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Abstract. For a set S of cells in a cylindrical algebraic decomposition of
Rn, we introduce the notion of generalized cylindrical algebraic formula
(GCAF) associated with S. We propose a multi-level heuristic algorithm
for simplifying the cylindrical algebraic formula associated with S into
a GCAF. The heuristic strategies are motivated by solving examples
coming from the application of automatic loop transformation. While the
algorithm works well on these examples, its effectiveness is also illustrated
by examples from other application domains.

1 Introduction

Cylindrical algebraic decomposition (CAD), introduced by G. E. Collins [8], is
a fundamental tool in real algebraic geometry. One of its main applications,
also the initial motivation, is to solve quantifier elimination problems in the first
order theory of real closed fields. Since its introduction, CAD has been improved
by many authors and applied to numerous applications. The implementation of
CAD is now available in different software, such as QEPCAD, Mathematica,
Redlog, SyNRAC, RegularChains, and many others.

A CAD of Rn decomposes Rn into disjoint connected semi-algebraic sets,
called cells, such that any two cells are cylindrically arranged, which implies
that the projections of any two cells onto any Rk, 1 ≤ k < n, are either identical
or disjoint. For a given semi-algebraic set S, one can compute a CAD C such that
S can be written as a union of cells in C. Each cell is represented by a cylindrical
algebraic formula (CAF) [14], whose zero set is the cell.

The CAF φc(x1, . . . , xn) representing a CAD cell c of Rn is a conjunc-
tion of finitely many atomic formulas of the form xi σ Rootxi,k(p), where p ∈
R[x1, . . . , xi] and Rootxi,k(p) denotes the k-th real root (counting multiplicities)
of p treated as a univariate polynomial in xi. The precise definition of CAF is
given in Section 2. The CAF φc(x1, . . . , xn) has a very nice property, namely the
projection of c onto Rj , 1 ≤ j < n, is exactly the zero set of the sub-formula
of φc, which is obtained by taking the conjunction of all atomic formulas in φc
involving only the variables x1, . . . , xj . Let S be a set of cells c1, . . . , ct from
a CAD C. Denote by φS the zero set of S, thus we have φS := ∨ti=1φci . The
formula φS is also called a cylindrical algebraic formula.



A CAF is a special extended Tarski formula, see [2]. While a Tarski formula
is often the default output of quantifier elimination procedures, a CAF is also
important for several reasons. Firstly, computing CAFs can be done by means of
a CAD procedure without introducing additional augmented projection factors,
which can bring substantial savings in terms of computation resources. Secondly,
CAFs have a nice structure: the projection of a CAF onto any lower-dimensional
space can be easily read off from the CAF itself, as mentioned before. Moreover,
since a CAF is used to describe CAD cells, it naturally exhibits a polychoto-
mous structure. This property is usually not true for Tarski formula output.
Thirdly, each atomic formula of a CAF has the convenient format x σ E, where
E is an indexed root expression. This explicit expression is particularly useful
in applications which care about the specific value of each coordinate, like in
loop transformations of computer program [12, 11]. Last but not least, perform-
ing set-theoretical operations on CAFs can be done efficiently, without explicit
conversion to Tarski formulas [14]. This latter property supports an incremental
algorithm for computing CADs [15].

While CAFs have many advantages, they have also their own drawbacks.
Firstly, indexed root expressions are usually less handy to manipulate than poly-
nomial expressions. This is because a polynomial function is defined everywhere
while an indexed root expression is usually defined on a particular set. Secondly,
due to numerous CAD cells being generated, a CAD-based QE solver usually
outputs very lengthy CAFs, which could make the output formula not easy to
use. For the particular application of loop transformation of computer programs,
too many case distinctions might substantially increase the arithmetic cost of
evaluating the transformed program as well as the number of misses in accessing
cache memories. Therefore, simplification of CAFs is clearly needed. However, we
have not seen much literature devoted to this topic except Chapter 8 of Brown’s
PhD thesis [2], The differences between Brown’s approach and the one proposed
is the present paper are discussed in Section 6. We remark that the Reduce

command of Mathematica does perform some simplification before outputting
CAFs. See Section 5 for an experimental comparison with Mathematica.

Since CAFs are generated from CAD cells, it is a natural idea to make use of
the CAD data structure to simplify CAFs. In this paper, we produce a multi-level
merging procedure for simplifying CAFs by exploiting structural properties of
the CAD from which those CAFs are being generated. Although this procedure
aims at improving the output of CAD solvers based on regular chains, it is also
applicable to other CAD solvers. The merging procedure, presented formally
in Section 4, consists of several reasonable and workable heuristics, most of
which are motivated by solving examples taken from [12, 7]. See Section 3 for
details. The simplification procedure has four levels, where an upper level never
produces more conjunctive clauses than the lower levels. The first two levels
merge adjacent CAD cells, whereas the last two levels attempt to simplify a CAF
into a single conjunctive clause, which is usually expected in the application of
loop transformation. Thus the first two levels are expected to be effective for
general QE problems whereas the last two are expected to be effective for QE



problems arising from loop transformation. This expectation is justified also by
the experimentation in Section 5.

The method has been implemented and new options are added to both the
CylindricalAlgebraicDecompose and QuantifierElimination commands of the Regu-

larChains library. The effectiveness of this algorithm is illustrated by examples
in Sections 3 and 5. The experimentation shows that our heuristics work well.
The running time overhead of simplification compared to the running time of
the quantifier elimination procedure itself is negligible in the first two levels and
acceptable in the advanced levels of the proposed heuristics.

There have already been a few works on the simplification of Tarski formu-
las, see for example [10, 4, 3, 13]. Our work is concerned with the simplification
of extended Tarski formulas, which allow indexed root expressions besides poly-
nomial constraints. Moreover, the simplification goal here is to reduce as much
as possible the number of conjunctive CAF clauses while still maintaining the
feature of case distinctions. We emphasize that the motivation and the main tar-
geting application of this work is to unify the CAFs generated in the application
of loop transformation. In such applications, explicit bounds of loop indices are
needed and the number of case distinctions is expected to be as small as possible
in order to reduce the code size.

2 Preliminary

In this section, we first review the notion of cylindrical algebraic decomposition
and cylindrical algebraic formula (CAF). Then we define the notion of general-
ized CAF in order to represent the combination of CAFs.

Real algebraic function. Let S ⊂ Rn. Let f(x1, . . . , xn, y) ∈ R[x1, . . . , xn, y].
Let k be a positive integer. Assume that for every point α of S, the univariate
polynomial f(α, y) has at least k real roots ordered by increasing value, counting
multiplicities. Let Rooty,k(f) be a function which maps every point α of S to
the k-th real root of f(α, y). The function Rooty,k(f) is called a real algebraic
function defined on S.

Stack over a semia-algebraic set. Let S be a connected semi-algebraic subset
of Rn−1. The cylinder over S in Rn is defined as ZR(S) := S×R. Let θ1 < · · · <
θs be continuous real algebraic functions defined on S. Denote θ0 = −∞ and
θs+1 :=∞. The intersection of the graph of θi with ZR(S) is called the θi-section
of ZR(S). The set of points between θi-section and θi+1-section, 0 ≤ i ≤ s, of
ZR(S) is a connected semi-algebraic subset of Rn, called a (θi, θi+1)-sector of
ZR(S). The sequence (θ0, θ1)-sector, θ1-section, (θ1, θ2)-sector, . . ., θs-section,
(θs, θs+1)-sector form a disjoint decomposition of ZR(S), called a stack over S,
which is uniquely defined for given functions θ1 < · · · < θs.

Cylindrical algebraic decomposition. Let πn−1 be the standard projection from
Rn to Rn−1 mapping (x1, . . . , xn−1, xn) onto (x1, . . . , xn−1). A finite partition
D of Rn is called a cylindrical algebraic decomposition (CAD) of Rn if one of the
following properties holds.



– either n = 1 and D is a stack over R0,
– or the set of {πn−1(D) | D ∈ D} is a CAD of Rn−1 and each D ∈ D is a

section or sector of the stack over πn−1(D).
When this holds, the elements of D are called cells. The set {πn−1(D) | D ∈ D}
is called the induced CAD of D. A CAD D of Rn can be encoded by a tree, called
a CAD tree (denoted by T ), as below. The root node, denoted by r, is R0. The
children nodes of r are exactly the elements of the stack over R0. Let Tn−1 be a
CAD tree of the induced CAD of D in Rn−1. For any leaf node C of Tn−1, its
children nodes are exactly the elements of the stack over C.

Cylindrical algebraic formula. Let c be a cell in a CAD of Rn. A cylindrical
algebraic formula associated with c, denoted by φc, is defined recursively.
(i) The case for n = 1. If c = R, then φc := true. If c is a point α, then define

φc := x1 = α. If c is an open interval (α, β) 6= R, then φc := c > α ∧ c < β.
For the special case that α = −∞, then φc is simply written as c < β.
Similarly if β = +∞, φc is simply written as c > α.

(ii) The case for n > 1. Let cn−1 be the projection of c onto Rn−1. If c = cn−1×R,
then define φc := φcn−1 . If c is an θi-section, then φc := φcn−1 ∧ xn = θi. If c
is an (θi, θi+1)-sector, then φc := φcn−1 ∧ xn > θi ∧ xn < θi+1. If θi = −∞,
then φc is simply written as φcn−1

∧ xn < θi+1. If θi+1 = +∞, then φc is
simply written as φcn−1

∧ xn > θi.
If φc is the CAF associated with c, its zero set is defined as ZR(φc) := c. Let S
be a set of disjoint cells in a CAD. If S = ∅, φS := false. Otherwise, a CAF
associated with S is defined as φS := ∨c∈Sφc. Its zero set is ZR(φS) := ∪c∈Sc.

Example 1 Consider the closed unit disk S defined by x2 + y2 ≤ 1. Then a
CAF associated with S is as below.

(x = −1 ∧ y = 0) ∨ (−1 < x ∧ x < 1 ∧ y = −
√

1− x2)

∨ (−1 < x ∧ x < 1 ∧ −
√

1− x2 < y ∧ y <
√

1− x2)

∨ (−1 < x ∧ x < 1 ∧ y =
√

1− x2)
∨ (x = 1 ∧ y = 0)

Extended Tarski formula [2]. A (restricted) extended Tarski formula (ETF)
is a Tarski formula, with possibly the addition of atomic formulas of the form
xi σ Rootxi,k(f), where Rootxi,k(f), 1 ≤ i ≤ n, is a real algebraic function
(defined on some set), and σ ∈ {=, 6=, >,<,≥,≤}. Given an ETF Φ, we can
always write it in a disjunctive normal form Φ = ∨si=1 ∧

si
j=1 φi,j . Let Φi :=

∧sij=1φi,j . Assume that the variables x1, . . . , xn are ordered as x1 < · · · < xn. Let
v(φi,j) be the biggest variable appearing in φi,j . Then we can always arrange
the order of atomic formulas appearing in each Φi such that for any φi,j1 and
φi,j2 , where j1 < j2, we have v(φi,j1) ≤ v(φi,j2). Let w ∈ {x1, . . . , xn}. Denote
by Φ<wi := ∧v(φi,j)<wφi,j . We say Φi is proper if for any j = 1, . . . , si, if φi,j =
v σ Rootv,k(f), then Rootv,k(f(α)) is defined for all α satisfying Φ<vi . We say Φ
is proper if every Φi is proper. It is clear that a CAF is a proper restricted ETF.

Generalized Cylindrical Algebraic Formula (GCAF). Let S be a set of disjoint
cells in a CAD of Rn. A GCAF associated with S, denoted by Φ, is a proper
restricted ETF Φ = ∨si=1 ∧

si
j=1 φi,j such that



– the zero set of Φ is exactly ∪c∈Sc,
– the zero set of Φi := ∧sij=1φi,j is a union of some cells in S,
– the zero sets of Φi and Φj are disjoint for 1 ≤ i < j ≤ s,
– each φi,j is of the form v = Rootv,k(f), where v ∈ {x1, . . . , xn},
– for every w ∈ {x1, . . . , xn}, we have π<w(Φ≤wi ) = (Φ<wi ), where Φ≤wi :=
∧v(φi,j)≤wφi,j and Φ<wi := ∧v(φi,j)<wφi,j .

A GCAF clearly has a cylindrical structure justifying its name. Note that both a
CAF and a GCAF can be naturally encoded in a tree data structure, with each
node representing an atomic formula φi,j . This tree together with the CAD cells
information is used in algorithms for simplifying CAFs in Section 4.

Example 2 Both (−1 ≤ x ∧ x ≤ 1 ∧ −
√

1− x2 ≤ y ∧ y ≤
√

1− x2) and

(x = −1 ∧ y = 0) ∨ (−1 < x ∧ x < 1 ∧ −
√

1− x2 ≤ y ∧ y ≤
√

1− x2)
∨ (x = 1 ∧ y = 0)

are GCAFs equivalent to the CAF in Example 1.

The simplification procedure presented in this paper turns a CAF φ (in dis-
junctive normal form) into an equivalent GCAF Φ (in disjunctive normal form).
We say Φ is simpler than φ if the number of conjunctive clauses in Φ is strictly
less than that of φ.

3 Motivating examples

In this section, we go through several examples, coming from the application
of automatic loop transformation, so as to introduce the heuristic strategies for
combing CAFs. Those strategies are formally presented in Section 4. We refer
the reader to [12, 7] for the application background of these examples.

Example 3 We consider polynomial multiplication with synchronous schedul-
ing. It is formulated as the following quantifier elimination problem. If no simpli-
fication is applied, the result consists of 10 conjunctive clauses, as shown below.

ff := &E([i,j]), (0 <= i) &and (i <= n) &and (0 <= j) &and

(j <= n) &and (t = n - j) &and (p = i + j);

R := PolynomialRing([i,j,p,t,n]);

sols := QuantifierElimination(ff, R, output=rootof, simplification=false);

‘&or‘(‘&and‘(n = 0,t = n,p = 0),‘&and‘(0 < n,t = 0,p = n),

‘&and‘(0 < n,t = 0,n < p,p < 2*n),‘&and‘(0 < n,t = 0,p = 2*n),

‘&and‘(0 < n,0 < t,t < n,p = -t+n),‘&and‘(0 < n,0 < t,t < n,-t+n < p,p < 2*n-t),

‘&and‘(0 < n,0 < t,t < n,p = 2*n-t),‘&and‘(0 < n,t = n,p = 0),

‘&and‘(0 < n,t = n,0 < p,p < n),‘&and‘(0 < n,t = n,p = n))

We observe that some conjunctive clauses can be merged into one. For instance,
consider the subformula

(0 < n ∧ t = 0 ∧ p = n) ∨ (0 < n ∧ t = 0 ∧ n < p ∧ p < 2n)
∨ (0 < n ∧ t = 0 ∧ p = 2n)

. (1)



Note that (0 < n ∧ t = 0) is common to all three conjunctive clauses. Applying
the distributivity law, the above formula is equivalent to

(0 < n ∧ t = 0) ∧ ((p = n) ∨ (n < p ∧ p < 2n) ∨ (p = 2n)) .

Observe that (p = n) ∨ (n < p ∧ p < 2n) ∨ (p = 2n) can be combined into
one conjunctive clause, namely n ≤ p ∧ p ≤ 2n. Thus, the above sub-formula of
Equation (1) is equivalent to

0 < n ∧ t = 0 ∧ n ≤ p ∧ p ≤ 2n.

The above transformation can be explained in the language of CAD. Here (0 <
n ∧ t = 0) represents a CAD cell of R2 while p = n, n < p ∧ p < 2n, and p = 2n
represent respectively three adjacent children of it, which makes the combination
straightforward. This observation forms our first idea. Applying this strategy to
the entire expression in Equation (1) yields the following simplified formula:

‘&or‘(‘&and‘(n = 0,t = n,p = 0),

‘&and‘(0 < n,t = 0,n <= p,p <= 2*n),

‘&and‘(0 < n,0 < t,t < n,-t+n <= p,p <= 2*n-t),

‘&and‘(0 < n,t = n,0 <= p,p <= n)

Let us look at the last three conjunctive clauses. At first glance, it seems that
they cannot be combined into one. A key observation is that if we specialize
−t + n ≤ p ∧ p ≤ 2n − t at t = 0 and t = n, we obtain n ≤ p ∧ p ≤ 2n and
0 ≤ p∧p ≤ n. Thus the last three conjunctive clauses can be combined into one:

‘&and‘(0 < n,0 <= t,t <= n,-t+n <= p,p <= 2*n-t).

Applying this specialization technique again, we obtain the final output:

‘&and‘(0 <= n,0 <= t,t <= n,-t+n <= p,p <= 2*n-t).

Combining together the two simplification techniques introduced in Exam-
ple 3 forms the basis for the first level of our simplification procedure. Here is the
result produced by the QuantifierElimination command of the RegularChains
library at level L1:

QuantifierElimination(ff, R, output=rootof, simplification=’L1’);

((((0 <= n) &and (0 <= t)) &and (t <= n)) &and

(-t + n <= p)) &and (p <= 2 n - t)

Example 4 In this example, we consider polynomial multiplication with asyn-
chronous scheduling. The following shows the output without using simplifica-
tion. The output has 12 conjunctive clauses.

ff := &E([i,j]), (0 <= i) &and (i <= n) &and (0 <= j) &and (j <= n) &and

(t = n - j) &and (p = i + j);

R := PolynomialRing([i,j,t,p,n]);

sols := QuantifierElimination(ff, R, output=rootof, simplification=false);

‘&or‘(‘&and‘(n = 0,p = 0,t = n), ‘&and‘(0 < n,p = 0,t = n),



‘&and‘(0 < n,0 < p,p < n,t = -p+n),

‘&and‘(0 < n,0 < p,p < n,-p+n < t,t < n),‘&and‘(0 < n,0 < p,p < n,t = n),

‘&and‘(0 < n,p = n,t = 0),‘&and‘(0 < n,p = n,0 < t,t < n),

‘&and‘(0 < n,p = n,t = n),‘&and‘(0 < n,n < p,p < 2*n,t = 0),

‘&and‘(0 < n,n < p,p < 2*n,0 < t,t < -p+2*n),

‘&and‘(0 < n,n < p,p < 2*n,t = -p+2*n),‘&and‘(0 < n,p = 2*n,t = 0))

Here is the result produced by the QuantifierElimination command of the
RegularChains library with the simplification level set to L1:

((((n = 0) &and (p = 0)) &and (t = 0)) &or (((((0 < n) &and (0 <= p))

&and (p <= n)) &and (-p + n <= t)) &and (t <= n))) &or (((((0 < n)

&and (n < p)) &and (p <= 2 n)) &and (0 <= t)) &and (t <= -p + 2 n))

The situation here is a bit interesting. It seems that it is impossible to combine
the three conjunctive clauses into one. This is because to make −p+n ≤ t∧ t ≤
n ⇐⇒ 0 ≤ t ∧ t ≤ −p + 2n hold, we must have −p + n = 0 and −p + 2n = n,
that is n = p must hold. This obviously does not always hold under either the
condition 0 < n ∧ 0 ≤ p ∧ p ≤ n or the condition 0 < n ∧ n < p ∧ p ≤ 2n.

However, if we look more closely at the example, we find that the formulas

∀n, p, t 0 < n ∧ 0 ≤ p ∧ p ≤ n ∧ −p+ n ≤ t ∧ t ≤ n =⇒ 0 ≤ t ∧ t ≤ −p+ 2n.

and

∀n, p, t 0 < n ∧ n < p ∧ p ≤ 2n ∧ 0 ≤ t ∧ t ≤ −p+ 2n =⇒ −p+ n ≤ t ∧ t ≤ n.

are always true. Thus the last two can be combined into one

0 < n ∧ 0 ≤ p ∧ p ≤ 2n ∧ −p+ n ≤ t ∧ t ≤ n ∧ 0 ≤ t ∧ t ≤ −p+ 2n.

This third simplification technique forms the foundation of option 3 of the algo-
rithm presented in the next section. Now, the simplified output consists of the
following single conjunction: The following is the simplified output.

((((((0 <= n) &and (0 <= p)) &and (p <= 2 n)) &and (n - p <= t))

&and (t <= n)) &and (0 <= t)) &and (t <= 2 n - p)

Example 5 Consider a more advanced example from [7]. Without simplifica-
tion, the output cannot be displayed completely. Below, we only display the first
2 and the last 2 conjunctive clauses. There are 223 conjunctive clauses, in total.

R := PolynomialRing([i, j, t, p, u, b, B, n]);

ff := &E([i,j]), (0 < n) &and (0 <= i) &and (i <= n) &and (0 <= j) &and

(j <= n) &and (t = n - j) &and (p = i + j) &and

(b>=0) &and (0<=u) &and (u<B) &and (p=b*B+u);

QuantifierElimination(ff,R,partial=true,output=rootof,simplification=false);

‘&or‘(‘&and‘(0 < n,0 < B,B < n,b = 0,u = 0,p = b*B+u,t = n),

‘&and‘(0 < n,0 < B,B < n,b = 0,0 < u,u < B,p = b*B+u,t = -u+n),

...

‘&and‘(0 < n,2*n < B,n/B < b,b < 2*n/B,u = -B*b+2*n,p = b*B+u,t = 0),

‘&and‘(0 < n,2*n < B,b = 2*n/B,u = 0,p = b*B+u,t = 0))



If the first two simplification techniques (options 1 or 2 in Section 4) are used,
there are 29 conjunctive clauses. We only display the first 2 and the last 2 ones.

‘&or‘(

‘&and‘(0 < n, 0 < B, B < n, 0 <= b, b <= -(B-n)/B, 0 <= u, u < B,

p = b*B+u, -B*b+n-u <= t, t <= n),

‘&and‘(0 < n, 0 < B, B < n, -(B-n)/B < b, b < n/B, 0 <= u, u <= -B*b+n,

p = b*B+u, -B*b+n-u <= t, t <= n),

...

‘&and‘(0 < n, 2*n < B, 0 < b, b < n/B, -B*b+n < u, u <= -B*b+2*n,

p = b*B+u, 0 <= t, t <= -B*b+2*n-u),

‘&and‘(0 < n, 2*n < B, n/B <= b, b <= 2*n/B, 0 <= u, u <= -B*b+2*n,

p = b*B+u, 0 <= t, t <= -B*b+2*n-u))

If we use Option 3, the output consist only 5 conjunctive clauses:

‘&or‘(

‘&and‘(0 < n,0 < B,B < 2*n,0 <= b,b <= 2*n/B,0 <= u,u < B,u <= -B*b+2*n,

p = B*b+u, -B*b+n-u <= t, t <= n, 0 <= t, t <= -B*b+2*n-u),

‘&and‘(0 < n, B = 2*n, b = 0, 0 <= u, u < 2*n,

p = u, n-u <= t, t <= n, 0 <= t, t <= 2*n-u),

‘&and‘(0 < n, B = 2*n, 0 < b, b < 1/2, 0 <= u, u <= -2*b*n+2*n,

p = 2*b*n+u, -2*b*n+n-u <= t, t <= n, 0 <= t, t <= -2*b*n+2*n-u),

‘&and‘(0 < n, B = 2*n, 1/2 <= b, b <= 1, 0 <= u, u <= -2*b*n+2*n,

p = 2*b*n+u, 0 <= t, t <= -2*b*n+2*n-u),

‘&and‘(0 < n, 2*n < B, 0 <= b, b <= 2*n/B, 0 <= u, u <= -B*b+2*n,

p = B*b+u, -B*b+n-u <= t, t <= n, 0 <= t, t <= -B*b+2*n-u))

The situation here is more subtle. It can be shown that the third one and the
fourth one can be combined together using the technique shown in option 3. But
it can not be combined with the second one by specialization. This is because
in the second one we have 0 ≤ u ∧ u < 2n while in the third one we have
0 ≤ u ∧ u ≤ −2bn+ 2n. When b = 0, the latter is equivalent to 0 ≤ u ∧ u ≤ 2n.
So a more general “pivot formula” is needed, which can be found in the first and
the fifth conjunctive clauses. The technical details are covered in Section 4. This
idea form the basis of option 4, which now brings a single conjunctive clause.

‘&and‘(0 < n,0 < B,0 <= b,b <= 2*n/B,0 <= u,u < B,u <= -B*b+2*n,

p = B*b+u, -B*b+n-u <= t, t <= n, 0 <= t, t <= -B*b+2*n-u)

4 Algorithm

In this section, we present a heuristic algorithm Merge for combining cylindrical
algebraic formulas, motivated by the examples shown in last section. In our algo-
rithm, we have several levels of simplification. The most advanced level requires
to decide the truth value of a quantifier free formula, which can be accomplished
by a special QE procedure such as the one in [5] for computing triangular de-
composition of semi-algebraic systems. In the following, we provide the pseudo



code for the algorithm and explain the subroutines in detail. The explanation
supplies a loose proof of the correctness of the algorithms.

The function Merge takes a CAF tree T as input and returns an equivalent
GCAF tree T . In below, we say a child node is even if it represents a section cell
and odd if it represents a sector cell. Merge is called recursively to merge its odd
children subtree first. The reason for doing this is that the representation of the
odd nodes might be used as a reference to merge the even nodes. At last, it calls
BasicMerge to merge the children of r, each of which is a rooted GCAF tree.

In BasicMerge, one type of subtree is treated in a special manner. It is a
subtree rooted at a node c in T consisting of a single path. Let Γ be such a sub-
tree of height h. It can be represented by a list of nodes {c0, c1, . . . , ch}, where
c0 := c and ci is the child of ci−1, i = 1, . . . , h. Each ci is uniquely identified by
an atomic formula ψ(ci) in a CAD tree data structure. In the following subrou-
tines, we use c.nodeRep to denote ψ(c0), c.rep to denote ∧hi=0ψ(ci), c.desRep to
denote ∧hi=1ψ(ci), and c.desDesRep to denote ∧hi=2ψ(ci). Denote by c.ancRep
the conjunction of c’s ascendants’ representing atomic formulas.

In the context of the subroutines, these objects are all well defined. The top
level function Merge always compresses such a tree Γ into a node. The procedure
starts by dividing children of r into blocks s.t. children in different blocks are not
adjacent. If opt is 1, the child node which has children is not processed. If opt is
3 or 4, the procedure tries to combine all the children nodes in a block into one.
If it fails, opt 2 is adapted to combine as much adjacent children nodes in a block
as possible. Note that we can also merge the nodes of the type xi < Rootxi,kf
and xi > Rootxi,kf into one xi 6= Rootxi,kf even the two nodes are not adjacent.
This justifies the call of IneqMerge.

The procedure BlockMergable is used to test if the children of r in a block
can be merged into one. Note that this function only handle the case that none
of the children nodes in the block have children. To merge the children nodes
which themselves have children, extra cost might be paid, since each subtree
rooted at a child node is for sure not a tree consisting of a single path. The
conjunction of the odd children is selected first as a pivot. If it fails and opt is
4, the conjunction of odd siblings of r is selected as a pivot.

When the procedure BlockMergable fails, the function NextMergable takes
over to merge adjacent nodes in a block incrementally, which calls SameDesRep to
test if the representation of the descendants of two adjacent nodes are equivalent.
The equivalence is conducted by some simple test. In the case that the adjacent
nodes have children, one checks if the subtrees rooted at them have physically
the same representation by calling ExactSameDesRep. Otherwise, some simple
specialization is conducted to check the equivalence.

5 Experimentation

In this section, we apply the algorithms of Section 4 to more examples. A com-
parison with the Reduce command of Mathematica is also provided.



Algorithm 1: Merge(r, T, opt)

Input: A CAF tree T rooted at r, an option ‘opt’ on simplification level.
Output: An equivalent GCAF tree T .

1 begin
2 if r has no children then return ;

// The recursive call is first made for the odd children

3 for each odd child c of r do Merge(c, T, opt) ;
4 for each even child c of r do Merge(c, T, opt) ;
5 BasicMerge(r, T, opt);

Example 6 [11] This example is about scanning index sets generated by ap-
plying a non-linear schedule. Without simplification, the output has 58 clauses.
With option 1, the output has 10 conjunctive clauses. With option 3, the output
has exactly one conjunctive clause, although it takes about 200 more seconds.

ff := (n>=7) &and (2<=x) &and (x<=n) &and (4<=y) &and (y<=n)

&and (n-x<=y) &and (t=(n-3)*x+y);

R := PolynomialRing([y, x, t, n]);

QuantifierElimination(ff,R,output=rootof,simplification=’L3’);

‘&and‘(7 <= n,3*n-8 <= t,t <= n^2-2*n,2 <= x,x <= -(n-t)/(n-4),

-(n-t)/(n-3) <= x,x <= (t-4)/(n-3),x <= n,y = -n*x+t+3*x)

Example 7 [11] This example is about scanning index sets generated by nor-
malizing loop strides. Without simplification, the output has 8 conjunctive clauses.
The option 1 is sufficient to simplify it into one piece.

ff := (i>=2) &and (i^2<=n) &and (k>=i) &and (k*i<=n) &and (j=k*i);

R := PolynomialRing([k, i, j, n]);

QuantifierElimination(ff,R,output=rootof,simplification=’L1’);

‘&and‘(4 <= n,4 <= j,j <= n,2 <= i,i <= j^(1/2),k = j/i)

Example 8 [2] An example illustrating simple CAD. Without simplification,
there are 51 clauses. After simplification with option 1, we have

R := PolynomialRing([z, y, x]);

qff := &E([z]), (19*z - 10*x + 10*y < 0) &and ((x^2+y^2+(z-3)^2<9)

&or (2*x+19*z+10*y-11>=0));

QuantifierElimination(qff, R, output=rootof, simplification=’L1’);

‘&or‘(‘&and‘(190/187-10/187*922^(1/2) < x, x < 11/12,

100/461*x-570/461-19/461*(-561*x^2+1140*x+900)^(1/2) < y,

y < 100/461*x-570/461+19/461*(-561*x^2+1140*x+900)^(1/2)),

‘&and‘(x = 11/12,-1435/1383-19/5532*212199^(1/2) < y,

y < -1435/1383+19/5532*212199^(1/2)), 11/12 < x)

Example 9 An example from program termination analysis. Without simplifi-
cation, the output has 246 conjunctive clauses. After simplification with option
2, the output has 14 conjunctive clauses.



Algorithm 2: BasicMerge(r, T, opt)

Input: A GCAF tree T rooted at r, an option ’opt’ on simplification level.
Output: A simplified GCAF tree T .

1 begin
2 if r has no children then
3 return;
4 else if r has only one child then
5 let c be the only child of r;
6 if c has children then return;
7 r.rep := r.nodeRep ∧ c.rep; r.children := ∅, return;

8 put the adjacent children of r into the same block;
9 if opt = 1 then put each child having children in a separate block;

10 NCL := ∅; // NCL means new children list

11 for each block B do
12 if opt = 3 or opt = 4 then
13 bool, pivotRep := BlockMergable(B, opt);
14 if bool then
15 key := BlockMerge(B, pivotRep);
16 NCL.append(key); next;

17 MGL := {B[1]};// MGL means a merge list

18 pivot := −1; m := |B|;
19 for i from 1 to m do
20 if NextMergable(B, i, m, pivot, opt) then
21 MGL := MGL.append(B[i+ 1]);
22 else
23 if |MGL| = 1 then

// no new children created

24 NCL.append(B[i]);

25 else
26 key := BlockMerge(MGL,B[pivot].rep);
27 NCL.append(key);

28 if i < m then MGL := {B[i+ 1]} ;

29 if opt 6= 1 then
30 if |NCL| = 2 or |NCL| = 3 then
31 NCL := IneqMerge(NCL);

32 if |NCL| = 1 then
33 let c be the only element of NCL;
34 if c has children then
35 r.children := NCL;
36 else
37 r.rep := r.nodeRep ∧ c.rep; r.children := ∅;

38 else
39 r.children := NCL;



Algorithm 3: BlockMergable(B, T, opt)

Input: A block of adjacent children in one stack.
Output: If the children can be combined into one by the heuristic strategy

below, return true and the combined representation; otherwise return
false and empty.

begin
if at least one node in B has children then return false, ∅ ;
let L be the odd nodes of B; let pivotRep := ∧b∈Lb.desRep; res := true;
for b ∈ B do

set res to the truth value of ∀x, (b.ancRep ∧ b.nodeRep ∧ b.desRep⇔
b.ancRep ∧ b.nodeRep ∧ pivotRep);
if not res then break ;

if res then return res, pivotRep ;
if opt = 4 then

let p be the parent of nodes in B;
if p is not root and p is even node then

let sL be the odd siblings of p;
if |sL| 6= 0 and none of sL has children then

pivotRep := ∧s∈sLs.desDesRep; res := true;
for b ∈ B do

res := ∀x, (b.ancRep ∧ b.nodeRep ∧ b.desRep⇔
b.ancRep ∧ b.nodeRep ∧ pivotRep);
if not res then break ;

if res then return res, pivotRep ;

return false, ∅

Algorithm 4: BlockMerge(B, pivotRep)

Input: A block B of adjacent nodes in a stack. A pivot representation pivotRep.
Output: A conjunctive ETF clause equivalent to (∨c∈Bc) ∧ pivotRep.
begin

create a new node c;
let a and b be respectively the first and the last element of B;
// Next we abuse the notation of intervals to represent a node

for simplicity.

if a = (a1, a2) then
if b = (b1, b2) then r := (a1, b2) ;
else if b = [b1, b1] then r := (a1, b1] ;

else if a = [a1, a1] then
if b = (b1, b2) then r := [a1, b2) ;
else if b = [b1, b1] then r := [a1, b1] ;

let c := r ∧ pivotRep;
return c



Algorithm 5: NextMergable(A, i, m, pivot, opt)

Input: A block of adjacent nodes A, current node A[i], final node A[m] and
pivot node pivot.

Output: Determine if A[i] can be combined with its right adjacent sibling.
begin

if i = m then
return false;

if pivot = −1 then
if A[i] is even node then

pivot := i+ 1;
if SameDesRep(A[pivot], A[i], opt) then return true ;
else return false; ;

else
pivot = i;
if SameDesRep(A[pivot], A[i+ 1]), opt then return true ;
else pivot := −1; return false; ;

else
if A[i] is even node then

if SameDesRep(A[pivot], A[i+ 1], opt) then return true ;
else pivot := i+ 1; return false; ;

else
if SameDesRep(A[pivot], A[i+ 1], opt) then return true ;
else pivot := −1; return false; ;

Algorithm 6: SameDesRep(pivot, i, opt)

Input: A pivot node pivot and a node i in the same block.
Output: Test if the representation of their descendants are the same by some

simple heuristics.
begin

if opt is 2, 3, 4 then
if both pivot and i have children then

return ExactSameDesRep(pivot, i);

if i is odd then return the truth value of i.desRep = pivot.desRep ;
else return the truth value of i.desRep = subs(i.nodeRep, pivot.desRep) ;

R := PolynomialRing([v1,v2,v3,labda,a11,a21,a22,a33,b12,b22,b23]);

f:= &E([v1,v2,v3,labda]), (labda>0) &and (a11*v1=labda*v1) &and

(a21*v1+a22*v2=labda*v2) &and (a33*v3=labda*v3) &and

(b12*v2>0) &and (b22*v2+b23*v3>0);

QuantifierElimination(f, R, output=rootof,partial=true,simplification=’L2’);

‘&or‘(‘&and‘(b23 <> 0, b22 < 0, b12 < 0, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 <> 0, b22 < 0, b12 < 0, 0 < a22),

‘&and‘(b23 <> 0, b22 < 0, 0 < b12, 0 < a33, a22 <> a33, a21 <> 0, a11 = a33),



Algorithm 7: IneqMerge(L, opt)

Input: A list L of nodes in a stack.
Output: Return a list NL of merged nodes.
begin

if |L| = 2 then a := L[1]; b := L[2] ;
else if |L| = 3 then a := L[1]; b := L[3] ;
else return L ;
if a.nodeRep = (−∞, α) and b.nodeRep = (α,+∞) and
SameDesRep(a, b, opt) then

create a new node c; c.rep := x 6= α ∧ a.desRep;
if |L| = 2 then return [c] ;
else if |L| = 3 then return [c, L[2]] ;

‘&and‘(b23 <> 0, b22 < 0, 0 < b12, 0 < a33, a22 = a33),

‘&and‘(b23 <> 0, b22 = 0, b12 <> 0, 0 < a33, a22 <> a33, a21 <> 0, a11 = a33),

‘&and‘(b23 <> 0, b22 = 0, b12 <> 0, 0 < a33, a22 = a33),

‘&and‘(b23 <> 0, 0 < b22, b12 < 0, 0 < a33, a22 <> a33, a21 <> 0, a11 = a33),

‘&and‘(b23 <> 0, 0 < b22, b12 < 0, 0 < a33, a22 = a33),

‘&and‘(b23 <> 0, 0 < b22, 0 < b12, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 <> 0, 0 < b22, 0 < b12, 0 < a22),

‘&and‘(b23 = 0, b22 < 0, b12 < 0, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 = 0, b22 < 0, b12 < 0, 0 < a22),

‘&and‘(b23 = 0, 0 < b22, 0 < b12, a22 <= 0, a21 <> 0, 0 < a11),

‘&and‘(b23 = 0, 0 < b22, 0 < b12, 0 < a22))

Example 10 Consider computing a CAF of p1 ≤ 0 ∧ p2 ≤ 0, where p1, p2 are
random polynomials of given degree d and with n variables. We have tested the
case for n = 2, d = 2, 3, 4 and n = 3, d = 2, 3 and n = 4, d = 2. The experimen-
tation shows that the number of conjunctive clauses after simplification using
option 2 is about 3 to 5 times less than without applying simplification.

We have also selected some examples from [16], generated automatically from
QEPCADexamplebank v4.txt, to test the simplification procedure. The experi-
mental results are summarized in Table 6. The examples in previous sections
are included. The QuantifierElimination command is called with options par-
tial=’true’, output=’rootof’ and different simplification flavors. In the table, L0
corresponds to the option simplification=’false’. Two columns are dedicated to
each simplification option, as well as to the Reduce command of Mathematica:
the left column contains the time spent on calling the QE procedure while the
right column gives the number of conjunctive GCAF clauses in the output.

From the table, we derive the following observations. For all the examples,
there is almost no simplification overhead for the levels L1 and L2. This is be-
cause almost no algebraic computations are needed for those two levels. There
are only two examples, namely NL-Schedule and Poly-Mul-Tile, for which the
simplification levels L3 and L4 incur significant overhead but also reduce signifi-
cantly the amount of conjunctive clauses. For examples coming from the applica-



tion of loop transformation, the levels L3 and L4 are effective. But for examples
from other application domains, the level L2 is the best to choose considering the
computation overhead, which is the default option of our QE procedure. W.r.t.
the Reduce command, our QE procedure can generate less number of conjunc-
tive clauses for 16 out of the 25 examples. For the three examples for which
our QE procedure generates more conjunctive clauses, we have checked that the
reason is that our routine ExactSameDesRep only checks whether two subtrees
are physically the same while the Reduce command is more aggressive. Finding
cost-effective heuristic strategies to handle this problem is left for future work.

6 Conclusions

We have presented a multi-level heuristic algorithm for simplifying cylindrical
algebraic formulas, motivated by applications like automatic loop transforma-
tion in computer programs. The experimentation shows that the method can
reduce significantly the number of conjunctive clauses of a CAF. Nevertheless,
more work is required to obtain more compact output in less computing time.
In particular, the following related work needs to be investigated. In Chapter
8 of his thesis [2], Brown presented algorithms for constructing cylindrical for-
mulas, which are proper restricted extended Tarski formulas having cylindrical
properties, but not necessarily GCAFs. An essential idea in his approach is the
concept of “polynomially compatible”. But it is not always easy to determine if
two sections in different stacks are polynomially compatible, especially for cylin-
drical algebraic decomposition computed by the partial CAD approach [9] or the
regular chain approach [6]. Moreover, the simplification techniques of [2] cannot
handle the case taken care of by options 3 and 4 of our method. Nevertheless,
the ideas of “polynomially compatible” and “truth-boundary cells” deserve to
be investigated further and related to our approach. The adjacency algorithm [1]
might also help determining whether two intro-stack sections can be combined.
Acknowledgments. Supported by the NSFC (11301524,11471307,61202131).
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