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Motivation

 Automatic analysis of empirical performance 
data can lead to significant performance gains 
 Computer architecture today is

 Highly efficient and complex
 Often proprietary/trade secret
 Evolves quickly
 Difficult to model

 Objective: automatically generate and test 
many implementations (live or at installation).
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Automatic generation & tuning - how?

 High-performance depends on
 The algorithm → automatically generate and 

test several/many/all
 The platform architecture* → iterate on 

generating and testing with many parameters

 The optimal code/algorithm/parameters are  
determined via runtime experiments 

*Pipeline organization, number of registers, integer 
units, cache and memory hierarchy organization, etc.
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Tricky questions (can’t model well)

 How is the pipeline organized?
 Branch misprediction handling
 Instruction prefetching, issue, reordering

 How is cache organized?
 How well does it prefetch? How many ports?

 How many integer units are there?
 How well can they be engaged in parallel?

 How do compilers use the CPU registers?
 What happens when the code is compiled on 

one machine but run on another?
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Apply to computer algebra
 Automatic code generation and tuning 

techniques may be applied to symbolic 
computation and computer algebra systems.

 In this talk, we present an example that 
demonstrate benefits of these techniques.

 We show that the performance of the Taylor 
shift operation used in real root isolation can 
be substantially improved through automatic 
code generation and tuning. 
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Classical Taylor shift by 1
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B(x) = A(x+1)
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Traditional computation
Sequence of n addition passes

Input: A(x) = anxn +…+ a0

for  i = 0, ... , n-1
for  k = n-1, ... , i

ak ← ak + ak+1

Output: B(x) = anxn +…+ a0

Straightforward methods: 
function calls to integer addition
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Taylor shift by 1 algorithm redesign

 Performance depends on addition
 Minimize cycles per word addition

 by reducing memory traffic
 by removing most carry computations

 Arithmetic ideas:
 signed digits
 suspended normalization
 radix reduction
 delayed carry propagation
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Tiling improves data locality

Sequence of addition 
passes within each tile.

Force active data structures to 
have a small memory footprint.
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Register tile avoids memory traffic

 Do additions for the 
i-th order digits only 
 Read coefficient digits

 Read temporary values

 Do additions in registers

 Store back to L1 cache

 No carry propagation

Temporary values
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Key idea: avoid reads by keeping all digits in registers.
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Delayed carry propagation

 Reduce radix to prevent overflow and absorb carries 
during register tile computation

digitcarriessign 
bit
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Schedule register tile to improve 
instruction-level parallelism (ILP)

 Assist the compiler with 
scheduling by grouping 
additions.

 Example pictured is 4x4 
register tile.

 The 16 additions consume 
about 10 cycles on any 2 
IEU CPU.

 We did not try scheduling 
for 3 or more IEU.

Integer Execution Unit 1
Integer Execution Unit 2
Processor Cycles

4 5 8 9

3 4 7 8

2 3 6

1 2 5 6

7
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Automatic code generation and tuning for 
Taylor Shift computation

 Each register tile computation is 
defined / influenced by
 The tile size
 A number of parallel additions

 Today’s compilers still need to receive 
fully unrolled code for best performance
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Automatic code generation and tuning for 
Taylor Shift computation

 We wrote Perl-based code generator that
 Consists of ~ 1000 lines of code
 Unrolls the loops 
 Uses performance counters for assessment
 Selects best tile size automatically

 Then we played with the generator!
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Code generator worked hard!

41,580Total
13,79616
10,00414
7,01212
4,72410
3,0448
1,8766
1,1244
Lines of code generatedSquare tile size
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Processor architectures

12x124-way31664Opteron
12x128-way2x21664Pentium EE

8x84-way23264UltraSPARC III
6x68-way2x2832Pentium4

optimal 
tile-size

cache 
assoc.IEUsregistersword-

lengthprocessor
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Summary 

 Improved performance through 
automatic code generation and tuning!

 Modeling is difficult
 Invent new implementations
 Spoon-feed the compilers
 Automatically experiment/test
 Choose the best!
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Thank you! / Merci!

Questions?


