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History: block-recursive matrix algorithms

The generalization of Strassen’s matrix inversion
algorithm (1969) with additional permutations of
rows and columns by J. Bunch and J. Hopkroft
(1974) is not a block-recursive algorithm.
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History: block-recursive matrix algorithms

The generalization of Strassen’s matrix inversion
algorithm (1969) with additional permutations of
rows and columns by J. Bunch and J. Hopkroft
(1974) is not a block-recursive algorithm.

Block-recursive algorithms were not so important as
long as the calculations were performed on
computers with shared memory...

... but very impotant for sparse super large matrices
on a supercomputer with distributed memory.
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History: block-recursive matrix algorithms

Generalisation of Strassen's inversion and algorithm
for the solution of systems in commutative domains
was discraibed at 1997-2006 ([7], [8], [10], [9]) with
strong restriction: the leading minors should not be
zero.
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History: block-recursive matrix algorithms

Algorithms for solution of a system of linear equations of size n in
an integral domain, which served as the basis for creating recursive
algorithms:

(1983) Forward and backward algorithm (~ n3) [4].

(1989) One pass algorithm (~ 3n®) [5].

(1995) Combined algoritm with upper left block of size r (~ $5n®
for r = 3) [6].
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History: block-recursive matrix algorithms

Recursive algorithms for solution of a system of linear equations
and for adjoint matrix computation in an integral domain without
permutations:

(1997) Recursive algorithm for solution of a system of linear
equations [7].

(2000) Adjoint matrix computation (with 6 levels) [8].

(2006) Adjoint matrix computation alternative algorithm (with 5
levels) [10].
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History: block-recursive matrix algorithms

This restriction was removed at (2008- 2015): |

Main recursive algorithms for sparse matrices: J

(2008) The algorithm that computes the adjoint matrix, the
echelon form, and the kernel of the matrix operator for the
commutative domains was described in [11] .

(2010) The block-recursive algorithm for the Bruhat
decomposition and the LEU decomposition for the matrix over the
field was obtained in [12] ,

(2013, 2015) and these algorithms were generaized to the LDU
and Bruhat decomposition for the matrices over commutative
domains in [14], [15] .

G. Malaschonok, E. lichenko ACA 2017, Jerusalem




History: block-recursive matrix algorithms

New achivements: )

It is proved that the LEU algorithm has the complexity O(n?r®=2)
for matrices of rank r. [19] (2013).

It is proved that the LEU algorithm has the complexity O(n?s”~2)
for quasiseparable matrix, if any it's submatrix which entirely below
or above the main diagonal has small rank s [20] (2017) .
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Applications: Calculation of electronic circuits

1) Applications: Calculation of electronic
circuits.

The behavior of electronic circuits can be described
by Kirchhoff's laws. The three basic approaches in
this theory are direct current, constant frequency
current and a current that varies with time. All
these cases require the compilation and solution of
sparse systems of equations (numerical, polynomial
or differential). The solution of such differential
equations by the Laplace method also leads to the
solution of polynomial systems of equations [16].
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Applications: Control systems

2) Applications: Control systems.

In 1967 Howard H. Rosenbrock introduced a useful
state-space representation and transfer function
matrix form for control systems, which is known as
the Rosenbrock System Matrix [17]. Since that
time, the properties of the matrix of polynomials
being intensively studied in the literature of linear
control systems.
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Applications: Computation of Groebner basis.

3). Applications: Computation of Groebner
basis.

A matrix composed of Buchberger S-polynomials is
a strongly sparse matrix. Reduction of the
polynomial system is performed when calculating
the echelon and diagonal forms of this matrix. The
algorithm F4 [18] was the first such matrix
algorithm.
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Applications: Solving ODE's and PDEs.

4) Applications: Solving ODE’s and PDEs.
Solving ODE's and PDE's is often based on solution
of leanear systems with sparse matrices over
numbers or over polynomials. One of the important
class of sparse matrix is called quasiseparable. Any
submatrix of quasiseparable matrix entirely below or
above the main diagonal has small rank. These
quasiseparable matrices arise naturally in solving
PDEs for particle interaction with the Fast
Multi-pole Method (FMM). The efficiency of
application of the block-recursive algorithm of the
Bruhat decomposition to the quasiseparable
matrices is studied in [20].
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Recursive matrix multiplication for tree trunk and branches

G. Malaschonok, E. lichenko ACA 2017, Jerusalem



Recursive sparse matrix multiplication on the leaf’s bloc
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Recursive Strassen matrix inversion

If A= <A° Al), det(A) # 0 and det(Ag) # 0 then

Ax Az
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Recursive matrix inversion Strassen
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Recursive computation of the adjoint and kernel: 1 of 2
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Recursive computation of the adjoint and kernel: 2 of 2
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Recursive adjoint matrix computation
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Sparse matrices when using distributed memory

The block-recursive matrix algorithms for sparse matrix require a
special approachs to managing parallel programs. One approach to
the cluster computations management is a scheme with one
dispatcher (or one master).

We consider another scheme of cluster menagement. It is a scheme
with multidispatching, when each involved computing module has
its own dispatch thread and several processing threads [21], [22].
We demonstrate the results of experiments with parallel
programms on the base of multidispatching.
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Recursive matrix multiplication (dence, n=8000, Z, 15b)
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Recursive matrix multiplication (dence, n=12000,Z, 15b)
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Recursive matrix multiplication (dence, n=14000, Z, 15b)
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Recursive inversion Strassen (dence, n=8000, double)
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Recursive inversion Strassen (dence, n=16000, double)

Efficiency, %
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Recursive adjoint and kernel (dence, n=8000, Z)
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Recursive adjoint and kernel (d=100%, n=100, Z, 15b,

CRT+P)
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Recursive adjoint and kernel (d=1%, n=10000, Z, 15b,

CRT+P)
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Recursive adjoint and kernel (d=1%, n=10000, Z,

CRT+P)

7%103 - - - - - - oo Fo--- - F-- - - r--- -
approximation results for algorithm in 2 ——
results for algorithminZz A
approximation resuilts for algorithm in Z by fitting polynom —
approximation results for algorithm in finite fields
results for algorithmiin finite fields &
6%103 | approximation results for algorithm in finite fields by fitting polynom —
j } ) ) i

5%103

4103

3*103

Calculation time, s

2%103

1*103

0%100

Malaschonok ACA 2017, Jerusalem



Comparing sequantional program with Mathematica and

MAPLE
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