
Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Memory Efficiency in Polynomial Multiplication

Daniel S. Roche

Symbolic Computation Group
School of Computer Science

University of Waterloo

ACA 2009
Montréal, Québec

26 June 2009



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Preliminaries

We study algorithms for univariate polynomial multiplication:

The Problem

Given: A ring R, an integer n,
and f , g ∈ R[x] with degrees less than n

Compute: Their product f · g ∈ R[x]

The Model

• Ring operations have unit cost

• Random reads from input, random reads/writes to output

• Space complexity determined by size of auxiliary storage



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Univariate Multiplication Algorithms

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer
Karatsuba/Ofman ’63

O(nlog2 3) or O(n1.59) O(n)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(n log n log log n) O(n)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Univariate Multiplication Algorithms

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer
Karatsuba/Ofman ’63

O(nlog2 3) or O(n1.59) O(n)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(n log n log log n) O(n)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Previous Work

• Monagan 1993: Importance of space efficiency for
multiplication over Zp[x]

• Maeder 1993: Bounds extra space for Karatsuba
multiplication so that storage can be preallocated
— about 2n extra memory cells required.

• Thomé 2002: Karatsuba multiplication for polynomials
using n extra memory cells.

• Zimmerman & Brent 2008:
“The efficiency of an implementation of Karatsuba’s algorithm
depends heavily on memory usage.”



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Present Contributions

• New Karatsuba-like algorithm with O(log n) space

• New FFT-based algorithm with O(1) space
under certain conditions

• Implementations in C over Z/pZ



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Standard Karatsuba Algorithm

Idea: Reduce one degree-2k multiplication to three of degree k.

• Originally noticed by Gauss (multiplying complex numbers),
rediscovered and formalized by Karatsuba & Ofman

Input: f , g ∈ R[x] each with degree less than 2k.

Write f = f0 + f1xk and g = g0 + g1xk.

f0 f1 g0 g1



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms
Version “0”

Read-Only Input Space:

f01 f11 g0 g1

Read/Write Output Space:

(empty) (empty) (empty) (empty)

To Compute: f · g



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms
Version “1”

1 The low-order coefficients of the output are initialized as h,
and the product f · g is added to this.

Read-Only Input Space:

f01 f11 g0 g1

Read/Write Output Space:

h0 h1 (empty) (empty)

To Compute: f · g + h



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms
Version “2”

1 The low-order coefficients of the output are initialized as h,
and the product f · g is added to this.

2 The first polynomial f is given as a sum f (0)
+ f (1).

Read-Only Input Space:

f01 f11

f00 f10

g0 g1

Read/Write Output Space:

h0 h1 (empty) (empty)

To Compute: (f (0)
+ f (1)) · g + h



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Classical and modular arithmetic

Restrict modulus to 29 bits to allow for delayed reductions

In the Karatsuba step

• Only 4 values are added/subtracted in one position

• Delay reductions, perform two “corrections”

Classical algorithm

• Switch over at n ≤ 32 (determined experimentally)

• Perform arithmetic in double-precision long longs;
delay reductions (a la Monagan)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Problem: code explosion

3 “versions” of algorithms (based on extra constraints)
×

Karatsuba or classical
×

odd-sized or even-sized operands
×

equal-sized operands or “one different”

Solution: Use “supermacros” in C:
Same file is included multiple times with some parameter values
changed (crude form of code generation).



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

DFT-Based Multiplication

Input f g

DFT(f) DFT(g)

Pointwise multiplication

DFT(f·g)

f·g

Evaluation (DFT)

Interpolation (inverse DFT)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Simplifying Assumptions

From now on:

• deg f + deg g < n = 2k for some k ∈ N

• The base ring R contains a 2k-PRU ω

That is, assume “virtual roots of unity” have already been found,
and optimize from there.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Usual Formulation of the FFT

Perform two n
2 -DFTs followed by n

2 2-DFTs:

• Write f (x) = feven(x2) + x · fodd(x2)
(i.e. deg feven, deg fodd < n/2)

• Compute DFTω2(feven) and DFTω2(fodd)

• Compute each f (ωi) = feven(ω2i) + ω · fodd(ω2i)

Make use of “butterfly circuit” for each size-2 DFT:

b

b

b

b

a

b

a + ωi · b

a − ωi · b

i



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Example: 8-Way FFT
a0

a1

a2

a3

a4

a5

a6

a7

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

0

0

0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

0

2

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

2

1

3

f (ω0)

f (ω4)

f (ω2)

f (ω6)

f (ω1)

f (ω5)

f (ω3)

f (ω7)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Reverted Binary Ordering

In-Place FFT permutes the ordering into reverted binary:

0=0002

0=0002

1=0012

4=1002

2=0102

2=0102

3=0112

6=1102

4=1002

1=0012

5=1012

5=1012

6=1102

3=0112

7=1112

7=1112

Problem: Powers of ω are not accessed in order
Possible solutions:

• Precompute all powers of ω— too much space

• Perform steps out of order — terrible for cache

• Permute input before computing — costly



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Alternate Formulation of FFT

Perform n
2 2-DFTs followed by two n

2 -DFTs

• Write f = flow + xn/2 · fhigh

• Compute f0 = flow + fhigh and f1 = flow(ωx) − fhigh(ωx)

• Compute each f (ω2i) = f0(ω2i) and f (ω2i+1) = f1(ω2i)

Modified “butterfly circuit”:

b

b

b

b

a

b

a + b

(a − b)ωi

i



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Example: 8-Way In-Place FFT (Alternate Formulation)
a0

a1

a2

a3

a4

a5

a6

a7

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

1

2

3

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

2

0

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

0

0

0

f (ω0)

f (ω4)

f (ω2)

f (ω6)

f (ω1)

f (ω5)

f (ω3)

f (ω7)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Folded Polynomials

Recall the basis for the “alternate” FFT formulation:

f0 = flow + fhigh

f1 = flow(ωx) − fhigh(ωx)

A generalization (recalling that n = 2k):

Definition (Folded Polynomials)

fi = f (ω2i−1
x) rem x2k−i

− 1

Theorem

f
(

ω2i(2j+1)
)

= fi+1

(

ω2i+1j
)

So by computing each fi at all powers of ωi,
we get the values of f at all powers of ω.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Iterative Generation of Reverted Binary Ordering)

0



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Iterative Generation of Reverted Binary Ordering)

0, 8



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Iterative Generation of Reverted Binary Ordering)

0, 8, 4, 12



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Iterative Generation of Reverted Binary Ordering)

0, 8, 4, 12, 2, 10, 6, 14



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Iterative Generation of Reverted Binary Ordering)

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Iterative Generation of Reverted Binary Ordering)

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

DFTω(f ) in binary reversed order
can be computed by DFTs of fis:

DFTω(f )

DFTω2(f1)DFTω4(f2)DFTω8(f3)· · ·



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

Input

(empty)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f1 g1

Folding



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f1) DFT(g1)

In-Place FFTs (alternate formulation)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f) DFT(f·g)

Pointwise Multiplication



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f2 g2 DFT(f·g)

Folding



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f2) DFT(g2) DFT(f·g)

In-Place FFTs (alternate formulation)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f) DFT(f·g)DFT(f·g)

Pointwise Multiplication



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

· · · · · · DFT(f·g)

(k iterations)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f·g

In-Place Reverse FFT (usual formulation)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Modular Arithmetic

Use floating-point Barrett reduction (from NTL):

• Pre-compute an approximation of 1/p

• Given a, b ∈ Zp, compute an approximation of q = ⌊a · b · (1/p)⌋

• Then ab − qp equals ab rem p plus or minus p.

The cost of this method:

• 2 double multiplications

• 2 int multiplications

• 1 int subtraction

• 3 conversions between int and double

• 2 “correction” steps to get exact result
֒→ not necessary until the very end!



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Implementation Benchmarking

Details of tests:

• 2.5 GHz 64-bit Athalon, 256KB L1, 1MB L2, 2GB RAM

• p = 167772161 (28 bits)

• Comparing CPU time (in seconds) for the computation

Disclaimer

We are comparing apples to oranges.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Timing Benchmarks

0

0.5

1

1.5

2

2.5

3

6 8 10 12 14 16 18 20

Time
over
NTL

log2n

Karatsuba-like

^ ^ ^
^

^

^

^

^

FFT-based

+

+

+

+
+ + +

+ +

+
+
+ + + +

+



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Future Directions

• Efficient implementation over Z (GMP)

• Similar results for
Toom-Cook 3-way or k-way

• What modulus bit restriction is “best”?

• Is completely in-place (overwriting input) possible?


	Introduction
	Space-Efficient Karatsuba
	Space-Efficient FFT-Based
	Conclusions

