
A computer algebraist meets a computer centre
director

James Davenport
Hebron & Medlock Professor of Information Technology

Chairman, Powerful Computing Working Party

University of Bath (U.K.)
(visiting Waterloo)

25 June 2009
Many thanks to all at Bath, and Prof. Guest (Cardiff)

University of Bath

Good (9th out of 117 in the U.K.: Guardian 12 May 2009)

Heavily co-op

Strengths in Science, Engineering, Mathematics

But small — 538 Faculty

University of Bath

Good (9th out of 117 in the U.K.: Guardian 12 May 2009)

Heavily co-op

Strengths in Science, Engineering, Mathematics

But small — 538 Faculty

University of Bath

Good (9th out of 117 in the U.K.: Guardian 12 May 2009)

Heavily co-op

Strengths in Science, Engineering, Mathematics

But small — 538 Faculty

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Bath recently bought

100 node machine

Each node 2×quad-core Intel ‘Harpertown’; 16GB main
memory

Interconnect with Gigabit Ethernet and DDR Infiniband

* The Infiniband cost 20% of the total, so we want to run
communicating multi-node jobs.

7 Linpack Tflop/sec.

Therefore about 2,000th in the world.

To do “capacity” computing, not necessarily “capability”

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Operates as a batch service

The unit of allocation is the node

(8 cores, 16GB memory, 70 Gflops)

Nodes rebooted between uses

Maximum duration 48 hours

Very few applications use more than 10–20 nodes

No interactivity

* Some services with special graphics do offer interactivity.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results, and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine

and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results, and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine

and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results, and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine

and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results, and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results, and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results,

and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results,

and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results,

and do so efficiently?

* Still an unsolved problem.

Three levels of Portability

1 Will my program run on that machine?

2 Will my program run on that machine and give the same
results?

* Language standards; IEEE etc.

3 Will my program run on that machine and give the same
results, and do so efficiently?

* Still an unsolved problem.

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

BLAS — Basic Linear Algebra Subprograms

A tale of three levels.

1 Vector–Vector operations

* Great for the Cray-1, and other vector processors.

2 Matrix–Vector operations

* Great for SIMD machines

3 Matrix–Matrix operations

* By doing O(n3) operations on O(n2) objects, they make
effective use of the cache(s).

* Very heavily tuned, manually or automatically, to the machine.

What does computer algebra have that’s similar?

Moore’s Law is Still Valid

The number of transistors on a chip is still roughly doubling
every 18 months

But this is not translating into faster scalar performance.

Instead, we get more cores, more and larger caches/
Translation Lookaside Buffers, and more ‘features’:

RSQRTPS Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

“These guys have more silicon than they know what to do with”

Moore’s Law is Still Valid

The number of transistors on a chip is still roughly doubling
every 18 months

But this is not translating into faster scalar performance.

Instead, we get more cores, more and larger caches/
Translation Lookaside Buffers, and more ‘features’:

RSQRTPS Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

“These guys have more silicon than they know what to do with”

Moore’s Law is Still Valid

The number of transistors on a chip is still roughly doubling
every 18 months

But this is not translating into faster scalar performance.

Instead, we get more cores, more and larger caches/
Translation Lookaside Buffers, and more ‘features’:

RSQRTPS Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

“These guys have more silicon than they know what to do with”

Moore’s Law is Still Valid

The number of transistors on a chip is still roughly doubling
every 18 months

But this is not translating into faster scalar performance.

Instead, we get more cores, more and larger caches/
Translation Lookaside Buffers, and more ‘features’:

RSQRTPS Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

“These guys have more silicon than they know what to do with”

Moore’s Law is Still Valid

The number of transistors on a chip is still roughly doubling
every 18 months

But this is not translating into faster scalar performance.

Instead, we get more cores, more and larger caches/
Translation Lookaside Buffers, and more ‘features’:

RSQRTPS Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

“These guys have more silicon than they know what to do with”

Moore’s Law is Still Valid

The number of transistors on a chip is still roughly doubling
every 18 months

But this is not translating into faster scalar performance.

Instead, we get more cores, more and larger caches/
Translation Lookaside Buffers, and more ‘features’:

RSQRTPS Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

“These guys have more silicon than they know what to do with”

Moore’s Law is Still Valid (II)

The Istanbul Opterons contain 904 million transistors, which
consist of six cores, each with 64 KB of L1 data cache, 64 KB of
L1 instruction cache, and 512 KB of L2 cache per core. . . . Each
chip also has 6 MB of L3 cache that is shared by all of the cores
“I’d hate to have to implement the BLAS on that!”
“That’s actually not very much cache for the compute power”.

Moore’s Law is Still Valid (II)

The Istanbul Opterons contain 904 million transistors, which
consist of six cores, each with 64 KB of L1 data cache, 64 KB of
L1 instruction cache, and 512 KB of L2 cache per core. . . . Each
chip also has 6 MB of L3 cache that is shared by all of the cores

“I’d hate to have to implement the BLAS on that!”
“That’s actually not very much cache for the compute power”.

Moore’s Law is Still Valid (II)

The Istanbul Opterons contain 904 million transistors, which
consist of six cores, each with 64 KB of L1 data cache, 64 KB of
L1 instruction cache, and 512 KB of L2 cache per core. . . . Each
chip also has 6 MB of L3 cache that is shared by all of the cores
“I’d hate to have to implement the BLAS on that!”

“That’s actually not very much cache for the compute power”.

Moore’s Law is Still Valid (II)

The Istanbul Opterons contain 904 million transistors, which
consist of six cores, each with 64 KB of L1 data cache, 64 KB of
L1 instruction cache, and 512 KB of L2 cache per core. . . . Each
chip also has 6 MB of L3 cache that is shared by all of the cores
“I’d hate to have to implement the BLAS on that!”
“That’s actually not very much cache for the compute power”.

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?

Which level(s) can computer algebra use?

Levels of parallelism

Within a core: basically a SIMD machine, e.g. 16 bytes at a
time;

Nehalem — two threads/core

multiple cores/chip (4 currently . . .)

* (shared and non-shared caches)

multiple chips/node (often 2, but 4 is happening)

* shared memory

multiple nodes/machine

* How are they connected?

Which level(s) are we using?
Which level(s) can computer algebra use?

Can we make efficient use of a single core?

Some non-f.p. applications do.

Skein (A SHA-3 contender) uses 6.1 cycles/byte, despite the
fact that 72 rounds are being performed.

Therefore they are getting at least 12-byte wide parallelism.

GMP etc. probably get good performance if the operands are
large enough.

But in general, how much do we have that is that fine-grained
SIMD-like parallel?

Can we make efficient use of a single core?

Some non-f.p. applications do.

Skein (A SHA-3 contender) uses 6.1 cycles/byte, despite the
fact that 72 rounds are being performed.

Therefore they are getting at least 12-byte wide parallelism.

GMP etc. probably get good performance if the operands are
large enough.

But in general, how much do we have that is that fine-grained
SIMD-like parallel?

Can we make efficient use of a single core?

Some non-f.p. applications do.

Skein (A SHA-3 contender) uses 6.1 cycles/byte, despite the
fact that 72 rounds are being performed.

Therefore they are getting at least 12-byte wide parallelism.

GMP etc. probably get good performance if the operands are
large enough.

But in general, how much do we have that is that fine-grained
SIMD-like parallel?

Can we make efficient use of a single core?

Some non-f.p. applications do.

Skein (A SHA-3 contender) uses 6.1 cycles/byte, despite the
fact that 72 rounds are being performed.

Therefore they are getting at least 12-byte wide parallelism.

GMP etc. probably get good performance if the operands are
large enough.

But in general, how much do we have that is that fine-grained
SIMD-like parallel?

Can we make efficient use of a single core?

Some non-f.p. applications do.

Skein (A SHA-3 contender) uses 6.1 cycles/byte, despite the
fact that 72 rounds are being performed.

Therefore they are getting at least 12-byte wide parallelism.

GMP etc. probably get good performance if the operands are
large enough.

But in general, how much do we have that is that fine-grained
SIMD-like parallel?

Can we make efficient use of a single core?

Some non-f.p. applications do.

Skein (A SHA-3 contender) uses 6.1 cycles/byte, despite the
fact that 72 rounds are being performed.

Therefore they are getting at least 12-byte wide parallelism.

GMP etc. probably get good performance if the operands are
large enough.

But in general, how much do we have that is that fine-grained
SIMD-like parallel?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a single chip?

want to use commonality of memory, and some commonality
of cache.

Maybe work modulo several primes in parallel

* But if the running time depends on the prime (e.g.
Cantor-Zassenhaus) we are working at the speed of the
slowest.

Maybe try several critical pairs in Buchberger’s algorithm in
parallel.

Serious issues of memory management/garbage collection.

It’s not clear that we do: can we?

Can we make efficient use of a multiple nodes?
(Even if they were available)

As far as possible, overlap computation and communication.

Try different orders (in Gröbner, CAD etc.) in parallel.

If we have a ‘race’ there is no issue of merging the data form
different systems

Can we make efficient use of a multiple nodes?
(Even if they were available)

As far as possible, overlap computation and communication.

Try different orders (in Gröbner, CAD etc.) in parallel.

If we have a ‘race’ there is no issue of merging the data form
different systems

Can we make efficient use of a multiple nodes?
(Even if they were available)

As far as possible, overlap computation and communication.

Try different orders (in Gröbner, CAD etc.) in parallel.

If we have a ‘race’ there is no issue of merging the data form
different systems

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The Director concludes

There’s not much point in my giving you several nodes if you
can’t demonstrate that you’re making efficient use of one!

I’m currently set up for very regular problems — yours seem
to fit more into a “cloud computing” model than my service’s.

Don’t be too depressed — I said that to the MatLab people
as well.

* And they have significant problems of licencing etc.

The ‘cloud model’ is particularly relevant if you have that
‘merge’ phase for the results from multiple parallel
computations.

But I wish you luck!

The algebraist concludes

I’m somewhat confused about which levels of parallelism we’re
trying to exploit where.

Those numerical people have clearly done much more work in
benchmarking than we have.

I’m also quite impressed by the infrastructure (BLAS etc.)
that they have.

I’d better talk to my colleagues elsewhere, and try to get together.

The algebraist concludes

I’m somewhat confused about which levels of parallelism we’re
trying to exploit where.

Those numerical people have clearly done much more work in
benchmarking than we have.

I’m also quite impressed by the infrastructure (BLAS etc.)
that they have.

I’d better talk to my colleagues elsewhere, and try to get together.

The algebraist concludes

I’m somewhat confused about which levels of parallelism we’re
trying to exploit where.

Those numerical people have clearly done much more work in
benchmarking than we have.

I’m also quite impressed by the infrastructure (BLAS etc.)
that they have.

I’d better talk to my colleagues elsewhere, and try to get together.

The algebraist concludes

I’m somewhat confused about which levels of parallelism we’re
trying to exploit where.

Those numerical people have clearly done much more work in
benchmarking than we have.

I’m also quite impressed by the infrastructure (BLAS etc.)
that they have.

I’d better talk to my colleagues elsewhere, and try to get together.

