jun

Dickson’s Hadamard difference set
G = additive group of GF(p¢) x GF(p°)
Difference set D = {(a® + gb*?,2ab)|(0,0) # (a,b) € G}
where ¢ is a generator, ¢ an automorphism of GF(p°).

(D is the set of non-zero squares of a semi-field multiplication on
G).

Adjacency matrix:

p—1, iti=j
Qi = 4 1, mm&lmu cD,

0, otherwise.

ACA 2009Jun

Dickson SRG

e | n=3% | rmnear 2% || 2007t || 2009r | 2009t
1 9 4 - - -

2 81 20 0.021s || 0.0003 | 0.0012s
3 729 85 0.35s || 0.003s | 0.022s
4 6,561 376 33.3s || 0.046s | 0.95s
5| 59,049 1654 0.5h 1.4s | 0.017h
6 | 531,441 7283 46.7h 80s 1.2h
7 | 4,782,969 32064 - 1.2h | 96.4h
8 | 43,046,721 ? - - -

Table 1: The Dickson SRG example computed with summation and

certificate. The time units are ’s’ for seconds, and 'h’ for hours.

ACA 2009Jun

Hankel system

\ 4 20
20 85
85 376

85
376
1654

376)
1654
7983

ACA 2009Jun

Hankel system

\ 4 20
20 85
85 376

\

85
376
1654

376)
1654
7983

376 1654 7283 32064

/

ACA 2009Jun

Hankel system

(4 20
20 85
85 376
376

\

Conjecture: Minimal polynomial of Dickson rank sequence is

x3 —4x —2x + 1.

85
376
1654

376)
1654
7983

1604 7283 32064

/

(1)

—2

1)

ACA 2009Jun

Hankel system

(4 20 8 376
20 85 376 1654
85 376 1654 7283
376 1654 7283 32064
\1654 7283 32064 15)

rs may strengthen or disprove the conjecture.

It’s computation is a challenge.

ACA 2009Jun

3-packing
Three bits per field element.

Thus 21 elements per 64 bit word = 2.625 elements per byte.
(unpacked - int or float - 0.25 elements per byte)

(eg. 0 010 ... 000 001 010 011)
Normalized values are 0 = 0005,1 = 0015, 2 = 0105.

Semi-normalized values are 0 = 0005 or 0115,1 = 0015, 2 = 010s.

Intermediate results carry over to the third bit (and no farther).

Semi-normalization consists in clearing the third bit per entry.

11

ACA 2009Jun

input: packed semi-normalized words x, y. output: packed

add 3-packed words

semi-normalized word z.

mask3b = 0 001 001 001

Z

Z

X +y
z + ((z & mask3b) >> 2)

12

ACA 2009Jun

smul - scalar-vector multiplication

input: normal field element a (eg. 0 ... 010), semi-normal packed
word X.

output: z = a*x

case a

I
o
N

I
O

case a = 1: z = x;
case a = 2:
z =x <1
z =z | (z & mask3b) >> 2)

To avoid inner loop branch, apply smul at the level of vector of
packed words.

axpy (z = ax + y), use smul and add.

13

ACA 2009Jun

3-bitslicing

Use two bits per field element, one in each word of a 2 word pair

(in corresponding bit positions).

Thus 64 elements per two 64 bit words = 4 elements per byte.

Normalized values are 0 = 00,1 = 015,2 = 115.

(all results are normalized to these values), Boothby & Bradshaw.

eg. elements 0,1,2 are represented by first three bits of the word

pair x:

x0 = 011....
x1 = 001....

14

ACA 2009Jun

3-bitslicing arithmetic

x0 = 011.
x1 = 001.
smul:
case a = 2:
z0 = x0
zl = x0 xor x1

add: 12 bit operations (6 each for z0 and z1).
axpy: smul + add (i.e. again no special tricks)

dot product: bit-wise mul, then divide and conquer (shift, add)*
Semi-normalized values are 0 = 0005 or 0115,1 = 0015, 2 = 010s.

Intermediate results carry over to the third bit (and no farther).

Semi-normalization consists in clearing the third bit per entry.

15

ACA 2009Jun

packing in mantissa of floats

Use arithmetic more, bit ops less. Less tight packing, less frequent

normalization.

Emphasis to date is on dot (for matrix mul), Dumas, Fousse, Salvy.
For n x m matrix and p = 3, choose d such that B = 241 > 4n.

T = Mum a; B’

y =35 b:B

z =y

Then z4 = Mum a;bg_;.

Key point: highly tuned floating point matrix multiply can be used
(BLAS) followed by normalization.

16

ACA 2009Jun

GF(3) Arithmetic Comparison (MegaFFops)
Operation Size float int | packed | pf
Vector Ops
add 107 | 120.65 | 165.9 | 4492
scalar mul 107 | 81.15 | 136.5 | 21008
axpy 107 77.96 | 98.46 | 6165
Matrix Ops
mv 15000 | 468.7 | 312.5 | 4168
mm 10° | 3835 | 350.9 | 3226 | 20k

17

Table 2: Speed of vector and matrix operations over GF(3), using
elements that are a) stored as floats and using BLAS for mm, b)

stored as ints, and c) packed.

ACA 2009Jun

Certification Theorem:

Given

A, an n X n matrix,

H, an n X b projection matrix, and

V', an random n X k£ random dense matrix,
let B=AH and C' = (AH|AV).
(Bisnxb—Fk, Cisn x(b).)

If r = rank(B) = rank(C)
then r = rank(A)
with probability of error less than 1/¢", where ¢ is the cardinality

of the field.

Over GF(3), with k = 13, probability of error is less than 1 in a

million.

18

ACA 2009Jun 19

Corollary - 2 sided version

Heuristic: sum by blocks. Certificate: a few extra random cols,

TOWS

Aix Ao Ais I W
1 I I

As1 Az Ass I Vs
Uy, U; Us

Az1 Aso Asgs I Vs

Y

Bi=> (A AiVp))//bxb+k
J

B;
B=>_ //b+kxb+k

ACA 2009Jun

Dickson’s Hadamard difference set
G = additive group of GF(p¢) x GF(p°)
Difference set D = {(a® + gb*?,2ab)|(0,0) # (a,b) € G}
where ¢ is a generator, ¢ an automorphism of GF(p°).

(D is the set of non-zero squares of a semi-field multiplication on
G).

Adjacency matrix:

p—1, iti=j
Qi = 4 1, mm&lmu cD,

0, otherwise.

ACA 2009Jun

kilo
mega

giga

tera

peta

103
109
10”
HOE
HOHm

units of scale

$ to attend ACA
$ to retire
$ to endow a University, cycles/sec
$ of ARRA bailout

arithmetic ops limit

21

ACA 2009Jun

Big dense matrix, small rank

Case n = 3 and r ~ 21°.
Storage: (3'%)? (packed) elements ~ 6 terabytes. too much!
Time: n?r ~ 0.7 x 10'%. [10'® nanoseconds ~ 32 years.] too much!

But storage of (21°)? (packed 2bits/element) elements is 256

megabytes (would be 4GB at 32 bit word/element), and (2'°)3 field
ops is tractable amount of time.

Idea: project to a matrix of order a little larger than r while
maintaining rank. Strengthened idea: project heuristically, and
certify (probabilistically).

New algorithm uses O(n? + r3) time. In O(n?) time it scans the big
matrix once and generates a b X b matrix of the same rank, where b
is slightly greater than r. Then in O(r?) time compute the rank.

For time: n? ~ 0.6 x 242, 3 ~ 245

For storage: r2 ~ 239,

22

ACA 2009Jun

Actual run times:
Generate b x b block (n? part) - 4 days.
Compute row echelon form (r® part) - 3 hours.

23

ACA 2009Jun

Dickson 3!
Case n = 36 and r ~ 217,
Reduction phase:
n? ops to produce block B of order b ~ 217.
n® = 3% ~ 0.8 x 2°!
Rank phase:
Bit-slicing: 32 elements of GF(3) per 64 bit word (= 4 elt per byte).
bit-sliced B of dimension 217 occupies 232 bytes.

Rank computation involves (217)3 = 25! field ops.

24

ACA 2009Jun

Rank computation, current limits

Large matrix, small rank Dickson problem:

Routine (with packing): n = 219, r = 215, time 2% + 2%° memory
2 30

e = 2°Y.

Challenge: n = 225 r = 217, time 2°0 + 2°!, memory 234, 222 215

Large matrix, large rank (Brouwer’s problem)
n3 time, n? space. Limit is n < (24°)Y/3, if r ~ n.
Routine: n = 2%, time 2%°, memory 23°.
Small challenge: n = 27, time 2°!, memory 234.

Challenge: n = 229, time 2°°, memory 24°

25

ACA 2009Jun 26

from Field to ...
In linbox the field F is an object of a type FIEID meeting a Field

concept /interface /archetype which specifies the member functions,

types, and their properties.

Field Types are template parameters to generic solutions and to

matrix representations..

//elsewhere defined
template<class Element> Modular {
Elt \& mul(Elt \&c, const Elt \&a, const Elt \&b);
s
template<class Field> DenseMatrix;

template<class Field, class Matrix> void rank(integer r, const Ms

// code using rank
typedef ... Field;

ACA 2009Jun

Field F(3);
DenseMatrix A(F, n, n);

A.setEntry(i, j, F.mul(x,a,b))
rank(r, A);

27

ACA 2009Jun 28

Core LinBox Arithmetic: a Suite of Matrix

Domains

class MatrixDomain { // BLAS-like functionality

// may encapsulate packing, delayed normalizations, parallelism
class Scalar;

class Block;

// Block::Entry may be packed word, may be unnormalized.

class Matrix;

// Matrix::Entry may be packed word, may be unnormalized.

// complexity: two matrix types suffice?

template<class MatrixDomain> DenseMatrix;

template<class MatrixDomain> void rank(integer r, const MatrixDon

