
Quantifier Elimination by Cylindrical

Algebraic Decomposition Based on Regular

Chains

Changbo Chen a, Marc Moreno Maza a,b

aChongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green
and Intelligent Technology, Chinese Academy of Sciences

bORCCA, Western University

Abstract

A quantifier elimination algorithm by cylindrical algebraic decomposition based on regular chains
is presented. The main idea is to refine a complex cylindrical tree until the signs of polynomials
appearing in the tree are sufficient to distinguish the true and false cells. We report on an
implementation of our algorithm in the RegularChains library in Maple and illustrate its
effectiveness by examples.

Key words: quantifier elimination, cylindrical algebraic decomposition, regular chains,
triangular decomposition

1. Introduction

Quantifier elimination over real closed fields (QE) has been applied successfully to
many areas in mathematical sciences and engineering. The following textbooks and jour-
nal special issues Hong (1993); Dolzmann et al. (2005); Caviness and Johnson (1998);
Basu et al. (2006) demonstrate that QE is one of the major applications of symbolic
computation.

It is well known that the worst-case running time for real quantifier elimination is
doubly exponential in the number of variables of the input formula, even if there is only

? This research was partly supported by NSFC (11301524, 11471307) and CSTC (cstc2015jcyjys40001,

cstc2012ggB40004).

Email addresses: changbo.chen@hotmail.com (Changbo Chen), moreno@csd.uwo.ca (Marc Moreno
Maza).

URLs: http://www.orcca.on.ca/∼cchen (Changbo Chen), http://www.csd.uwo.ca/∼moreno (Marc
Moreno Maza).

Preprint submitted to Journal of Symbolic Computation 8 August 2015



one free variable and all polynomials in the quantified input are linear, see J.H. Davenport
and C.W. Brown (Brown and Davenport, 2007). It is also well-known that QE based on
Cylindrical Algebraic Decomposition (CAD) has a worst-case doubly exponential running
time, even when the number of quantifier alternations is constant, meanwhile other QE
algorithms are only doubly exponential in the number of quantifier alternations, see J.
Renegar (Renegar, 1992) and S. Basu (Basu, 1999).

Despite of these theoretical results, the practical efficiency and the range of the ap-
plications of CAD-based QE have kept improving regularly since G.E. Collins’ land-
mark paper (Collins, 1975). Today, CAD-based QE is available to scientists and en-
gineers thanks to different software namely QEPCAD 1 , Mathematica 2 , REDLOG 3 ,
SyNRAC 4 , RegularChains 5 .

The work presented here contributes to this effort of making CAD-based QE practi-
cally efficient and widely available to the community. The corresponding algorithms were
first proposed in our ISSAC 2014 paper Chen and Moreno Maza (2014c). The novelty is
the use of the theory of regular chains in the context of QE while the implementation
in Maple can be freely downloaded at the RegularChains library website. This work
extends our previous results on CAD, which we summarize now.

In (Chen et al., 2009), together with B. Xia and L. Yang, we presented a different
way of computing CADs, based on triangular decomposition of polynomial systems and
therefore on the theory of regular chains. Our scheme relies on the concept of cylindrical
decomposition of the complex space (CCD), from which a CAD can be easily derived. Since
regular chain theory is at the center of this new scheme, we call it RC-CAD. Meanwhile,
we shall denote by PL-CAD Collins’ projection-lifting scheme for CAD construction.

In (Chen and Moreno Maza, 2014a), we substantially improved the practical efficiency
of the RC-CAD scheme by means of an incremental algorithm for computing CADs;
an implementation of this new algorithm, realized within the RegularChains library,
outperforms PL-CAD-based solvers on many examples taken from the literature.

The purpose of the present paper is to show that RC-CAD, supported by this incre-
mental algorithm, can serve the purpose of real QE. In addition, our implementation of
RC-CAD-based QE is competitive with software implementing PL-CAD-based QE.

We turn our attention to the theoretical implication of performing QE by RC-CAD.
If extended Tarski formulae are allowed, then deriving QE from a RC-CAD is a straight-
forward procedure, hence, we shall not discuss it here. In the rest of this paper, for both
input and output of QE problems, only polynomial constraints (with rational number
coefficients) will be allowed, thus excluding the use of algebraic expressions containing
radicals.

In Collins’ original work, the augmented projection operator was introduced in order to
find a sufficiently large set of polynomials such that their signs alone could distinguish true
and false cells. In (Hong, 1992), H. Hong produced simple solution formula constructions,
assuming that the available polynomials in a CAD were sufficient to generate output
formulae.

1 QEPCAD: http://www.usna.edu/CS/~qepcad/B/QEPCAD.html
2 Mathematica: http://www.wolfram.com/mathematica/
3 REDLOG: http://www.redlog.eu/
4 SyNRAC: http://jp.fujitsu.com/group/labs/techinfo/freeware/synrac/
5 RegularChains: http://www.regularchains.org/

2

http://www.usna.edu/CS/~qepcad/B/QEPCAD.html
http://www.wolfram.com/mathematica/
http://www.redlog.eu/
http://jp.fujitsu.com/group/labs/techinfo/freeware/synrac/
http://www.regularchains.org/


In his PhD thesis (Brown, 1999), C.W. Brown then introduced ways to add polynomi-
als in an incremental manner and proposed a complete algorithm for producing simple
formulae.

It was desirable to adapt Brown’s ideas to the context of CADs based on regular
chains. However, the many differences between the PL-CAD and RC-CAD schemes were
making this adaptation challenging. In the PL-CAD scheme, the key data structure is
a set P of projection factors, called the projection factor set, meanwhile, in the RC-

CAD scheme, it is a tree T encoding the associated CCD (cylindrical decomposition of
the complex space). Adding a polynomial f to P corresponds to refining T w.r.t. f (as
defined by Algorithm 6 in (Chen and Moreno Maza, 2014a)). The PL-CAD-property of
a projection-definable CAD was another key toward practical efficiency in the work of
C.W. Brown (Brown, 1999). Its adaptation to the context of RC-CAD, implies that the
signs of polynomials in the tree T suffice to solve the targeted QE problem.

After reviewing in Section 2 the basic notions related to RC-CAD (a complete account
of which can be found in (Chen and Moreno Maza, 2014a)) we first adapt in Section 3, the
concepts of projection factor set and projection definable, which were originally introduced
by C.W. Brown (Brown, 1999). In Section 4, we first state a “theoretical” solution to the
problem of performing quantifier elimination via RC-CAD. Then, after adapting Brown’s
notion of a conflicting pair, we present a more “practical” solution. We view this result
as the first main contribution of our work.

Once a quantifier-free formula is obtained, as in the PL-CAD scheme, formula simpli-
fication is an important feature. In Section 5, we explain how we do it in the context of
RC-CAD. Another desirable optimization is, of course, to obtain running time speedup
by slightly weakening the specifications of the QE algorithm or those of one of its sub-
routines. An instance of that strategy was proposed by H. Hong and M. Safey El Din
in (Hong and Safey El Din, 2012). In Section 6, we show that the techniques introduced
in (Bradford et al., 2014) for computing truth table invariant CAD (a notion studied by
R. Bradford, J.H. Davenport, M. England, S. McCallum, D. Wilson in (Bradford et al.,
2013)) can bypass the computation of sign invariant CAD, while retaining the ability
to produce truth invariant and projection definable CAD of Rk, thus providing a more
efficient but still complete QE procedure. This other contribution of our work is a new
development with respect to our ISSAC 2014 paper (Chen and Moreno Maza, 2014c).

In Section 7, we report on our implementation of RC-CAD-based QE using a few
examples and comparing it with QEPCAD. Finally, an application of CAD-based QE to
automatic generation of parametrized parallel programs is presented in Section 8. This
application was suggested by A. Größlinger, M. Griebl and C. Lengauer in (Größlinger
et al., 2006) and we use some of the examples proposed in that paper.

2. Preliminary

In this section, we review basic notions related to CAD and in particular RC-CAD, as
introduced in (Chen et al., 2009; Chen and Moreno Maza, 2014a). Those will be used
throughout the paper.

Zero sets. Let x = x1 ≺ · · · ≺ xn be a sequence of n ordered variables. Let F ⊂ Q[x] be
finite. Let σ1 be a map from F to {=, 6=} and σ2 be a map from F to {=, 6=, <,>,≤,≥}.
Let K be the fields C of complex number or the field R of real numbers. For f ∈ F

3



we denote by ZK(f) the zero set of f in Kn. Denote by ZC(f σ1(f) 0) the zero set of
f σ1(f) 0 in Cn and by ZR(f σ2(f) 0) the zero set of f σ2(f) 0 in Rn.

Separation (Chen et al., 2009; Chen and Moreno Maza, 2014a). Let C be a subset
of Kn−1 and P ⊂ Q[x1 ≺ · · · ≺ xn] be a finite set of polynomials, all with the same
main variable xn. We say that P separates above C if for each α ∈ C: (i) for each p ∈ P ,
the polynomial init(p) (which is the leading coefficient of p w.r.t. to its main variable)
does not vanish at α; (ii) the univariate polynomials p(α, xn) ∈ K[xn], for all p ∈ P , are
squarefree and pairwise coprime.

Complex cylindrical tree (CCT) (Chen et al., 2009; Chen and Moreno Maza, 2014a).

Let T be a rooted tree of height n where each node of depth i, for i = 1, . . . , n, is labeled
by a polynomial constraint of the type “any xi” (with zero set defined as Cn), or p = 0, or
p 6= 0, where p ∈ Q[x1, . . . , xi]. For any i = 1, . . . , n, we denote by Ti the induced subtree
of T with depth i. Let Γ be a path of T from the root to a leaf 6 . Its zero set ZC(Γ) is
defined as the intersection of the zero sets of its nodes. The zero set of T , denoted by
ZC(T ), is defined as the union of the zero sets of its paths. We call T a complete complex
cylindrical tree (complete CCT) of Q[x1, . . . , xn] whenever it satisfies the following:
• if n = 1, then either T has only one leaf which is labeled “any x1”, or, for some
s ≥ 1, it has s+1 leaves labeled respectively p1 = 0, . . . , ps = 0,

∏s
i=1 pi 6= 0, where

p1, . . . , ps ∈ Q[x1] are squarefree and pairwise coprime polynomials;
• if n > 1, then the induced subtree Tn−1 of T is a complete CCT and for any given

path Γ of Tn−1, either its leaf V has only one child in T of type “any xn”, or, for
some s ≥ 1, V has s + 1 children labeled p1 = 0, . . . , ps = 0,

∏s
i=1 pi 6= 0, where

p1, . . . , ps ∈ Q[x] are polynomials which separate above ZC(Γ).
The set {ZC(Γ) | Γ is a path of T} is called a complex cylindrical decomposition (CCD)

of Cn associated with T . Note that for a complete CCT, we have ZC(T ) = Cn. A proper
subtree rooted at the root node of T of depth n is called a partial CCT of Q[x1, . . . , xn].
We use CCT to refer to either a complete or partial CCT.

Let F ⊂ Q[x] be finite. Let Γ be a path of a CCT T . Note that the polynomial
constraints along Γ form a regular system, called the associated regular system of Γ. Let
p ∈ F . We say p is sign-invariant on Γ if either ZC(Γ) ⊂ ZC(p) or ZC(Γ) ∩ ZC(p) = ∅
holds. We say that p is sign-invariant on T if p is sign-invariant on every path of T .
We say T is sign-invariant w.r.t. F if each p ∈ F is sign-invariant on T . The procedure
CylindricalDecompose introduced in (Chen et al., 2009; Chen and Moreno Maza, 2014a)
takes F as input and builds a CCT T which is sign-invariant w.r.t. F .

Example 1. The following tree T is a CCT.

r

x1 − 1 = 0

x2 = 0 x2 6= 0

x1 = 0

any x2

x1(x1 − 1) 6= 0

x2
2 + x1 − 1 = 0 x2

2 + x1 − 1 6= 0

6 In the rest of this paper, a path of a tree always means a path from the root to a leaf.

4



Let p := x1(x2
2 + x1 − 1). Then p is sign-invariant on T .

Next we review the notion of cylindrical algebraic decomposition (CAD) of Rn and
highlight the relation between CAD and CCT. Let πn−1 be the standard projection from
Rn to Rn−1 that maps (x1, . . . , xn−1, xn) onto (x1, . . . , xn−1).

Stack over a connected semi-algebraic set. Let S be a connected semi-algebraic subset
of Rn−1. The cylinder over S in Rn is defined as ZR(S) := S × R. Let θ1 < · · · < θs
be continuous semi-algebraic functions defined on S. Denote θ0 = −∞ and θs+1 := ∞.
The intersection of the graph of θi with ZR(S) is called the θi-section of ZR(S). The set
of points between θi-section and θi+1-section, 0 ≤ i ≤ s, of ZR(S) is a connected semi-
algebraic subset of Rn, called a (θi, θi+1)-sector of ZR(S). The sequence (θ0, θ1)-sector,
θ1-section, (θ1, θ2)-sector, . . ., θs-section, (θs, θs+1)-sector form a disjoint decomposition
of ZR(S), called a stack over S, which is uniquely defined for given functions θ1 < · · · < θs.

Cylindrical algebraic decomposition (CAD). A finite partition D of Rn is called a
cylindrical algebraic decomposition (CAD) of Rn if one of the following properties holds.
• either n = 1 and D is a stack over R0.
• or the set of {πn−1(D) | D ∈ D} is a CAD of Rn−1 and each D ∈ D is a section

or sector of the stack over πn−1(D).
When this holds, the elements of D are called cells. The set {πn−1(D) | D ∈ D} is called
the induced CAD of D. A CAD D of Rn can be encoded by a tree, called a CAD tree
(denoted by RT ), as below. The root node, denoted by r, is R0. The children nodes of r
are exactly the elements of the stack over R0. Let RTn−1 be a CAD tree of the induced
CAD of D in Rn−1. For any leaf node C of RTn−1, its children nodes are exactly the
elements of the stack over C.

Delineability. Let p be a polynomial of R[x1, . . . , xn] and let S be a connected semi-
algebraic set of Rn−1. We say that p is delineable on S if the real zeros of p define
continuous semi-algebraic functions θ1, . . . , θs such that, for all α ∈ S we have θ1(α) <
· · · < θs(α). Note that if p is delineable on S, then the real zeros of p uniquely define a
stack over S.

We recall the following Theorem introduced in (Chen et al., 2009).

Theorem 1. Let P = {p1, . . . , pr} be a finite set of polynomials in Q[x1 ≺ · · · ≺ xn]
with the same main variable xn. Let S be a connected semi-algebraic subset of Rn−1.
If P separates above S, then each pi is delineable on S. Moreover, the product of the
p1, . . . , pr is also delineable on S.

Note that the real zeros of the polynomials in P uniquely define a stack over S. Let T
be a CCT of Q[x1 < · · · < xn]. By Theorem 1, the polynomials in the induced CCT T1

uniquely defines a stack over R0, which can be represented by a CAD tree of R1. Such
a CAD tree is called the CAD tree derived from T1. Continuing in an inductive manner,
let RTn−1 be the CAD tree derived from Tn−1. Let Γ be a path of Tn−1. The zero set
of Γ in Rn−1 is a disjoint union of cells in RTn−1. Let C be one of them. Let P be the
set of polynomials appearing in the children of Γ. By Theorem 1, the real zero set of the
polynomials in P uniquely defines a stack over C. The union of all these stacks uniquely
determine a CAD tree RT of Rn, called the CAD tree derived from T . We call T the
associated CCT of RT . The procedure MakeSemiAlgebraic in (Chen et al., 2009; Chen
and Moreno Maza, 2014a) builds the derived CAD tree RT from a complete CCT T .

5



Quantifier elimination. Let f ∈ Q[x1 ≺ · · · ≺ xn]. Let σ ∈ {<,>,≤,≥,=, 6=}. We
call a formula of the form f σ 0 a (standard) atomic formula. Let FF (x1, . . . , xn) be a
quantifier-free formula in disjunctive normal form (DNF). For an integer k = 0, . . . , n−1,
let

PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn)

be a prenex formula, where Qi is either the universal quantifier ∀ or the existential
quantifier ∃, for all for k+1 ≤ i ≤ n. A quantifier-free formula SF in Q[x1, . . . , xk] which
is equivalent to PF is called a solution formula of PF . A process obtaining SF from PF
is called quantifier elimination (QE).

Style of the pseudo-code. The algorithms stated in the sequel of this paper follow
the same style as that used in (Chen and Moreno Maza, 2014a). In particular and since
attributes of nodes (like c.derivative in Algorithm 3) are used in our pseudo-code, we ad-
here to the standard “dot” notation of object oriented programming languages. Another
important feature of our pseudo-code is the fact that certain procedures may modify their
input arguments. For instance, Algorithm 3 will modify its input cylindrical tree T , unless
the children of Γk−1 are derivative closed. The recursive nature of our data-structures
and algorithms motivates this feature. Efficient considerations, discussed in (Chen and
Moreno Maza, 2014a), are other motivations.

3. Theory

To present our algorithm in Section 4, we revisit below the concepts of projection
factor set and projection definable, which were originally introduced in (Brown, 1999).

Projection factor set. Let T be a complete CCT in Q[x]. Let V be a node in T , different
from the root-node. Let V1, . . . , Vs be all the siblings of V which are labeled by equational
constraints; this includes V itself if it is labeled by an equational constraint. Assume that
Vi is of the form fi = 0. The set {f1, . . . , fs} is called the projection factor set of V . Let
Γ be a path of T . The union of the projection factor sets of all the nodes along Γ is called
a projection factor set of Γ. The projection factor set of T is then defined as the union of
the projection factor sets of all its paths. Let RT be the CAD tree derived from T . Its
projection factor set is defined as that of T . Let C be a cell of RT derived from a path
Γ of T . The projection factor set of C is defined as that of Γ.

Projection definable. Let RT be a CAD tree attached with truth values. We call a
quantifier free formula SF a solution formula forRT if SF defines the same semi-algebraic
set as the union of all cells of RT whose attached truth values are true. The tree RT
is called projection definable if there exists a solution formula formed by the signs of
polynomials in its projection factor set. Let T be a complete CCT. Let RT be the CAD
tree derived from T . We say that T is projection definable if RT is projection definable
no matter which truth values are attached to RT .

Remark. The concept of projection factor set has different meanings for PL-CAD and
RC-CAD. To see this, let RT be a CAD tree and P be its projection factor set. If P is a
projection factor set in the PL-CAD sense, any polynomial in P is sign invariant above
any cell of RT . This is not necessarily true for RC-CAD. To be precise, let T be the
associated complex cylindrical tree of RT and let Γ be a path of T . Let C be any CAD
cell derived from Γ. It is guaranteed that any polynomial in the projection factor set PΓ

of Γ is sign invariant above C. However, it is possible that a polynomial of PΓ is not sign
invariant above the CAD cells derived from other paths of T . See below for an example.

6



Example 2. Let T be the CCT in Example 1. Let RT be the CAD tree derived from T .
Let Γ be the right most path of T . The projection factor set of Γ is {x1, x1−1, x2

2+x1−1}.
The projection factor set of T and RT is {x1, x1−1, x2

2+x1−1, x2}. We notice that neither
x2 nor x2

2+x1−1 is sign-invariant on the path of T consisting of nodes {r, x1 = 0, any x2}.
Moreover, it is easy to verify that T and RT are projection definable.

Let p := x2 − 2, whose zero set naturally defines a CAD tree RT of R1. Suppose that
the only true cell of RT is either x = −

√
2 or x =

√
2 (but not both). Then RT is not

projection definable.

Definition 1. Let F be a set of non-constant univariate polynomials in R[x]. We say F is
derivative closed (w.r.t. factorization) if for any f ∈ F , where deg(f) > 1, the polynomial
der(f) is a product of some polynomials in F and some constant c ∈ R.

Let F ⊂ R[x] be finite. Let σ be a map from F to {<,>,=}. Let Fσ := ∧f∈F f σ(f) 0.
Define ZR(Fσ) := ∩f∈FZR(f σ(f) 0).

The formulation of Thom’s lemma presented in Lemma 1 is slightly different from its
original version (Coste and Roy, 1988), although the proof relies on exactly the same
arguments. Such a formulation is often implicitly used in implementations related to
Thom’s Lemma. An explicit treatment can be found, for example, in (Brown, 1999;
Xiao, 2009).

Lemma 1 (Thom’s Lemma (Coste and Roy, 1988)). Assume that n = 1. If F is derivative
closed (w.r.t. factorization), then the set defined by Fσ is either an empty set, a point or
an open interval.

Proof. Let m be the number of polynomials in F . We prove the claim by induction on
m. If m = 1, let f be the only polynomial in F . Then deg(f) = 1 and the claim obviously
holds. Assume now that m ≥ 2 holds. Let f be a polynomial in F with maximum degree.
Then F ∗ := F \ {f} is also derivative closed (w.r.t. factorization). By induction, ZR(F ∗σ )
is either the empty set, a point or an open interval. If ZR(F ∗σ ) is the empty set or a point,
then the claim clearly holds. Now we assume that ZR(F ∗σ ) defines an open interval. Then
der(f) 6= 0 at any point of ZR(F ∗σ ). In other words, f is monotone above ZR(F ∗σ ). Thus
ZR(F ∗σ ) ∩ ZR(f σ(f) 0) is empty, a point or an open interval. 2

Lemma 2. Let C be a region of Rn−1. let F be a set of polynomials in Q[x1 ≺ · · · ≺ xn]
with the same main variable xn. We assume that F separates above C and that for each
point α of C, the set of univariate polynomials {p(α, xn) | p ∈ F} is derivative closed
(w.r.t. factorization). Then, the set C × R1 ∩ ZR(Fσ) is either empty, or a section, or a
sector above C.

Proof. Assume that C × R1 ∩ ZR(Fσ) is not empty. Since F separates above C, by
Theorem 1, F is delineable above C. Thus C ×R1 ∩ZR(Fσ) is either a union of sections
or a union of sectors. The former (resp. the latter) holds if and only if there exist at least
one (resp. no) equational formulae in Fσ.

Let α be a point of C. Denote Fσ(α) := ZR(F (α)σ). Since {p(α, xn) | p ∈ F} is
derivative closed (w.r.t. factorization), by Thom’s Lemma, the set Fσ(α) is either a point
belonging to a section or an open interval contained in a sector. If C has no other points,
the theorem clearly holds. If Fσ(α) is a point belonging to a section S, it is enough to
prove that for any other given point of C, say β, Fσ(β) belongs to the same section as

7



Fσ(α). Assume that this does not hold, since Fσ(β) is non-empty by delineability, then
Fσ(β) belongs to a sector or is contained in a different section, say S′. Since S′ is a
connected semi-algebraic set, there exists x∗n, x

∗∗
n ∈ R such that (α, x∗n), (β, x∗∗n ) ∈ S′,

and both F (α, x∗n)σ and F (β, x∗∗n )σ are true. This contradicts to the fact that Fσ(α)
belongs to S. By similar arguments, we can prove that the theorem also holds when
Fσ(α) is an open interval. 2

4. Algorithm

In this section, we explain how to perform quantifier elimination via RC-CAD. Our
top-level procedure is Algorithm 1 which lists the main steps of QE based on RC-CAD.

Algorithm 1: QuantifierElimination(PF )

Input: A prenex formula PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn).
Output: A solution formula of PF .

1 begin
2 Let F be the set of polynomials appearing in FF ;
3 T := CylindricalDecompose(F );
4 RT := MakeSemiAlgebraic(T );
5 AttachTruthValue(FF,RT );
6 PropagateTruthValue(PF,RT );
7 MakeProjectionDefinablek(PF,RT );
8 SF := GenerateSolutionFormulak(RTk);

Recall that QE based on PL-CAD consists of three phases: projection, stack construc-
tion and solution formula generation. The steps of Algorithm 1 can also be grouped into
these three phases:

- Projection: Line 3 of Algorithm 1.
- Stack construction: Lines 4 to 6 of Algorithm 1.
- Solution formula generation: Lines 7 and 8 of Algorithm 1.

However, these phases do not correspond exactly to those of QE based on RC-CAD.
Indeed, the projection phases of RC-CAD-based QE and PL-CAD-based QE compute re-
spectively a complex cylindrical tree and a projection factor set. For the stack construc-
tion phase, the procedure MakeSemiAlgebraic (specified in Section 2) of RC-CAD-based
QE is different from the real root isolation routines used by PL-CAD-based QE.

The other two steps, namely AttachTruthValue and PropagateTruthValue, are similar
for both QE algorithms. We recall these two steps in the case of RC-CAD-based QE.
The operation AttachTruthValue takes a DNF formula FF and a CAD tree RT as input.
For each path A of RT , it assigns A.leaf.truthvalue the truth value of FF evaluated at
A.leaf.samplepoint.

The operation PropagateTruthValue takes as input: (1) a prenex formula PF :=
(Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn) and (2) a CAD tree RT , each leaf V of which is
attached with a truth value of FF evaluated at V.samplepoint; then it outputs the in-
duced subtree RTk of RT in Q[x1, . . . , xk] such that each leaf Vk of RTk is attached with
a truth value of PF evaluated at Vk.samplepoint. This operation proceeds as follows. It
starts by checking whether Qn is the universal quantifier ∀ or the existential quantifier

8



∃. For each leaf V of RTn−1, if Qn is ∀, then V.truthvalue is set to true if and only if
the truth values of the children of V are all true; if Qn is ∃, then V.truthvalue is set to
true if and only if the truth value of at least one child of V is true. The operation then
makes recursive call with (Qk+1, . . . , Qn−1) and RTn−1 as input and terminates when all
Qi, for i = k + 1, . . . , n, have been examined.

The third phase, namely the solution formula generation, is the main focus of this
section. If the CAD tree RT is projection definable (see Section 3), then the solution
formula generation is straightforward, see Algorithm 2. If RT is not projection definable,

Algorithm 2: GenerateSolutionFormulak(RT )

Input: A projection definable CAD tree RT in Q[x1 ≺ · · · ≺ xk] attached with
truth values.

Output: A solution formula for RT .
1 begin
2 D := ∅;
3 for each cell c of RT whose truth value is true do
4 let Pc be the projection factor set of c;
5 evaluate the polynomials in Pc at a sample point of c and determine their

signs;
6 let Dc be the resulting conjunction formula;
7 D := D ∪ {Dc}
8 return the disjunction of conjunction formulae in D

we will present two strategies to address this situation.
The first one, presented in Algorithm 5, is a theoretical solution. This is an adapta-

tion to RC-CAD of the augmented projection, widely used in PL-CAD. The second one,
presented in Algorithm 6 and used in our implementation, is a much more practical so-
lution. This is an adaptation to RC-CAD of the technique of making CAD projection
definable, used in PL-CAD (Brown, 1999). Our adaptation is based on the IntersectPath
operation of introduced in (Chen and Moreno Maza, 2014a). This operation takes as in-
put a polynomial p, a CCT T and a path Γ of T , then returning a CCT refining of T such
that p is sign-invariant on each path derived from Γ. Another operation NextPathToDo

from (Chen and Moreno Maza, 2014a) is also used in our algorithm. It takes a CCT T
as input, for a fixed traversal order of the tree T , returning the first “to-be-visited” path
Γ of T . To better state the algorithms, we introduce the following notion.

Definition 2. Let Tk be a complete CCT of Q[x1, . . . , xk]. Let Tk−1 be the induced
subtree of Tk in Q[x1, . . . , xk−1]. Let Γk−1 be a path of Tk−1. Let c1, . . . , cs be all the
equation children of Γk−1.leaf in Tk and let f1, . . . , fs be polynomials such that ci is
fi = 0, for i = 1, . . . , s. We say that the children of Γk−1 are derivative closed if
• either we have k = 1 and the set of polynomials {fi | i = 1, . . . , s} is derivative

closed,
• or k ≥ 2 and for any α ∈ ZC(Γk−1), the set of univariate polynomials {fi(α, xk) |
i = 1, . . . , s} is derivative closed.

Proceeding by induction, we say that the tree Tk is derivative closed if
• either k = 0,

9



• or k ≥ 1, Tk−1 is derivative closed and the children of every path Γk−1 of Tk−1 are
derivative closed.

Lemma 3. Let Tk be a complete CCT of Q[x1, . . . , xk]. If Tk is derivative closed, then
Tk is projection definable.

Proof. Let RTk be the CAD tree derived from Tk. By definition, to prove that Tk is
projection definable, it is equivalent to show that for an arbitrary truth value assignment
to the cells of RTk, RTk is projection definable. If RTk has no true cells, then RTk is
clearly projection definable. Assume RTk has at least one true cell and let C be one of
them. Let Γ be the path of Tk such that C is derived from Γ. Let P = {p1, . . . , pm} be
the projection factor set of Γ. Since P is sign invariant above C, there exists a map σ
from P to {>,<,=} such that C ⊆ ZR(∧mi=1pi σ(pi) 0). On the other hand, since Tk is
derivative closed, by Definition 2 and Lemma 2, we deduce that C = ZR(∧mi=1pi σ(pi) 0).
Thus RTk is projection definable. 2

Algorithm 3: RefineNextChildk(Γk−1, T )

Input: A cylindrical tree T in Q[x1 ≺ · · · ≺ xn]. A path Γk−1 of Tk−1 in
Q[x1 ≺ · · · ≺ xn].

Output: If the children of Γk−1 are derivative closed, return false. Otherwise,
some progress is made to guarantee that the children of Γk−1 become
derivative closed after this algorithm is called finitely many times.

1 begin
2 V := Γk−1.leaf ;
3 let S be the set of children c of V in Tk of the form f = 0, for f ∈ Q[x1, . . . , xk],

with deg(f) > 1 such that c.derivative is undefined;
4 if S = ∅ then return false ;
5 let c ∈ S such that deg(f) is minimum;
6 c.derivative := der(f, xk);
7 let Γk be the subtree of Tk which induces Γk−1;
8 while C := NextPathToDok(Γk \ (Γk−1 ∪ c)) do
9 IntersectPathk(der(f, xk), C, Tk);

10 return true;

Proposition 1. Algorithms 3 and 4 satisfy their specifications.

Proof. By Lemma 3, in order to prove Algorithm 4, it suffices to show that, when Al-
gorithm 4 returns, the refinement of Tk is derivative closed. To do this, we proceed by
induction on k; as a byproduct, we also prove Algorithm 3.

Algorithm 4 clearly holds for k = 0. Next, we assume that RefineTreek−1(T ) makes
Tk−1 derivative closed. Hence, following the pseudo-code of Algorithm 4, we assume that
Line 7 executes as specified. Then, it suffices to show that, when Algorithm 4 terminates,
the children of each path Γk−1 of Tk−1 are derivative closed.

We can assume that, before making the initial call to Algorithm 3, the flag c.derivative
is unassigned, for each child c of Γk−1.leaf . After that, each time Algorithm 3 is called

10



Algorithm 4: RefineTreek(T )

Input: A complete complex cylindrical tree T of Q[x1 ≺ . . . ≺ xn].
Output: Refine T to make its induced subtree Tk projection definable.

1 begin
2 if k = 0 then return;
3 while Γ := NextPathToDok−1(T ) do
4 todo := true;
5 while todo do
6 todo := RefineNextChildk(Γ, T );

7 RefineTreek−1(T );

and does not return false, one chooses a vertex c of the form f = 0, where c.derivative is
unassigned and deg(f, xk) is minimum. By calling the operation IntersectPath, the child
nodes of Γk−1 are refined into new ones, above each of which der(f, xk) becomes sign
invariant. Let c1, . . . , cs be all the equation children of Γk−1.leaf after this refinement
process is completed; assume that ci is of the form fi = 0. The sign invariance of der(f, xk)
above each ci implies that for any α of ZR(Γk−1), the polynomial der(f, xk)(α, xk) is (up
to a constant multiplicative factor) a product of some of the polynomial fi(α, xk).

Finally, observe that each time a vertex c is chosen (and c.derivative turns assigned),
for any new child ci (of the form fi = 0) of Γk−1.leaf added by Algorithm 3, we have
deg(fi, xk) < deg(f, xk). It follows that Algorithm 3 will return false after being called
finitely many times. When false is returned, by Definition 2, the children of Γk−1 are
clearly derivative closed. 2

Note that Algorithm 4 may generate much more polynomials than necessary for the
purpose of solution formula generation. Nevertheless, this algorithm leads to a simple
solution for the problem of refining a given CAD into one which is projection definable.
Algorithm 5 states such a solution.

Algorithm 5: MakeProjectionDefinablek(PF,RT, theoretical)

Input: PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn) is a prenex formula. An
FF -invariant CAD tree RT of Q[x1 ≺ · · · ≺ xn], each k-level cell of which
is attached with a truth value of PF .

Output: Refine RT to make its induced subtree RTk projection definable.
1 begin
2 Let T be the associated CCT of RT ;
3 RefineTreek(T );
4 RT := MakeSemiAlgebraic(T );
5 AttachTruthValue(FF,RT );
6 PropagateTruthValue(PF,RT );

We turn our attention now to a more practically efficient strategy for making a CAD
tree projection definable. To this end, we revise the notion of “conflicting pair”, which
was initially introduced for PL-CAD in (Brown, 1999).

11



Definition 3 (Conflicting pair). Let RTk be a CAD tree of Rk attached with truth
values. Let Tk be the associated CCT of RTk. For 1 ≤ i ≤ k, we call two distinct i-level
cells Ci and Di in the same stack an i-level conflicting pair (or simply a conflicting pair)
if there exist k-level cells C and D such that

(CP1) Ci and Di are respectively the projections of C and D onto Ri,
(CP2) C and D are derived from the same path of Tk,
(CP3) above C and D, every polynomial in their common projection factor set P has the

same sign,
(CP4) C and D have opposite attached truth values.

Remark 1. Let C and D be two k-level cells satisfying (CP2), (CP3) and (CP4). Let
A be the lowest common ancestor of C and D, that is, the ancestor in RTk of C and
D of the largest level, say i − 1 in RTk. Let Ci and Di be the respective ancestors of
C and D of level i. Clearly, the cells Ci and Di share the same parent A and form an
i-level conflicting pair. We call Ci, Di the conflicting pair associated with C,D. We call
the pair C,D an extension of the pair Ci, Di in RTk. Note that for PL-CAD, only the
conditions (CP1), (CP3) and (CP4) are required. In (Brown, 1999), it was proved that a
CAD is projection definable if and only if it contains no conflicting pairs. Motivated by
this result, we propose Algorithm 6.

Algorithm 6: MakeProjectionDefinablek(PF,RT, practical)

Input: Same as Algorithm 5.
Output: Same as Algorithm 5.

1 begin
2 let CPS be the set of all conflicting pairs of RTk;
3 while CPS 6= ∅ do
4 let CP be a pair in CPS of highest level, say i;
5 let T be the associated CCT of RT ;
6 let Γ be the path of Ti, where CP is derived;
7 call RefineNextChildi(Γi−1, T ) to refine T ;
8 RT := MakeSemiAlgebraic(T );
9 AttachTruthValue(FF,RT );

10 PropagateTruthValue(PF,RT );
11 let CPS be the set of all conflicting pairs of RT ;

Theorem 2. Algorithm 6 constructs a projection definable CAD tree.

Proof. The correctness and termination of Algorithm 6 will result from the following two
claims:

(1) If CPS = ∅, then RTk is projection definable.
(2) CPS becomes empty after finitely many steps.
We first prove (1). Note that CPS = ∅ implies that no pairs of cells C,D in RTk

satisfy (CPi), i = 2, 3, 4. In other words, for any two cells C,D derived from the same
complex path (thus having the same projection factor set, say P ) and attached with

12



different truth-values, then the signs of the polynomials in P are sufficient to distinguish
C from D. Therefore, (1) clearly holds.

Next, we prove (2). We assume that CPS is not empty. We observe that (2) results
from the conjunction of the following properties holds. Let i be the highest level of a
conflicting pair in RTk, as defined at Line 4 of Algorithm 6.
(2.1) The children of any path Γi−1 in Tk will become derivative closed after finitely

many iterations of the while-loop in Algorithm 6.
(2.2) When the children of any Γi−1 in Tk become derivative closed, there will exist no

conflicting pairs of level i.
(2.3) When RT gets refined by executing Lines 7 and 8, no conflicting pairs of level

higher than i are generated.
Property (2.1) and the correctness of Algorithm 4 are essentially the same fact, which
was proved with Proposition 1. We prove Property (2.2) by contradiction. If (2.2) does
not hold, then there exist a path Γi−1 and two cells Ci, Di such that Ci and Di are
derived from some child of Γi−1 and every i-level polynomial in their projection factor
set has the same sign on both Ci and Di. This is a contradiction to Lemma 2.

Next we prove (2.3). Assume that RT refines into a new tree RT ′. Let C ′j and D′j be
a j-level conflicting pair in RT ′k. Let C ′ and D′ be their extension in RT ′k. Let C and D
be two cells of RTk such that C ′ is derived from C and D′ is derived from D. Note that
C and D satisfy (CP2), (CP3) and (CP4). Moreover, the projection of C and D onto Rj
must have the same parent. Thus there exists a conflicting pair associated with C and
D in RTk of level at least j. Since the highest level of conflicting pairs in RTk is i, (2.3)
is proved. 2

Proposition 2. For a prenex formula (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn), Algorithm 1
returns its solution formula.

Proof. It follows directly from the specification of all its subroutines. 2

We conclude this section by illustrating our algorithm with two examples. The first
example is modified from the one in (Hong, 1990; Brown, 1999), where it was used to
demonstrate that PL-CAD based QE may generate a CAD tree that is not projection
definable.

Example 3. Let PF := (∃x2) (x2
1 + x2

2 − 1 = 0)∧ (x1 + x2 < 0)∧ (x1 > −1)∧ (x1 < 1).
The projection stage generates the following CCT T :

r

x1 + 1 = 0

any x2

x1 − 1 = 0

any x2

2x2
1 − 1 = 0

x2 − x1 = 0 x2 − x1 6= 0

2x4
1 − 3x2

1 + 1

6= 0

x2
2 + x2

1 − 1 = 0 x2
2 + x2

1 − 1 6= 0

The stack construction stage computes a CAD tree RT of Q[x1, x2]. The induced CAD

tree of RT in Q[x1] has the following cells (−∞,−1), −1, (−1,−
√

2
2 ), −

√
2

2 , (−
√

2
2 ,
√

2
2 ),

13



Fig. 1. Plots of 2z4 + 2x3y − 1 = 0 and x + y + z = 0.
√

2
2 , (

√
2

2 , 1), 1, and (1,+∞). Among them, the true cells are the third, the fourth and the

fifth cells. The cells −
√

2
2 and

√
2

2 is a conflicting pair. The two cells are derived from the
complex path Γ := [r, 2x2

1 − 1 = 0] of T1. Refining Γ w.r.t. the derivative of 2x2
1 − 1 = 0

generates a projection definable CCT, which allows us to obtain the solution formula of
PF :

(x1 = 0) ∨ (x1 < 0 ∧ 0 < x1 + 1) ∨ (0 < x1 ∧ 2x2
1 < 1).

Example 4. Let f := 2z4 + 2x3y − 1 and h := x + y + z. Consider the quantifier
elimination problem (∃ z)(f < 0 ∧ h < 0 ∧ x > 0). The plots of f = 0 and h = 0 are
depicted in Fig. 1.

The solution set is the blue region in Fig. 2, where the red curve is the locus of
p := 2x4 + 10x3y + 12x2y2 + 8xy3 + 2y4 − 1, that is, the resultant of f and h w.r.t. z.
The solution set is exactly the set of (x, y) such that x > 0 and y < RealRoot2(p, y).
Obviously, this region cannot be described just by the sign of p.

To describe the blue region by a QFF, the derivative of p, namely q := 10x3 +24x2y+
24xy2 + 8y3, is introduced. The locus of q is the blue curve in Fig. 3. Note that the blue
region is the union of the green region (x > 0∧q < 0), the blue curve (x > 0∧q = 0) and
the pink region (x > 0 ∧ p < 0 ∧ q > 0). Thus the solution formula of the QE problem is

(x > 0 ∧ q < 0) ∨ (x > 0 ∧ q = 0) ∨ (x > 0 ∧ p < 0 ∧ q > 0).

5. Construction of simpler QFFs

In Section 4, a complete quantifier elimination algorithm was presented. By “com-
plete”, we mean that this algorithm can always generate a solution formula. In the

14



Fig. 2. Projection of f < 0 ∧ h < 0 ∧ x > 0 onto (x, y) space.

Fig. 3. The zero sets of x > 0 ∧ q < 0 (green region), x > 0 ∧ q = 0 (blue curve) and
x > 0 ∧ p < 0 ∧ q > 0 (pink region).

present section, we develop a heuristic strategy improving Algorithm 2 such that simpler
solution formulae can be generated at reasonable cost.

Let RT be a CAD tree of Rn and let P be the associated projection factor set of
RT in the sense of PL-CAD. One key reason why PL-CAD succeeds in generating simple
solution formulae is that every polynomial in P is guaranteed to be sign-invariant on
each cell of RT (assuming that techniques based on partially built CAD are not used).

Let T be a CCT of Q[x] and let RT be a CAD tree deduced from T . Let Γ be a
path of T and let S be a subset of cells of RT derived from Γ. Let PΓ be the projection
factor set of Γ. It is known that any polynomial p of PΓ is sign-invariant on each cell

15



of S, but p may not be sign-invariant on other cells of RT . For instance, in Example 1,
the polynomial x2 is not sign-invariant on CAD cells derived from the third path of the
CCT.

On the other hand, let Γ be the right most path of T , we observe that in many cases,
the polynomials in PΓ are sign-invariant on each path of T , and thus also sign-invariant
on every cell of RT (although counter examples exist, see Example 1). Let P ′ be a subset
of PΓ such that each p ∈ P ′ is sign-invariant on T . If RT is projection definable w.r.t. P ′,
then algorithms in (Hong, 1992; Brown, 1999) can be used to generate simple solution
formula. If not, the cells of RT derived from the same path of T are grouped together.
For each group, they have the same projection factor set. So algorithms in (Hong, 1992;
Brown, 1999) can be used again to do the simplification. Let Φ be the resulting formula.
If Φ is not simple enough, we can gather polynomials in Φ together into a set, say A,
and compute an sign-invariant CAD defined by A and apply algorithms in (Hong, 1992;
Brown, 1999) to do the simplification.

Next we show how to test if p is sign-invariant on Γ. By definition, a polynomial p
is sign-invariant on Γ if and only if either ZC(Γ) ⊂ ZC(p) or ZC(Γ) ∩ ZC(p) = ∅ holds.
Such tests boils down to set-theoretical operations on constructible sets. In particular,
we have the following result from (Chen and Moreno Maza, 2014a) on the first test.

Lemma 4. Let Γ be a path of CCT . Let p ∈ Q[x]. Let [R,H] be the associated regular
system of Γ. Then ZC(Γ) ⊂ ZC(p) if and only if prem(p,R) = 0.

Remark 2. To test ZC(Γ) ∩ ZC(p) = ∅, it is equivalent to test ZC(p,R,H) := ZC(p) ∩
ZC(R,H) = ∅. Efficient operation exists for such test, see Lemma 6 of (Chen et al., 2007)
for details.

Example 5. Let Dattel := z2 + 3y2 + 3x2 − 1. Let f := (∃z) Dattel = 0 be the input
formula. A sign-invariant CCT defined by p is described as below.

r

3x2 − 1 = 0

y = 0

z = 0 z 6= 0

y 6= 0

Dattel = 0 Dattel 6= 0

3x2 − 1 6= 0

3y2 + 3x2 − 1 = 0

z = 0 z 6= 0

3y2 + 3x2 − 1 6= 0

Dattel = 0 Dattel 6= 0

Algorithm 2 generates the following solution formula:

(3x2 < 1 ∧ 3y2 + 3x2 < 1) ∨ (3x2 − 1 = 0 ∧ y = 0) ∨ (3x2 < 1 ∧ 3y2 + 3x2 = 1).

The sign-invariance of 3y2 + 3x2 − 1 on the CCT allows us to obtain a simpler output
formula:

3y2 + 3x2 < 1 ∨ 3y2 + 3x2 = 1.

16



Example 6. Consider another input formula

(∃x1) 3x1 − u1(1 + x3
1) = 0 ∧ 3x2

1 − u2(1 + x3
1) = 0.

A variant of Algorithm 2 (removing redundant atomic formula in each conjunction)
generates:

(u2 < 0 ∧ u3
1 + u3

2 − 3u1u2 = 0) ∨ (u2 = 0 ∧ u1 = 0)

∨(u3
2 − 4 = 0 ∧ u1u2 − 2 = 0) ∨ (u3

2 − 4 = 0 ∧ u1u2 + 4 = 0)

∨(0 < u3
2 − 4 ∧ u3

1 + u3
2 − 3u1u2 = 0)

∨(0 < u2 ∧ u3
2 < 4 ∧ u3

1 + u3
2 − 3u1u2 = 0)).

Using ideas presented here, we obtain u3
1 + u3

2 − 3u1u2 = 0.

6. Speeding up QE by computing truth table invariant CAD

In Section 4, we have presented a complete algorithm, namely Algorithm 1, for do-
ing QE via RC-CAD. Let PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn), where FF is a
quantifier free formula in disjunctive normal form. Let F be the set of non-constant
polynomials appearing in FF . To get the solution formula of PF , a PF -truth invariant
CAD RTk of Rk is required. To make the presentation simple, Algorithm 1 computes
an F -sign invariant CAD, which is sufficient but often not necessary to produce a CAD
of Rk which is truth invariant w.r.t. PF . In this section, we show that the techniques
introduced in (Bradford et al., 2014) for computing truth table invariant CAD (Bradford
et al., 2013) can bypass the sign invariance while retaining the ability to produce truth
invariant and projection definable CAD of Rk, thus providing a more efficient but still
complete QE procedure.

Let Φ := ∨si=1φi be a DNF. For simplicity of presentation and without lost of gen-
erality, we assume that each polynomial constraint appearing in Φ is of the type p = 0
or p > 0. The corresponding complex formula of Φ, denoted by cf(Φ), is the formula
formed by replacing each atomic formula of the type p > 0 by p 6= 0. Let C be a subset
of Rn (resp. Cn), we say Φ (resp. cf(Φ)) is truth invariant on C if the truth value of
Φ(c) is the same for all c ∈ C. We say Φ (resp. cf(Φ)) is truth table invariant on C if
each conjunctive clause of Φ is truth invariant on C. Let RT (resp. T ) be a CAD tree
(resp. CCT). We say RT (resp. T ) is truth (table) invariant for Φ (resp. cf(Φ)) if Φ (resp.
cf(Φ)) is truth (table) invariant on each path of RT (resp. T ).

It is clear that truth table invariance implies truth invariance. But a truth invariant
Φ may not be truth table invariant. For example x > 0 ∨ x < 1 is truth invariant on R,
but not truth table invariant on R.

Proposition 3. Let Φ be a DNF. Let T be a truth table invariant CCT for cf(Φ). Let
RT be the CAD derived from T . Then RT is truth table invariant for Φ. In particular,
RT is truth invariant for Φ.

Proof. Suppose that RT is not truth table invariant for Φ. Let C be such a cell such
that Φ is not truth table invariant. Then there exists a φi, 1 ≤ i ≤ s, such that φi is
not truth invariant on C. Let c1, c2 be two points of C such that φi(c1) and φi(c2) be

17



respectively true and false. There exists an atomic formula p σ 0, σ ∈ {>,=}, in φi whose
truth value is false at c2. If σ is =, then the truth value of cf(p σ 0) is clearly false at c2,
which implies that cf(φi)(c2) is false. If σ is >, then the sign of p at c2 has to be zero or
negative. In the former case, cf(φi)(c2) is false. In the latter case, by the connectiveness
of C, there exists a point c3 such that p vanishes at c3. Thus cf(φi)(c3) is false. Note that
the truth value of cf(φi(c1)) is true. Hence, cf(φi) is not truth invariant on C, which
contradicts to the fact that T is truth table invariant for cf(Φ). 2

Remark 3. Note that from a truth invariant CCT, one may not be able to produce a
truth invariant CAD. Consider the following simple example. Let Φ := (x < 0)∨ (y < 0).
The corresponding complex formula is cf(Φ) := (x 6= 0) ∨ (y 6= 0). Consider the CCT
{{x = 0, y = 0}, {x = 0, y 6= 0}, {x 6= 0}}, which is truth invariant for cf(Φ). A CAD
derived from it is

{{x = 0, y < 0}, {x = 0, y = 0}, {x = 0, y > 0}, {x < 0}, {x > 0}}.

It is clear that above the cell {x > 0}, Φ is not truth invariant.

Consider now the QE problem (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn), where FF is a
DNF formula. The paper Bradford et al. (2014) presented an algorithm TTICCD to
compute a truth table invariant CCT for cf(FF ). In Algorithm 1, let us extend the
specification of CylindricalDecompose such that if a complex formula cf(FF ) is supplied
as input, it calls TTICCD to produce a truth table invariant CCT.

Proposition 4. Algorithm 1 still satisfies its specification if we replace the subroutine
CylindricalDecompose(F ) by CylindricalDecompose(cf(FF )).

Proof. Let T := CylindricalDecompose(FF ) andRT := MakeSemiAlgebraic(T ). By Propo-
sition 3, RT is truth invariant for FF . Thus RTk is truth invariant for PF . If RTk is
projection definable, the proposition clearly holds. Suppose that RTk is not projection
definable. Then Algorithm MakeProjectionDefinable refines T into a new CCT T ′, from
which a CAD is derived, denoted still by RT , such that RTk is projection definable. Since
T is truth table invariant for cf(FF ), T ′ is also truth table invariant for cf(FF ), which
implies that the new RT is truth invariant for FF . Thus RTk is truth invariant for PF .
So the proposition holds. 2

7. Implementation

We have implemented the algorithms and optimization techniques described in the pre-
vious sections. The corresponding code is available through the QuantifierElimination
command of the RegularChains library in Maple. The latest version of this library is
freely available from the download page of www.regularchains.org. More details about
the implementation and usage of QuantifierElimination can be found in (Chen and
Moreno Maza, 2014b) and (Chen and Moreno Maza, 2014d).

Many additional improvements are planned for this command. For instance, the tech-
niques of (Hong, 1992; Brown, 1999) for constructing simple solution formulae have not
been integrated yet in our implementation

Nevertheless, the current version of our QuantifierElimination command is already
very promising. We illustrate it in the sequel of this section with different examples.

18

www.regularchains.org


These experimental results were obtained on an Ubuntu desktop (2.40GHz Intel Core 2
Quad CPU, 8.0Gb total memory).

In addition to performance, our implementation work is motivated by the desire of
providing a user friendly interface for the command QuantifierElimination. We have
built the interface of our QE procedure on top of the Logic package of Maple. The
following Maple session shows how to use our command.

Example 7 (Davenport-Heintz). The interface:
> f := &E([c]), &A([b, a]), ((a=d) &and (b=c))

&or ((a=c) &and (b=1)) &implies (a^2=b):

> QuantifierElimination(f);

(d - 1 = 0) &or (d + 1 = 0)

In (Chen and Moreno Maza, 2014a; Bradford et al., 2014), it is shown that the RC-CAD

implementation can compete in terms of running time with state-of-art CAD implemen-
tations, such as Qepcad and Mathematica. In particular, RC-CAD is usually more
efficient than its competitors as the number of equational constraints increases. For in-
stance, neither Qepcad nor Mathematica can solve the examples blood-coagulation-2
and MontesS10 (see below) within 1-hour time limit. Our QE implementation directly
benefits from the efficiency of RC-CAD. Hereafter, we provide the timing and output for
three examples.

Example 8 (blood-coagulation-2). It takes about 6 seconds.
f := &E([x, y, z]), (1/200*x*s*(1 - 1/400*x)

+ y*s*(1 - 1/400*x) - 35/2*x=0)

&and (250*x*s*(1 - 1/600*y )*(z + 3/250) - 55/2*y=0)

&and (500*(y + 1/20*x)*(1 - 1/700*z) - 5*z=0);

QuantifierElimination(f);

true

Example 9 (MontesS10). It takes about 26 seconds.
f := &E([c2,s2,c1,s1]),

(r-c1+l*(s1*s2-c1*c2)=0) &and (z-s1-l*(s1*c2+s2*c1)=0)

&and (s1^2+c1^2-1=0) &and (s2^2+c2^2-1=0);

QuantifierElimination(f);

2 2 2

((((-r - z + l - 2 l + 1 = 0) &or

2 2 2 2 2 2

((l - r - z - 2 l < -1) &and (-r - z + l + 2 l + 1 = 0))) &or

2 2 2 2 2 2

((l - r - z - 2 l < -1) &and (0 < -r - z + l + 2 l + 1))) &or

2 2 2 2 2 2

((0 < -r - z + l - 2 l + 1) &and (l - r - z + 2 l < -1))) &or

2 2 2 2 2 2

((0 < -r - z + l - 2 l + 1) &and (-r - z + l + 2 l + 1 = 0))

19



Consider a new example on algebraic surfaces.

Example 10 (Sattel-Dattel-Zitrus). It takes about 3 seconds while Qepcad cannot
solve it in 30 minutes.
Sattel := x^2+y^2*z+z^3;

Dattel := 3*x^2+3*y^2+z^2-1;

Zitrus := x^2+z^2-y^3*(y-1)^3;

f := &E([y, z]), (Sattel=0) &and (Dattel=0) &and (Zitrus<0);

QuantifierElimination(f);

The output is the inequality:

387420489x36 + 473513931x34 + 1615049199x32

−5422961745x30 + 2179233963x28 − 14860773459x26

+43317737551x24 − 45925857657x22 + 60356422059x20

−126478283472x18 + 164389796305x16 − 121571730573x14

+54842719755x12 − 16059214980x10 + 3210573925x8

−446456947x6 + 43657673x4 − 1631864x2 < 40328.

8. Automatic generation of parametrized parallel programs

The general purpose of automatic parallelization is to convert sequential computer pro-
grams into multi-threaded or vectorized code. We are interested in the following specific
question. Given a theoretically good algorithm (e.g. divide-and-conquer matrix multipli-
cation) and given a type of hardware that depends on various parameters (e.g. a GPGPU
with amount S of shared memory per streaming multiprocessor, maximum number P of
threads supported by each streaming multiprocessor, etc.) we aim at automatically gen-
erating code that depends on the hardware parameters (S, P , etc.) which, then, do not
need to be known at compile-time. In contrast, current technology requires the knowl-
edge of machine and program (size of a thread block, etc.) parameters at the time of
generating the GPGPU code, see (Holewinski et al., 2012).

In order to clarify this question, we briefly provide some background material. The
polyhedron model (Bastoul, 2004) is a powerful geometrical tool for analyzing the relation
(w.r.t. data locality or parallelization) between the iterations of nested for-loops. Once
the polyhedron representing the iteration space of a loop nest is calculated, techniques of
linear algebra and linear programming can transform it into another polyhedron encoding
the loop steps into a coordinate system based on time and space (processors). From there,
a parallel program can be generated. For example, for the following code computing the
product of two univariate polynomials a and b, both of degree n, and writing the result
to c,
for(i=0; i<=n; i++) {c[i] = 0; c[i+n] = 0;}

for(i=0; i<=n; i++) {

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

20



elementary dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i+ j, where

t and p represent time and processor respectively. Using Fourier-Motzkin elimination,

projecting all constraints on the (t, p)-plane yields the following asynchronous schedule

of the above code:

parallel_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

To be practically efficient, one should avoid a too fine-grained parallelization; this is

achieved by grouping loop steps into so-called tiles, which are generally trapezoids (Högstedt

et al., 1997). It is also desirable for the generated code to depend on parameters such

as tile and cache sizes, number of processors, etc. These extensions lead, however, to the

manipulation of systems of non-linear polynomial equations and the use of techniques

like quantifier elimination (QE). This was noticed by the authors of (Größlinger et al.,

2006) who observed also that work remained to be done for adapting QE tools to the

needs of automatic parallelization.

To illustrate these observations, we return to the above example and use a tiling

approach: we consider a one-dimensional grid of blocks where each block is in charge

of updating at most B coefficients of the polynomial c. Therefore, we introduce three

variables B, b and u where the latter two represent a block index and an update (or

thread) index (within a block). This brings the following additional relations:
0 ≤ b

0 ≤ u < B

p = bB + u,

(1)

to the previous system 

0 < n

0 ≤ i ≤ n

0 ≤ j ≤ n

t = n− j

p = i+ j.

(2)

To determine the target program, one needs to eliminate the variables i and j. In this

case, Fourier-Motzkin elimination (FME) does not apply any more, due to the presence

of non-linear constraints. Using quantifier elimination code presented in this paper, we

21



obtain the following: 

B > 0

n > 0

0 ≤ b ≤ 2n/B

0 ≤ u < B

0 ≤ u ≤ 2n−Bb

p = bB + u,

0 ≤ t ≤ n,

n− p ≤ t ≤ 2n− p,

(3)

from where we derive the following program:
for (p=0; p<=2*n; p++) c[p]=0;

parallel_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

Of course, one could enhance FME with a case discussion mechanism, but this enhance-
ment would be limited to non-linear constraints where each variable appears in degree
zero or one. (Otherwise an algorithm for solving semi-algebraic systems would need to
support FME, which cannot really be considered as FME anymore.) Moreover, this en-
hanced and parametric FME would no longer be able to rely on numerical methods for
linear programming (Khachiyan, 2009) thus loosing a lot of practical efficiency.

For these reasons, CAD-based QE becomes an attractive alternative. In fact, for more
advanced automatic parallelization examples, such as the one of Fig. 5 in (Größlinger
et al., 2006), our QE code returns a disjunction of conjunctions of clauses, where most
conjunctions can be merged by the techniques presented in Section 5. Each of the re-
maining conjunctions of clauses leads to a specialized program corresponding to partic-
ular configuration like n < B. These specialized programs are actually less expensive to
evaluate than the one of Fig. 5 in (Größlinger et al., 2006) since the bounds of the control
variables are defined by simpler max/min expressions.

9. Conclusion

We introduced a complete real quantifier elimination procedure based on the theory of
regular chains and cylindrical algebraic decompositions. Given a prenex formula PF in
the first order theory of the reals, the procedure first constructs a complex cylindrical tree
T for the corresponding complex formula of PF . From T , one builds a truth invariant
CAD tree RT for PF . If RT is projection definable, that is the signs of polynomials
in T are sufficient to distinguish the true and false cells in RT , one could immediately
produce an equivalent quantifier free formula to PF from RT . For the case that RT is
not projection definable, we proposed a method to refine T such that the new CAD tree

22



RT derived from T becomes projection definable. We discussed briefly how to generate
a simpler QFF from RT . The effectiveness of our method was illustrated by several
examples and an application on automatic loop parallelization.

Acknowledgements

The authors would like to thank anonymous reviewers for their helpful comments.

References

Bastoul, C., 2004. Code generation in the polyhedral model is easier than you think.
In: Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques. PACT ’04. IEEE Computer Society, pp. 7–16.

Basu, S., 1999. New results on quantifier elimination over real closed fields and applica-
tions to constraint databases. Journal of the ACM 46 (4), 537–555.

Basu, S., Pollack, R., Roy, M.-F., 2006. Algorithms in real algebraic geometry. Vol. 10 of
Algorithms and Computations in Mathematics. Springer-Verlag.

Bradford, R., Chen, C., Davenport, J., England, M., Moreno Maza, M., Wilson, D., 2014.
Truth table invariant cylindrical algebraic decomposition by regular chains. In: Proc.
of CASC 2014. pp. 44–58.

Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D., 2013. Cylindrical
algebraic decompositions for boolean combinations. In: Proc. of ISSAC’13. pp. 125–
132.

Brown, C. W., 1999. Solution Formula Construction for Truth Invariant CAD’s. Ph.D.
thesis, University of Delaware.

Brown, C. W., Davenport, J. H., 2007. The complexity of quantifier elimination and
cylindrical algebraic decomposition. In: Proc. of ISSAC 2007. pp. 54–60.

Caviness, B., Johnson, J. (Eds.), 1998. Quantifier Elimination and Cylindical Algebraic
Decomposition, Texts and Mongraphs in Symbolic Computation. Springer.

Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W., 2007. Comprehen-
sive triangular decomposition. In: Proc. of CASC 2007. Vol. 4770 of Lecture Notes in
Computer Science. Springer Verlag, pp. 73–101.

Chen, C., Moreno Maza, M., 2014. An incremental algorithm for computing cylindrical
algebraic decompositions. Computer Mathematics: Proc. of ASCM ’12, 199–222.

Chen, C., Moreno Maza, M., 2014. Cylindrical algebraic decomposition in the regular-
chains library. In: Proc. of ICMS 2014. pp. 425–433.

Chen, C., Moreno Maza, M., 2014. Quantifier elimination by cylindrical algebraic decom-
position based on regular chains. In: Proc. of ISSAC 2014. pp. 91–98.

Chen, C., Moreno Maza, M., 2014. Real quantifier elimination in the regularchains library.
In: Proc. of ICMS 2014. pp. 283–290.

Chen, C., Moreno Maza, M., Xia, B., Yang, L., 2009. Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proc. of ISSAC 2009. pp. 95–102.

Collins, G. E., 1975. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. Springer Lecture Notes in Computer Science 33, 515–532.

Coste, M., Roy, M.-F., 1988. Thom’s lemma, the coding of real algebraic numbers and
the computation of the topology of semi-algebraic sets. J. Symb. Comput. 5 (1-2),
121–129.

23



Dolzmann, A., Seidl, A., Sturm, T. (Eds.), 2005. Algorithmic Algebra and Logic. Pro-
ceedings of the A3L 2005.

Größlinger, A., Griebl, M., Lengauer, C., 2006. Quantifier elimination in automatic loop
parallelization. J. Symb. Comput. 41 (11), 1206–1221.

Högstedt, K., Carter, L., Ferrante, J., 1997. Determining the idle time of a tiling. In:
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. POPL ’97. pp. 160–173.

Holewinski, J., Pouchet, L., Sadayappan, P., 2012. High-performance code generation
for stencil computations on GPU architectures. In: Proceedings of the 26th ACM
International Conference on Supercomputing. ICS ’12. pp. 311–320.

Hong, H., 1990. Improvements in CAD-based quantifier elimination. Ph.D. thesis, The
Ohio State University.

Hong, H., 1992. Simple solution formula construction in cylindrical algebraic decompo-
sition based quantifier elimination. In: Proc. of ISSAC 1992. pp. 177–188.

Hong, H., 1993. Special issue editorial: Computational quantifier elimination. Comput.
J. 36 (5), 399.

Hong, H., Safey El Din, M., 2012. Variant quantifier elimination. Journal of Symbolic
Computation 47 (7), 883 – 901.

Khachiyan, L., 2009. Fourier-Motzkin elimination method. In: Encyclopedia of Optimiza-
tion. pp. 1074–1077.

Renegar, J., 1992. On the computational complexity and geometry of the first-order
theory of the reals. parts I–III. J. Symb. Comput. 13 (3), 255–299.

Xiao, R., 2009. Parametric polynomial system solving. Ph.D. thesis, Peking University,
Beijing.

24


	Introduction
	Preliminary
	Theory
	Algorithm
	Construction of simpler QFFs
	Speeding up QE by computing truth table invariant CAD
	Implementation
	Automatic generation of parametrized parallel programs
	Conclusion
	Acknowledgements

