
Cache Memories, Cache Complexity

Marc Moreno Maza

University of Western Ontario, London (Canada)

Applications of Computer Algebra
Session on High-Performance Computer Algebra
Jerusalem College of Technology, July 20, 2017

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

CPU Cache (1/3)

I A CPU cache is an auxiliary memory which is smaller, faster
memory than the main memory and which stores copies of the
main memory locations that are expectedly frequently used.

I Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and
the translation look-aside buffer.

CPU Cache (2/3)

I Each location in each memory (main or cache) has
I a datum (cache line) which ranges between 8 and 512 bytes in

size, while a datum requested by a CPU instruction ranges
between 1 and 16.

I a unique index (called address in the case of the main memory)

I In the cache, each location has also a tag (storing the address
of the corresponding cached datum).

CPU Cache (3/3)

I When the CPU needs to read or write a location, it checks the
cache:

I if it finds it there, we have a cache hit
I if not, we have a cache miss and (in most cases) the processor

needs to create a new entry in the cache.

I Making room for a new entry requires a replacement policy:
the Least Recently Used (LRU) discards the least recently
used items first; this requires to use age bits.

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Issues with matrix representation

A

=

B

C
x

I Contiguous accesses are better:
I Data fetch as cache line (Core 2 Duo 64 byte per cache line)
I With contiguous data, a single cache fetch supports 8 reads of

doubles.
I Transposing the matrix C should reduce L1 cache misses!

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

I Naive calculation of a row of A, so computing 1024
coefficients: 1024 accesses in A, 384 in B and
1024× 384 = 393, 216 in C. Total = 394, 524.

I Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in
C. Total = 25, 600.

I The iteration space is traversed so as to reduce memory
accesses.

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Experimental results

Computing the product of two n× n matrices on my laptop (Core2
Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of
RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within
12978 and 106758 for n = 2048 and n = 4096 respectively.

Other performance counters

Hardware count events

I CPI Clock cycles Per Instruction: the number of clock cycles
that happen when an instruction is being executed. With
pipelining we can improve the CPI by exploiting instruction
level parallelism

I L1 and L2 Cache Miss Rate.

I Instructions Retired: In the event of a misprediction,
instructions that were scheduled to execute along the
mispredicted path must be canceled.

Analyzing cache misses in the naive and transposed
multiplication

A

=

B

C
x

I Let A, B and C have format (m, n), (m, p) and (p, n)
respectively.

I A is scanned one, so mn/L cache misses if L is the number of
coefficients per cache line.

I B is scanned n times, so mnp/L cache misses if the cache
cannot hold a row.

I C is accessed “nearly randomly” (for m large enough) leading
to mnp cache misses.

I Since 2mn p arithmetic operations are performed, this means
roughly one cache miss per flop!

I If C is transposed, then the ratio improves to 1 for L.

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

I Let A, B and C have format (m, n), (m, p) and (p, n)
respectively.

I Assume all tiles are square of order B and three fit in cache.
I If C is transposed, then loading three blocks in cache cost

3B2/L.
I This process happens n3/B3 times, leading to 3n3/(BL) cache

misses.
I Three blocks fit in cache for 3B2 < Z , if Z is the cache size.
I So O(n3/(

√
ZL)) cache misses, if B is well chosen, which is

optimal.

Counting sort: the algorithm

I Counting sort takes as input a collection of n items, each of
which known by a key in the range 0 · · · k.

I The algorithm computes a histogram of the number of times
each key occurs.

I Then performs a prefix sum to compute positions in the
output.

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

Counting sort: cache complexity analysis

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1. n/L to compute k .

2. k/L cache misses to initialize Count.

3. n/L + n cache misses for the histogram (worst case).

4. k/L cache misses for the prefix sum.

5. n/L + n + n cache misses for building Output (worst case).

Total: 3n+3n/L + 2k/L cache misses (worst case).

Counting sort: cache complexity analysis: explanations

1. n/L to compute k : this can be done by traversing the items

linearly.

2. k/L cache misses to initialize Count: this can be done by
traversing the Count linearly.

3. n/L + n cache misses for the histogram (worst case): items

accesses are linear but Count accesses are potentially random.

4. k/L cache misses for the prefix sum: Count accesses are
linear.

5. n/L + n + n cache misses for building Output (worst case):
items accesses are linear but Output and Count accesses are
potentially random.

Total: 3n+3n/L + 2k/L cache misses (worst case).

How to fix the poor data locality of counting sort?
allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

I Recall that our worst case is 3n+3n/L + 2k/L cache misses.
I The troubles come from the irregular which experience

capacity misses and conflict misses.
I To solve this problem, we preprocess the input so that

counting sort is applied in succession to several smaller input
item sets with smaller value ranges.

I To put it simply, so that k and n are small enough for Output
and Count to incur cold misses only.

Counting sort: bukecting the input

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) m/(k+1))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

I Goal: after preprocessing, Count and Output incur cold misses
only.

I To this end we choose a parameter m (more on this later) such
that

1. a key in the range [ih, (i + 1)h − 1] is always before a key in the
range [(i + 1)h, (i + 2)h − 1], for i = 0 · · ·m − 2, with h = k/m,

2. bucketsize and m cache-lines from bucketedinput all fit in
cache. That is, counting cache-lines, mL + m ≤ Z .

Counting sort: cache complexity with bukecting

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) m/(k+1))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

1. 3m/L + n/L caches misses to compute bucketsize

2. Key observation: bucketedinput is traversed regularly by
segment.

3. Hence, 2n/L + m + m/L caches misses to compute
bucketedinput

Preprocessing: 3n/L + 3m/L + m cache misses.

Counting sort: cache complexity with bukecting:
explanations

1. 3m/L + n/L caches misses to compute bucketsize:
I m/L to set each cell of bucketsize to zero,
I m/L + n/L for the first for loop,
I m/L for the second for loop.

2. Key observation: bucketedinput is traversed regularly by
segment:

I So writing bucketedinput means writing (in a linear
traversal) m consecutive arrays, of possibly different sizes, but
with total size n.

I Thus, because of possible misalignments between those arrays
and their cache-lines, this writing procedure can yield n/L + m
cache misses (and not just n/L).

3. Hence, 2n/L + m + m/L caches misses to compute
bucketedinput:

I n/L to read the items,
I n/L + m to write bucketedinput,
I m/L to load bucketsize.

Cache friendly counting sort: complete cache complexity
analysis

I Assumption: the preprocessing creates buckets of average size
n/m.

I After preprocessing, counting sort is applied to each bucket whose
values are in a range [ih, (i + 1)h − 1], for i = 0 · · ·m − 1.

I To be cache-friendly, this requires, for i = 0 · · ·m − 1,
h + |{key ∈ [ih, (i + 1)h − 1]}| < Z and m < Z/(1 + L). These
two are very realistic assumption considering today’s cache size.

I And the total complexity becomes;
Qtotal = Qpreprocessing + Qsorting

= Qpreprocessing + mQsortingofonebucket

= Qpreprocessing + m (3 n
m L + 3 n

mL + 2 k
mL)

= Qpreprocessing + 6n/L + 2k/L
= 3n/L + 3m/L + m + 6n/L + 2k/L
= 9n/L + 3m/L + m + 2k/L

Instead of 3n+3n/L + 2k/L for the naive counting sort.

Cache friendly counting sort: experimental results

I Experimentation on an Intel(R) Core(TM) i7 CPU @
2.93GHz. It has L2 cache of 8MB.

I CPU times in seconds for both classical and cache-friendly
counting sort algorithm.

I The keys are random machine integers in the range [0, n].

n classical cache-oblivious
counting counting sort

sort (preprocessing + sorting)

100000000 13.74 4.66 (3.04 + 1.62)

200000000 30.20 9.93 (6.16 + 3.77)

300000000 50.19 16.02 (9.32 + 6.70)

400000000 71.55 22.13 (12.50 +9.63)

500000000 94.32 28.37 (15.71 + 12.66)

600000000 116.74 34.61 (18.95 + 15.66)

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

The (Z , L) ideal cache model (1/4)

The (Z , L) ideal cache model (2/4)

I Computer with a two-level memory hierarchy:
I an ideal (data) cache of Z words partitioned into Z/L cache

lines, where L is the number of words per cache line.
I an arbitrarily large main memory.

I Data moved between cache and main memory are always
cache lines.

I The cache is tall, that is, Z is much larger than L, say
Z ∈ Ω(L2).

The (Z , L) ideal cache model (3/4)

I The processor can only reference words that reside in the
cache.

I If the referenced word belongs to a line already in cache, a
cache hit occurs, and the word is delivered to the processor.

I Otherwise, a cache miss occurs, and the line is fetched into
the cache.

The (Z , L) ideal cache model (4/4)

I The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

I The ideal cache uses the optimal off-line strategy of
replacing the cache line whose next access is furthest in the
future, and thus it exploits temporal locality perfectly.

Cache complexity

I For an algorithm with an input of size n, he ideal-cache model
uses two complexity measures:

I the work complexity W (n), which is its conventional running
time in a RAM model.

I the cache complexity Q(n;Z , L), the number of cache misses
it incurs (as a function of the size Z and line length L of the
ideal cache).

I When Z and L are clear from context, we simply write Q(n)
instead of Q(n;Z , L).

I An algorithm is said to be cache aware if its behavior (and
thus performances) can be tuned (and thus depend on) on the
particular cache size and line length of the targeted machine.

I Otherwise the algorithm is cache oblivious.

Cache complexity of the naive matrix multiplication

// A is stored in ROW-major and B in COLUMN-major

for(i=0; i < n; i++)

for(j=0; j < n; j++)

for(k=0; k < n; k++)

C[i][j] += A[i][k] * B[j][k];

I Assuming Z ≥ 3L, computing each C[i][j] incurs
O(1 + n/L) caches misses.

I If Z large enough, say Z ∈ Ω(n) then the row i of A will be
remembered for its entire involvement in computing row i of
C .

I For column j of B to be remembered when necessary, one
needs Z ∈ Ω(n2) in which case the whole computation fits in
cache. Therefore, we have

Q(n,Z , L) =

{
O(n + n3/L) if 3L ≤ Z < n2

O(1 + n2/L) if 3n2 ≤ Z .

A cache-aware matrix multiplication algorithm (1/2)

// A, B and C are in row-major storage

for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)

for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

I Each matrix M ∈ {A,B,C} consists of (n/s)× (n/s)
submatrices Mij (the blocks), each of which has size s × s,
where s is a tuning parameter.

I Assume s divides n to keep the analysis simple.

I blockMult(A,B,C,i,j,k,s) computes Cij = Aik × Bkj using
the naive algorithm

A cache-aware matrix multiplication algorithm (2/2)

// A, B and C are in row-major storage

for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)

for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

I Choose s to be the largest value such that three s × s
submatrices simultaneously fit in cache, that is, Z ∈ Θ(s2),
that is, s ∈ Θ(

√
Z).

I An s × s submatrix is stored on Θ(s + s2/L) cache lines.
I Thus blockMult(A,B,C,i,j,k,s) runs within Θ(s + s2/L)

cache misses.
I Initializing the n2 elements of C amounts to Θ(1 + n2/L)

caches misses. Therefore we have

Q(n,Z , L) ∈ Θ(1 + n2/L + (n/
√
Z)3(
√
Z + Z/L))

∈ Θ(1 + n2/L + n3/Z + n3/(L
√
Z)).

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

Scanning

Scanning n elements stored in a contiguous segment (=
cache lines) of memory costs at most dn/Le+ 1 cache misses.
Indeed:

I In the above, N = n and B = L. The main issue here is
alignment.

I Let (q, r) be the quotient and remainder in the integer
division of n by L. Let u (resp. w) be # words in a fully (not
fully) used cache line.

I If w = 0 then r = 0 and the conclusion is clear.
I If w < L then r = w and the conclusion is clear again.
I If L ≤ w < 2L then qL = u + 1 and the conclusion follows.

Array reversal

Reversing an array of n elements stored in a contiguous
segment (= cache lines) of memory costs at most dn/Le+ 1
cache misses, provided that Z ≥ 2L holds. Exercise!

Median and selection (1/8)

I A selection algorithm is an algorithm for finding the k-th
smallest number in a list. This includes the cases of finding
the minimum, maximum, and median elements.

I A worst-case linear algorithm for the general case of selecting
the k-th largest element was published by Blum, Floyd, Pratt,
Rivest, and Tarjan in their 1973 paper Time bounds for
selection, sometimes called BFPRT.

I The principle is the following:
I Find a pivot that allows splitting the list into two parts of

nearly equal size such that
I the search can continue in one of them.

Median and selection (2/8)

select(L,k)

{

if (L has 10 or fewer elements)

{

sort L

return the element in the kth position

}

partition L into subsets S[i] of five elements each

(there will be n/5 subsets total).

for (i = 1 to n/5) do

x[i] = select(S[i],3)

M = select({x[i]}, n/10)

partition L into L1<M, L2=M, L3>M

if (k <= length(L1))

return select(L1,k)

else if (k > length(L1)+length(L2))

return select(L3,k-length(L1)-length(L2))

else return M

Median and selection (3/8)

For an input list of n elements, the number T (n) of comparisons
satisfies

T (n) ≤ 12n/5 + T (n/5) + T (7n/10).

I We always throw away either L3 (the values greater than M) or
L1 (the values less than M). Suppose we throw away L3.

I Among the n/5 values x[i], n/10 are larger than M, since M

was defined to be the median of these values.

I For each i such that x[i] is larger than M, two other values
in S[i] are also larger than x[i]

I So L3 has at least 3n/10 elements. By a symmetric argument,
L1 has at least 3n/10 elements.

I Therefore the final recursive call is on a list of at most 7n/10
elements and takes time at most T (7n/10).

Median and selection (4/8)
How to solve

T (n) ≤ 12n/5 + T (n/5) + T (7n/10)?

I We “try” T (n) ≤ c n by induction. The substitution gives

T (n) ≤ n (12/5 + 9c/10).

From n(12/5 + 9c/10) ≤ c n we derive c ≤ 24.

I The tree-based method also brings T (n) ≤ 24n.

I The same tree-expansion method then shows that, more
generally, if T (n) ≤ cn + T (an) + T (bn), where a + b < 1,
the total time is c(1/(1− a− b))n.

I With a lot of work one can reduce the number of comparisons
to 2.95n [D. Dor and U. Zwick, Selecting the Median, 6th
SODA, 1995].

Median and selection (5/8)

In order to analyze its cache complexity, let us review the algorithm
and consider an array instead of a list.

Step 1: Conceptually partition the array into n/5 quintuplets
of five adjacent elements each.

Step 2: Compute the median of each quintuplet using O(1)
comparisons.

Step 3: Recursively compute the median of these medians
(which is not necessarily the median of the original
array).

Step 4: Partition the elements of the array into three groups,
according to whether they equal, or strictly less or
strictly greater than this median of medians.

Step 5: Count the number of elements in each group, and
recurse into the group that contains the element of
the desired rank.

Median and selection (6/8)
To make this algorithm cache-oblivious, we specify how each step
works in terms of memory layout and scanning. We assume that
Z ≥ 3L.

Step 1: Just conceptual; no work needs to be done.

Step 2: requires two parallel scans, one reading the 5 element
arrays at a time, and the other writing a new array of
computed medians, incurring Θ(1 + n/L).

Step 3: Just a recursive call on size n/5.

Step 4: Can be done with three parallel scans, one reading
the array, and two others writing the partitioned
arrays, incurring again Θ(1 + n/L).

Step 5: Just a recursive call on size 7n/10.

This leads to

Q(n) ≤ Q(n/5) + Q(7n/10) + Θ(1 + n/L).

Median and selection (7/8)

How to solve

Q(n) ≤ Q(n/5) + Q(7n/10) + Θ(1 + n/L)?

The unknown is what is the base-case?

I Suppose the base case is Q(0(1)) ∈ O(1).

I Following Master Theorem proof the number of leaves
L(n) = nc satisfies in N(n) = N(n/5) + N(7n/10),N(1) = 1,
which brings (

1

5

)c

+

(
7

10

)c

= 1

leading to c ' 0.8397803.

I Since each leaf incurs a constant number of cache misses we
have Q(n) ∈ Ω(nc), which could be larger or smaller than
Θ(1 + n/L) . . .

Median and selection (8/8)

How to solve

Q(n) ≤ Q(n/5) + Q(7n/10) + Θ(1 + n/L)?

I Fortunately, we have a better base-case: Q(0(L)) ∈ O(1).

I Indeed, once the problem fits into O(1) cache-lines, all five
steps incur only a constant number of cache misses.

I Thus we have only (n/L)c leaves in the recursion tree.

I In total, these leaves incur O((n/L)c) = o(n/L) cache misses.

I In fact, the cost per level decreases geometrically from the
root, so the total cost is the cost of the root. Finally we have

Q(n) ∈ Θ(1 + n/L)

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

Matrix transposition: various algorithms

I Matrix transposition problem: Given an m × n matrix A
stored in a row-major layout, compute and store AT into an
n ×m matrix B also stored in a row-major layout.

I We shall describe a recursive cache-oblivious algorithm which
uses Θ(mn) work and incurs Θ(1 + mn/L) cache misses,
which is optimal.

I The straightforward algorithm employing doubly nested loops
incurs Θ(mn) cache misses on one of the matrices when
m� Z/L and n� Z/L.

I We shall start with an apparently good algorithm and use
complexity analysis to show that it is even worse than the
straightforward algorithm.

Matrix transposition: a first divide-and-conquer (1/4)

I For simplicity, assume that our input matrix A is square of
order n and that n is a power of 2, say n = 2k .

I We divide A into four square quadrants of order n/2 and we
have

A =

(
A1,1 A1,2

A2,1 A2,2

)
⇒ tA =

(
tA1,1

tA2,1
tA1,2

tA2,2

)
.

I This observation yields an “in-place” algorithm:

1. If n = 1 then return A.
2. If n > 1 then

2.1 recursively compute tA1,1,
t A2,1,

t A1,2,
t A2,2 in place as(

tA1,1
tA1,2

tA2,1
tA2,2

)
2.2 exchange tA1,2 and tA2,1.

I What is the number M(n) of memory accesses to A,
performed by this algorithm on an input matrix A of order n?

Matrix transposition: a first divide-and-conquer (2/4)
I M(n) satisfies the following recurrence relation

M(n) =

{
0 if n = 1

4M(n/2) + 2(n/2)2 if n > 1.

I Unfolding the tree of recursive calls or using the Master’s
Theorem, one obtains:

M(n) = 2(n/2)2 log2(n).

I This is worse than the straightforward algorithm (which
employs doubly nested loops). Indeed, for this latter, we have
M(n) = n2 − n. Explain why!

I Despite of this negative result, we shall analyze the cache
complexity of this first divide-and-conquer algorithm. Indeed,
it provides us with an easy training exercise

I We shall study later a second and efficiency-optimal
divide-and-conquer algorithm, whose cache complexity
analysis is more involved.

Matrix transposition: a first divide-and-conquer (3/4)
I We shall determine Q(n) the number of cache misses incurred

by our first divide-and-conquer algorithm on a (Z , L)-ideal
cache machine.

I For n small enough, the entire input matrix or the entire block
(input of some recursive call) fits in cache and incurs only the
cost of a scanning. Because of possible misalignment, that is,
n(dn/Le+ 1).

I Important: For simplicity, some authors write n/L instead of
dn/Le. This can be dangerous.

I However: these simplifications are fine for asymptotic
estimates, keeping in mind that n/L is a rational number
satisfying

n/L− 1 ≤ bn/Lc ≤ n/L ≤ dn/Le ≤ n/L + 1.

Thus, for a fixed L, the functions bn/Lc, n/L and dn/Le are
asymptotically of the same order of magnitude.

I We need to translate “for n small enough” into a formula. We
claim that there exists a real constant α > 0 s.t. for all n and
Z we have

n2 < αZ ⇒ Q(n) ≤ n2/L + n.

Matrix transposition: a first divide-and-conquer (4/4)
I Q(n) satisfies the following recurrence relation

Q(n) =

{
n2/L + n if n2 < αZ (base case)

4Q(n/2) + n2

2L + n if n2 ≥ αZ (recurrence)

I Indeed, exchanging 2 blocks amount to 2((n/2)2/L + n/2)
accesses.

I Unfolding the recurrence relation k times (more details in
class) yields

Q(n) = 4k Q(
n

2k
) + k

n2

2L
+ (2k − 1)n.

I The minimum k for reaching the base case satisfies n2

4k
= αZ ,

that is, 4k = n2

αZ , that is, k = log4(n2

αZ). This implies
2k = n√

αZ
and thus

Q(n) ≤ n2

αZ (αZ/L +
√
αZ) + log4(n2

αZ) n2

2L + n√
αZ

n

≤ n2/L + 2 n2√
αZ

+ log4(n2

αZ) n2

2L .

A matrix transposition cache-oblivious algorithm (1/2)

I If n ≥ m, the Rec-Transpose algorithm partitions

A = (A1 A2) , B =

(
B1

B2

)
and recursively executes Rec-Transpose(A1,B1) and
Rec-Transpose(A2,B2).

I If m > n, the Rec-Transpose algorithm partitions

A =

(
A1

A2

)
, B = (B1 B2)

and recursively executes Rec-Transpose(A1,B1) and
Rec-Transpose(A2,B2).

A matrix transposition cache-oblivious algorithm (2/2)

I Recall that the matrices are stored in row-major layout.

I Let α be a constant sufficiently small such that the following
two conditions hold:

(i) two sub-matrices of size m × n and n ×m, where
max {m, n} ≤ αL, fit in cache

(ii) even if each row starts at a different cache line.

I We distinguish three cases for the input matrix A:
I Case I: max {m, n} ≤ αL.
I Case II: m ≤ αL < n or n ≤ αL < m.
I Case III: m, n > αL.

Case I: max {m, n} ≤ αL.

I Both matrices fit in O(1) + 2mn/L lines.

I From the choice of α, the number of lines required for the
entire computation is at most Z/L.

I Thus, no cache lines need to be evicted during the
computation. Hence, it feels like we are simply scanning A
and B.

I Therefore Q(m, n) ∈ O(1 + mn/L).

Case II: m ≤ αL < n or n ≤ αL < m.

I Consider n ≤ αL < m. The Rec-Transpose algorithm
divides the greater dimension m by 2 and recurses.

I At some point in the recursion, we have αL/2 ≤ m ≤ αL and
the whole computation fits in cache. At this point:

I the input array resides in contiguous locations, requiring at
most Θ(1 + nm/L) cache misses

I the output array consists of nm elements in n rows, where in
the worst case every row starts at a different cache line,
leading to at most Θ(n + nm/L) cache misses.

I Since m/L ∈ [α/2, α], the total cache complexity for this base
case is Θ(1 + n), yielding the recurrence (where the resulting
Q(m, n) is a worst case estimate)

Q(m, n) =

{
Θ(1 + n) if m ∈ [αL/2, αL] ,
2Q(m/2, n) + O(1) otherwise ;

whose solution satisfies Q(m, n) = Θ(1 + mn/L).

Case III: m, n > αL.

I As in Case II, at some point in the recursion both n and m fall
into the range [αL/2, αL].

I The whole problem fits into cache and can be solved with at
most Θ(m + n + mn/L) cache misses.

I The worst case cache miss estimate satisfies the recurrence

Q(m, n) =
Θ(m + n + mn/L) if m, n ∈ [αL/2, αL] ,
2Q(m/2, n) + O(1) if m ≥ n ,
2Q(m, n/2) + O(1) otherwise;

whose solution is Q(m, n) = Θ(1 + mn/L).

I Therefore, the Rec-Transpose algorithm has optimal
cache complexity.

I Indeed, for an m × n matrix, the algorithm must write to mn
distinct elements, which occupy at least dmn/Le cache lines.

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

A cache-oblivious matrix multiplication algorithm (1/3)
I We describe and analyze a cache-oblivious algorithm for

multiplying an m × n matrix by an n × p matrix
cache-obliviously using

I Θ(mnp) work and incurring
I Θ(m + n + p + (mn + np + mp)/L + mnp/(L

√
Z)) cache

misses.
I This straightforward divide-and-conquer algorithm contains no

voodoo parameters (tuning parameters) and it uses cache
optimally.

I Intuitively, this algorithm uses the cache effectively, because
once a subproblem fits into the cache, its smaller subproblems
can be solved in cache with no further cache misses.

I These results require the tall-cache assumption for matrices
stored in row-major layout format,

I This assumption can be relaxed for certain other layouts, see
(Frigo et al. 1999).

I The case of Strassen’s algorithm is also treated in (Frigo et al.
1999).

A cache-oblivious matrix multiplication algorithm (2/3)
I To multiply an m × n matrix A and an n × p matrix B, the

Rec-Mult algorithm halves the largest of the three
dimensions and recurs according to one of the following three
cases: (

A1

A2

)
B =

(
A1B
A2B

)
, (1)

(
A1 A2

)(B1

B2

)
= A1B1 + A2B2 , (2)

A
(
B1 B2

)
=

(
AB1 AB2

)
. (3)

I In case (1), we have m ≥ max {n, p}. Matrix A is split
horizontally, and both halves are multiplied by matrix B.

I In case (2), we have n ≥ max {m, p}. Both matrices are split,
and the two halves are multiplied.

I In case (3), we have p ≥ max {m, n}. Matrix B is split
vertically, and each half is multiplied by A.

I The base case occurs when m = n = p = 1.

A cache-oblivious matrix multiplication algorithm (3/3)

I let α > 0 be the largest constant sufficiently small that three
submatrices of sizes m′ × n′, n′ × p′, and m′ × p′ all fit
completely in the cache, whenever max {m′, n′, p′} ≤ α

√
Z

holds.

I We distinguish four cases depending on the initial size of the
matrices.

I Case I: m, n, p > α
√
Z .

I Case II: (m ≤ α
√
Z and n, p > α

√
Z) or (n ≤ α

√
Z and

m, p > α
√
Z) or (p ≤ α

√
Z and m, n > α

√
Z).

I Case III: (n, p ≤ α
√
Z and m > α

√
Z) or (m, p ≤ α

√
Z and

n > α
√
Z) or (m, n ≤ α

√
Z and p > α

√
Z).

I Case IV: m, n, p ≤ α
√
Z .

I Similarly to matrix transposition, Q(m, n, p) is a worst case
cache miss estimate.

Case I: m, n, p > α
√
Z . (1/2)

Q(m, n, p) = (4)
Θ((mn + np + mp)/L) if m, n, p ∈ [α

√
Z/2, α

√
Z] ,

2Q(m/2, n, p) + O(1) ow. if m ≥ n and m ≥ p ,
2Q(m, n/2, p) + O(1) ow. if n > m and n ≥ p ,
2Q(m, n, p/2) + O(1) otherwise .

I The base case arises as soon as all three submatrices fit in
cache:

I The total number of cache lines used by the three submatrices
is Θ((mn + np + mp)/L).

I The only cache misses that occur during the remainder of the
recursion are the Θ((mn + np + mp)/L) cache misses required
to bring the matrices into cache.

Case I: m, n, p > α
√
Z . (2/2)

Q(m, n, p) =
Θ((mn + np + mp)/L) if m, n, p ∈ [α

√
Z/2, α

√
Z] ,

2Q(m/2, n, p) + O(1) ow. if m ≥ n and m ≥ p ,
2Q(m, n/2, p) + O(1) ow. if n > m and n ≥ p ,
2Q(m, n, p/2) + O(1) otherwise .

I In the recursive cases, when the matrices do not fit in cache,
we pay for the cache misses of the recursive calls, plus O(1)
cache misses for the overhead of manipulating submatrices.

I The solution to this recurrence is

Q(m, n, p) = Θ(mnp/(L
√
Z)).

I Indeed, for the base-case m,m, p ∈ Θ(α
√
Z).

Case II: (m ≤ α
√
Z) and (n, p > α

√
Z).

I Here, we shall present the case where m ≤ α
√
Z and

n, p > α
√
Z .

I The Rec-Mult algorithm always divides n or p by 2
according to cases (2) and (3).

I At some point in the recursion, both n and p are small enough
that the whole problem fits into cache.

I The number of cache misses can be described by the
recurrence

Q(m, n, p) = (5)Θ(1 + n + m + np/L) if n, p ∈ [α
√
Z/2, α

√
Z] ,

2Q(m, n/2, p) + O(1) otherwise if n ≥ p ,
2Q(m, n, p/2) + O(1) otherwise ;

whose solution is Q(m, n, p) = Θ(np/L + mnp/(L
√
Z)).

I Indeed, in the base case: mnp/(L
√
Z) ≤ αnp/L.

I The term Θ(1 + n + m) appears because of the row-major
layout.

Case III: (n, p ≤ α
√
Z and m > α

√
Z)

I In each of these cases, one of the matrices fits into cache, and
the others do not.

I Here, we shall present the case where n, p ≤ α
√
Z and

m > α
√
Z .

I The Rec-Mult algorithm always divides m by 2 according to
case (1).

I At some point in the recursion, m falls into the range
α
√
Z/2 ≤ m ≤ α

√
Z , and the whole problem fits in cache.

I The number cache misses can be described by the recurrence

Q(m, n, p) = (6){
Θ(1 + m) if m ∈ [α

√
Z/2, α

√
Z] ,

2Q(m/2, n, p) + O(1) otherwise ;

whose solution is Q(m, n, p) = Θ(m + mnp/(L
√
Z)).

I Indeed, in the base case: mnp/(L
√
Z) ≤ α

√
Zm/L; moreover

Z ∈ Ω(L2) (tall cache assumption).

Case IV: m, n, p ≤ α
√
Z .

I From the choice of α, all three matrices fit into cache.

I The matrices are stored on Θ(1 + mn/L + np/L + mp/L)
cache lines.

I Therefore, we have Q(m, n, p) = Θ(1 + (mn + np + mp)/L).

Typical memory layouts for matrices

Plan

Hierarchical memories and their impact on our programs
Dense Matrix-Matrix Multiplication
Counting Sort

The Ideal-Cache Model

Cache Complexity of some Basic Operations

Matrix Transposition

A Cache-Oblivious Matrix Multiplication Algorithm

Concluding Remarks

Tuned cache-oblivious square matrix transposition

void DC_matrix_transpose(int *A, int lda, int i0, int i1,

int j0, int dj0, int j1 /*, int dj1 = 0 */){

const int THRESHOLD = 16; // tuned for the target machine

tail:

int di = i1 - i0, dj = j1 - j0;

if (dj >= 2 * di && dj > THRESHOLD) {

int dj2 = dj / 2;

cilk_spawn DC_matrix_transpose(A, lda, i0, i1, j0, dj0, j0 + dj2);

j0 += dj2; dj0 = 0; goto tail;

} else if (di > THRESHOLD) {

int di2 = di / 2;

cilk_spawn DC_matrix_transpose(A, lda, i0, i0 + di2, j0, dj0, j1);

i0 += di2; j0 += dj0 * di2; goto tail;

} else {

for (int i = i0; i < i1; ++i) {

for (int j = j0; j < j1; ++j) {

int x = A[j * lda + i];

A[j * lda + i] = A[i * lda + j];

A[i * lda + j] = x;

}

j0 += dj0;

}

}

}

Tuned cache-oblivious matrix transposition benchmarks

size Naive Cache-oblivious ratio

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58

I Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

I L1 data 32 KB, L2 4096 KB, cache line size 64bytes

I Both codes run on 1 core

I The ration comes simply from an optimal memory access
pattern.

Tuned cache-oblivious matrix multiplication

Acknowledgements and references

Acknowledgements.

I Charles E. Leiserson (MIT) and Matteo Frigo (Intel) for
providing me with the sources of their article Cache-Oblivious
Algorithms.

I Charles E. Leiserson (MIT) and Saman P. Amarasinghe (MIT)
for sharing with me the sources of their course notes and
other documents.

References.

I Cache-Oblivious Algorithms by Matteo Frigo, Charles E.
Leiserson, Harald Prokop and Sridhar Ramachandran.

I Cache-Oblivious Algorithms and Data Structures by Erik D.
Demaine.

	Hierarchical memories and their impact on our programs
	Dense Matrix-Matrix Multiplication
	Counting Sort

	The Ideal-Cache Model
	Cache Complexity of some Basic Operations
	Matrix Transposition
	A Cache-Oblivious Matrix Multiplication Algorithm
	Concluding Remarks

