
Efficient Algorithms for
Evaluating Matrix Polynomials

Sivan Toledo and Niv Hoffman
Blavatnik School of Computer Science
Tel-Aviv University

Oded Schwartz
Hebrew University

ACA 2017

Efficiency in Evaluation of
q(A) = c0I + c1A + c2A

2 + · · · cdA
d

A is an n-by-n real or complex matrix

Given Aℓ, Ak,

• ckA
k requires n2 scalar multiplications, but

• Aℓ+k = AℓAk requires n3 (or n2.81 with Strassen)

Minimize the number of matrix-matrix multiplications
required to evaluate q(A); these are called in the literature
nonscalar multiplications

Maybe other ways to reduce arithmetic

Reduce communication (cache misses in this talk)

A Side Note on Functions of Matrices

When A is normal or close to normal, we can compute q(A)

or any other function f(A) using an eigendecompotion,

q(A) = q(VΛV∗)

= Vq(Λ)V∗

= V





q(λ1)
. . .

q(λn)



V∗ .

It is mostly when A is far from normal when these problems
become interesting

Building Blocks

q(A) via Explicit Powers

Allocate three matrices, A, Ak, and Q

Initialize Q = 0, and Ak = I

for k← 0, . . . , d, add Q← Q+ ckA
k and multiply

Ak+1 ← AAk

In step d we produce q(A) = Q

A total of d − 1 matrix-matrix multiplications

q(A) via Horner’s Rule

Allocate two matrices, A and Q

Initialize Q = cd−1I + cdA

In step k← d− 2, . . . , 1, 0, multiply and add Q← ckI+QA

In step 0 we produce q(A) = Q

Again a total of d− 1 matrix-matrix multiplications

q(A) via Is Roots

If the roots ξ1, . . . , ξd are given, not the coefficients c, then

Allocate two matrices, A and Q

Initialize Q = A− ξ1I

For k← 2, . . . , d add and multiply Q← Q(A− ξkI)

In step d we produce q(A) = Q

Again a total of d− 1 matrix-matrix multiplications

(Computing the roots from the coefficients is not advised;
often ill conditioned)

Clearly, Matrix Multiplication is Important Here

n3 multiplications (≈ 2n3 arithmetic operations) using native
algorithms

O(nω) using so-called fast methods; e.g., O(n2.81) for
Strassen-Winograd

O(n2kω−2) to multiply an n-by-n matrix by an n-by-k (block
mat-vec); no gain for k = 1!

×6 arithmetic speedup for triangular mat mult (plus can
apply Strassen to square blocks within the recursion)

Does it Really Take d − 1 Matrix Multiplications?

Classical/Naive methods (e.g. Horner) require d− 1.

Is this really necessary?

d/2 Mat-Mults: Rabin-Winograd/Patterson-Stockmeyer

No (Rabin-Winograd 1971, Patterson-Stockmeyer 1973).

q(A) = c0I+ c1A+ c2A
2 + · · ·+ c2r−1A

2r−1

= c0I+ · · ·+ cr−1A
r−1 +Ar(c̃0I + · · ·+ c̃r−1A

r−1)

use recursion and denote # mat-mults by N(d) (repeated
squaring for Ar). For powers of two,

N(2r− 1) = 2N(r− 1) + 1

total (inc. repeated squaring) ≈ d/2+ log(d)

for non powers of two, split into powers of two so

N(d) ≤ d/2+ 2 log(d)

The Algorithm of Paterson & Stockmeyer

Consider an example,

q(A) = 2I+ 3A+ 4A2

+5A3 + 6A4 + 7A5

+8A6 + 9A7 + 2A8

=
(

2I+ 3A+ 4A2
)

+
(

5A3 + 6A4 + 7A5
)

+
(

8A6 + 9A7 + 2A8
)

=
(

2I+ 3A+ 4A2
)

I

+
(

5I+ 6A+ 7A2
)

A3

+
(

8I+ 9A+ 2A2
) (

A3
)2

Analysis of the Example

Consider an example,

q(A) =
(

2I+ 3A+ 4A2
)

I

+
(

5I+ 6A+ 7A2
)

A3

+
(

8I+ 9A+ 2A2
) (

A3
)2

We perform 1 matmult to produce I, A,A2, 1 to produce A3,
1 square it, and 2 more to multiply degree-2 polynomials by
powers of A3.

A polynomial in A3 whose coefficients are quadratics in A.

The General Case of the PS Algorithm

Let ps = d (remainder is easy to handle),

q(A) = c0I+ c1A+ c2A
2 + · · ·+ cdA

d

= c0I+ c1A+ · · ·+ cp−1A
p−1

+
(

cpI + cp+1A+ · · ·+ c2p−1A
p−1

)

Ap

+ · · ·
+
(

cd−p+1I + cd−p+2A+ · · ·+ cdA
p−1

)

(Ap)
s−1

= c0I+ c1A+ · · ·+ cp−1A
p−1

+
(

cpI + cp+1A+ · · ·+ c2p−1A
p−1

)

Ap

+ · · ·
+
(

c(s−1)pI+ c(s−1)p+1A+ · · ·+ c(s−1)p+p−1A
p−1

)

(Ap)
s−1

Arithmetic and Memory Complexity of PS

Let ps = d (remainder is easy to handle),

q(A) =
(

c0I + c1A+ · · ·+ cp−1A
p−1

)

+
(

cpI + cp+1A+ · · ·+ c2p−1A
p−1

)

Ap

+ · · ·
+
(

c(s−1)pI+ c(s−1)p+1A+ · · ·+ c(s−1)p+p−1A
p−1

)

(Ap)
s−1

Form and store A2, . . .Ap−1, Ap explicitly (p− 1 MMs, p+ 1
matrices to store)

Set Q← highest coefficient polynomial =
∑p−1

ℓ=0 c···A
ℓ (p− 1

scale-add, 0 MMs)

For k← s− 1, . . . , 1, 0 multiply and add

Q← QAp +
∑p−1

ℓ=0 c···A
ℓ (s m-multiplications)

Parameter Optimization for PS

Total number of matrix multiplications is p− 1+ s where
s = ⌈d/p⌉ − 1

Therefore ps ≈ d so p+ s− 1 is minimized near p ≈
√
d at

about 2
√
d MMs

Can we go even lower?

No. Paterson & Stockmeyer proved that there are qs for

which # of MMs is at least
√
d

(
√
d− 1/2 MMs if the coefficients are integers), under some

reasonable assumptions

A Comparison

Work (# MMs) Memory (# words)

Explicit Powers d − 1 3n2

Horner’s Rule d − 1 2n2

MM PS p− 1+ s (p+ 1)n2

MM PS for ps ≈ d ≈ 2
√
d ≈

√
dn2

A work-storage tradeoff

Memory-Efficient Matrix-Vector PS (Van Loan 1979)

q(A) =
(

2I+ 3A+ 4A2
)

I + · · ·+
(

8I+ 9A+ 2A2
) (

A3
)2

So the jth colomn is

q(A):,j =
(

I
(

2I+ 3A+ 4A2
))

:,j

+
(

A3
(

5I + 6A+ 7A2
))

:,j

+
(

(

A3
)2 (

8I+ 9A+ 2A2
)

)

:,j

= I
(

2Iej + 3Aej + 4A2ej
)

+A3
(

5ej + 6Aej + 7A2ej
)

+
(

A3
)2 (

8ej + 9Aej + 2A2ej
)

Matrix-Vector SPH (Van Loan 1979)

q(A):,j = I
(

2Iej + 3Aej + 4A2ej
)

+A3
(

5ej + 6Aej + 7A2ej
)

+
(

A3
)2 (

8ej + 9Aej + 2A2ej
)

Compute Ap (log2 p m-multiplications, can use Strassen)

For j← 1, . . . , n

Compute Aej, . . . , A
p−1ej (p− 1 matvecs)

Set Qj ←
∑p−1

ℓ=0 c···A
ℓej (vec ops)

For k← s− 1, . . . , 1, 0 multiply and add

Qj ← ApQj +
∑p−1

ℓ=0 c···A
ℓej (s MVs, vec ops)

n(p− 1) + ns matvecs ≡ s+ p− 1 (convensional, no
Strassen) MMs

A Comparison (now with Van Loan’s schedule)

Work (# MMs) Memory (# words)

Explicit Powers d− 1 3n2

Horner’s Rule d− 1 2n2

MM PS p− 1+ s (p+ 1)n2

MV PS log2 p+ (s+ p)conv 3n2 + pn

Communication (Cache-Miss) Analysis

Communications Analysis in Two-Level Memories

We assume that memory consists of a large slow memory and
a fast memory (cache) of size M, and count the number of
accesses to slow memory (cache misses) under an ideal
replacement policy.

• Any mat-mult, M > 2n2, only Θ(n2) compulsory
misses

• Conventional mat-mult, M < n2/2, Θ(n3/
√
M)

misses (blocking, recursion)
• Fast mat-mult, small cache, O(nω/Mω/2−1) misses

(less work, smaller data-reuse ratio)

Cache Misses in MM PS

If M > (p+ 1)n2, only Θ(n2) compulsory misses

If M < n2/2,

Θ(
(p+ s)n3

√
M

+ spn2) = Θ(
(p+ d/p)n3

√
M

+ dn2)

This is minimized for p ≈
√
d so Θ(

√
dn3/

√
M + dn2)

• Θ(
√
dn3/

√
M) for M ≤ n2/d (tiny cache, MMs

dominate)
• Θ(dn2) for n2/d ≤ M < n2/2 (small cache, matrix

scale-adds dominate)

Mind the gap

Cache Misses in MM PS: Filling the Gap

for 3n2 ≤ M ≤ (p+ 1)n2 MMs are comm-cheap but MSAs are
not

Number of cache misses Θ(spn2) = Θ(dn2)

Cache misses minimized by setting p ≈ M/n2, to get out of
this regime

But arithmetic is not; yuck

Cache Misses in the MV PS

If M > 3n2 + pn, only Θ(n2) compulsory misses

If pn ≤ M < n2/2, Θ(logp · n3/
√
M) to generate Ap, plus

n iterations in which we pay Θ(pn2) to construct
Aej, . . . , A

p−1ej and Θ(sn2) for s MVs with Ap

In total,

Θ

(

logp · n3

√
M

+ n(p+ s)n2

)

= Θ

(

logp · n3

√
M

+

(

p+
d

p

)

n3

)

= Θ

((

p+
d

p

)

n3

)

Picking a (Theoretical) Winner

If M > (p+ 1)n2, use MM-PS (Strassen okay)

If M > 3n2 + pn, use MV-PS (optimal arithmetic sans
Strassen)

Otherwise (tiny cache), use MM-PS

But we can do better with new variants

New Algorithmic Ideas

1: Block-Column PS
Compute Ap (log2 p m-multiplications)

Pick a block size b

For n/b blocks Ej ← I:,j:j+b

Compute AEj, . . . , A
p−1Ej (p− 1 b-mat-vecs)

Set Qj ← (highest coefficient polynomial)Ej (b-vec
scale-add)

For k← s− 1, . . . , 1, 0 multiply and add
Qj ← ApQj + (next lower coefficient polynomial)Ej

Θ
(

logp·n3

√
M

+ n
b
(p+ s)n2

)

cache misses for pnb ≤ M ≤ n2/2

2: Use Fast Matrix Multiplication in MM-PS, BMV-PS

Great opportunity for fast mat-mult

Benefit in block-MV PS drops with block size (both arithmetic
and data-reuse ratio)

3: Tranform to (Real) Schur Form

If A = VTV∗, then q(A) = Vq(T)V∗, so the expensive part
(> O(n3)) is performed on triangular matrices, ×6 arithmetic
benefit√
d needs to be high enough to offset the cost of the Schur

decomposition

Unfortunately, level-3 BLAS do not have triangular-triangular
matrix multiplication, but can implement fairly easily using
recursion

4: Schur Form, Reorder, Parlett+Davies-Higham

If A = VTV∗, then q(A) = Vq(T)V∗

Apply block Schur-Parlett substitution to q(T) (evaluate q on
diagonal blocks, solve Sylvester equations for off-diagonal
blocks)

Higham-Davies: ensure Sylvester equations are well
conditioned by partitioning Λ(A) into well-separated clusters
& reordering the Schur form (Bai-Demmel-Kressner)

Benefit: Θ(
√
dn3) super-cubic algorithm applied to diagonal

blocks of T , not all of it

Cost: O(n3) Schur decomposition and reordering

[Not implemented, but shows how novel discoveries can
improve old algorithms]

5: Remainder Evaluation (Really an Open Problem)

If d > n, let χ be the Characteristic polynomial of A and let

q(A) = χ(A)δ(A) + ρ(A) = ρ(A) .

Clearly, evaluating ρ(A) is cheaper than applying q(A)

But can we determine the coefficients of ρ in a stable way?
Open problem (AFAIK)

I’ll mention another interesting and related open problem at
the end of the talk

Experimental Results

d = 100; MM-PS and Block-MM-PS Better than Horner

 400 1600 3200 6400
10

−2

10
0

10
2

10
4

matrix dimension

tim
e

(s
)

PS−MV
Horner
PS−MV b=100
PS−MM Quad-core

i7

C+MKL

MV PS is Terrible! Cache Misses!

 400 1600 3200 6400
10

−2

10
0

10
2

10
4

matrix dimension

tim
e

(s
)

PS−MV
Horner
PS−MV b=100
PS−MM

Flop/s Rates

 400 1600 3200 6400
0

0.5

1

1.5

2
x 10

11

matrix dimension

flo
p/

s

Block-Size Sensitivity (Not High but Not Monotone)

n = 2000

0 1000 2000 3000 4000 5000

10

20

30

40

50

60

70

80

90

100

polynomial degree

tim
e

(s
)

Horner
PS MV b=1
PS MV b=25
PS MV b=100
PS MV b=250
PS MV b=1000
PS MM

Also, For High Degrees Horner is Terrible

n = 2000

0 1000 2000 3000 4000 5000

10

20

30

40

50

60

70

80

90

100

polynomial degree

tim
e

(s
)

Horner
PS MV b=1
PS MV b=25
PS MV b=100
PS MV b=250
PS MV b=1000
PS MM

Reduced Sensitivity at Smaller Sizes

n = 750

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

polynomial degree

tim
e

(s
)

Horner
PS MV b=1
PS MV b=25
PS MV b=100
PS MV b=250
PS MM

d = 10 Emphasizes Cost of Matrix Additions

0 2000 4000 6000 8000 10000 12000
1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

11

matrix dimension

flo
p/

s

The Cost of the Schur Decomposition (≈ 25 Mat-Mults)

0 2000 4000 6000 8000
0

50

100

150

200

matrix dimension

tim
e

re
la

tiv
e

to
 D

G
E

M
M

Cost of Schur Decomposition

Savings from Triangular Matrix Multiplication (≈ ×4)

0 2000 4000 6000 8000
0

0.5

1

1.5

2

matrix dimension

tim
e

re
la

tiv
e

to
 D

G
E

M
M

Cost of Triangular Matrix Multiplication

DTRMM
Recursive 1
Recursive 2
Recursive 3
Recursive 4

Estimating The Cost of Schur + Triangular PS (> ×2.5)

 250 1k 2.5k 5k 7.5k 10k
0

0.5

1

1.5

2

2.5

3

polynomial degree

sp
ee

du
p

or
 s

lo
w

do
w

n
of

 S
ch

ur

n=8000
n=4000
n=1000

Conclusions and Open Problems

Conclusions

Old algorithms must be revisited (fairly obvious);

MM-PS is memory inefficient, MV-PS super slow due to cache
misses

Block MV-PS fixes that

More novel tricks thanks to various innovations, mostly in
extreme cases (very high degrees)

Open Problem 1: Applications?

Do these algorithms have interesting applications?

We were attracted to this due to the complex tradeoffs in
Patterson-Stockmeyer variants

Seems that rational approximations are used more often in
applications

Open Problem 2: Alternate Representations

Numerical analysis of Patterson-Stockmeyer in other (more
useful) representations of q

Is there an efficient and numerically-stable version of PS for
d > n? Think of ρ(A) given in terms of the coefficients of
q(A) = χ(A)δ(A) + ρ(A)

Is there an efficient and numerically-stable version of PS for
Newton polynomials, or for any other forms of
interpolation/least-squares polynomials?

Looking forward to discussions during the rest of the week!

