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Abstract. Given a regular chain, we are interested in questions like
computing the limit points of its quasi-component, or equivalently, com-
puting the variety of its saturated ideal. We propose techniques relying
on linear changes of coordinates and we consider strategies where these
changes can be either generic or guided by the input.

1 Introduction

Applying a change of coordinates to the algebraic or differential representation
of a geometrical object is a fundamental technique to obtain a more convenient
representation and reveal properties. For instance, random linear change of coor-
dinates are performed in algorithms for solving systems of polynomial equations
and inequations in the algorithms of Krick and Logar [11], Rouillier [15], Ver-
schelde [17] and Lecerf [12].

For polynomial ideals, one desirable representation is Noether normalization,
which was introduced by Emmy Noether in 1926. We refer to the books [9,8] for
an account on this notion and, to the articles [16,10] for deterministic approaches
to compute Noether normalization, when the input ideal is given by a Gröbner
basis.

In regular chain theory, one desirable and challenging objective is, given a
regular chain T , to obtain the (non-trivial) limit points of its quasi-component
W (T ), or equivalently, computing the variety of its saturated ideal sat(T ). The
set lim(W (T )) of the non-trivial limit points of W (T ) satisfies V (sat(T )) =
W (T ) = W (T ) ∪ lim(W (T )). Hence, lim(W (T )) is the set-theoretic difference
V (sat(T ))\W (T ). Deducing lim(W (T )) or V (sat(T )) from T is a central question
which has theoretical applications (like the so-called Ritt Problem) and practical
ones (like removing redundant components in triangular decomposition).

Of course V (sat(T )) can be computed from T via Gröbner basis techniques.
But this approach is of limited practical interest. In fact, considering the case



where the base field is Q, we are looking for approaches that would run in poly-
nomial time w.r.t. the degrees and coefficient heights of T . Thanks to the work
of [7], algorithms for change of variable orders (and more generally, algorithms
for linear changes of coordinates) are good candidates.

Returning to Noether normalization1, we ask in Section 4 how “simple” can T
be if we assume that sat(T ) is in Noether position. Unfortunately, an additional
hypothesis is needed in order to obtain a satisfactory answer like “all initials of
T are constant”, see Theorem 1 and Remark 1.

In Section 5 and 6, we develop a few criteria for computing lim(W (T )) or
V (sat(T )). Our techniques (see Proposition 2, Theorem 2, Theorem 3, Theorem 4
and Algorithm 1) rely on linear changes of coordinates and allow us to relax the
“dimension one” hypothesis in our previous paper [1], where lim(W (T )) was
computed via Puiseux series.

Therefore, the techniques proposed in this paper can be used to compute
lim(W (T )) or V (sat(T )) without Gröbner basis or Puiseux series calculations.
Moreover, these new techniques can handle cases where the results of our previ-
ous paper [1] could not apply. One of the main ideas of our new results (see for
instance Theorem 2) is to use a linear change of coordinates so as to replace the
description of W (T ) by one for which W (T ) ∩ V (hT ) can be computed by means
of standard operations on regular chains. Nevertheless, our proposed techniques
do not cover all possible cases and the problem of finding a “Gröbner-basis-free”
general algorithm for lim(W (T )) or V (sat(T )) remains unsolved.

2 Preliminaries

Throughout this paper, polynomials have coefficients in a field k and variables
in a set x of n ordered variables x1 < · · · < xn. The corresponding polynomial
ring is denoted by k[x]. Let F be a subset of k[x]. We denote by 〈F 〉 the ideal
generated by F in k[x]. Recall that a polynomial f ∈ k[x] is regular modulo the
ideal 〈F 〉 whenever f does not belong to any prime ideals associated with 〈F 〉,
thus, whenever f is neither null nor a zero-divisor modulo 〈F 〉. Further, k stands
for the algebraic closure of k and V (F ) ⊂ k

n
for the algebraic set consisting of

all common zeros of all f ∈ F . For a set W ⊂ k
n
, we denote by W the Zariski

closure of W , that is, the intersection of all algebraic sets containing W .
We briefly review standard notions and concepts related to regular chains

and we refer to [2,6] for details. For a non-constant f ∈ k[x], we denote by
mvar(f), mdeg(f) and init(f), the variable of greatest rank appearing in f , the
degree of f w.r.t. that variable and the leading coefficient of f w.r.t. that same
variable. The quantities mvar(f), mdeg(f) and init(f) are called respectively the
main variable, main degree and initial of f . A set T of non-constant polynomials
from k[x] is called triangular if no two polynomials from T have the same main
variable. Let T ⊂ k[x] be a triangular set. Observe that T is necessarily finite
and that every subset of T is itself triangular. For a variable v ∈ x, if there exists

1 Section 4 contains a brief review of Noether normalization which makes our paper
self-contained.



f ∈ T such that mvar(f) = v, we denote this polynomial by Tv and say that v is
algebraic w.r.t. T , otherwise we say that v is free w.r.t. T ; in all cases, we define
T<v := {g ∈ T | mvar(g) < v} and denote by free(T ) the set of the variables
from x which are free w.r.t. T . We denote by hT the product of the polynomials
init(f), for f ∈ T . We say that T is strongly normalized if all variables occurring
in hT are in free(T ); when this holds, it is easy to check that T is a Gröbner
basis of the ideal that T generates in k(u)[x \u] where u := free(T ) and k(u) is
the field of rational functions over k and with variables in u. Moreover, we say
that T is monic whenever hT ∈ k holds. The saturated ideal of T , written sat(T ),
is defined as the column ideal sat(T ) = 〈T 〉 : h∞T . The quasi-component of T is
the basic constructible set given by W (T ) := V (T ) \ V (hT ). The following two
properties are easy to prove:

W (T ) = V (sat(T )) and W (T ) = W (T ) ∪ lim(W (T )), (1)

where lim(W (T )) := W (T ) ∩ V (hT ) holds and the points of that latter set are
called the (non-trivial) limit points of W (T ), for reasons explained in [1]. We say
that T is a regular chain whenever T is empty or T<w is a regular chain and the
initial of Tw is regular modulo sat(T<w), where w is the largest main variable
of a polynomial in T . If T consists of n − d polynomials, for 0 ≤ d < n, then
sat(T ) has dimension d and either lim(W (T )) is empty or has dimension d− 1;
moreover, we have k[u] ∩ sat(T ) = 〈0〉, where u := free(T ).

Let F ⊂ k[x] be finite. Let T1, . . . , Te be finitely many regular chains of k[x].
We say that {T1, . . . , Te} is a Kalkbrener triangular decomposition of V (F ) if we
have V (F ) = ∪ei=1W (Ti). We say that {T1, . . . , Te} is a Lazard-Wu triangular
decomposition of V (F ) if we have V (F ) = ∪ei=1W (Ti).

We call linear change of coordinates in k
n

any bijective map A of the form

A : k
n → k

n

x 7−→ (A1(x), . . . , An(x))
(2)

where A1, . . . , An are linear forms over k. Hence A(x) can be written as Mx
where M is an invertible matrix over k. For the algebraic set V (F ), we denote
V A(F ) := V ({fA | f ∈ F}), where fA(x) := f(A1(x), . . . , An(x)). Observe
that if V (F ) is irreducible, then so is V A(F ). Similarly, the image of W (T ) under
A is WA(T ) = V A(T ) \ V A(hT ).

3 Algorithm for linear change of coordinates

The goal of this section is to explain how to obtain a practically efficient algo-
rithmic solution to the following problem.

Problem 1 Given a regular chain T ⊂ k[x] and given a linear change of coor-
dinates A in k

n
, compute finitely many regular chains C1, . . . , Ce such that

WA(T ) = W (C1) ∪ · · · ∪ W (Ce).



In the literature, see [3,4,7], the following related problem has been addressed.

Problem 2 Given two total orderings R and R on {x1, . . . , xn}, given T ⊂
k[x1, . . . , xn], assuming that
1. T is a regular chain for the ordering R on {x1, . . . , xn} and,
2. the saturated ideal sat(T,R) (which is an alias of sat(T ) with a second ar-

gument recalling the ordering) of T of k[x1, . . . , xn] is prime,
compute C ⊂ k[x1, . . . , xn] such that
3. C is a regular chain for the ordering R on {x1, . . . , xn} and,
4. the saturated ideal sat(C,R) of C in k[x1, . . . , xn] is equal to sat(T,R).

We call this second problem change of variable order. The articles [3,4] are
actually dedicated to the case of differential regular chains, where a differential
counterpart of Problem 2 is termed ranking conversion. However, these articles
suggest that, from the differential case, a solution to Problem 2 could be derived
and they call it PALGIE, which is an acronym for Prime ALGebraic IdEal.

Next, towards Problem 1, we consider the following extension of Problem 2
where the primality assumption is relaxed.

Problem 3 Given two total orderings R and R on {x1, . . . , xn}, given T ⊂
k[x1, . . . , xn], assuming that T is a regular chain for the ordering R on {x1, . . . , xn},
compute finitely many regular chains C1, . . . , Ce such that the radical of the sat-
urated ideal sat(T,R) of T in k[x1, . . . , xn] is equal to the intersection of the
radicals of the saturated ideals sat(Ci,R) of Ci in k[x1, . . . , xn], for 1 ≤ i ≤ e.

Extending the PALGIE algorithm (as suggested in [3]) to a solution of Prob-
lem 3 can be achieved by standard techniques from regular chain theory, see [6].

Before further extending the PALGIE algorithm to a solution of Problem 1,
we argue that Problem 2 deals with a special case of Problem 1, that is, ranking
conversions are, indeed, a special case of linear change of coordinates.

As in the statement of Problem 2, consider two total orderings R and R on
{x1, . . . , xn} as well as a regular chain T ⊂ k[x1, . . . , xn] for the orderR such that
its saturated ideal sat(T,R) is prime. W.l.o.g. we can assume that the orderR on
{x1, . . . , xn} is given by x1 < · · · < xn. Then, the change of variable order from
R to R can be interpreted as a permutation σ of the sequence (x1, . . . , xn). Let
A be the linear change of coordinates replacing the column vector (x1, . . . , xn)t

with Mσ(y1, ..., yn)t where (y1, . . . , yn) stand for the new coordinates and Mσ

is the matrix of σ w.r.t. the canonical basis of k
n

as a vector space over k.
Running the extended version of the PALGIE algorithm solving Problem 1 we
obtain a regular chain C such that we have

sat(C) = sat(T )
A
.

Then simply renaming yi with xσ(i), for 1 ≤ i ≤ n, in C produces a regular chain
D satisfying the output specifications of the original version of the PALGIE algo-
rithm whose purpose is to perform change of variable order. To make the proof
strict, requiring that T and D be strongly normalized (and reduced Gröbner



bases over the field of rational functions k(free(T ))) make them unique which
completes the proof.

We turn our attention back to Problem 1 and suggest how a solution of
Problem 3 can lead to a solution of Problem 1. Let T ⊂ k[x] be a regular
chain and let A be a linear change of coordinates in k

n
. We denote by d the

dimension of sat(T ). W.l.o.g. we assume that the variables x1 < · · · < xd are
algebraically independent modulo sat(T ), that is, free(T ) = {x1, . . . , xd}. Let us
write T = {td+1, . . . , tn} such that ti has main variable xi and initial hi. We
apply the extended version of the PALGIE algorithm (that is, the one solving
Problem 3) to the solving of the polynomial system S below

tAn (x) = 0
...

...
...

tAd+1(x) = 0
hAd+1(x) · · ·hAn (x) 6= 0

(3)

We denote by Z(S) ⊂ k
n

the zero set of S. Observe that for all polynomials
f ∈ k[x], we have

f ∈ 〈Z(S)〉 ⇐⇒ fA
−1

∈
√

sat(T ). (4)

where 〈Z(S)〉 is the ideal of k[x] consisting of all polynomials vanishing on
Z(S). Relation (4) allows one to easily adapt the master - student relationship
described in Section 3.2 of [4] and thus to adapt the (extended version of the)
PALGIE algorithm so as to solve Problem 1.

4 Noether normalization and regular chains

In this section, we study the relation between Noether normalization and regular
chains. Our initial quest was to determine whether, for a prime ideal P ⊂ k[x]
in Noether position, one could find a monic regular chain T whose saturated
ideal is precisely P. For this purpose, we start by reviewing basic properties of
Noether normalization, following Logar’s paper [14].

Let P ⊂ k[x] be a (proper) prime ideal and G the reduced lexicographical
Gröbner basis of P. Recall that x counts n variables ordered as x1 < · · · < xn.
We assume that k is an infinite field. We denote by TP the set defined by
TP = {v ∈ x | (∀g ∈ G) mvar(g) 6= v}. This set satisfies two important
properties:
– TP is algebraically independent modulo P that is, P ∩ k[TP ] = 〈0〉,
– the number of elements in TP gives the dimension of P, that is, dim(P) =

card(TP).
A variable xs ∈ x is said integral over k[x1, . . . , xs−1] modulo P if there exists
f ∈ P ∩ k[x1, . . . , xs−1, xs] such that mvar(f) = xs and init(f) ∈ k. Integral
variables satisfy two important properties:
– A variable xs ∈ x is integral over k[x1, . . . , xs−1] modulo P if and only if

there exists g ∈ G such that lm(g) = xdss for some positive integer ds,



– if a variable xs ∈ x is integral over k[x1, . . . , xs−1,u] modulo P, with u ⊆
TP disjoint from {x1, . . . , xs}, then xs is also integral over k[x1, . . . , xs−1]
modulo P.

Thanks to the above properties, we may assume w.l.o.g. that if d = dim(P) then
we have TP = {x1, . . . , xd}. Consider a linear change of coordinates A in k

n

defined by a matrix M of the following form:

M =

 Id×d

a1,d+1 . . . a1,n
...

...
...

ad,d+1 . . . ad,n
0 I(n−d)×(n−d)

 (5)

where ai,j ∈ k. We denote by PA the ideal generated by fA for all f ∈ P.
Then, by Noether normalization lemma, for a generic choice of a1,d+1, . . . , ad,n
the following properties hold:
1. x1, . . . , xd are algebraically independent modulo PA,
2. xd+i is integral over k[x1, . . . , xd] modulo PA for all i = 1, . . . , n− d.

In this case, we say that PA is in Noether position.
We turn our attention to the regular chain representation of the prime ideal

P. To this end, using Theorem 3.3 of [2], one can extract, in an algorithmic
fashion, a subset T of G such that T is a regular chain whose saturated ideal is
precisely P. Let H be the reduced lexicographical Gröbner basis of PA and C
be the regular chain extracted from H using the same theorem from [2].

Theorem 1 If T generates its saturated ideal, then the regular chain C is monic,
that is, for each polynomial f ∈ C we have init(f) ∈ k.

Proof. Assume by contradiction that there exists f ∈ C such that init(f) 6∈ k
and let us choose such an f with minimum main variable. Since x1, . . . , xd are
algebraically independent modulo PA and since C is a regular chain, one can
compute a polynomial f ′ such that init(f ′) ∈ k[x1, . . . , xd] and sat(C ′) = sat(C)
holds with C ′ = C \ {f} ∪ {f ′}.

Let mvar(f) = xr. Since PA is in Noether position, it follows from [14] that
there exists a polynomial Hxr

∈ H whose leading monomial is of the form xdrr .
Since init(Hxr

) ∈ k, we have deg(f ′, xr) = deg(f, xr) < dr = deg(Hxr
, xr).

Indeed, otherwise the polynomial Hxr would have been selected as an element
of the regular chain C.

From the choice of f and the assumption on T , the regular chain C ′ ∩
k[x1, . . . , xr] is a basis of PA ∩ k[x1, . . . , xr]. Therefore, the polynomial Hxr

reduces to zero through multivariate division by C ′ ∩ k[x1, . . . , xr] and thus by
C ∩ k[x1, . . . , xr]. This contradicts the fact that H is a reduced Gröbner basis.
�

Remark 1 Theorem 1 states that if T generates sat(T ) and PA is in Noether
position, then C is monic. Unfortunately, if T does not generate sat(T ), then
the previous conclusion may not hold as shown by the following example.



Example 1 Consider the regular chain T := {x52 − x41, x1x3 − x22} ⊂ Q[x1 <
x2 < x3] which does not generate its saturated ideal. Consider also the linear
change of coordinates A defined by the matrix below

M =

1 0 −1
0 1 0
0 0 1

 .

Then 〈T 〉A is in Noether position and under this new change of coordinates

we can compute the regular chain C = {c1, c2} such that
√

sat(C) =

√
sat(T )

A

where c1 = x52−2x42+x32+4x21x
2
2−x41 and c2 =

(
−x31 + 2x22x1

)
x3+x21x

2
2−x42+x32.

As you can see init(c2) 6∈ Q.

5 Applications of random linear changes of coordinates

Let T ⊂ k[x] be a regular chain whose saturated ideal has dimension d. Let u be
the free variables of T . Recall that hT stands for the product of the init(f) for
f ∈ T . Let A be a linear change of coordinates in k

n
. Assume that the extended

version of the PALGIE algorithm (see Problem 3 in Section 3) applied to T and

A produces a single regular chain C ⊂ k[x], thus satisfying WA(T ) = W (C).
Let hT and hC be the products of the initials of T and C, respectively. Let rAT
and rC be the iterated resultants (see [6] for this term) of hAT and hC w.r.t. C.

Proposition 1 gathers elementary properties of rAT and rC . Proposition 2 pro-
vides conditions for deriving a basis of sat(T ) from the calculation of C while
Theorem 2 provides a condition for deriving lim(W (T )) = W (T ) ∩ V (hT ) from
the calculation of C. The basic idea of Theorem 2 is to use a linear change of coor-
dinates so as to replace the description of W (T ) by one for which W (T ) ∩ V (hT )
can be computed by set-theoretic operations on constructible sets (represented
by regular chain as in [5]). Moreover, Corollary 1 shows that, if T generates
sat(T ), then the computation of lim(W (T )) can always be achieved by the tech-
niques of [5].

Proposition 1 The following properties hold:

(i) the polynomial hAT is regular w.r.t. sat(C),
(ii) the polynomials rAT and rC belong to k[u] and are non-zero.

Proof. Property (i) is by construction, that is, following the extended PALGIE

algorithm applied to T and A. Property (ii) follows from (i) and the relations
between regular chains and iterated resultants, see [6]. �

Proposition 2 The following properties hold:

(i) if sat(T ) is radical and if the ideal 〈hT , (hA
−1

C )〉 equals the whole ring k[x],

then T ∪ CA−1

generates sat(T ),

(ii) if the regular chain C is monic, then CA
−1

generates sat(T ).



Proof. We prove Property (i). Since sat(T ) is radical, the relations WA(T ) =

W (C) implies CA
−1 ⊂ sat(T ). Hence, we “only” need to prove that if a polyno-

mial f belongs to sat(T ), then f is generated by T ∪ CA
−1

. So let f ∈ sat(T ).
On one hand, there exists a non-negative integer e such that heT f ∈ 〈T 〉. On the

other, there exists a non-negative integer d such that (hA
−1

C )df ∈ 〈CA−1〉. Since
the ideal 〈heT , (h

A−1
C )d〉 is the whole ring k[x], then we can write f as an element

of 〈T,CA−1〉. Now we prove (ii). Since C is monic, it is a Gröbner basis of sat(C),

and, from the specifications of the PALGIE algorithm, a basis of sat(T )
A

as well.

Thus CA
−1

:= {fA−1 | f ∈ C} is a basis of sat(T ). �
From now on, we assume that the coefficients of the matrix M = (mij) are

pairwise different variables. We view the coefficients of M , as well as the coef-
ficients of all polynomials, as elements of the field of rational functions k(mij).

Moreover, the base field k is either R or C so that the affine space k
n

is endowed
with the Euclidean topology. In this context, we recall from [1] that the quasi-
component W (T ) has the same closure in both the Euclidean and the Zariski
topologies.

Theorem 2 For all values of (mij) such that V (rAT , rC) is empty, we have

lim(W (T )) = {A−1(y) | y ∈ V (hAT ) ∩ W (C)}. (6)

Proof. Observe first that V (rAT , rC) is empty if and only if V (rT , r
A−1

c ) is

empty. Observe next that any zero ζ ∈ k
n

of hT extends a zero ζ ′ ∈ k
d

of rT ,
see [5]. Therefore, for any choice of the parameters (mij) such that V (rAT , rC) is
empty, one can let (x1, . . . , xn) approach a given root of hT while staying within

a bounded open set of WA−1

(C) leading to finitely many (possibly zero) finite

limits for (x1, . . . , xn). Since, by construction, the constructible sets WA−1

(C)
and W (T ) have the same Zariski closure, it follows that the points of V (hAT ) ∩
W (C) are the images by A of the desired limit points of W (T ). �

Example 2 Consider the regular chain T := {x4, x2x3 + x21} ⊂ Q[x1 < x2 <
x3 < x4] and the linear change of coordinates A corresponding to the matrix

M =


0 0 0 1
0 1 1 0
0 1 0 0
1 0 0 0

 .

Using the extended of PALGIE, we can compute C := {x4, x23 + x2x3 + x21}
and consequently, rAT = x21 and rC = 1. Then 〈rAT , rC〉 = 〈1〉 holds. Using
Triangularize command of Maple, one can get

〈C, hAT 〉A
−1

= 〈x4, x2, x1〉 = lim(W (T )).

Corollary 1 Assume that T generates sat(T ). Then we have

lim(W (T )) = V (T ) \W (T ) (7)



Hence, lim(W (T )) can be obtained by set-theoretic operations on constructible
sets. Moreover, generically, the set lim(W (T )) is determined by V (hAT ) ∩ W (C).

Proof. We prove the first claim. The hypothesis implies V (T ) = W (T ).
Since V (T ) = W (T ) ∪ (V (T ) ∩ V (hT )), the conclusion follows. The second
claim follows immediately from Theorems 2 and 1. �

6 On the computation of lim(W (T )) and sat(T )

Let T be a regular chain whose saturated ideal has dimension d. A driving ap-
plication of this paper is the computation of lim(W (T )). Section 5 was primarily
dedicated to the case where T is a basis of its saturated ideal, while in the
present section we replace this assumption by others. Recall that we have the
follow equalities:

V (sat(T )) = W (T ) =
(
W (T ) ∩ V (hT )

)
∪W (T ) = lim(W (T )) ∪W (T ).

Therefore, computing lim(W (T )) and computing V (sat(T )) are equivalent prob-
lems. Theorems 3, 4 and Lemma 2 below deal with the latter problem while
Proposition 3 is concerned with the former. All these results make some as-
sumption on T and we do not know a general procedure for computing either
lim(W (T )) or V (sat(T )) that would avoid Gröbner basis calculation.

Lemma 1 Let I be a radical ideal of k[x]. Let h ∈ k[x]. Assume that the di-
mension of any associated prime p of I is at least d. Then dim(V (I, h)) < d
implies that h is regular modulo I. If the dimension of any associated prime p of
I is d, that is, if I is an unmixed ideal of dimension d, then dim(V (I, h)) < d
holds if and only if h is regular modulo I.

Proof. Let I = ∩si=1pi, where pi are the associated prime of I. Assume that
dim(V (I, h)) < d, it is enough to show that h does not belong to any pi. On
the other hand, we have V (I, h) = ∪si=1V (pi, h). If h belongs to some pi, then
V (pi, h) = V (pi). Since dim(pi) ≥ d, we know that dim(V (I, h)) ≥ d, which is a
contradiction to the assumption that dim(I, h) < d.

If I is an unmixed ideal of dimension d, by the above argument, dim(V (I, h)) <
d implies that h is regular modulo I. On the other hand, if h is regular modulo
I, then h does not belong to any pi. Thus dim(V (I, h)) = max(dim(V (pi, h))) <
max(dim(pi)) = d. �

Theorem 3 Let T ⊂ k[x] be a regular chain with free variables x1, . . . , xd.
Let hT be the product of the initials of the polynomials in T . Then, we have√
〈T 〉 =

√
sat(T ) if and only if dim(V (T, hT )) < d holds.

Proof. First we claim that for any associated prime p of
√
〈T 〉, we have

dim(p) ≥ n − d. To prove this, we first notice that the associated primes p of√
〈T 〉 are exactly the minimal associated primes p of 〈T 〉. On the other hand,



since 〈T 〉 ⊆ sat(T ) and V (sat(T )) 6= ∅ hold, we know that 〈T 〉 generates a proper
ideal. By Krull’s principle ideal theorem, for any minimal associated prime p of
〈T 〉, the height of p is less than or equal to |T |. Since |T | = n − d, we have
dim(p) ≥ n− d. The claim is proved.

Now we prove that we have
√
〈T 〉 =

√
sat(T ) if and only if dim(V (T, hT )) <

d holds. First, we show that the condition is sufficient. If dim(V (T, hT )) < d
holds, with the previous claim and Lemma 1, we deduce that hT is regular
modulo

√
〈T 〉. Thus, we have

√
sat(T ) =

√
〈T 〉 : h∞T =

√
〈T 〉 : h∞T =

√
〈T 〉.

Next, we show that the condition is necessary. If
√
〈T 〉 =

√
sat(T ), then

√
〈T 〉

is an unmixed ideal and hT is regular modulo
√
〈T 〉. Thus, dim(V (T, hT )) < d

holds by Lemma 1. �

Remark 2 As an immediate corollary, we have V (T ) = W (T ) if and only
if dim(V (T, hT )) < d. There are many ways to compute the dimension of an
algebraic set. In particular, this dimension can be determined by computing a
Kalkbrener triangular decomposition. We denote by IsClosure a procedure to test
V (T ) = W (T ), by applying Theorem 3.

Example 3 Consider the regular chain T := {x1x2 + x1, x1x3 + 1} of Q[x1 <
x2 < x3]. Since the first polynomial is not primitive w.r.t. x2, T is not a primitive
regular chain in the sense of [13]. Since V (T, x1) = ∅ holds, applying Theorem 3,
we have

√
〈T 〉 =

√
sat(T ). Actually 〈T 〉 = sat(T ) also holds.

Theorem 4 Let T be a regular chain of k[x] with free variables x1, . . . , xd. Let
C1, . . . , Cs ⊂ k[x]. Assume that 〈Ci〉 ⊆

√
sat(T ) holds, for all i = 1, . . . , s. Let

I = 〈T,C1, . . . , Cs〉. Then
√

sat(T ) =
√
I if and only if there exist regular chains

Ti, i = 1, . . . , t, such that each of the following properties hold:

(i)
√
I = ∩ti=1

√
sat(Ti),

(ii) |T1| = · · · = |Tt| = n− d,
(iii) hT is regular modulo all

√
sat(Ti).

Proof. The direction “⇒”obviously holds. Next we prove the direction
“⇐”. By (i) and (ii), we know that

√
I is an unmixed ideal of dimension d. Since

hT is regular modulo all
√

sat(Ti), by Lemma 1, we have dim(V (hT , sat(Ti))) <
d. Thus dim(V (I, hT )) < d holds. Applying Lemma 1 again, we know that hT is
regular modulo

√
I. Thus

√
I =
√
I : h∞T =

√
I : h∞T holds. On the other hand,

we have 〈T 〉 ⊆ I, thus we deduce that
√

sat(T ) ⊆
√
I. Since I = 〈T,C1, . . . , Cs〉

and 〈Ci〉 ⊆
√

sat(T ), we also have I ⊆
√

sat(T ). The theorem is proved. �

Remark 3 In Theorem 4, if s = 0, then the theorem trivially holds for t = 1
and T1 = T . In practice, for example in Algorithm 1, the polynomial sets Ci, for
all i = 1, . . . , s, are regular chains for different orderings such that

√
sat(Ci) =√

sat(T ) holds. Let T1, . . . , Tt be regular chains in the output of Triangularize(I).

Then (i) automatically holds. If condition (ii) is satisfied, then W (T ) = V (I)
holds if and only if (iii) holds, which is easy to check by computing iterated
resultants of hT w.r.t. the regular chains Ti. Thus, this theorem provides an
algorithmic recipe which may compute W (T ) in somes cases, see Algorithm 1.



Algorithm 1: Closure(T)

Input: A non-empty regular chain T of k[x1 < · · · < xn].
Output: Return ∅ or a polynomial set G such that W (T ) = V (G). If ∅ is

returned, this means that the algorithm fails to compute W (T ).
1 begin
2 G := ∅;
3 for i from 1 to n do
4 if i = 1 then
5 C := T ;
6 else
7 let R be the ordering xi < xi+1 < · · · < xn < x1 · · · < xi−1;
8 D := PALGIE(T,R);
9 if |D| 6= 1 then

10 return ∅
11 else
12 let C be the only regular chain in D;

13 if IsClosure(C) then
14 return C;
15 else
16 G := G ∪ C;
17 D := Triangularize(G,mode = K)// compute a Kalkbrener

triangular decomposition of V (G)
18 if all regular chains in D have dimension d and hT is regular w.r.t.

each of them then
19 return G

20 return ∅;

Example 4 We illustrate Algorithm 1 on one example. Consider the regular
chain T := {x52 − x21, x1x3 − x22(x2 + 1)} of Q[x1 < x2 < x3]. Then V (T, x1) :=
{(x1, x2, x3) | x1 = x2 = 0}, whose dimension is 1. By Theorem 3, we know
that V (T ) 6= V (sat(T )). Let C := {x2x23 − x22 − 2x2 − 1, x3x1 − x32 − x22} be
another regular chain of Q[x2 < x3 < x1]. One can verify that sat(C) = sat(T )
holds. Let I := 〈C, T 〉. A Kalkbrener triangular decomposition of I w.r.t. the
order x1 < x2 < x3 consists only of one regular chain, which is T itself. Thus
by Theorem 4, we have V (sat(T )) = V (I).

Remark 4 We selected 22 one-dimensional non-primitive regular chains to test
Algorithm 1. For 10 of them, the algorithm could successfully compute W (T ).
We also tested some random examples. The random regular chains are generated
as follows. We choose a pair of random polynomials with 4 variables and of total
degree 2. Then we apply Triangularize to this pair, thus obtaining 2-dimensional
regular chains. In this way, we generated 20 regular chains, out of which 16
turned out to be non-primitive regular chains. Algorithm 1 successfully computed
W (T ) for 10 of those 16 examples.



Lemma 2 Let T = {t2(x1, x2), t3(x1, x3), . . . , ts(x1, xs)} be a regular chain of
k[x1 < · · · < xs]. Assume that for all i = 2, . . . , s, the polynomial ti is a primitive
polynomial w.r.t. its main variable xi. Then, the regular chain T generates its
saturated ideal.

Proof. To prove this lemma, it is enough to prove by induction that sat(Ti) =
〈Ti〉, for i = 2 . . . , s, where Ti := {t2, . . . , ti}. The lemma clearly holds for i = 2.
Assume that the regular chain Ti−1 is generating its saturated ideal. If tail(ti) is
invertible modulo 〈init(ti)}∪Ti−1〉, then 〈Ti〉 = sat(Ti) holds (see [13]). Suppose
that tail(ti) is not invertible modulo 〈{init(ti)} ∪ Ti−1〉, then 〈{init(ti)} ∪ Ti−1〉
generates a proper zero-dimensional ideal, since init(ti) is regular modulo 〈Ti−1〉.
Let p be an associated prime of this ideal. If tail(ti) is not regular modulo p,
then all the coefficients of ti belong to p. On the other hand, since ts(x1, xi) is
primitive, the ideal formed by the coefficients of ti is the field k, a contradiction.
�

Remark 5 If a regular chain T has the same shape as in Lemma 2, except that
the polynomials ti are not necessarily primitive, for i = 2, . . . , s, then by making
all the polynomials ti primitive, we obtain a new regular chain T ′ such that we
have 〈T ′〉 = sat(T ′) = sat(T ).

Example 5 Let T := {x23 − 2x1, 3x
3
2 + 4x21} ⊂ Q[x1 < x2 < x3] be a 1-

dimensional regular chain. As you can see both elements of T are primitive
bivariate polynomials. Then Lemma 2 implies that T generates its saturated ideal.

Example 6 The above lemma clearly does not hold for regular chains with more
than one free variable. Consider for example the regular chain T := {x1x3 +
x2, x1x4 + x2}, where x1 < x2 < x3 < x4. It is clear that x4 − x3 /∈ 〈T 〉.
However, one can prove that x4 − x3 ∈ sat(T ) because x1x4 + x2 = x1(x4 − x3)
modulo 〈x1x3 + x2〉.

Lemma 3 Let T ⊂ k[x] be a regular chain with free variable x1. Let C2 = T and
let Ci, for 3 ≤ i ≤ n, be regular chains w.r.t. the order x1 < xi < x\{x1, xi} such
that

√
sat(Ci) =

√
sat(T ). Assume that all the polynomials of Ci are primitive

w.r.t. their main variables for i = 2, . . . , n. Then dim(V (C2, . . . , Cn)) = 1 holds.

Proof. By the fact that W (T ) = W (Ci), we know that W (T ) ⊆ V (C2, . . . , Cn),
which implies that dim(V (C2, . . . , Cn)) ≥ 1. Let ci be the polynomial in Ci
with the main variable xi. Then the set C := {c2, . . . , cn} is clearly a regular
chain since init(ci) ∈ k[x1] holds for each i = 2, . . . , s. Moreover C generates its
saturated ideal by Lemma 2. Thus dim(V (C)) = 1. Since V (C2, . . . , Cn) ⊆ V (C),
we know that dim(V (C2, . . . , Cn)) ≤ 1. Thus the lemma holds. �

Example 7 Let T := {x52−x41, x1x3−x22} be a regular chain of Q[x1 < x2 < x3].
Let also C := {x53 − x31, x23x2 − x21} be a regular chain of Q[x1 < x3 < x2] for
which we have sat(C) = sat(T ). One can verify that dim(V (T,C)) = 1. Indeed
a Kalkbrener triangular decomposition of T ∪ C computed by the Triangularize



command of RegularChains library w.r.t. the order x1 < x2 < x3 is {T,D},
where D := {x1, x2, x3}.

It is easy to observe that the decomposition computed by Triangularize is re-
dundant, that is we have sat(T ) ⊆ sat(D) holds. By Theorem 4, we conclude that√
〈T,C〉 =

√
sat(T ). However, for this example, Algorithm 1 fails to compute

the set G such that W (T ) = V (G), since T and D do not have the same height.

Lemma 3, Example 7 and Theorem 4 show that it is possible to compute sat(T )
by a change of order of the variables. One might wonder if this is always true.
In particular, we ask the following two questions.

Question 1 Let C1, . . . , Cn be regular chains of k[x] w.r.t. the order xi <
xi+1 < · · · < xn < x1 · · · < xi−1, for i = 1, . . . , n. Assume that

√
sat(C1) =

· · · =
√

sat(Cn). Does
√

sat(C1) =
√
〈∪ni=1Ci〉 always hold?

Question 2 Let C1, . . . , Cn be polynomial sets of k[x] such that Ci is a regular
chain for the order xi < xi+1 < · · · < xn < x1 · · · < xi−1, for i = 1, . . . , n.
Assume that

√
sat(Ci) =

√
sat(Cj) for all 1 ≤ i < j ≤ n. Let Pi ∈ Ci be the

polynomial of least rank. Let H1 be the product of the initials of C1. Does the
relation

lim(W (C1)) = V (C1 ∪ {P1, . . . , Pn, H1})

always hold?

To answer the two questions, we investigated over 35 different polynomial
systems, and all of them succeeded but two of which failed. Here is one of them.

Example 8 Suppose T := {t1, t2} ⊂ Q[x1 < x2 < x3 < x4] is a regular
chain of dimension two, where t1 = −93x1x

2
2 + (53x1 − 35)x2 + 93x31− 26x21−

57x1 and t2 = 93x1x4+
(
(3233x1 − 2135)x2 + 5673x31 + 213x21 − 3477x1

)
x3+(

−530x21 − 3091x1
)
x2−930x41 +6119x31 +570x21−1767x1. One can verify that

T does not generate its saturated ideal.
Following the notations if Question 1, using PALGIE, we will be able to com-

pute regular chains Ci for i = 1, . . . , 4 w.r.t the orders mentioned in Question 1.
To see whether the statement of Question 1 is true or not, on one hand, we
can find the Kalkbrener triangular decomposition {C1, R1, R2} for V (∪4i=1Ci)
where C1 = T , R1 := {x4 − 19, x2, x1}, and R2 := {961x24 + 42428x4 +
279756, x3, x2, x1}.

On the other hand, using methods based on Gröbner bases computations to
find a generator for sat(C1), one can find the Kalkbrener triangular decomposi-
tion {C1, R1} for V (sat(C1)).

Therefore, we have

V (sat(C1)) = W (C1) ∪W (R1) 6= V (∪4i=1Ci) = W (C1) ∪ W (R1) ∪W (R2).

This shows that the statement of Question 1 is not true.
Furthermore,



V (C1 ∪ {P1, . . . , P4, H1}) = W (R1) ∪ W (R2)

where H1 is the product of the initials of C1 and Pi is the polynomial in Ci
with least rank for i = 1, . . . , 4. But the correct limit points are only represented
by R1 which means lim(W (C1)) 6= V (C1 ∪ {P1, . . . , P4, H1}). Cosequently,
for this example, the answer to both Questions 1 and 2 is negative.

In Example 8, as one can see, we computed the limit points plus some extra
points. The extra component R2 in this example is of dimension 0 while the limit
points we are expecting are of dimension 1.

Proposition 3 Let T be a regular chain such that 〈sat(T )〉 has dimension d
and let F ⊂ 〈sat(T )〉 such that either V (T ∪ F ∪ {hT }) has dimension d − 1
and is irreducible. Suppose also that lim(W (T )) is not empty. Then, we have
lim(W (T )) = V (T ∪ F ∪ {hT }).

Proof. The proof is straightforward. �

Example 9 Consider the regular chain T := {x1 x3 + x2, x2 x4 + x1} ⊂ Q[x1 <
x2 < x3 < x4]. One can consider F to be the regular chain computed by applying
PALGIE to T w.r.t. the variable order x3 < x4 < x1 < x2 and consequently,
“fish” the polynomial x3 x4 − 1 ∈ sat(T ). Then

V (T ∪ F ∪ {hT }) = V (x1 x3 + x2, x2 x4 + x1, x3 x4 − 1, x1 x2)
= V (x1, x2, x3 x4 − 1)
= lim(W (T )).

7 Conclusion

Among all the methods we have considered for computing lim(W (T )) and sat(T ),
those based on linear changes of coordinates seem very promising. They are a
good trick for finding a subset F ⊂ sat(T ) such that F∪T is a basis of sat(T ), see
Proposition 3. To develop that direction further, we are currently investigating
the following related questions:

– decide whether lim(W (T )) is empty
– decide whether W (R) ⊆ lim(W (T )) for a given regular chain.
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