
Improved method for finding optimal
formulae for bilinear maps

Svyatoslav Covanov

Team CARAMBA

July 20, 2017



Optimal formulae

Exhaustive search algorithms

Technical aspects and experimental results

2 / 20



Short product example

How to multiply two polynomials A = a0 + a1X + a2X
2 and

B = b0 + b1X + b2X
2 modulo X 3 ?

A · B = a0b0 + (a1b0 + a0b1)X + (a2b0 + a1b1 + a0b2)X
2

1. Naive multiplication:
I π0 = a0b0, π1 = a1b0, π2 = a0b1, π3 = a1b1,

π4 = a2b1 and π5 = a1b2.
I We have A · B = π0 + (π1 + π2)X + (π3 + π4 + π5)X

2.

2. Optimal formula:
I π0 = a0b0, π1 = a1b1, π2 = a2b2,

π3 = (a0 + a1)(b0 + b1) and
π4 = (a0 + a2)(b0 + b2).

I We have
A · B = π0 + (π3 − π0 − π1)X + (π1 + π4 − π0 − π2)X

2.
The bilinear rank is equal to 5.

3 / 20



Short product example

How to multiply two polynomials A = a0 + a1X + a2X
2 and

B = b0 + b1X + b2X
2 modulo X 3 ?

A · B = a0b0 + (a1b0 + a0b1)X + (a2b0 + a1b1 + a0b2)X
2

1. Naive multiplication:
I π0 = a0b0, π1 = a1b0, π2 = a0b1, π3 = a1b1,

π4 = a2b1 and π5 = a1b2.
I We have A · B = π0 + (π1 + π2)X + (π3 + π4 + π5)X

2.

2. Optimal formula:
I π0 = a0b0, π1 = a1b1, π2 = a2b2,

π3 = (a0 + a1)(b0 + b1) and
π4 = (a0 + a2)(b0 + b2).

I We have
A · B = π0 + (π3 − π0 − π1)X + (π1 + π4 − π0 − π2)X

2.
The bilinear rank is equal to 5.

3 / 20



Matrix formalism

c0 =
(
a0 a1 a2

)
·

1 0 0
0 0 0
0 0 0

 ·
b0

b1

b2

 = a0b0

c1 =
(
a0 a1 a2

)
·

0 1 0
1 0 0
0 0 0

 ·
b0

b1

b2

 = a1b0 + a0b1

c2 =
(
a0 a1 a2

)
·

0 0 1
0 1 0
1 0 0

 ·
b0

b1

b2

 = a2b0 + a1b1 + a0b2

4 / 20



Matrix representation of formulae:1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

a0b0

,

0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

a1b1

0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

a2b2

1 1 0
1 1 0
0 0 0


︸ ︷︷ ︸
(a0+a1)(b0+b1)

1 0 1
0 0 0
1 0 1


︸ ︷︷ ︸
(a0+a2)(b0+b2)

Decomposition with rank-one matrices:0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

c1

=

1 1 0
1 1 0
0 0 0

−
1 0 0
0 0 0
0 0 0

−
0 0 0
0 1 0
0 0 0


0 0 1
0 1 0
1 0 0


︸ ︷︷ ︸

c2

=

0 0 0
0 1 0
0 0 0

+

1 0 1
0 0 0
1 0 1

−
1 0 0
0 0 0
0 0 0

−
0 0 0
0 0 0
0 0 1


5 / 20



Problem to be solved

Let K be a finite field. Let T (the target) be a subspace of
Mn,n(K ) of dimension `.
Let G be the set of matrices of rank one inMn,n(K ).
Problem to be solved: Find all free families F ⊂ G of
minimal size such that T ⊂ Span(F).

Definition
Let r ≥ 0 and n ≥ 0. We denote by Sr the set of all
subspaces V ⊂Mn,n such that there exists {g0, . . . , gr−1} a
free family of G satisfying V = Span(g0, . . . , gr−1).

Restatement:
1. Find minimal r such that Sr contains subspaces V s.t.

T ⊂ V ;
2. Enumerate the bases of rank-one matrices for subspaces

V ∈ Sr s.t. T ⊂ V .
6 / 20



Short Product Example

For the short product modulo X 3, we have

T = Span

1 0 0
0 0 0
0 0 0

 ,

0 1 0
1 0 0
0 0 0

 ,

0 0 1
0 1 0
1 0 0

 ,

K = F2, ` = n = 3 and r = 5.

7 / 20



Optimal formulae

Exhaustive search algorithms
Existing algorithms
Contribution

Technical aspects and experimental results

8 / 20



Naive algorithm

Enumerate all subspaces V ∈ Sr and keep those which
contain T.

Complexity: #Sr ≤
(
#G
r

)
. For ` = 3 and K = F2, we have

#S5 = 157, 535� 1, 906, 884 =

(
49
5

)
.

9 / 20



Incomplete basis improvement

Theorem
Let T be a subspace of dimension ` ofMn,n, let r ≥ ` be an
integer. For any V ∈ Sr , such that T ⊂ V , there exists
W ∈ Sr−` such that T ⊕W = V .

Incomplete basis improvement: compute all the vector spaces
V = T +W for W ∈ Sr−` and keep those which are in Sr .

Complexity: #Sr−` ≤
(

#G
r − `

)
. For ` = 3,

#S2 = 980� 157, 535.

10 / 20



Automorphisms

We consider the action of pairs (P ,Q) (P and Q in GLn) on
M ∈Mn,n:

M ◦ (P ,Q) = PT ·M · Q.

Let Stab(T ) be the group of (P ,Q) such that

∀M ∈ T , M ◦ (P ,Q) ∈ T .

The group action can be used with all the previous algorithms:
we compute Sr/ Stab(T ) or Sr−`/ Stab(T ).

11 / 20



Optimal formulae

Exhaustive search algorithms
Existing algorithms
Contribution

Technical aspects and experimental results

12 / 20



Intermediate strategies

The two previous strategies are two extreme cases of a mixed
strategy.

Let k ≥ 0. For all W ∈ Sr−`+k such that dim(W ∩ T ) = k ,
compute the vector spaces V = T +W and keep those which
are in Sr .

Notation
For an integer d ≥ 0 and a subspace F ⊂Mn,n, we denote by
Cd(F ) the set of subspaces W ∈ Sd such that F ⊂ W .

I Naive algorithm: compute Cr (∅);
I Incomplete basis improvement: compute Cr−`(∅);
I General case: given g subspaces F0, . . . ,Fg−1 of T of

dimensions k0, . . . , kg−1, compute
Cr−`+k0(F0), . . . , Cr−`+kg−1(Fg−1).

13 / 20



Intermediate strategies

The two previous strategies are two extreme cases of a mixed
strategy.

Let k ≥ 0. For all W ∈ Sr−`+k such that dim(W ∩ T ) = k ,
compute the vector spaces V = T +W and keep those which
are in Sr .

Notation
For an integer d ≥ 0 and a subspace F ⊂Mn,n, we denote by
Cd(F ) the set of subspaces W ∈ Sd such that F ⊂ W .

I Naive algorithm: compute Cr (∅);
I Incomplete basis improvement: compute Cr−`(∅);
I General case: given g subspaces F0, . . . ,Fg−1 of T of

dimensions k0, . . . , kg−1, compute
Cr−`+k0(F0), . . . , Cr−`+kg−1(Fg−1). 13 / 20



Example for the short product

Notation
For an integer ` ≥ 0 , we denote by T` the subspace ofM`,`

such that T` = Span(c0, . . . , c`−1), where the ci ’s are the
coefficients of the short product modulo X `.

Theorem
Let V ∈ Sr containing T`. There exist σ ∈ Stab(T`) and
W ∈ Cr−`+2(Span(c`−1, c`−2)) such that V = T` +W ◦ σ.

For ` = 3:
approach covering set cardinality

Naive approach C5(∅) 157, 535
BDEZ ’12 C2(∅) 980

New approach C4(Span(c2, c1)) 12
14 / 20



Optimal formulae

Exhaustive search algorithms

Technical aspects and experimental results

15 / 20



Statement of the problem

Algorithmic problem: enumerate a set of the form

Cr−`+k(Span(φ0, . . . , φk−1))/ Stab(T )∩Stab(Span(φ0, . . . , φk−1)),

where T is a subspace ofMn,n of dimension ` and the φi ’s are
elements of T .
Steps:

I precompute Sr−`+k/GLn×GLn,
I deduce
Cr−`+k(Span(φ0, . . . , φk−1))/ Stab({φ0, . . . , φk−1}) and

I apply the the quotient
Stab({φ0, . . . , φk−1})/ Stab(T ) ∩ Stab({φ0, . . . , φk−1}).

Remark: we obtain
Cr−`+k(Span(φ0, . . . , φk−1))/ Stab(T ) ∩ Stab({φ0, . . . , φk−1}),
slightly larger than the targeted set.

16 / 20



Technical aspects

How to compute
Cr−`+k(Span(φ0, . . . , φk−1))/ Stab({φ0, . . . , φk−1})?

Algorithm:
I for all W ∈ Sr−`+k/GLn×GLn, enumerate all the tuples

(ψ0, . . . , ψk−1) such that ψi ∈ W and rk(ψi) = rk(φi);
I compute σ ∈ GLn×GLn such that
{ψ0, . . . , ψk−1} ◦ σ = {φ0, . . . , φk−1} (computational
group theory, Weierstrass-Kronecker theory...).

17 / 20



Covering sets on examples

Covering set for the short product modulo X 5:
I C8(Span(c3, c4)).

Covering sets for the product of matrices 3× 2 by 2× 3 (the
coefficients are denoted by ci ,j):

I C7(Span(c0,0 + c1,1 + c2,2));
I C8(Span(c0,0 + c1,1, c0,0 + c2,2));
I C8(Span(c0,0 + c1,1, c0,1 + c2,2));
I C8(Span(c0,0 + c1,1, c2,2));
I C9(Span(c0,0, c1,1, c2,2)).

18 / 20



Timings

We have timings on a single core 3.3 GHz Intel Core i5-4590.

product time (s) nb. of solutions
ShortProduct4 3.0 1, 440
ShortProduct5 2.4 · 103 146, 944

Table: Computation of decompositions of the short product.

product time (s) nb. of solutions
2× 3 by 3× 2 4.1 · 106 1, 096, 452
3× 2 by 2× 3 3.0 · 106 7, 056

Table: Computation of decompositions of the matrix product.

19 / 20



Conclusion

We obtain interesting speed-up for symmetric bilinear maps
such as matrix product and short product compared to
implementations of BDEZ.

What kind of covering sets for product of polynomials (small
group of symmetry)?

How to push computations further: possible to decompose
matrix product 3× 3 by 3× 3?

20 / 20


	Optimal formulae
	Exhaustive search algorithms
	Existing algorithms
	Contribution

	Technical aspects and experimental results

