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Context

Newton iteration
e computing symbolic solutions
@ to polynomial / differential equations

@ at high precision

Example Consider the equation, with coefficients in Z/101Z
[Bostan, Morain, Salvy, Schost, 08]

(o +x* + 1)f (x)* = 1+ 75f (x)* + 16f(x)°, f(0) =0, f'(0)=1.
We want to find the first few terms of the power series solution

f=x+68x° +66x" 4 60x” + 84x!! + ... .




Context

Newton iteration is fast
@ M(n) denotes the cost of polynomial multiplication in degree n
@ then, for most problems, O(M(n)) to get n terms

e compared to (usually) O(n?)

Objective: make it faster
@ reducing the constant in the big-Oh

@ using tricks such as short product (Mulders) or middle product
(Hanrot, Quercia, Zimmermann)

e for moderate degrees

This talk
o first order differential equations



Related work

Newton for ODE’s

@ [Brent, Kung, 78]
Focused on first-order equations.

® [Watt, 88]
Recast differential equations as fixed point problems.

@ [Hoeven, 02]
Used a similar idea + fast “relaxed multiplication”.

@ [Bostan, Chyzak, Ollivier, Salvy, Schost, 07]
Focused in particular on higher order equations.

Other contexts

@ [Hanrot et al., 04]
middle product for inverse, square-root

@ [Hanrot-Zimmermann, 04], [Bernstein, 04], [Bostan-Schost, 08]
tricks for the FFT model



Motivation

Previous example from a point-counting algorithm in elliptic
cryptology: computing a degree n morphism

©:E-E, (xy) = (p(),y¢' (x)).

@ not-so-naive algorithm O(n?)
e Newton O(M(n))

Newton wins for record-size computations (degree > 1000).

However, “if we want the cryptologists to buy our stuff, we’d better be
competitive in crypto size”:

@ small degree (about 300).



Newton iteration for numerical root-finding

P(xy)

n

The number of correct digits approximately doubles at each iteration.



Newton iteration for ODE’s

Given the equation G(x,f,f’) = 0 and f mod x", we want f mod x*".

@ evaluate

4= gi(xvaf/)’ b= C{;Ct;(x7f7f,)7 c= —G(X,f,f/) mod x*"



Newton iteration for ODE’s

Given the equation G(x,f,f’) = 0 and f mod x", we want f mod x*".

@ use inverse and exponential to compute
c .
d=—, e=-, j=exp(fd) mod x*",

we obtain _
s d?
J

mod x*".



Power series inverse

Consider power series

f:Zfixi and g = Zgixi

i>0 i>0
such thatfy =1,¢= %

Newton iteration:
@ suppose that we know ¢ = ¢ mod x"

e then we get G = ¢ mod x*" as

g(2—fg) mod X2



Various multiplications

Type Lengths & Graph rep.
A: (O,n)
plain product B: (On)

M(n)

C: (0,2n) E 7

A: (0,2n)

middle product | _. on )

M(n) 4+ O(n)

C: (n,2n) ‘

A: (0,n)
short product B: (O.n)
m(n)

C: (0,n)




Updating inverses
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Fast multiplication
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Comparison between naive and fast inverse

fast inverse
naive inverse
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Precision issues for evaluation

Recall: we need

0= 0 ff), b= D ff), c=-Glff) mod

Objective: avoid computing useless quantities, as for the inverse

Starting points
@ c starts with n zeros

@ a and b needed only modulo x"

Propagation
@ length analysis: high-deg, low-deg.

A= A" + -+ ag X" +

(low-deg, high-deg) = (n,2n)
@ apply variants of multiplications (middle, short product, ...)



We consider G(x,f,f’) = 0, with

G(x,t,u) = (1+ x4+ x*)u® — (2 + x)ut® — 1> + 5u + 3.




Assigning high-degrees

—_— ? Assign "high-deg"- - - - ~

For "+", "=",
"high—-deg" is max of the arguments.

For "x", "A",
"high—-deg" is the same as the output.



Assigning low-degrees

—_—— ‘ Assign "low-deg*

For "+", "=
"low-deg"s are the same as the result.

For "x", "A".
"low-deg"s are set to "0"s.

_____



Choosing which multiplication

——— ? Assign "high-deg"

For "+", "-",
"high—deg" is max of the arguments.

For "x", "A",
"high—deg" is the same as the output.

For "+", "=
"low-deg"s are the same as the result.

For "x", "A".
"low-deg"s are set to "0"s.

—— — - -

—_—— ‘ Assign "low-deg* - - - - ~



Turning graph to code

Java code generator
e input: a DAG for G

e outputs C code

Main steps
@ Workspace allocation.
allocate the memory for temporary results.

o Initialization.
initialize constants and polynomials given in the graph G

e Evaluation.
evaluate c by following the graph G
evaluate 4, b by following the graph G’



Output code overview

void G_unsigned_long(unsigned long * __ restrict__ C,
unsigned long % __restrict__ A, unsigned long % __restrict__ B,
const unsigned long * __restrict__ t, const unsigned long % __restrict__ u,
const unsigned long p, const unsigned long ip, const unsigned long jp, int N){
[ rmm e Workspace allocation ———————————- */
unsigned long *wk=(unsigned long ) malloc(30*Nxsizeof (unsigned long));

[ m e Initialization —————————————-— */

unsigned long xpoly0=(unsigned long x)malloc (lxsizeof (unsigned long));
unsigned long *polyO_pre=(unsigned long x)malloc(lxsizeof (unsigned long));
poly0([0]=3;

poly0O_pre[0]=mulredcred(p, ip, Jjp, 3);

e Evaluation C ————=—————————= x/

mul_plain_unsigned_long (wk+N%0, u, u, p, ip, N);

constant_mul_unsigned_long (wk+N%2, wk+Nx0, poly3_pre, 3, 1%N, 2xN, 0xN, 2xN, p, ip);
constant_add_unsigned_long(C, wk+N%16, poly0, 1, 1xN, 2, 1«N, 2«N, p, ip);

[ Evaluation A ——————————————— */
zero_unsigned_long (wk+Nx18, p, ip, N);

sub_unsigned_long (A, wk+N%22, wk+Nx23, p, ip, 0%N, 1xN);

[ Evaluation B ——————————————— */
add_unsigned_long (wk+N%24, u, u, p, ip, 0xN, 1xN);

— Workspace, polys free ———

free (wk);
free (poly0);
free (poly0O_pre); ...}




Timings

Glx,t,u) = (1 +x+x2)u? — (2 + x)ut> — > + 5u + 3.
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