
Code Generation and Autotuning
in Computer Algebra

Jeremy Johnson, Werner Krandick, David Richardson
Department of Computer Science

Drexel University, USA

Anatole Ruslanov
Department of Computer and Information Sciences

SUNY Fredonia, USA

ACA 2009, Montreal, Canada

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 2

Motivation

 Automatic analysis of empirical performance
data can lead to significant performance gains
 Computer architecture today is

 Highly efficient and complex
 Often proprietary/trade secret
 Evolves quickly
 Difficult to model

 Objective: automatically generate and test
many implementations (live or at installation).

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 3

Automatic generation & tuning - how?

 High-performance depends on
 The algorithm → automatically generate and

test several/many/all
 The platform architecture* → iterate on

generating and testing with many parameters

 The optimal code/algorithm/parameters are
determined via runtime experiments

*Pipeline organization, number of registers, integer
units, cache and memory hierarchy organization, etc.

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 4

Tricky questions (can’t model well)

 How is the pipeline organized?
 Branch misprediction handling
 Instruction prefetching, issue, reordering

 How is cache organized?
 How well does it prefetch? How many ports?

 How many integer units are there?
 How well can they be engaged in parallel?

 How do compilers use the CPU registers?
 What happens when the code is compiled on

one machine but run on another?

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 5

Apply to computer algebra
 Automatic code generation and tuning

techniques may be applied to symbolic
computation and computer algebra systems.

 In this talk, we present an example that
demonstrate benefits of these techniques.

 We show that the performance of the Taylor
shift operation used in real root isolation can
be substantially improved through automatic
code generation and tuning.

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 6

Classical Taylor shift by 1

an-3

0000

+
an

an-1

an-2

b0

bn

+

Let A(x) = anxn + an-1xn-1 + … + a0
Pascal’s triangle with inputs: an, ..., a0, and 0, ..., 0

Each element is the
sum of its
top and left neighbors

a0

.

.

.

.

B(x) = A(x+1)

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 7

Traditional computation
Sequence of n addition passes

Input: A(x) = anxn +…+ a0

for i = 0, ... , n-1
for k = n-1, ... , i

ak ← ak + ak+1

Output: B(x) = anxn +…+ a0

Straightforward methods:
function calls to integer addition

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 8

Taylor shift by 1 algorithm redesign

 Performance depends on addition
 Minimize cycles per word addition

 by reducing memory traffic
 by removing most carry computations

 Arithmetic ideas:
 signed digits
 suspended normalization
 radix reduction
 delayed carry propagation

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 9

Tiling improves data locality

Sequence of addition
passes within each tile.

Force active data structures to
have a small memory footprint.

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 10

Register tile avoids memory traffic

 Do additions for the
i-th order digits only
 Read coefficient digits

 Read temporary values

 Do additions in registers

 Store back to L1 cache

 No carry propagation

Temporary values

+

+
+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+
+

+

++ + ++
++ + +
++ + +

+

+
+

+

+
+
+

+

+
+

+

+
+
+ +

+

Key idea: avoid reads by keeping all digits in registers.

+ + + + ++ +
+

+
+

+

+
+
+

+

C
oe

ff
ic

ie
n

t
di

gi
ts

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 11

Delayed carry propagation

 Reduce radix to prevent overflow and absorb carries
during register tile computation

digitcarriessign
bit

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 12

Schedule register tile to improve
instruction-level parallelism (ILP)

 Assist the compiler with
scheduling by grouping
additions.

 Example pictured is 4x4
register tile.

 The 16 additions consume
about 10 cycles on any 2
IEU CPU.

 We did not try scheduling
for 3 or more IEU.

Integer Execution Unit 1
Integer Execution Unit 2
Processor Cycles

4 5 8 9

3 4 7 8

2 3 6

1 2 5 6

7

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 13

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 14

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 15

Automatic code generation and tuning for
Taylor Shift computation

 Each register tile computation is
defined / influenced by
 The tile size
 A number of parallel additions

 Today’s compilers still need to receive
fully unrolled code for best performance

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 16

Automatic code generation and tuning for
Taylor Shift computation

 We wrote Perl-based code generator that
 Consists of ~ 1000 lines of code
 Unrolls the loops
 Uses performance counters for assessment
 Selects best tile size automatically

 Then we played with the generator!

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 17

Code generator worked hard!

41,580Total
13,79616
10,00414
7,01212
4,72410
3,0448
1,8766
1,1244
Lines of code generatedSquare tile size

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 18

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 19

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 20

Processor architectures

12x124-way31664Opteron
12x128-way2x21664Pentium EE

8x84-way23264UltraSPARC III
6x68-way2x2832Pentium4

optimal
tile-size

cache
assoc.IEUsregistersword-

lengthprocessor

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 21

Summary

 Improved performance through
automatic code generation and tuning!

 Modeling is difficult
 Invent new implementations
 Spoon-feed the compilers
 Automatically experiment/test
 Choose the best!

ACA 2009: Code Generation and Autotuning in Computer Algebra Slide 22

Thank you! / Merci!

Questions?

