A Note on the Performance of Sparse Matrix-vector Multiplication with Column Reordering

Sardar Anisul Haque University of Western Ontario, Ontario, Canada Shahadat Hossain University of Lethbridge, Alberta, Canada

June 25, 2009

- ∢ ≣ ▶

Outline

- 4 昂 ト 4 臣 ト 4 臣 ト

Hierarchical Memory Systems Necessity of implementing efficient y = AxSparse matrix Column ordering algorithms Experiments Conclusion and Future Work

- Hierarchical Memory Systems
- 2 Necessity of implementing efficient y = Ax
- 3 Sparse matrix
- 4 Column ordering algorithms
 - Column Intersection ordering
 - Similarity ordering
 - Local Improvement ordering
 - Binary reflected gray code ordering
- 5 Experiments
 - Experimental Setup
 - Experimental result

Principle of Locality

The principle of locality states that most programs do not access their code and data uniformly. There are mainly two types of locality:

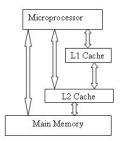
- Spatial locality: It refers to the observation that most programs tend to access data sequentially.
- 2 Temporal locality: It refers to the observation that most programs tend to access data that was accessed previously.

Outline	
Hierarchical Memory Systems	
Necessity of implementing efficient $y = Ax$	
Sparse matrix	
Column ordering algorithms	
Experiments	
Conclusion and Future Work	

Performance gap between CPU speed and Main memory speed

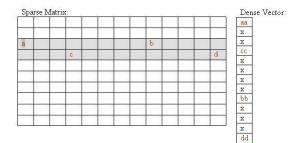
- CPU speed improvement: 35% to 55% (in a year).
- Main memory latency improvement: 7% (in a year).

Hierarchical Memory Systems



▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

Data Locality in sparse matrix-vector multiplication



Computing y = Ax on modern superscalar architecture often exhibits

- Poor data locality.
- Large volume of load operations from memory compared to the floating point operations.

イロト イヨト イヨト イヨト

æ

- Indirect access to the data.
- Loop overhead.

Improving Data Locality of x in computing y = Ax

Preprocess A by permuting the rows or columns of A in such a way that

- the number of nonzero block is reduced to improve the spatial locality of *x*.
- the nonzeros of each column are consecutive to improve the temporal locality of *x*.

But this preprocessing phase can be computationally expensive.

Conjugate Gradient Algorithm

- An iterative method to obtain numerical solution of large system of linear equations Ax = b.
- In this method, A remains unchanged and we need to multiply it with a vector.
- The method may require a good number of iterations before convergence.

Yousef Saad. Iterative methods for sparse linear systems, 2nd Edition. SIAM, 2003.

Storage schemes for sparse matrices

The names of some well known storage schemes for sparse matrices are given below.

- Compressed Row Storage (CRS) scheme.
- Fixed-size Block Storage (FSB) Scheme.
- Block Compressed Row Storage (BCRS) scheme.

FSB Scheme

We define a *nonzero block* as a sequence of $k \ge 1$ contiguous nonzero elements in a row.

We will denote this storage scheme by *FSBI*, where the last character *I* represents the length of the nonzero block. For example, *FSB2* represents fixed-size block storage scheme of length 2. In FSBI scheme the given sparse matrix A is expressed as a sum of two matrices A_1 and A_2 ; A_1 stores all the nonzero block of size *I* and A_2 stores the rest (in *CRS* scheme).

S. Toledo. Improving Memory-System Performance of Sparse Matrix-Vector Multiplication. In *Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing*, 1997.

$A = A_1 + A_2$ considering I = 2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

FSB2 data structure	for sparse matrix A_1
---------------------	-------------------------

valueBl	a ₀₂	a ₀₃	a_{42}	a_{43}		
cloindBl	2	2				
rowptrBl	0	1	1	1	1	2

Algorithm Sparse matrix vector multiplication for FSB2 1: for $i \leftarrow 0$ to m - 1 do for $k \leftarrow rowptrBl[i]$ to rowptrBl[i+1] - 1 do 2: $j \leftarrow colindBl[k]$ 3: $l \leftarrow 2 * k$ 4: 5: y[i] + = valueBl[l] * x[j]y[i] + = valueBl[l+1] * x[j+1]6: 7: end for for $k \leftarrow rowptr[i]$ to rowptr[i+1] - 1 do 8: 9: $j \leftarrow colind[k]$ y[i] + = value[k] * x[j]10: 11: end for 12: end for

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ◆ の Q @

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Column ordering problem

We define column ordering problem as follows. Given an $m \times n$ sparse matrix A, find a permutation of columns that minimizes β , where β is the total number of nonzero blocks in A.

Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector multiplication. In *Supercomputing '99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM)*, New York, NY, USA, 1999. ACM.
 Outline

 Hierarchical Memory Systems

 Necessity of implementing efficient y = Ax

 Sparse matrix

 Column ordering algorithms

 Experiments

 Conclusion and Future Work

Weight of intersection

Columns *j* and *l* of matrix *A* are said to *intersect* if there is a row *i* such that $a_{ij} \neq 0$ and $a_{il} \neq 0$. The *weight of intersection* of any two columns *j* and *l*, denoted by w_{jl} , is the number of rows in which they intersect.

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

イロト イヨト イヨト イヨト

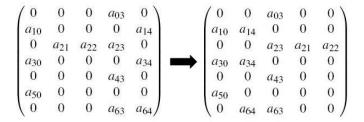
Column ordering algorithms

The names of some column ordering algorithms are given below.

- Column intersection ordering.
- Similarity ordering.
- Local Improvement ordering.
- Binary reflected gray code ordering.

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Column intersection ordering algorithm



 Outline

 Hierarchical Memory Systems

 Necessity of implementing efficient y = Ax

 Sparse matrix

 Column ordering algorithms

 Experiments

 Conclusion and Future Work

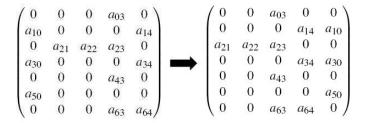
Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Similarity ordering algorithm

In this column ordering algorithm, the weight of intersection between two columns i and j is the number of rows in which both of them have either zero or nonzero.

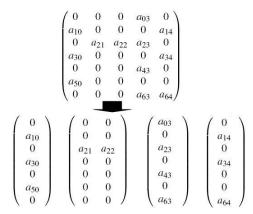
Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Similarity ordering algorithm (contd..)



Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Local Improvement ordering algorithm



 Outline

 Hierarchical Memory Systems

 Necessity of implementing efficient y = Ax

 Sparse matrix

 Column Intersection ordering

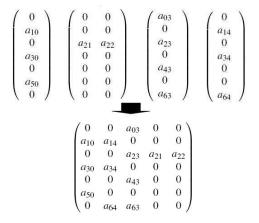
 Sparse matrix

 Column ordering algorithms

 Experiments

 Conclusion and Future Work

Local Improvement ordering algorithm (contd..)



◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 のへで

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

<ロ> <同> <同> <同> < 同> < 同>

Binary reflected gray code ordering

The main scientific contribution of this thesis is as follows: We propose column ordering algorithm based on *binary reflected gray code* for sparse matrices. To the best of our knowledge we are the first to consider gray codes for column ordering in sparse matrix-vector multiplication. We call it *binary reflected gray code ordering* or BRGC algorithm.

Binary reflected gray code

3

$$G^{p} = [0G_{0}^{p-1}, \dots, 0G_{2^{p-1}-1}^{p-1}, 1G_{2^{p-1}-1}^{p-1}, \dots, 1G_{0}^{p-1}]$$

$$G^{3} = [000, 001, 011, 010, 110, 111, 101, 100]$$

 Outline

 Hierarchical Memory Systems

 Necessity of implementing efficient y = Ax

 Sparse matrix

 Column ordering algorithms

 Experiments

 Conclusion and Future Work

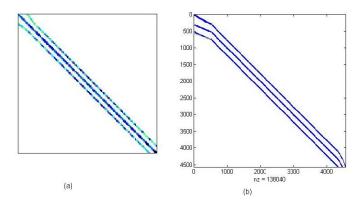
Binary reflected gray code ordering algorithm (BRGC) (contd..)

$$\begin{pmatrix} b_{00} & b_{01} & 0 & 0 & b_{04} & b_{05} \\ b_{10} & 0 & 0 & b_{13} & b_{14} & 0 \\ 0 & b_{21} & b_{22} & 0 & b_{24} & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$
$$(b_{05} & b_{01} & b_{04} & b_{00} & 0 & 0 \\ 0 & 0 & b_{14} & b_{10} & b_{13} & 0 \\ 0 & b_{21} & b_{24} & 0 & 0 & b_{22} \end{pmatrix} \longleftarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

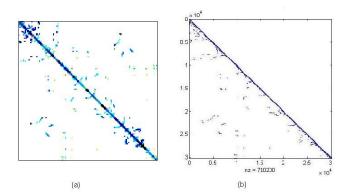
Example: cavity26



 $\begin{array}{c} & \text{Outline} \\ \text{Hierarchical Memory Systems} \\ \text{Necessity of implementing efficient } y = Ax \\ \text{Sparse matrix} \\ \textbf{Column ordering algorithms} \\ \text{Experiments} \\ \text{Conclusion and Future Work} \end{array}$

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Example: bcsstk35



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

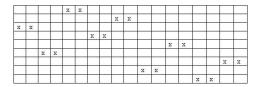
Data locality and column ordering algorithms

Let π is the column permutation found by *column intersection* ordering or local improvement ordering or similarity ordering algorithm. Here column $\pi[i+1]$ is found by looking at the nonzeros of column $\pi[i]$. But the data locality of A should be evaluated over more than pairs of columns.

D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Modeling data locality for the sparse matrix-vector product using distance measures. *Journal of Parallel Computing*, 27:897–912, 2001.

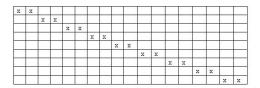
Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Data locality and column ordering algorithms (contd..)



Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Data locality and column ordering algorithms (contd..)



Column Intersection ordering Similarity ordering Local Improvement ordering Binary reflected gray code ordering

Features of BRGC ordering algorithm

- It improves both temporal and spatial locality of x in computing y = Ax.
- The given column ordering of input matrix has no effect on it.
- It does not change the sparsity structure of a banded matrix much.

 $\begin{array}{c} & \text{Outline} \\ \text{Hierarchical Memory Systems} \\ \text{Necessity of implementing efficient } y = Ax \\ & \text{Sparse matrix} \\ \text{Column ordering algorithms} \\ & \text{Experiments} \\ & \text{Conclusion and Future Work} \end{array}$

Experimental Setup Experimental result

Table: Computing platforms

Name	Compaq	ibm	sun		
Processor name	AMD Athlon(tm)64	Intel pentium4	Ultra sparc-Ile		
	3500+				
Processor Speed	2.2 GHz	2.8 GHz	550 MHz		
RAM	512 MB	1 GB	384 MB		
OS	Linux	Linux	Sun Solaries		
L2 Cache	512 KB	512 KB	256 KB		
L2 Cache type	16-way set	8-way set	8-way set		
	associative associative		associative and		
			direct mapped		
L2 Cache line size	64 bytes	64 bytes	64 bytes		

(ロ) (四) (三) (三) (三) (三) (○)

Experimental Setup Experimental result

<ロ> <同> <同> <同> < 同> < 同>

Input matrices

26 matrices from linear programming problem, structural problem, optimization problem, economic problem, circuit simulation problem etc.

Source: Tim Davis, University of Florida Sparse Matrix Collection, url: http://www.cise.ufl.edu/research/sparse. Access Date: April 10, 2008.

Experimental Setup Experimental result

イロン イヨン イヨン イヨン

æ

Performance measure

• We use CPU time (for example $t_{A,SpMxV(compaq,crs,O_{brgc})}$) as performance measure.

Performance ratio

We define performance ratio as $r_{A,SpMxV(pl,ss,ra)} = \frac{t_{A,SpMxV(pl,ss,ra)}}{min\{t_{A,SpMxV(pl,ss,ANY)}\}}$

Experimental Setup Experimental result

イロト イヨト イヨト イヨト

Evaluation method

Finally, the performance of a SpMxV(pl, ss, ra) can be measured by the following cumulative distribution function:

 $\rho_{SpMxV(pl,ss,ra)}(\tau) = \frac{1}{|\Gamma|} size\{A \in \Gamma : r_{A,SpMxV(pl,ss,ra)} \leq \tau\}$, where, Γ is the set of input matrices.

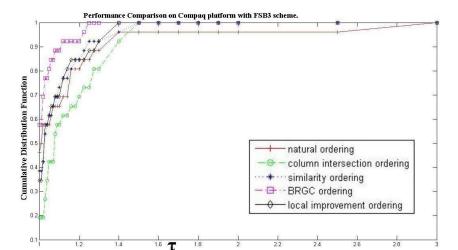
Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. *Mathematical Programming*, 91(2):201–213, 2002.

Experimental Setup Experimental result

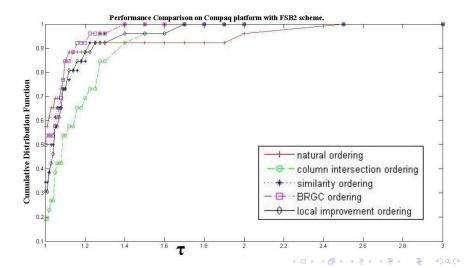
- < ≣ →

* 王

æ



Experimental Setup Experimental result



Conclusion

- If the distribution of nonzeros of a sparse matrix is very much sparse or the number of nonzero blocks is very high then permuting the rows or columns of that sparse matrix is necessary.
- Fixed-size block storage scheme performs better than CRS and BCRS schemes.
- We found BRGC ordering is competitive with other column ordering algorithms during sparse matrix-vector multiplication.

Future direction

- Applicability of BRGC ordering to other sparse matrix problems requires further investigation.
- Use of register blocking and cache blocking method in sparse matrix-vector multiplication in addition to BRGC ordering.
- Applying BRGC ordering in fixed size blocking storage schemes (both rows and columns) of sparse matrices.

 Outline

 Hierarchical Memory Systems

 Necessity of implementing efficient $y = A \times$

 Sparse matrix

 Column ordering algorithms

 Experiments

 Conclusion and Future Work

Thank you

æ