Efficient Algorithms for
Evaluating Matrix Polynomials

Sivan Toledo and Niv Hoffman
Blavatnik School of Computer Science
Tel-Aviv University

Oded Schwartz
Hebrew University

ACA 2017

Efficiency in Evaluation of
q(A) = CoI + 1A + CzAz + .- CdAd

A is an n-by-n real or complex matrix
Given A', AK,

e c A¥ requires n? scalar multiplications, but
o Ak = AtAK requires n® (or n?8! with Strassen)

Minimize the number of matrix-matrix multiplications
required to evaluate q(A); these are called in the literature
nonscalar multiplications

Maybe other ways to reduce arithmetic

Reduce communication (cache misses in this talk)

A Side Note on Functions of Matrices

When A is normal or close to normal, we can compute q(A)
or any other function f(A) using an eigendecompotion,

q(A) = q(VAVY)
= Vq(A)V*
q(Ar)
=V V.
q(An)

It is mostly when A is far from normal when these problems
become interesting

Building Blocks

q(A) via Explicit Powers

Allocate three matrices, A, A, and Q
Initialize Q = 0, and A* =1

fork « 0,...,d, add Q + Q + ¢, A* and multiply
AR AAK

In step d we produce q(A) = Q
A total of d — 1 matrix-matrix multiplications

q(A) via Horner’s Rule

Allocate two matrices, A and Q

Initialize Q = cq 11+ c4A

Instepk « d—2,...,1,0, multiply and add Q « c, I+ QA
In step 0 we produce q(A) = Q

Again a total of d — 1 matrix-matrix multiplications

q(A) via Is Roots

If the roots &;,..., &4 are given, not the coefficients ¢, then
Allocate two matrices, A and Q

Initialize Q = A — &1

For k + 2,...,d add and multiply Q «— Q(A — &I

In step d we produce q(A) = Q

Again a total of d — 1 matrix-matrix multiplications

(Computing the roots from the coefficients is not advised;
often ill conditioned)

Clearly, Matrix Multiplication is Important Here

n? multiplications (~ 2n? arithmetic operations) using native
algorithms

O(n%) using so-called fast methods; e.g., O(n*?") for
Strassen-Winograd

O(n?k*~2) to multiply an n-by-n matrix by an n-by-k (block
mat-vec); no gain for k = 1!

x 6 arithmetic speedup for triangular mat mult (plus can
apply Strassen to square blocks within the recursion)

Does it Really Take d — 1 Matrix Multiplications?

Classical/Naive methods (e.g. Horner) require d — 1.

Is this really necessary?

d/2 Mat-Mults: Rabin-Winograd/Patterson-Stockmeyer

No (Rabin-Winograd 1971, Patterson-Stockmeyer 1973).

q(A) = col+ A+ A2+ 4 cp AT
= col+ -+ AT H AT (Gl + -+ E AT

use recursion and denote # mat-mults by N(d) (repeated
squaring for A"). For powers of two,

N2r—1) = 2N(r—1)+1
total (inc. repeated squaring) ~ d/2+ log(d)
for non powers of two, split into powers of two so
N(d) <d/2+ 2log(d)

The Algorithm of Paterson & Stockmeyer

Consider an example,
q(A) = 2I+43A +4A?

+5A% 4 6A" + 7A°
+8A° +9A7 + 2A8

= (21+3A +4A%)
+ (5A° + 6A" + 7A%)
+ (8A° +9A7 4 2A%)

= (2I+3A+4A%)1
+ (5I+ 6A +7A%) A’

+ (814 9A +2A%) (A%)’

Analysis of the Example

Consider an example,
q(A) = (2I4+3A+4A%)1
+ (51+6A +7A%) A’
+ (814 9A 4 2A%) (A%)’

We perform 1 matmult to produce I, A, A%, 1 to produce A3,
1 square it, and 2 more to multiply degree-2 polynomials by
powers of A3,

A polynomial in A® whose coefficients are quadratics in A.

The General Case of the PS Algorithm

Let ps = d (remainder is easy to handle),

q(A)

col + 1A + A% 4+ - -+ cgAl
COI+C1A+'“—|—CP,1AP*1

+ (cpl +cprA+ -+ czp AP AP

—|—. ..

+ (Capr1l+ CapaA 4 -+ cgAPT) (AP)*
COI+C1A+"'+CP_1AP_1

+ (cpl + CprtA+ -+ cop g AP AP

—|—. ..

+ (csmnpl + Clsmnpet A+ -+ Csmt)prp1AP) (AP)s

Arithmetic and Memory Complexity of PS

Let ps = d (remainder is easy to handle),
q(A) = (col4+ 1A+ -+, AP

+ (cpl +cpnA+ -+ cyp AP AP

+ (e pl+ A+ e pip 1 AP (AP
Form and store A%, ... AP~ AP explicitly (p — 1 MMs, p + 1
matrices to store)

Set Q «+ highest coefficient polynomial = ZE:_J c. At (p—1
scale-add, 0 MMs)

For k « s—1,...,1,0 multiply and add
Q « QAP 4 Y P/ c. A’ (s m-multiplications)

Parameter Optimization for PS

Total number of matrix multiplications is p — 1 + s where
s=[d/p]—1

Therefore ps ~ d so p + s — 1 is minimized near p ~ /d at
about 2v/d MMs

Can we go even lower?

No. Paterson & Stockmeyer proved that there are gs for
which # of MMs is at least v/d

(v/d — 1/2 MMs if the coefficients are integers), under some
reasonable assumptions

A Comparison

| | Work (# MMs) | Memory (# words) |

Explicit Powers d—1 3n?
Horner’s Rule d—1 2n?
MM PS p—1+s (p+1)n?
MM PS for ps ~ d ~2v/d ~ vdn?

A work-storage tradeoff

Memory-Efficient Matrix-Vector PS (Van Loan 1979)

q(A) = (21+3A+4AY) T+ + (814 9A +2A%) (A}’
So the jth colomn is
q(A); = (I(21+3A+4A%))
3 2
+ (A% (SI+6A +7A%)) |
+ (A (81494 +2A2))
= 1(2lej+3Ae; +4A%;)
—|—A3 (56]' + 6A€j + 7A2€j)
+ (A%’ (8¢; + 9Ae; + 2A%;)

)

Matrix-Vector SPH (Van Loan 1979)

q(A),; = 1(2Iej+ 3Ae;+4A%)
+A% (5¢; + 6Ae; + 7A%;)
+ (A% (8e; + 9Ae; + 2A%;)
Compute AP (log, p m-multiplications, can use Strassen)
Forj«1,...,n
Compute Ae;, ..., AP 'e; (p — 1 matvecs)
Set Q; ZE:_(; c..Ale; (vec ops)

For k « s —1,...,1,0 multiply and add
Qj « APQ; + Y 1) c..Ale; (s MVs, vec ops)

n(p — 1) + ns matvecs = s + p — 1 (convensional, no
Strassen) MMs

A Comparison (now with Van Loan’s schedule)

| Work (# MMs)

| Memory (# words) |

Explicit Powers d—1 3n?
Horner’s Rule d—1 2n?
MM PS p—1+s (p+1)n?
MV PS log, p + (s 4+ P)conv 3n’ +pn

Communication (Cache-Miss) Analysis

Communications Analysis in Two-Level Memories

We assume that memory consists of a large slow memory and
a fast memory (cache) of size M, and count the number of
accesses to slow memory (cache misses) under an ideal
replacement policy.

e Any mat-mult, M > 2n?, only @(n?) compulsory
misses

e Conventional mat-mult, M < n?/2, ©(n?/vM)
misses (blocking, recursion)

e Fast mat-mult, small cache, O(n®/M%*/>~1) misses
(less work, smaller data-reuse ratio)

Cache Mi i MM PS
If M > (p + 1)n?, only ©(n?) compulsory misses
If M < n2/2,

(p+s)n’ 2 o p+d/pn’
w—vﬁ—+ﬂm)—w—fﬁ7——

This is minimized for p ~ v/d so ©(v/dn?/vM + dn?)

e O(vdn?/v/M) for M < n?/d (tiny cache, MMs
dominate)

e O(dn?) for n?/d < M < n?/2 (small cache, matrix
scale-adds dominate)

+ dn?)

Mind the gap

Cache Misses in MM PS: Filling the Gap

for 3n? < M < (p + 1)n? MMs are comm-cheap but MSAs are
not

Number of cache misses @(spn?) = O(dn?)

Cache misses minimized by setting p ~ M/n?, to get out of
this regime

But arithmetic is not; yuck

cache Mi in the MV PS
If M > 3n? + pn, only ©(n?) compulsory misses
If pn <M < n?/2, ©(logp - n®/v/M) to generate AP, plus

n iterations in which we pay ®(pn?) to construct
Aej, ..., AP 'e; and O(sn?) for s MVs with AP

In total,

logp - n’ 2) B (10813‘“3 (E) 3)
®<7m +n(p+sn = 0 7\/M +lp+ n

-o((e)1)

Picking a (Theoretical) Winner

If M > (p + 1)n?, use MM-PS (Strassen okay)

If M > 3n? + pn, use MV-PS (optimal arithmetic sans
Strassen)

Otherwise (tiny cache), use MM-PS

But we can do better with new variants

New Algorithmic Ideas

1: Block-Column PS

Compute AP (log, p m-multiplications)
Pick a block size b
For n/b blocks E; « L ;v
Compute AE;,..., AP 'E; (p — 1 b-mat-vecs)
Set Q; « (highest coefficient polynomial) E; (b-vec
scale-add)

For k «+ s —1,...,1,0 multiply and add
Q;j «— APQj + (next lower coefficient polynomial) E;

S (% +2p+ s)n2> cache misses for pnb < M < n?/2

2: Use Fast Matrix Multiplication in MM-PS, BMV-PS
Great opportunity for fast mat-mult

Benefit in block-MV PS drops with block size (both arithmetic
and data-reuse ratio)

3: Tranform to (Real) Schur Form

If A = VIV*, then q(A) = Vq(T)V*, so the expensive part

(> O(n?)) is performed on triangular matrices, x6 arithmetic
benefit

v/d needs to be high enough to offset the cost of the Schur
decomposition

Unfortunately, level-3 BLAS do not have triangular-triangular
matrix multiplication, but can implement fairly easily using
recursion

4: Schur Form, Reorder, Parlett+Davies-Higham
If A = VIV*, then q(A) = Vq(T)V*

Apply block Schur-Parlett substitution to q(T) (evaluate q on
diagonal blocks, solve Sylvester equations for off-diagonal

blocks)

Higham-Davies: ensure Sylvester equations are well
conditioned by partitioning A(A) into well-separated clusters
& reordering the Schur form (Bai-Demmel-Kressner)

Benefit: @(1/dn?) super-cubic algorithm applied to diagonal
blocks of T, not all of it

Cost: O(n?) Schur decomposition and reordering

[Not implemented, but shows how novel discoveries can
improve old algorithms]

5: Remainder Evaluation (Really an Open Problem)

If d > n, let x be the Characteristic polynomial of A and let
q(A) =x(A)S(A) + p(A) =p(A) .
Clearly, evaluating p(A) is cheaper than applying q(A)

But can we determine the coefficients of p in a stable way?
Open problem (AFAIK)

I'll mention another interesting and related open problem at
the end of the talk

Experimental Results

d = 100; MM-PS and Block-MM-PS Better than Horner

4

10
10° |
©
(0]
£
10°
== PS-MV
=B=Horner
=he= PS-MV b=100
- =0=PS-MM Quad-core
10 I I I I T .
400 1600 3200 6400 i7

matrix dimension C+MKL

MV PS is Terrible! Cache Misses!

4

10

time (s)

== PS-MV

=== Horner
=h=PS-MV b=100
=0=PS-MM

400 1600 3200 6400
matrix dimension

Flop/s Rates

X :‘L01‘1 ;

flop/s
e

0.5¢

N

h 4

R 3

0 400 1600 3200 6400
matrix dimension

Block-Size Sensitivity (Not High but Not Monotone)

n = 2000
100 ‘
=¢=Horner
90y ===PS MV b=1
8ol =4=PS MV b=25
PS MV b=100
707 PS MV b=250
—~ 60F =»=PS MV b=1000
% 50 =0=PS MM
£
=40
30
20
10

2000 3000 4000 5000

polynomial degree

0 1000

Also, For High Degrees Horner is Terrible

n = 2000
100 w
=¢=Horner
90r ===PS MV b=1
sol =4=PS MV b=25
PS MV b=100
70¢ PS MV b=250
—~ 60F =»=PS MV b=1000
2 =0=PS MM
g 50

40
30
20
10

2000 3000 4000 5000

polynomial degree

0 1000

Reduced Sensitivity at Smaller Sizes

n =750
60

== Horner
=2=PS MV b=1
S0/ e PS MV b=25
PS MV b=100
40H PS MV b=250
=0=PS MM

7";‘-—;.——

—

0 1000 2000 3000 4000 5000
polynomial degree

d = 10 Emphasizes Cost of Matrix Additions

x 10"

2.4

0 2000 4000 6000 8000 10000 12000
matrix dimension

The Cost of the Schur Decomposition (=~ 25 Mat-Mults)

Cost of Schur Decomposition

200

150

100

time relative to DGEMM

50

0 2000 4000 6000 8000
matrix dimension

Savings from Triangular Matrix Multiplication (=~ x4)

Cost of Triangular Matrix Multiplication

==DTRMM

=m=Recursive 1
=k= Recursive 2
1.5H 0 Recursive 3]

=o=Recursive 4

time relative to DGEMM

0 2000 4000 6000 8000
matrix dimension

Estimating The Cost of Schur + Triangular PS (> x2.5)

speedup or slowdown of Schur

0.5—/ =h=n=8000/,

===n=4000
=o=n=1000

o250 1k 2.5k 5k 7.5k 10k
polynomial degree

Conclusions and Open Problems

Conclusions

Old algorithms must be revisited (fairly obvious);

MM-PS is memory inefficient, MV-PS super slow due to cache
misses

Block MV-PS fixes that

More novel tricks thanks to various innovations, mostly in
extreme cases (very high degrees)

Open Problem 1: Applications?

Do these algorithms have interesting applications?

We were attracted to this due to the complex tradeoffs in
Patterson-Stockmeyer variants

Seems that rational approximations are used more often in
applications

Open Problem 2: Alternate Representations

Numerical analysis of Patterson-Stockmeyer in other (more
useful) representations of g

Is there an efficient and numerically-stable version of PS for
d > n? Think of p(A) given in terms of the coefficients of
q(A) =x(A)S(A) + p(A)

Is there an efficient and numerically-stable version of PS for
Newton polynomials, or for any other forms of
interpolation/least-squares polynomials?

Looking forward to discussions during the rest of the week!

