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Today

� Introduction to nonparametric techniques
� Basic Issues in Density Estimation
� Two Density Estimation Methods

1. Parzen Windows
2. Nearest Neighbors



Non-Parametric Methods
� Neither probability distribution nor 

discriminant function is known
� Happens quite often

� All we have is labeled data

a lot is 
known
”easier”

little is 
known
“harder”

salmon salmonsalmonbass

� Estimate the probability distribution 
from the labeled data



NonParametric Techniques: Introduction

� In previous lectures we assumed that either 
1. someone gives us the density p(x)

� In pattern recognition applications this never happens

2. someone gives us  p(x|θθθθ)
� Does happen sometimes, but

� we are likely to suspect whether the given  p(x|θθθθ) 
models the data well

� Most parametric densities are unimodal (have a 
single local maximum), whereas many practical 
problems involve multi-modal densities



NonParametric Techniques: Introduction

� Nonparametric procedures can be used with 
arbitrary distributions and without any 
assumption about the forms of the underlying 
densities 

� There are two types of nonparametric methods:
� Parzen windows

� Estimate likelihood p(x | cj ) 

� Nearest Neighbors
� Bypass likelihood and go directly to posterior  estimation 

P(cj | x) 



NonParametric Techniques: Introduction
� Nonparametric techniques attempt to estimate the 

underlying density functions from the training data
� Idea: the more data in a region, the larger is the density 

function

p(x)

salmon length x
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NonParametric Techniques: Introduction

� How can we approximate                  and   ?  [[[[ ]]]]1XPr ℜℜℜℜ∈∈∈∈

� and [[[[ ]]]]
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� Should the density curves above ��������1 and ��������2 be 
equally high?  
� No, since is ��������1 smaller than ��������2

p(x)
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� To get density, normalize by region size 



NonParametric Techniques: Introduction

� Assuming f(x) is basically flat inside ��������
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� Thus, density at a point x inside ��������can be 
approximated
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� Now let’s derive this formula more formally



Binomial Random Variable
� Let us flip a coin n times (each one is called “trial”)

� Probability of head ρρρρ, probability of tail is 1-ρρρρ
� Binomial random variable K counts the number of 

heads in n trials

� Mean is (((( )))) ρρρρnKE ====

� Variance is (((( )))) (((( ))))ρρρρρρρρ −−−−==== 1var nK
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Density Estimation: Basic Issues
� From the definition of a density function, probability  

ρρρρ that a vector x will fall in region ���� is:
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� Suppose we have samples x1, x2,…, xn drawn from 
the distribution p(x). The probability that k points fall 
in ���� is then given by binomial distribution:
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� Suppose that k points fall in ����, we can use MLE to 
estimate the value of ρρρρ . The likelihood function is
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Density Estimation: Basic Issues
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� This likelihood function is maximized at ρ ρ ρ ρ =  
n
k
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� Assume that p(x) is continuous and that the region ����
is so small that p(x) is approximately constant in ����

� Recall from the previous slide: ����
ℜℜℜℜ
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� x is in ���� and V is the volume of ����
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� Our estimate will always be the average of true 
density over ����

Density Estimation: Basic Issues
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x is inside some region ����

V = volume of ����
n=total number of samples inside ����
k = number of samples inside ����
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� This is exactly what we had before: 

� Ideally, p(x) should be constant inside ����



Density Estimation: Histogram
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� If regions ���� i‘s do not overlap, we have a histogram 



� We have made two approximations

Density Estimation: Accuracy
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� as n increases, this estimate becomes more accurate 

� as ���� grows smaller, the estimate becomes more accurate 
� As we shrink ���� we have to make sure 

it contains samples, otherwise our 
estimated  p(x) = 0 for all x in ����

� Thus in theory, if we have an unlimited number of 
samples, to we get convergence as we 
simultaneously increase the number of samples n, 
and shrink region ��������, but not too much so that ������������still 
contains a lot of samples



� In practice, the number of samples is always fixed

Density Estimation: Accuracy
(((( ))))

V
n/k
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� Thus the only available option to increase the 
accuracy is by decreasing the size of ��������(V gets 
smaller)
� If V is too small, p(x)=0 for most x, because most 

regions will have no samples
� Thus have to find a compromise for V

� not too small so that it has enough samples
� but also not too large so that p(x) is 

approximately constant inside V



Density Estimation: Two Approaches

(((( ))))
V
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1.
2. k-Nearest Neighbors

� Choose a fixed value for k and 
determine the corresponding 
volume V from the data

� Under appropriate conditions and as number 
of samples goes to infinity, both methods can 
be shown to converge to the true p(x)

1. Parzen Windows: 
� Choose a fixed value for volume V

and determine the corresponding k
from the data



Parzen Windows

� Let us assume that the region ��������is a  d-dimensional 
hypercube with side length h thus it’s volume is hd

� In Parzen-window approach to estimate densities we 
fix the size and shape of region ��������

����

2 dimensions

h

����

3 dimensions

h����

1 dimension

h



Parzen Windows

� To estimate the density at point x, simply center the 
region ���� at x, count the number of samples in ���� , 
and substitute everything in our formula
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Parzen Windows

� We wish to have an analytic expression for our 
approximate density ����

� Let us define a window function
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Parzen Windows
� Recall we have samples x1, x2,…, xn . Then
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Parzen Windows

� How do we count the total number of sample points 
x1, x2,…, xn which are inside the hypercube with 
side h and centered at x?
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� Thus we get the desired analytical expression for 
the estimate of density pϕϕϕϕ(x)
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Parzen Windows

� Let’s make sure  pϕϕϕϕ(x)  is in fact a density
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Today

� Continue nonparametric techniques
1. Finish Parzen Windows
2. Start Nearest Neighbors (hopefully)



Parzen Windows

� To estimate the density at point x, simply center the 
region ���� at x, count the number of samples in ���� , 
and substitute everything in our formula

(((( ))))
V

n/k
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x is inside some region ����

V = volume of ����
n=total number of samples inside ����
k = number of samples inside ����



Parzen Windows
� Formula for Parzen window estimation
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Parzen Windows: Example in 1D

� Suppose we have 7 samples D={2,3,4,8,10,11,12}
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� Let  window width h=3, estimate density at x=1
����
����

����
����
����

���� −−−−==== ����
====

==== 3
x1

3
1

7
1

)1(p i
7i

1i

ϕϕϕϕϕϕϕϕ  

2/1
3
1 ≤≤≤≤−−−− 2/1

3
2 >>>>−−−− 2/11 >>>>−−−− 2/1

3
11 >>>>−−−−

[[[[ ]]]]
21
1

0...001
21
1

3
x1

3
1

7
1

)1(p i
7i

1i

====++++++++++++++++====����
����

����
����
����

���� −−−−==== ����
====

====

ϕϕϕϕϕϕϕϕ  

x

pϕϕϕϕ(x)

1

21
1






����

����
����
����

����
����
����

����
����
����

���� −−−−++++++++����
����

����
����
����

���� −−−−++++����
����

����
����
����

���� −−−−++++����
����

����
����
����

���� −−−−====
3
121

...
3

41
3

31
3

21
21
1 ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ



Parzen Windows: Sum of Functions
� Fix x, let i vary and ask

� For which samples xi is ?
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� Now fix f and let x vary and ask
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� Thus                   is simply a function which is 1 inside 
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Parzen Windows: Sum of Functions

� Now let’s look at our density estimate pϕϕϕϕ(x) again:
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Parzen Windows: Example in 1D
� Let’s come back to our example

� 7 samples D={2,3,4,8,10,11,12}, h=3

x

pϕϕϕϕ(x)

21
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� To see what the function looks like, we need to 
generate 7 boxes and add them up

� The width is h=3 and the height, according to 
previous slide is 
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Parzen Windows: Interpolation

� In essence, window function ϕϕϕϕ is used for interpolation: 
each sample xi contributes to the resulting density at x
if x is close enough to xi

x

pϕϕϕϕ(x)

21
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Parzen Windows: Drawbacks of Hypercube ϕϕϕϕ
� As long as sample point xi and x are in the same 

hypercube, the contribution of xi to the density at x is 
constant, regardless of how close xi is to x
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� The resulting density pϕϕϕϕ(x) is not smooth, it has 
discontinuities
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x x2x1



Parzen Windows: general ϕϕϕϕ

� We can use a general window  ϕϕϕϕ as long as the 
resulting pϕϕϕϕ(x) is a legitimate density, i.e.
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Parzen Windows: general ϕϕϕϕ

� Notice that with the  general window  ϕϕϕϕ we are no 
longer counting the number of samples inside ��������.
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� We are counting the weighted average of potentially 
every single sample point (although only those within 
distance h have any significant weight)

� With infinite number of samples, and appropriate 
conditions, it can still be shown that 
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Parzen Windows: Gaussian ϕϕϕϕ
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� A popular choice for ϕϕϕϕ is N(0,1) density
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� Solves both drawbacks of the “box” window
� Points x which are close to the sample point xi

receive higher weight
� Resulting density pϕϕϕϕ(x) is smooth



Parzen Windows: Example with General ϕϕϕϕ
� Let’s come back to our example

� 7 samples D={2,3,4,8,10,11,12}, h=1

� pϕϕϕϕ(x) is the sum of of 7 Gaussians, each centered at 
one of the sample points, and each scaled by 1/7
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Parzen Windows: Did We Solve the Problem?

� We will vary the number of samples n and 
the window size h

� We will play with 2 distributions

N(0,1) triangle and 
uniform mixture

� Let’s test if we solved the problem
1. Draw samples from a known distribution
2. Use our density approximation method and 

compare with the true density



Parzen Windows: True Density N(0,1)

h=1 h=0.5 h=0.1

n=1

n=10



h=1 h=0.5 h=0.1

n=100

n=∞∞∞∞

Parzen Windows: True Density N(0,1)



Parzen Windows: True density is Mixture 
of Uniform and Triangle

h=1 h=0.5 h=0.2

n=1

n=16



h=1 h=0.5 h=0.2

n=256

n=16n=∞∞∞∞

Parzen Windows: True density is Mixture 
of Uniform and Triangle



Parzen Windows: Effect of Window Width h
� By choosing h we are guessing the region where 

density is approximately constant

� Without knowing anything about the distribution, it is 
really hard to guess were the density is approximately 
constant

p(x)

x
h h



Parzen Windows: Effect of Window Width h
� If h is small, we superimpose n sharp pulses 

centered at the data
� Each sample point xi  influences too small range of x
� Smoothed too little: the result will look noisy and not smooth 

enough
� If h is large, we superimpose broad slowly changing 

functions, 
� Each sample point xi influences too large range of x
� Smoothed too much: the result looks oversmoothed or “out-

of-focus”
� Finding the best h is challenging, and indeed no 

single h may work well
� May need to adapt h for different sample points

� However we can try to learn the best h to use from 
the test data



� In classifiers based on Parzen-window 
estimation:

�We estimate the densities for each category 
and classify a test point by the label 
corresponding to the maximum posterior

� The decision region for a Parzen-window 
classifier depends upon the choice of window 
function as illustrated in the following figure

Parzen Windows: Classification Example



Parzen Windows: Classification Example

� For small enough window size 
h is classification on training 
data is be perfect  

� However decision boundaries 
are complex and this solution 
is not likely to generalize well 
to novel data

� For larger window size h, 
classification on training data 
is not perfect 

� However decision boundaries 
are simpler and this solution is 
more likely to generalize well 
to novel data



Parzen Windows: Summary
� Advantages

� Can be applied to the data from any distribution
� In theory can be shown to converge as the 

number of samples goes to infinity
� Disadvantages

� Number of training data is limited in practice, and 
so choosing the appropriate window size h is 
difficult

� May need large number of samples for accurate 
estimates

� Computationally heavy, to classify one point we 
have to compute a function which potentially 
depends on all samples

� Window size h is not trivial to choose



� Recall the generic expression for density 
estimation

k-Nearest Neighbors 

(((( ))))
V

n/k
xp ≈≈≈≈

� In Parzen windows estimation, we fix V and that 
determines k, the number of points inside V

� In k-nearest neighbor approach we fix k, and find 
V that contains  k points inside



� kNN approach seems a good solution for the 
problem of the “best” window size
� Let the cell volume be a function of the training data
� Center a cell about x and let it grows until it captures k

samples 
� k are called the k nearest-neighbors of x

k-Nearest Neighbors 

� 2 possibilities can occur:
� Density is high near x; therefore the cell will be small 

which provides a good resolution
� Density is low; therefore the cell will grow large and  

stop until higher density regions are reached



� Of course, now we have a new question 
� How to choose k?

k-Nearest Neighbor 

� A good “rule of thumb“ is k = √√√√n
� Can prove convergence if n goes to infinity
� Not too useful in practice, however

� Let’s look at 1-D example 
� we have one sample, i.e. n = 1
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� But the estimated p(x) is not even close to a 
density function:



k-Nearest Neighbor: Gaussian and Uniform 
plus Triangle Mixture Estimation



k-Nearest Neighbor: Gaussian and Uniform 
plus Triangle Mixture Estimation



Today

� Continue with Nonparametric Density 
Estimation
� Finish Nearest Neighbor 



� kNN approach seems a good solution for the 
problem of the “best” window size
� Let the cell volume be a function of the training data
� Center a cell about x and let it grows until it captures k

samples 
� k are called the k nearest-neighbors of x

k-Nearest Neighbors 
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V
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k-Nearest Neighbor: Gaussian and Uniform 
plus Triangle Mixture Estimation



� Thus straightforward density estimation p(x) 
does not work very well with kNN approach 
because the resulting density estimate
1. Is not even a density
2. Has a lot of discontinuities (looks very spiky, 

not differentiable)
3. Even for large regions with no observed 

samples the estimated density is far from zero 
(tails are too heavy)

k-Nearest Neighbor 

� Notice in the theory, if infinite number of samples is 
available, we could construct a series of estimates that 
converge to the true density using kNN estimation.  However 
this theorem is not very useful in practice because the 
number of samples is always limited



k-Nearest Neighbor 

� However we shouldn’t give up the nearest 
neighbor approach yet

� Instead of approximating the density p(x), we 
can use kNN method to approximate the 
posterior distribution P(ci|x)
� We don’t even need p(x) if we can get a good 

estimate on P(ci|x)



� How would we estimate P(ci | x) from a set of n 
labeled samples?
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k-Nearest Neighbor 
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� Let’s place a cell of volume V around x and 
capture k samples
� ki samples amongst k labeled ci then: 
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� Using conditional probability, let’s estimate posterior:
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k-Nearest Neighbor 
� Thus our estimate of  posterior is just the fraction of 

samples which belong to class ci:

k
k

xcp i
i ====)|(

� This is a very simple and intuitive estimate

� Under the zero-one loss function (MAP classifier) just 
choose the class which has the largest number of 
samples in the cell

� Interpretation is: given an unlabeled example (that is 
x), find k most similar labeled examples (closest 
neighbors among sample points) and assign the most 
frequent class among those neighbors to  x



k-Nearest Neighbor: Example

� Back to fish sorting
� Suppose we have 2 features, and collected sample points 

as in the picture
� Let k = 3 

lightness

length
� 2 sea bass, 1 salmon are the 3 

nearest neighbors
� Thus classify as sea bass



� kNN rule is certainly simple and intuitive, but does 
it work?

� Pretend that we can get an unlimited number of 
samples

� By definition, the best possible error rate is the
Bayes rate E*

� Even for k =1, the nearest-neighbor rule leads to 
an error rate greater than E*

� But as  n → ∞, it can be shown that nearest 
neighbor rule error rate is smaller than 2E*

� If we have a lot of samples, the kNN rule will do 
very well !

kNN: How Well Does it Work?



1NN: Voronoi Cells



� Most parametric 
distributions would not 
work for this 2 class 
classification problem:

kNN: Multi-Modal Distributions

� Nearest neighbors will 
do reasonably well, 
provided we have a lot 
of samples

?

?



� In theory, when the infinite number of samples is 
available, the larger the k, the better is 
classification (error rate gets closer to the optimal 
Bayes error rate)

kNN: How to Choose k?

� But the caveat is that all k neighbors have to be 
close to x
� Possible when infinite # samples available
� Impossible in practice since # samples is finite



kNN: How to Choose k?

� In practice
1. k should be large so that error rate is 

minimized
� k too small will lead to noisy decision 

boundaries
2. k should be small enough so that only nearby 

samples are included
� k too large will lead to over-smoothed 

boundaries

� Balancing 1 and 2 is not trivial
� This is a recurrent issue, need to smooth data, 

but not too much



x1

kNN: How to Choose k?

� For k = 1, …,7 point x gets classified correctly
� red class

� For larger k classification of x is wrong
� blue class

x2

x



kNN: Computational Complexity

� Basic kNN algorithm stores all examples. Suppose 
we have n examples each of dimension k
� O(d) to compute distance to one example 
� O(nd) to find one nearest neighbor
� O(knd) to  find k closest examples examples
� Thus complexity is O(knd) 

� This is prohibitively expensive for large number of 
samples

� But we need large number of samples for kNN to 
work well!



removed

Reducing Complexity: Editing 1NN
� If all voronoi neighbors have the same class, a 

sample is useless, we can remove it:

� Number of samples decreases
� We are guaranteed that the decision boundaries 

stay the same



Reducing Complexity: kNN prototypes
� Explore similarities between samples to 

represent data as search trees of prototypes 

� Advantages: Complexity decreases
� Disadvantages:

� finding good search tree is not trivial 
� will not necessarily find the closest neighbor, 

and thus not guaranteed that the decision 
boundaries stay the same
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kNN: Selection of Distance
� So far we assumed we use Euclidian Distance to 

find the nearest neighbor:

� However some features (dimensions) may be 
much more discriminative than other features 
(dimensions)
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� Eucleadian distance treats each feature as 
equally important



kNN: Extreme Example of Distance Selection

� decision boundaries for blue and green classes are in red
� These boundaries are really bad because

� feature 1 is discriminative, but it’s scale is small
� feature 2 gives no class information (noise) but its scale is 

large



kNN: Selection of Distance
� Extreme Example

� feature 1 gives the correct class: 1 or 2
� feature 2 gives irrelevant number from 100 to 200

� Suppose we have to find  the class of x=[1  100] 
and we have 2 samples [1  150] and [2  110]
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� x = [1  100] is misclassified!
� The denser the samples, the less of the problem

� But we rarely have samples dense enough



kNN: Selection of Distance
� Notice the 2 features are on different scales:

� feature 1  takes values between 1 or 2
� feature 2 takes values between 100 to 200

� We could normalize each feature to be between 
of mean 0 and variance 1

� If X is a random variable of mean µµµµ and varaince 
σσσσ2, then (X - µµµµ)/σσσσ has mean 0 and variance 1

� Thus for each feature vector xi, compute its 
sample mean and variance, and let the new 
feature be [xi - mean(xi)]/sqrt[var(xi)]

� Let’s do it in the previous example



kNN: Normalized Features

� The decision boundary (in red)  is very good now!



kNN: Selection of Distance
� However in high dimensions if there are a lot of 

irrelevant features, normalization will not help
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discriminative
feature

noisy
features

� If the number of discriminative features is smaller 
than the number of  noisy features, Euclidean 
distance is dominated by noise



kNN: Feature Weighting

� Scale each feature by its importance for 
classification

� Can learn the weights wk from the training data
� Increase/decrease weights until classification 

improves
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kNN Summary

� Advantages
� Can be applied to the data from any distribution
� Very simple and intuitive
� Good classification if the number of samples is 

large enough
� Disadvantages

� Choosing best k may be difficult
� Computationally heavy, but improvements 

possible
� Need large number of samples for accuracy

� Can never fix this without assuming parametric 
distribution


