Comprehensive Optimization of Parametric Kernels for
Graphics Processing Units

Xiaohui Chen!, Marc Moreno Maza?, Jeeva Paudel?, Ning Xie*

1 AMD, Markham, Ontario, Canada
2 U. Western Ontario, London, Ontario, Canada moreno@csd.uwo.ca
3 IBM Canada Ltd, Markham, Ontario, Canada

4 Huawei Technologies Canada, Markham, Ontario, Canada

Overview

It is well-known that the advent of hardware acceleration technologies (multicore
processors, graphics processing units, field programmable gate arrays) provide vast
opportunities for innovation in computing. In particular, GPUs combined with
low-level heterogeneous programming models, such as CUDA (the Compute Uni-
fied Device Architecture, see [17, 2l]), brought super-computing to the level of the
desktop computer. However, these low-level programming models carry notable
challenges, even to expert programmers. Indeed, fully exploiting the power of
hardware accelerators by writing CUDA code often requires significant code op-
timization effort. While such effort can yield high performance, it is desirable
for many programmers to avoid the explicit management of the hardware accel-
erator, e.g. data transfer between host and device, or between memory levels of
the device. To this end, high-level models for accelerator programming, notably
OPENMP [10, 4] and OPENACC [21, 3], have become an important research di-
rection. With these models, programmers only need to annotate their C/C++ (or
FORTRAN) code to indicate which portion of code is to be executed on the device,
and how data is mapped between host and device.

In OPENMP and OPENACC, the division of the work between thread blocks
within a grid, or between threads within a thread block, can be expressed in a loose
manner, or even ignored. This implies that code optimization techniques must be
applied in order to derive efficient CUDA code. Moreover, existing software pack-
ages (e.g. PPCG [22]], C-To-CUDA [6], HICUDA [13]], CUDA-CHILL [14]])
for generating CUDA code from annotated C/C++ programs, either let the user
choose, or make assumptions on, the characteristics of the targeted hardware, and
on how the work is divided among the processors of that device. These choices and
assumptions limit code portability as well as opportunities for code optimization.

To deal with these challenges in translating annotated C/C++ programs to
CUDA, we propose in [8] to generate parametric CUDA kernels, that is, CUDA

kernels for which program parameters (e.g. number of threads per thread block)
and machine parameters (e.g. shared memory size) are symbolic entities instead
of numerical values. Hence, the values of these parameters need not to be known
during code generation: machine parameters can be looked up when the generated
code is loaded on the target machine, while program parameters can be deduced,
for instance, by auto-tuning.

A proof-of-concept implementation, presented in [8] and publicly availableE],
uses another high-level model for accelerator programming, called METAFORK,
that we introduced in [9]]. The experimentation shows that the generation of para-
metric CUDA kernels can lead to significant performance improvement w.r.t. ap-
proaches based on the generation of CUDA kernels that are not parametric. More-
over, for certain test-cases, our experimental results show that the optimal choice
for program parameters may depend on the input data size.

In this work, our goal is to enhance the framework initiated in [8]] by gener-
ating optimized parametric CUDA kernels. As we shall see, this can be done in
the form of a case discussion, based on the possible values of the machine and
program parameters. The output of a procedure generating optimized paramet-
ric CUDA kernels will be called a comprehensive parametric CUDA kernel. A
simple example is shown on Figure 2] In broad terms, this is a decision tree where:

1. each internal node is a Boolean condition on the machine and program pa-

rameters, and

2. each leaf is a CUDA program #, optimized w.r.t. prescribed criteria and

optimization techniques, under the conjunction of the conditions along the

path from the root of the tree to Z.
The intention, with this concept, is to automatically generate optimized CUDA
kernels from annotated C/C++ code without knowing the numerical values of some
or even any of the machine and program parameters. This naturally leads to case
distinction depending on the values of those parameters, which materializes into
a disjunction of conjunctive non-linear polynomial constraints. Symbolic compu-
tation is the natural framework for manipulating such systems of constraints; our
RegularChains librar provides the appropriate algorithmic tools for that task.

Other research groups have approached the questions of code portability and
code optimization in the context of CUDA code generation from high-level pro-
gramming models. They use techniques like auto-tuning [12, [14], dynamic in-
strumentation [15] or both [20]. Rephrasing [14], “those techniques explore em-
pirically different data placement and thread/block mapping strategies, along with

lwww.metafork. org
ZThis library, shipped with the commercialized computer algebra system MAPLE, is freely avail-
able at www.regularchains.org,

www.metafork.org
www.regularchains.org

other code generation decisions, thus facilitating the finding of a high-performance
solution.”

In the case of auto-tuning techniques, which have been used successfully in
the celebrated projects ATLAS [23], FFTW [11]], and SPIRAL [18]], part of the
code optimization process is done off-line, that is, the input code is analyzed and
an optimization strategy (i.e a sequence of composable code transformations) is
generated, and then applied on-line (i.e. on the targeted hardware). We propose
to push this idea further by applying the optimization strategy off-line, thus, even
before the code is loaded on the targeted hardware.

We conclude this extended abstract with an example illustrating the notion
of comprehensive parametric CUDA kernels, along with a procedure to gener-
ate them. Our input is the for-loop nest of Figure [[| which computes the sum of two
matrices b and c of order N using a blocking strategy; each matrix is divided into
blocks of format BO x B1. This input code is annotated for parallel execution in the
METAFORK language. The body of the statement meta_schedule is meant to be
offloaded to a GPU device and each meta_for loop is a parallel for-loop where all
iterations can be executed concurrently.

int dim0 = N/BO, diml = N/(2%B1);
meta_schedule {
meta_for (int v = 0; v < dimQ; v++)
meta_for (int p = 0; p < diml; p++)
meta_for (int u = 0; u < BO; u++)
meta_for (int q = 0; q < B1l; g++) {
int i = v * BO + u;
int j = p * Bl + q;
if (i <N & j <N/2) {
clil[3] = alil[j] + b[il[j];
c[i] [j+N/2] =
alil[j+N/2] + blil[j+N/2];

Figure 1: A meta_for loop nest for adding two matrices.

We make the following simplistic assumptions for the translation of this for-

loop nest to CUDA.

1. The target machine has two parameters: the maximum number R of registers
per thread, and the maximum number 7T of threads per thread-block; all other
hardware limits are ignored.

2. The generated kernels depend on two program parameters, By and By, which

define the format of a 2D thread-block.
3. The optimization strategy (w.r.t. register usage per thread) consists in reduc-

ing the work per thread (by reducing loop granularity).
A possible comprehensive parametric CUDA kernel is given by the pairs (Cj,K))
and (C2,K>), where Cy,C, are two sets of algebraic constraints on the parameters
and K1, K; are two CUDA kernels that are optimized under the constraints respec-
tively given by Cy,C,, see Figure 2] The following computational steps yield the
pairs (C1,K;) and (C7,K>).

(S1) The METAFORK code is mapped to an intermediate representation (IR) say
that of LLVME[, or alternatively, to PTXEI code.

(S82) Using this IR (or PTX) code, one estimates the number of registers that a
thread requires; on this example, using LLVM IR, we obtain an estimate of
14.

(S3) Next, we apply the optimization strategy, yielding a new IR (or PTX) code,
for which register pressure reduces to 10. Since no other optimization tech-
niques are considered, the procedure stops with the result shown on Figure 2]

Note that, strictly speaking, the kernels K| and K, on Figure 2| should be given by
PTX code. But for simplicity, we are presenting them by counterpart CUDA code.

B()XBlgT BoXB]ST
CH . Cb:
{14§R {10§R<14
__global__ void K1i(int *a, int *b, int *c,_igtoNgl__ void K2(int *a, int *b, int *c, int N,
int BO, int B1) { int BO, int B1) {
int i = blockIdx.y * BO + threadIdx.y; int i = blockIdx.y * BO + threadIdx.y;
int j = blockIdx.x * Bl + threadldx.x; int j = blockIdx.x * Bl + threadldx.x;
if (1 < N && j < N/2) { if (1 < N && j < N)
ali*N+j] = b[i*N+j] + c[ixN+j]; ali*N+j] = b[i*N+j] + c[ixN+j];
ali*N+j+N/2] = b[i*N+j+N/2] + c[i*N}j+N/2];
} dim3 dimBlock(B1, BO);
} dim3 dimGrid(N/B1, N/BO);
dim3 dimBlock(B1, BO); K2 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

dim3 dimGrid(N/(2*B1), N/BO);
K1 <<<dimGrid, dimBlock>>> (a, b, c, N, BO, B1);

Figure 2: A comprehensive parametric CUDA kernel for matrix addition.
While this was a toy-example, advanced test cases can be found in Chapter 7
of the PhD thesis of the first author at
http://ir.1lib.uwo.ca/etd/4429

3 Quoting Wikipedia: “The LLVM compiler infrastructure project (formerly Low Level Virtual
Machine [16}[7]) is a framework for developing compiler front ends and back ends”.

4The Parallel Thread Execution (PTX) [3] is the pseudo-assembly language to which CUDA pro-
grams are compiled by NVIDIA’s NvccC compiler. PTX code can also be generated from (enhanced)
LLVM IR, using nvptx back-end [1], following the work of [19]].

http://ir.lib.uwo.ca/etd/4429

Acknowledgments

The authors would like to thank the IBM Toronto Labs and NSERC of Canada for
supporting their work.

References

[1]

[10]

[11]

[12]

[13]

[14]

User guide for NVPTX. The LLVM Compiler Infrastructure. http://11lvm.org/
docs/NVPTXUsage .html#introduction|

CUDA runtime API: v7.5. NVIDIA Corporation, 2015. http://docs.nvidia.
com/cuda/pdf/CUDA_Runtime_API.pdf|

The OpenACC application programming interface. OpenACC-Standard.org, 2015.
OpenMP application program interface version 4.5. OpenMP Architecture Review
Board, 2015. http://www. openmp.org/mp-documents/openmp-4.5.pdf,
Parallel thread execution ISA : v4.3. NVIDIA Corporation, 2015. http://docs.
nvidia.com/cuda/pdf/ptx_isa_4.3.pdfl

M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA code gen-
eration for affine programs. In Proceedings of CC’10/ETAPS’10, pages 244-263,
Berlin, Heidelberg, 2010. Springer-Verlag.

Carlo Bertolli, Samuel F. Antao, Alexandre E. Eichenberger, Kevin O’Brien, Zehra
Sura, Arpith C. Jacob, Tong Chen, and Olivier Sallenave. Coordinating GPU threads
for OpenMP 4.0 in LLVM. In Proceedings of LLVM-HPC ’14, pages 12-21. IEEE
Press, 2014.

Changbo Chen, Xiaohui Chen, Abdoul-Kader Keita, Marc Moreno Maza, and Ning
Xie. MetaFork: A compilation framework for concurrency models targeting hard-
ware accelerators and its application to the generation of parametric CUDA kernels.
In Proceedings of CASCON 2015, pages 70-79, 2015.

Xiaohui Chen, Marc Moreno Maza, Sushek Shekar, and Priya Unnikrishnan.
MetaFork: A framework for concurrency platforms targeting multicores. In Pro-
cessing of IWOMP 2014, pages 30—44, 2014.

Leonardo Dagum and Ramesh Menon. OpenMP: An industry standard API
for shared-memory programming. Computational Science & Engineering, IEEE,
5(1):46-55, 1998.

Matteo Frigo and Steven G. Johnson. FFTW: an adaptive software architecture for
the FFT. In Proceedings of ICASSP, pages 1381-1384. IEEE, 1998.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. Auto-tuning a high-level language targeted to GPU codes. In Innovative
Parallel Computing. IEEE, 2012.

Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: A high-level directive-based
language for GPU programming. In Proceedings of GPGPU-2, pages 52-61. ACM,
2009.

Malik Khan, Protonu Basu, Gabe Rudy, Mary Hall, Chun Chen, and Jacqueline
Chame. A script-based autotuning compiler system to generate high-performance
CUDA code. ACM Trans. Archit. Code Optim., 9(4):31:1-31:25, January 2013.

http://llvm.org/docs/NVPTXUsage.html#introduction
http://llvm.org/docs/NVPTXUsage.html#introduction
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.3.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_4.3.pdf

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

Thomas Kistler and Michael Franz. Continuous program optimization: A case study.
ACM Trans. on Programming Languages and Systems, 25(4):500-548, 2003.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of CGO ’04, pages 75—. IEEE Com-
puter Society, 2004.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming
with CUDA. Queue, 6(2):40-53, 2008.

Markus Piischel, José M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy R. Johnson,
David A. Padua, Manuela M. Veloso, and Robert W. Johnson. Spiral: A generator for
platform-adapted libraries of signal processing alogorithms. IJHPCA, 18(1), 2004.
Helge Rhodin. A PTX code generator for LLVM. Master’s thesis, Saarland Univer-
sity, 2010.

Chenchen Song, Lee-Ping Wang, and Todd J Martinez. Automated code engine for
graphical processing units: Application to the effective core potential integrals and
gradients. Journal of chemical theory and computation, 2015.

Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita Chandrasekaran, and
Barbara M. Chapman. Compiling a high-level directive-based programming model
for GPGPUs. In Languages and Compilers for Parallel Computing - 26th Int. Work.
Springer, 2013.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gémez, C. Tenllado, and
F. Catthoor. Polyhedral parallel code generation for CUDA. TACO, 9(4):54, 2013.
R. Clinton Whaley and Jack Dongarra. Automatically tuned linear algebra software.
In PPSC, 1999.

