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Problem Given a set V of Zariski-closed points lying in k̄n, k̄ an algebraic closure
of a base field of interest k, its vanishing ideal I(V )⊂ k[X1, . . . ,Xn] is the radical, 0-
dimensional ideal of polynomials vanishing on V . We are interested in constructing
a minimal lexicographic Gröbner basis G of I = I(V ).

Result The main outcome is Result 1. below. In HPC, a complexity analysis
often precedes an implementation, and a challenge is indeed that benchmarks meet
the expected complexity bounds. This is where lies this work (A preliminary im-
plementation is available in Maple, but cannot be qualified as HPC currently).

Notations Lex, LexGB stands for lexicographic and lexicographic Gröbner basis
respectively. Given a set E ⊂ k[X1, . . . ,Xn], then E≤` denotes the set E∩k[X1, . . . ,X`].

1. There is a minimal lexicographic Gröbner basis G whose any of its polynomial
can be computed in O(A(D1) +A(D2) + · · ·+A(Dn)) arithmetic operations
where Di = |V≤i| = dimk(k[X1, . . . ,Xi]/I≤i), and A(d) is the number of arith-
metic operations over k necessary to build Lagrange idempotents of d points
by using sub-product tree techniques (A(d) =M(d) log(d). Using Schönhage-
Strassen fast multiplication one has M(d) = O(d log(d) log log(d)), or M(d) =
d2 using naive polynomial multiplication).

2. the polynomials in G present a special structure, sort of redundant factors that
allows to recycle already computed polynomials and Lagrange cofactors (and
those computed in the sub-product trees) to considerably lower the number of
arithmetic operations to compute new polynomials in G .

3. Any polynomial in G , say w.l.o.g. in k[X1, . . . ,Xn] \ k[X1, . . . ,Xn−1], verifies a
generalization of Gianni-Kalkbrener theorem: if α ∈V≤` is such that
degX`+1

(g(α,X`+1, . . . ,Xn))< degX`+1
(g), then g(α,X`+1, . . . ,Xn) = 0.

4. G is not the reduced Gröbner basis in general, hence has more coefficients, but
its coefficients are smaller.

5. to V , we first build its decomposition points tree T (V ). The arithmetic com-
plexity for solving “Problem” depends only of the shape of this tree (of course
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not the case for the bit complexity where the bit-size of the input points matters
also).

Brief overview of previous works The above results are related to a number of
previous works. We only refer to the most relevant ones that put into perspective
the above statements. The numbering below refers to that of above.

1. Lederer [10] who has produced the most accomplished interpolation formu-
las focuses on the reduced Gröbner basis, which complicates his task quite con-
siderably. This leaves a sharp complexity analysis quite difficult — indeed there
is none; this stems for the fact that many additional polynomials must be com-
puted on demand to cancel too large monomials. The reduced lexGB has a less
satisfactory specialization property (see [1, 8]).

Before it was understood that the configuration of points in V could give the
set of standard monomials for the lexicographic oder (Cf. [3, 13, 6, 5]), algorithms
based on linear algebra were predominant. They give roughly an O(nD3) [2, 14]
arithmetic cost (but are not constrained to the lex order).

A related problem concerns the computation of a separating basis of the vector
space k[X1, . . . ,Xn]/I. By “separating” we mean polynomials {pv}v∈V such that
pv(w) = δvw (Kronecker symbol). Such a basis is closely related to multivariate
Lagrange bases: Lundqvist [12] claims a cost of O(D2) points, but using fast inter-
polation it can be reduced to a complexity similar to that stated in Result 1. above.
As for Hermite interpolation, in [11] linear algebra exploits the possibly very low
displacement rank of the interpolating matrix to propose O((τ + 3)D2) (for Van-
dermonde we have τ = 2 hence of the same order of Lagrange interpolation with
naive multiplication).

2. Starting with Lazard’s structural theorem ([9], lexGB in two variables), sev-
eral authors have shown that a somewhat comparable result holds for more than
two variables (to cite a few [13], and implicitly in [5, 10, 6]), at least in the radical
0-dimensional case. However, few, if none, considered the relationship between
factors of two different polynomials in G . This is a key point to recycle computa-
tions and to dramatically decrease the complexity, even if it is not easy to quantify.

3. The stability of Gröbner bases under specialization refers to the fact that a
specialized Gröbner basis remains a Gröbner basis of the specialized ideal. Beyond
the seminal Gianni-Kalkbrener result [7], Becker [1] then Kalkbrener [8] showed
that whenever a degree decrease occurs after specialization, then the polynomial
reduces to zero modulo the other polynomials. As stated, the specific Gröbner
basis that we construct verifies a stronger property: no degree decrease, or else it
specializes to zero, as in Gianni-Kalkbrener’s theorem.

2



4. The maximal bit-size among all coefficients of polynomials appearing in G
can be estimated to be roughly in O(nD2h2) where h is the maximal bit-size of the
components of input points. This strategy follows that of [4]. Again, obtaining
such a sharp result for the reduced lexGB is not easy.

5. this is interesting if we see the formula constructing the basis G as an alge-
braic circuit that computes the polynomials in G . This circuit depends only of the
shape of the tree.

Implementation We have implemented naively the interpolation formula that
computes G in Maple and will show experimental results that illustrate all the
points mentioned above.
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