
CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 6

Today

� Introduction to nonparametric techniques
� Basic Issues in Density Estimation
� Two Density Estimation Methods

1. Parzen Windows
2. Nearest Neighbors

Non-Parametric Methods
� Neither probability distribution nor

discriminant function is known
� Happens quite often

� All we have is labeled data

a lot is
known
”easier”

little is
known
“harder”

salmon salmonsalmonbass

� Estimate the probability distribution
from the labeled data

NonParametric Techniques: Introduction

� In previous lectures we assumed that either
1. someone gives us the density p(x)

� In pattern recognition applications this never happens

2. someone gives us p(x|θθθθ)
� Does happen sometimes, but

� we are likely to suspect whether the given p(x|θθθθ)
models the data well

� Most parametric densities are unimodal (have a
single local maximum), whereas many practical
problems involve multi-modal densities

NonParametric Techniques: Introduction

� Nonparametric procedures can be used with
arbitrary distributions and without any
assumption about the forms of the underlying
densities

� There are two types of nonparametric methods:
� Parzen windows

� Estimate likelihood p(x | cj)

� Nearest Neighbors
� Bypass likelihood and go directly to posterior estimation

P(cj | x)

NonParametric Techniques: Introduction
� Nonparametric techniques attempt to estimate the

underlying density functions from the training data
� Idea: the more data in a region, the larger is the density

function

p(x)

salmon length x

[[[[]]]] (((())))����
ℜℜℜℜ

====ℜℜℜℜ∈∈∈∈ dxxfXPr
average of f(x)

over ����

NonParametric Techniques: Introduction

� How can we approximate and ? [[[[]]]]1XPr ℜℜℜℜ∈∈∈∈

� and [[[[]]]]
20
6

XPr 1 ≈≈≈≈ℜℜℜℜ∈∈∈∈ [[[[]]]]
20
6

XPr 2 ≈≈≈≈ℜℜℜℜ∈∈∈∈

� Should the density curves above ��������1 and ��������2 be
equally high?
� No, since is ��������1 smaller than ��������2

p(x)

salmon length x1ℜℜℜℜ 2ℜℜℜℜ

[[[[]]]]2XPr ℜℜℜℜ∈∈∈∈

[[[[]]]] (((())))����
ℜℜℜℜ

====ℜℜℜℜ∈∈∈∈ dxxfXPr

[[[[]]]] (((()))) (((()))) [[[[]]]]21 XPrdxxfdxxfXPr
21

ℜℜℜℜ∈∈∈∈====≈≈≈≈====ℜℜℜℜ∈∈∈∈ ��������
ℜℜℜℜℜℜℜℜ

� To get density, normalize by region size

NonParametric Techniques: Introduction

� Assuming f(x) is basically flat inside ��������

[[[[]]]] (((())))����
ℜℜℜℜ

====ℜℜℜℜ∈∈∈∈ dyyfXPr≈≈≈≈
ℜℜℜℜ

samplesof#total
insamplesof# (((()))) (((())))ℜℜℜℜ∗∗∗∗≈≈≈≈ Volumexf

� Thus, density at a point x inside ��������can be
approximated

(((()))) (((())))ℜℜℜℜ
ℜℜℜℜ≈≈≈≈

Volume
1

samplesof#total
insamplesof#

xf

� Now let’s derive this formula more formally

Binomial Random Variable
� Let us flip a coin n times (each one is called “trial”)

� Probability of head ρρρρ, probability of tail is 1-ρρρρ
� Binomial random variable K counts the number of

heads in n trials

� Mean is (((()))) ρρρρnKE ====

� Variance is (((()))) (((())))ρρρρρρρρ −−−−==== 1var nK

(((())))!!
!

knk
n

k
n

−−−−
====����

����
��������

����
����where

(((()))) (((()))) knk
k
nkKP −−−−−−−−����
����
��������

����
����======== ρρρρρρρρ 1

Density Estimation: Basic Issues
� From the definition of a density function, probability

ρρρρ that a vector x will fall in region ���� is:

[[[[]]]] ����
ℜℜℜℜ

====ℜℜℜℜ∈∈∈∈==== 'dx)'x(pxPrρρρρ

� Suppose we have samples x1, x2,…, xn drawn from
the distribution p(x). The probability that k points fall
in ���� is then given by binomial distribution:

[[[[]]]])1(Pr knk
k
nkK −−−−−−−−����
����
��������

����
����======== ρρρρρρρρ

� Suppose that k points fall in ����, we can use MLE to
estimate the value of ρρρρ . The likelihood function is

(((()))))1(|,...,1
knk

n k
nxxp −−−−−−−−����
����
��������

����
����==== ρρρρρρρρρρρρ

Density Estimation: Basic Issues
(((()))))1(|,...,1

knk
n k

nxxp −−−−−−−−����
����
��������

����
����==== ρρρρρρρρρρρρ

� This likelihood function is maximized at ρ ρ ρ ρ =
n
k

� Thus the MLE is ˆ
n
k====ρρρρ

����
ℜℜℜℜ

≅≅≅≅ Vxpdxxp)(')'(

� Assume that p(x) is continuous and that the region ����
is so small that p(x) is approximately constant in ����

� Recall from the previous slide: ����
ℜℜℜℜ

==== ')'(dxxpρρρρ

� x is in ���� and V is the volume of ����

(((())))
V

n/k
xp ≈≈≈≈� Thus p(x) can be approximated:

p(x)

����

x

� Our estimate will always be the average of true
density over ����

Density Estimation: Basic Issues

(((())))
V

n/k
xp ≈≈≈≈

x is inside some region ����

V = volume of ����
n=total number of samples inside ����
k = number of samples inside ����

����

 x

(((())))
V

n/k
xp ≈≈≈≈

V
ρρρρ̂====

V

dxxp����
ℜℜℜℜ≈≈≈≈

')'(

� This is exactly what we had before:

� Ideally, p(x) should be constant inside ����

Density Estimation: Histogram

(((())))
V

n/k
xp ≈≈≈≈

p(l)

0 10 20 30 40 50

��������2��������1 ��������3

10
190
6

190

1
190

(((())))
10
19/6

xp ==== (((())))
30
19/3

xp ==== (((())))
10

19/10
xp ====

� If regions ���� i‘s do not overlap, we have a histogram

� We have made two approximations

Density Estimation: Accuracy
(((())))

V
n/k

xp ≈≈≈≈� How accurate is density approximation ?

 ˆ
n
k====ρρρρ1.

����
ℜℜℜℜ

≅≅≅≅ Vxpdxxp)(')'(2.

� as n increases, this estimate becomes more accurate

� as ���� grows smaller, the estimate becomes more accurate
� As we shrink ���� we have to make sure

it contains samples, otherwise our
estimated p(x) = 0 for all x in ����

� Thus in theory, if we have an unlimited number of
samples, to we get convergence as we
simultaneously increase the number of samples n,
and shrink region ��������, but not too much so that ������������still
contains a lot of samples

� In practice, the number of samples is always fixed

Density Estimation: Accuracy
(((())))

V
n/k

xp ≈≈≈≈

� Thus the only available option to increase the
accuracy is by decreasing the size of ��������(V gets
smaller)
� If V is too small, p(x)=0 for most x, because most

regions will have no samples
� Thus have to find a compromise for V

� not too small so that it has enough samples
� but also not too large so that p(x) is

approximately constant inside V

Density Estimation: Two Approaches

(((())))
V

n/k
xp ≈≈≈≈

1.
2. k-Nearest Neighbors

� Choose a fixed value for k and
determine the corresponding
volume V from the data

� Under appropriate conditions and as number
of samples goes to infinity, both methods can
be shown to converge to the true p(x)

1. Parzen Windows:
� Choose a fixed value for volume V

and determine the corresponding k
from the data

Parzen Windows

� Let us assume that the region ��������is a d-dimensional
hypercube with side length h thus it’s volume is hd

� In Parzen-window approach to estimate densities we
fix the size and shape of region ��������

����

2 dimensions

h

����

3 dimensions

h����

1 dimension

h

Parzen Windows

� To estimate the density at point x, simply center the
region ���� at x, count the number of samples in ���� ,
and substitute everything in our formula

(((())))
V

n/k
xp ≈≈≈≈

����

x

(((())))
10

6/3
xp ≈≈≈≈

Parzen Windows

� We wish to have an analytic expression for our
approximate density ����

� Let us define a window function

����
				

����

���� ====≤≤≤≤
====

otherwise0

d , 1,...j u 1
(u) j 2

1
ϕϕϕϕ

u

ϕϕϕϕ(u)

1

1 dimension

1/2

1/2

ϕϕϕϕ is 1 inside

ϕϕϕϕ is 0 outside

2 dimensions

u1

u2

Parzen Windows
� Recall we have samples x1, x2,…, xn . Then

����
				

����

���� ====≤≤≤≤
====

otherwise0

d , 1,...j x-x 1
)

x-x
(ii 2

h

h
ϕϕϕϕ

0 otherwise

1 if xi is inside the hypercube with
width h and centered at x

h
����

x

xi

====)
x-x

(i

h
ϕϕϕϕ

Parzen Windows

� How do we count the total number of sample points
x1, x2,…, xn which are inside the hypercube with
side h and centered at x?

����
====

====
����
����

����
����
����

���� −−−−====
ni

i

i

h
xx

k
1

ϕϕϕϕ

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(

� Thus we get the desired analytical expression for
the estimate of density pϕϕϕϕ(x)

(((())))
V

n/k
xp ≈≈≈≈� Recall

Parzen Windows

� Let’s make sure pϕϕϕϕ(x) is in fact a density

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(

� xxp ∀∀∀∀≥≥≥≥ 0)(ϕϕϕϕ

���� �������� ����
����

����
����
����

���� −−−−====
====

====

dx
h

xx
hn

dxxp i
ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(� ��������
====

====
����
����

����
����
����

���� −−−−====
ni

i

i
d dx

h
xx

nh 1

1 ϕϕϕϕ

����
====

====

====
ni

i
d h

hn 1

d
11

1====

volume of hypercube

Today

� Continue nonparametric techniques
1. Finish Parzen Windows
2. Start Nearest Neighbors (hopefully)

Parzen Windows

� To estimate the density at point x, simply center the
region ���� at x, count the number of samples in ���� ,
and substitute everything in our formula

(((())))
V

n/k
xp ≈≈≈≈

����

x (((())))
10

6/3
xp ≈≈≈≈

x is inside some region ����

V = volume of ����
n=total number of samples inside ����
k = number of samples inside ����

Parzen Windows
� Formula for Parzen window estimation

d

i
ni

1i

h

n/
h

xx

)x(p
����
����

����
����
����

���� −−−−

====
����

====

====
ϕϕϕϕ

ϕϕϕϕ

= V

= k

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

h
1

n
1 i

ni

1i
d ϕϕϕϕ

Parzen Windows: Example in 1D

� Suppose we have 7 samples D={2,3,4,8,10,11,12}

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(

� Let window width h=3, estimate density at x=1
����
����

����
����
����

���� −−−−==== ����
====

==== 3
x1

3
1

7
1

)1(p i
7i

1i

ϕϕϕϕϕϕϕϕ

2/1
3
1 ≤≤≤≤−−−− 2/1

3
2 >>>>−−−− 2/11 >>>>−−−− 2/1

3
11 >>>>−−−−

[[[[]]]]
21
1

0...001
21
1

3
x1

3
1

7
1

)1(p i
7i

1i

====++++++++++++++++====����
����

����
����
����

���� −−−−==== ����
====

====

ϕϕϕϕϕϕϕϕ

x

pϕϕϕϕ(x)

1

21
1

����

����
����
����

����
����
����

����
����
����

���� −−−−++++++++����
����

����
����
����

���� −−−−++++����
����

����
����
����

���� −−−−++++����
����

����
����
����

���� −−−−====
3
121

...
3

41
3

31
3

21
21
1 ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ

Parzen Windows: Sum of Functions
� Fix x, let i vary and ask

� For which samples xi is ?
����

h
x

xi

xj

xk

1
h

xx i ====����
����

����
����
����

���� −−−−ϕϕϕϕ

����

h xf

� Now fix f and let x vary and ask
� For which x is ? For all x in gray box1

h
xx f ====����

����

����
����
����

���� −−−−ϕϕϕϕ

� Thus is simply a function which is 1 inside
square of width h centered at xf and 0 otherwise!

1
h

xx f ====����
����

����
����
����

���� −−−−ϕϕϕϕ

Parzen Windows: Sum of Functions

� Now let’s look at our density estimate pϕϕϕϕ(x) again:

����
����

����
����
����

���� −−−−====����
����

����
����
����

���� −−−−==== ��������
====

====

====

==== h
xx

nh
1

h
xx

h
1

n
1

)x(p i
ni

1i
d

i
ni

1i
d ϕϕϕϕϕϕϕϕϕϕϕϕ

1 inside square centered at xi
0 otherwise

� Thus pϕϕϕϕ(x) is just a sum of n “box like” functions

each of height dnh
1

Parzen Windows: Example in 1D
� Let’s come back to our example

� 7 samples D={2,3,4,8,10,11,12}, h=3

x

pϕϕϕϕ(x)

21
1

� To see what the function looks like, we need to
generate 7 boxes and add them up

� The width is h=3 and the height, according to
previous slide is

21
1

nh
1

d ====

Parzen Windows: Interpolation

� In essence, window function ϕϕϕϕ is used for interpolation:
each sample xi contributes to the resulting density at x
if x is close enough to xi

x

pϕϕϕϕ(x)

21
1

Parzen Windows: Drawbacks of Hypercube ϕϕϕϕ
� As long as sample point xi and x are in the same

hypercube, the contribution of xi to the density at x is
constant, regardless of how close xi is to x

121 ====����
����

����
����
����

���� −−−−====����
����

����
����
����

���� −−−−
h

xx
h

xx ϕϕϕϕϕϕϕϕ

� The resulting density pϕϕϕϕ(x) is not smooth, it has
discontinuities

x

pϕϕϕϕ(x)

x x2x1

Parzen Windows: general ϕϕϕϕ

� We can use a general window ϕϕϕϕ as long as the
resulting pϕϕϕϕ(x) is a legitimate density, i.e.

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(

1. 0)u(p ≥≥≥≥ϕϕϕϕ

� satisfied if (((()))) 0u ≥≥≥≥ϕϕϕϕ

2. 1)(====���� dxxpϕϕϕϕ

� satisfied if (((()))) 1====���� duuϕϕϕϕ

u

ϕϕϕϕ1111(u)
1

ϕϕϕϕ2222(u)

(((())))��������
====

====
n

1i

n
d duuh

nh
1 ϕϕϕϕ������������ ����

����

����
����
����

���� −−−−====
====

====

dx
h

xx
nh

1
dx)x(p i

ni

1i
d ϕϕϕϕϕϕϕϕ 1====

h
dxduthus,

h
xx

utoscoordinatechange i ====−−−−====

Parzen Windows: general ϕϕϕϕ

� Notice that with the general window ϕϕϕϕ we are no
longer counting the number of samples inside ��������.

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(

� We are counting the weighted average of potentially
every single sample point (although only those within
distance h have any significant weight)

� With infinite number of samples, and appropriate
conditions, it can still be shown that

(((())))xpxpn →→→→)(ϕϕϕϕ

ϕϕϕϕ

x

Parzen Windows: Gaussian ϕϕϕϕ

����
����

����
����
����

���� −−−−==== ����
====

==== h
xx

hn
xp i

ni

i
d ϕϕϕϕϕϕϕϕ

1

11

)(

� A popular choice for ϕϕϕϕ is N(0,1) density

(((()))) 2/2

2
1 ueu −−−−====
ππππ

ϕϕϕϕ

u

ϕϕϕϕ(u)

� Solves both drawbacks of the “box” window
� Points x which are close to the sample point xi

receive higher weight
� Resulting density pϕϕϕϕ(x) is smooth

Parzen Windows: Example with General ϕϕϕϕ
� Let’s come back to our example

� 7 samples D={2,3,4,8,10,11,12}, h=1

� pϕϕϕϕ(x) is the sum of of 7 Gaussians, each centered at
one of the sample points, and each scaled by 1/7

(((())))����
====

====

−−−−====
7i

1i
ixx

7
1

)x(p ϕϕϕϕϕϕϕϕ

Parzen Windows: Did We Solve the Problem?

� We will vary the number of samples n and
the window size h

� We will play with 2 distributions

N(0,1) triangle and
uniform mixture

� Let’s test if we solved the problem
1. Draw samples from a known distribution
2. Use our density approximation method and

compare with the true density

Parzen Windows: True Density N(0,1)

h=1 h=0.5 h=0.1

n=1

n=10

h=1 h=0.5 h=0.1

n=100

n=∞∞∞∞

Parzen Windows: True Density N(0,1)

Parzen Windows: True density is Mixture
of Uniform and Triangle

h=1 h=0.5 h=0.2

n=1

n=16

h=1 h=0.5 h=0.2

n=256

n=16n=∞∞∞∞

Parzen Windows: True density is Mixture
of Uniform and Triangle

Parzen Windows: Effect of Window Width h
� By choosing h we are guessing the region where

density is approximately constant

� Without knowing anything about the distribution, it is
really hard to guess were the density is approximately
constant

p(x)

x
h h

Parzen Windows: Effect of Window Width h
� If h is small, we superimpose n sharp pulses

centered at the data
� Each sample point xi influences too small range of x
� Smoothed too little: the result will look noisy and not smooth

enough
� If h is large, we superimpose broad slowly changing

functions,
� Each sample point xi influences too large range of x
� Smoothed too much: the result looks oversmoothed or “out-

of-focus”
� Finding the best h is challenging, and indeed no

single h may work well
� May need to adapt h for different sample points

� However we can try to learn the best h to use from
the test data

� In classifiers based on Parzen-window
estimation:

�We estimate the densities for each category
and classify a test point by the label
corresponding to the maximum posterior

� The decision region for a Parzen-window
classifier depends upon the choice of window
function as illustrated in the following figure

Parzen Windows: Classification Example

Parzen Windows: Classification Example

� For small enough window size
h is classification on training
data is be perfect

� However decision boundaries
are complex and this solution
is not likely to generalize well
to novel data

� For larger window size h,
classification on training data
is not perfect

� However decision boundaries
are simpler and this solution is
more likely to generalize well
to novel data

Parzen Windows: Summary
� Advantages

� Can be applied to the data from any distribution
� In theory can be shown to converge as the

number of samples goes to infinity
� Disadvantages

� Number of training data is limited in practice, and
so choosing the appropriate window size h is
difficult

� May need large number of samples for accurate
estimates

� Computationally heavy, to classify one point we
have to compute a function which potentially
depends on all samples

� Window size h is not trivial to choose

� Recall the generic expression for density
estimation

k-Nearest Neighbors

(((())))
V

n/k
xp ≈≈≈≈

� In Parzen windows estimation, we fix V and that
determines k, the number of points inside V

� In k-nearest neighbor approach we fix k, and find
V that contains k points inside

� kNN approach seems a good solution for the
problem of the “best” window size
� Let the cell volume be a function of the training data
� Center a cell about x and let it grows until it captures k

samples
� k are called the k nearest-neighbors of x

k-Nearest Neighbors

� 2 possibilities can occur:
� Density is high near x; therefore the cell will be small

which provides a good resolution
� Density is low; therefore the cell will grow large and

stop until higher density regions are reached

� Of course, now we have a new question
� How to choose k?

k-Nearest Neighbor

� A good “rule of thumb“ is k = √√√√n
� Can prove convergence if n goes to infinity
� Not too useful in practice, however

� Let’s look at 1-D example
� we have one sample, i.e. n = 1

(((())))
V

n/k
xp ≈≈≈≈

1xx2
1
−−−−

====
xx1

1xx −−−−

1dx
xx2

1

1

≠≠≠≠∞∞∞∞====
−−−−����

∞∞∞∞

∞∞∞∞−−−−

� But the estimated p(x) is not even close to a
density function:

k-Nearest Neighbor: Gaussian and Uniform
plus Triangle Mixture Estimation

k-Nearest Neighbor: Gaussian and Uniform
plus Triangle Mixture Estimation

Today

� Continue with Nonparametric Density
Estimation
� Finish Nearest Neighbor

� kNN approach seems a good solution for the
problem of the “best” window size
� Let the cell volume be a function of the training data
� Center a cell about x and let it grows until it captures k

samples
� k are called the k nearest-neighbors of x

k-Nearest Neighbors

(((())))
V

n/k
xp ≈≈≈≈

k-Nearest Neighbor: Gaussian and Uniform
plus Triangle Mixture Estimation

� Thus straightforward density estimation p(x)
does not work very well with kNN approach
because the resulting density estimate
1. Is not even a density
2. Has a lot of discontinuities (looks very spiky,

not differentiable)
3. Even for large regions with no observed

samples the estimated density is far from zero
(tails are too heavy)

k-Nearest Neighbor

� Notice in the theory, if infinite number of samples is
available, we could construct a series of estimates that
converge to the true density using kNN estimation. However
this theorem is not very useful in practice because the
number of samples is always limited

k-Nearest Neighbor

� However we shouldn’t give up the nearest
neighbor approach yet

� Instead of approximating the density p(x), we
can use kNN method to approximate the
posterior distribution P(ci|x)
� We don’t even need p(x) if we can get a good

estimate on P(ci|x)

� How would we estimate P(ci | x) from a set of n
labeled samples?

����
====

==== m

j
j

i

cxp

cxp

1

),(

),(

k-Nearest Neighbor

V
n/k

)x,c(p i
i ≈≈≈≈

� Let’s place a cell of volume V around x and
capture k samples
� ki samples amongst k labeled ci then:

(((())))
V

n/k
xp ≈≈≈≈� Recall our estimate for density:

� Using conditional probability, let’s estimate posterior:

(((())))xp
cxp

xcp i
i

),(
)|(====

����
====

≈≈≈≈ m

1j

j

i

V
n/k

V

n/k

����
====

==== m

j
j

i

k

k

1

k
ki====

x
111

222

3

3

k-Nearest Neighbor
� Thus our estimate of posterior is just the fraction of

samples which belong to class ci:

k
k

xcp i
i ====)|(

� This is a very simple and intuitive estimate

� Under the zero-one loss function (MAP classifier) just
choose the class which has the largest number of
samples in the cell

� Interpretation is: given an unlabeled example (that is
x), find k most similar labeled examples (closest
neighbors among sample points) and assign the most
frequent class among those neighbors to x

k-Nearest Neighbor: Example

� Back to fish sorting
� Suppose we have 2 features, and collected sample points

as in the picture
� Let k = 3

lightness

length
� 2 sea bass, 1 salmon are the 3

nearest neighbors
� Thus classify as sea bass

� kNN rule is certainly simple and intuitive, but does
it work?

� Pretend that we can get an unlimited number of
samples

� By definition, the best possible error rate is the
Bayes rate E*

� Even for k =1, the nearest-neighbor rule leads to
an error rate greater than E*

� But as n → ∞, it can be shown that nearest
neighbor rule error rate is smaller than 2E*

� If we have a lot of samples, the kNN rule will do
very well !

kNN: How Well Does it Work?

1NN: Voronoi Cells

� Most parametric
distributions would not
work for this 2 class
classification problem:

kNN: Multi-Modal Distributions

� Nearest neighbors will
do reasonably well,
provided we have a lot
of samples

?

?

� In theory, when the infinite number of samples is
available, the larger the k, the better is
classification (error rate gets closer to the optimal
Bayes error rate)

kNN: How to Choose k?

� But the caveat is that all k neighbors have to be
close to x
� Possible when infinite # samples available
� Impossible in practice since # samples is finite

kNN: How to Choose k?

� In practice
1. k should be large so that error rate is

minimized
� k too small will lead to noisy decision

boundaries
2. k should be small enough so that only nearby

samples are included
� k too large will lead to over-smoothed

boundaries

� Balancing 1 and 2 is not trivial
� This is a recurrent issue, need to smooth data,

but not too much

x1

kNN: How to Choose k?

� For k = 1, …,7 point x gets classified correctly
� red class

� For larger k classification of x is wrong
� blue class

x2

x

kNN: Computational Complexity

� Basic kNN algorithm stores all examples. Suppose
we have n examples each of dimension k
� O(d) to compute distance to one example
� O(nd) to find one nearest neighbor
� O(knd) to find k closest examples examples
� Thus complexity is O(knd)

� This is prohibitively expensive for large number of
samples

� But we need large number of samples for kNN to
work well!

removed

Reducing Complexity: Editing 1NN
� If all voronoi neighbors have the same class, a

sample is useless, we can remove it:

� Number of samples decreases
� We are guaranteed that the decision boundaries

stay the same

Reducing Complexity: kNN prototypes
� Explore similarities between samples to

represent data as search trees of prototypes

� Advantages: Complexity decreases
� Disadvantages:

� finding good search tree is not trivial
� will not necessarily find the closest neighbor,

and thus not guaranteed that the decision
boundaries stay the same

147

1 4 7

����1

253

2 5 3

����2
����

kNN: Selection of Distance
� So far we assumed we use Euclidian Distance to

find the nearest neighbor:

� However some features (dimensions) may be
much more discriminative than other features
(dimensions)

(((())))���� −−−−====
k

kk babaD 2),(

� Eucleadian distance treats each feature as
equally important

kNN: Extreme Example of Distance Selection

� decision boundaries for blue and green classes are in red
� These boundaries are really bad because

� feature 1 is discriminative, but it’s scale is small
� feature 2 gives no class information (noise) but its scale is

large

kNN: Selection of Distance
� Extreme Example

� feature 1 gives the correct class: 1 or 2
� feature 2 gives irrelevant number from 100 to 200

� Suppose we have to find the class of x=[1 100]
and we have 2 samples [1 150] and [2 110]

(((()))) (((()))) 5015010011)150
1,100

1(D 22 ====−−−−++++−−−−====

����
����

��������
����

����
����

��������
���� (((()))) (((()))) 5.1011010021)110

2,100
1(D 22 ====−−−−++++−−−−====

����

����
��������
����

����
����

��������
����

� x = [1 100] is misclassified!
� The denser the samples, the less of the problem

� But we rarely have samples dense enough

kNN: Selection of Distance
� Notice the 2 features are on different scales:

� feature 1 takes values between 1 or 2
� feature 2 takes values between 100 to 200

� We could normalize each feature to be between
of mean 0 and variance 1

� If X is a random variable of mean µµµµ and varaince
σσσσ2, then (X - µµµµ)/σσσσ has mean 0 and variance 1

� Thus for each feature vector xi, compute its
sample mean and variance, and let the new
feature be [xi - mean(xi)]/sqrt[var(xi)]

� Let’s do it in the previous example

kNN: Normalized Features

� The decision boundary (in red) is very good now!

kNN: Selection of Distance
� However in high dimensions if there are a lot of

irrelevant features, normalization will not help

(((()))) (((()))) (((())))������������ −−−−++++−−−−====−−−−====
j

2
jj

i

2
ii

k

2
kk bababa)b,a(D

discriminative
feature

noisy
features

� If the number of discriminative features is smaller
than the number of noisy features, Euclidean
distance is dominated by noise

kNN: Feature Weighting

� Scale each feature by its importance for
classification

� Can learn the weights wk from the training data
� Increase/decrease weights until classification

improves

(((())))���� −−−−====
k

kkk bawbaD 2),(

kNN Summary

� Advantages
� Can be applied to the data from any distribution
� Very simple and intuitive
� Good classification if the number of samples is

large enough
� Disadvantages

� Choosing best k may be difficult
� Computationally heavy, but improvements

possible
� Need large number of samples for accuracy

� Can never fix this without assuming parametric
distribution

