CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 18

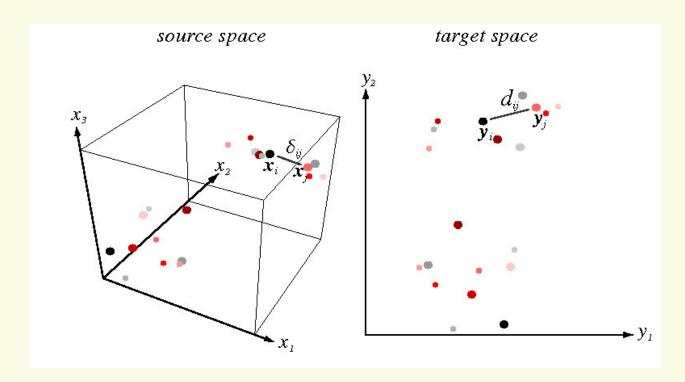
Today

- Low-dimensional Representations of high dimensional data
 - MDS (multidimensional scaling)
 - Isomap
 - LLE (locally linear embedding)
 - Kohonen Maps

Low-dimensional Representations

- Humans are good at analyzing data in 2D or 3D
- Most datasets scientists have to deal with are multidimensional
- It would help if we could visualize structure of the data in 2D or 3D
- Although data is usually presented is in high dimensions, intrinsic dimension is much lower
 - for faces, it is estimated that there are 30 intrinsic dimensions

Multidimensional Scaling (MDS)

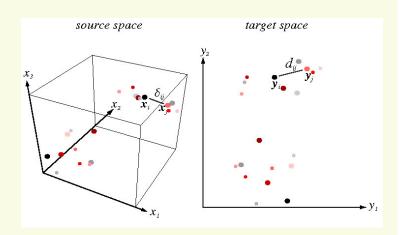


- Multidimensional Scaling
 - find a configuration of points in a low dimensional space whose interpoint distances correspond to similarities (dissimilarities) in higher dimensions

Multidimensional Scaling (MDS)

Given:

- points $x_1, ..., x_n$ in k dimensions
- distance between points x_i and x_i is δ_{ii}



Find

- points $y_1, ..., y_n$ in 2 (or 3) dimensions s.t. distance d_{ij} , the distance between y_i and y_i is close to δ_{ii}
- In general, it's not possible to find lower dimensional representation s.t. $d_{ij} = \delta_{ij}$
- Can look for δ_{ij} which minimize an objective function

Multidimensional Scaling

Possible objective function:

$$J_{ee}(y) = \frac{\sum_{i < j} (d_{ij} - \delta_{ij})^2}{\sum_{i < j} \delta_{ij}^2}$$

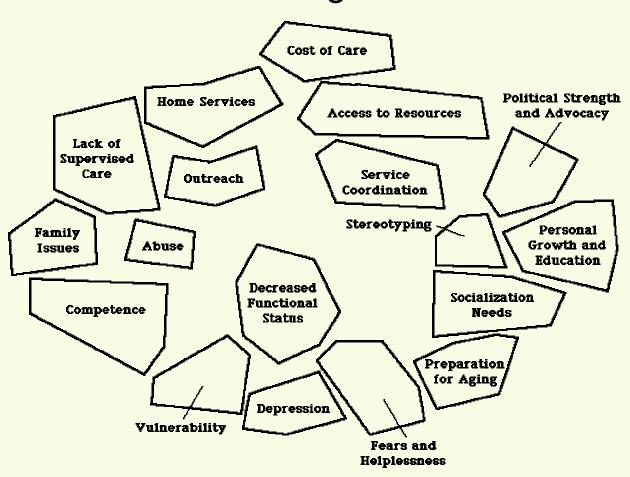
Not trivial to optimize, have to use gradient descent

$$\nabla_{y_k} \mathbf{J}_{ee}(\delta) = \frac{2}{\sum_{i \leq j} \delta_{ij}^2} \sum_{j \neq k} (\mathbf{d}_{kj} - \delta_{kj}) \frac{(\mathbf{y}_k - \mathbf{y}_j)}{\mathbf{d}_{kj}}$$

- Good initialization choice
 - Select the 2 (or 3) coordinates of $x_1, ..., x_n$ which have the largest variance

Multidimensional Scaling

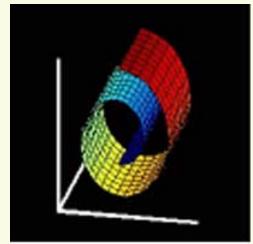
Document Clustering



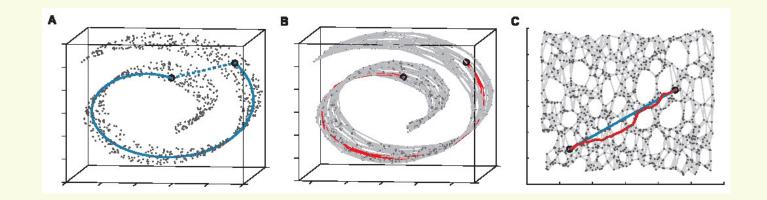
Example from John Canny

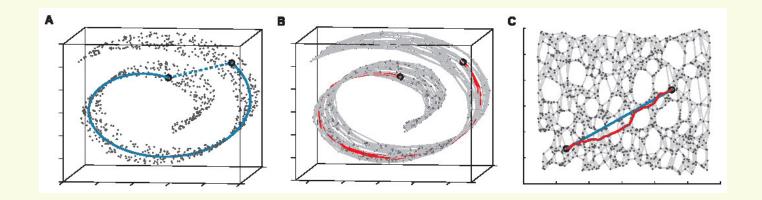
Multidimensional Scaling

- MDS is equivalent to PCA under Eucledian distance
 - Fails for nonlinear data
- Often data lies on a low dimensional manifold in a high dimensions
 - manifold is locally "flat"
 - For example, the earth (sphere) is locally flat, that's why in ancient times people believed that the earth is flat



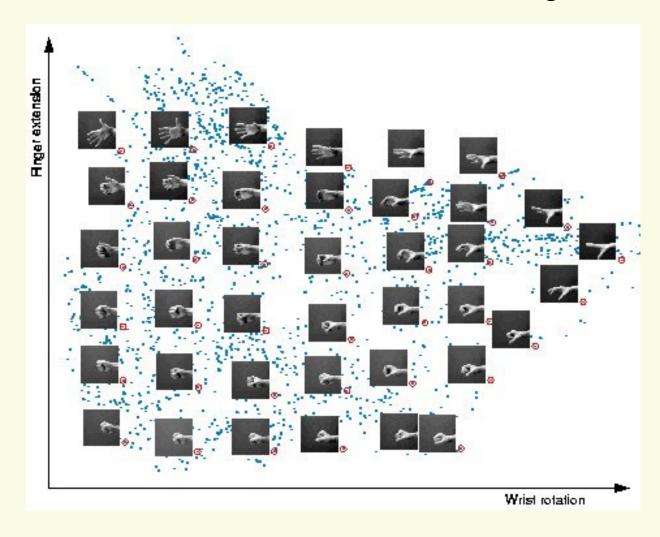
- Josh. Tenenbaum, Vin de Silva, John Langford 2000
- Algorithm for nonlinear dimensionality reduction, works well for some types of manifolds
- Idea: instead of measuring Euclidean distance between points, measure the distance along the inherent geometric surface



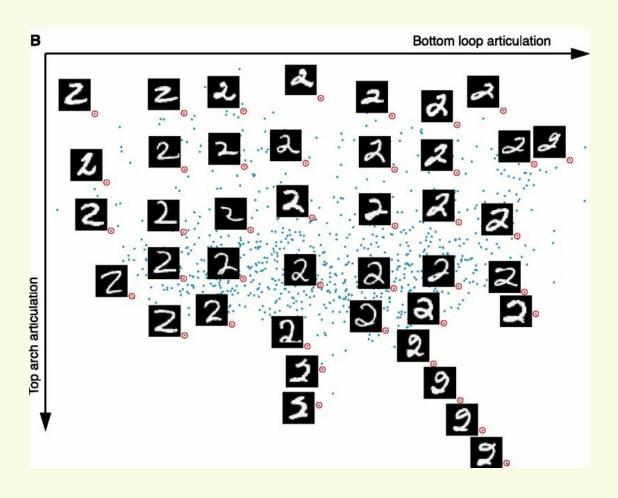


- Construct a graph by connecting each data point to its k
 (7 in this example) nearest neighbors.
- Measure the distance between any 2 samples as the shortest path in the graph between these 2 samples
- After all pairwise distances are computed, use MDS or any other linear dimensionality reduction method

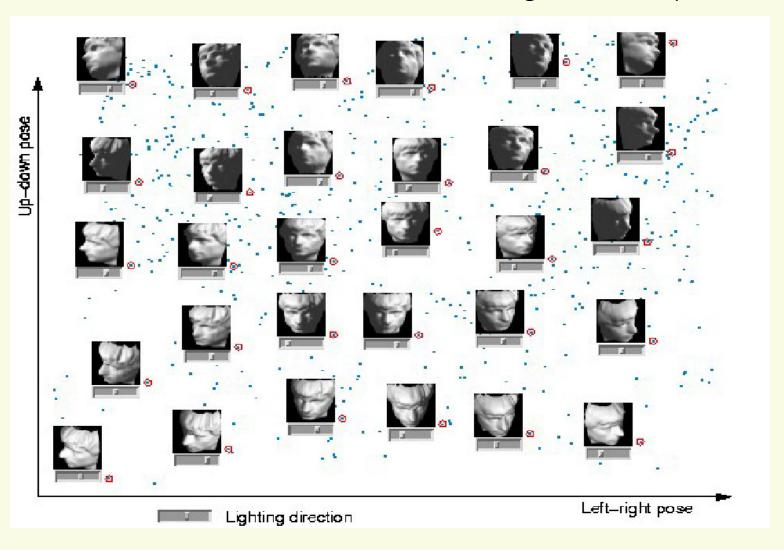
 Two-dimensional embedding of hand images (from Josh. Tenenbaum, Vin de Silva, John Langford 2000)



 two-dimensional embedding of hand-written '2' (from Josh. Tenenbaum, Vin de Silva, John Langford 2000)



 three-dimensional embedding of faces (from Josh. Tenenbaum, Vin de Silva, John Langford 2000)



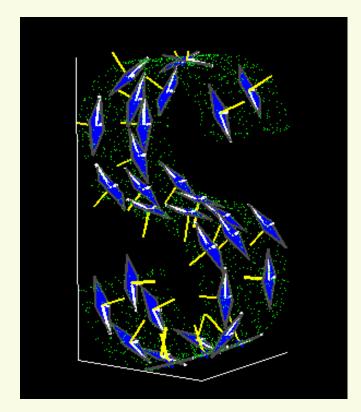
- Advantages:
 - Works for nonlinear data
 - Preserves the global data structure
 - Performs global optimization
- Disadvantages
 - Works best for swiss-roll type of structures
 - Not stable, sensitive to "noise" examples
 - Computationally very expensive

Locally Linear Embedding (LLE)

- S. Roweis and L.K. Saul, 2000
- Assume that data on a manifold
 - That is each sample and its neighbors lie on approximately linear subspace

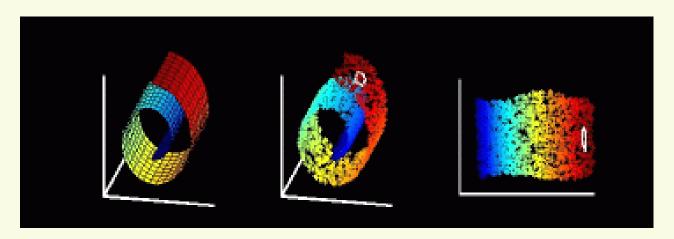
Idea:

- approximate data by a bunch of linear patches
- 2. Glue these patches together on a low dimensional subspace s.t. neighborhood relationships between patches are preserved. This step is done by global optimization.



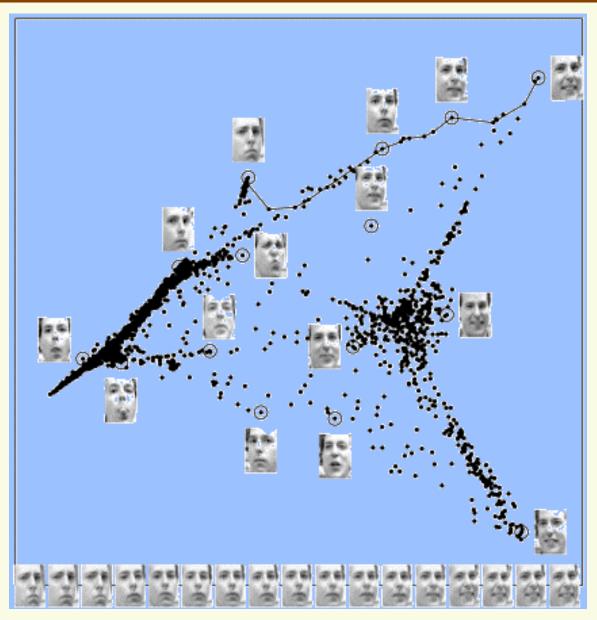
Locally Linear Embedding (LLE)

S. Roweis and L.K. Saul, 2000



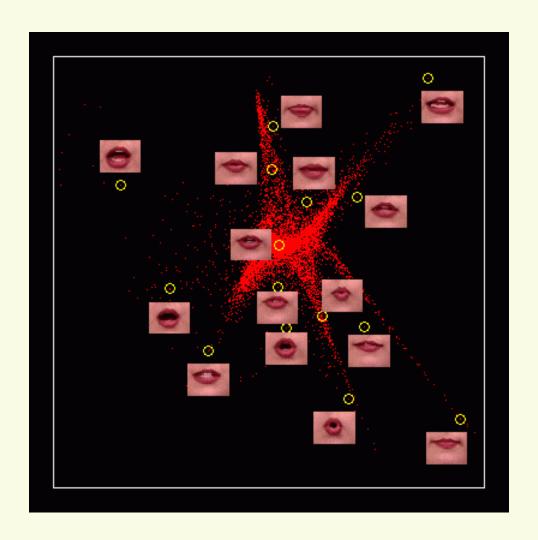
 This is similar to flattening out the map of the earth on a globe into a flat map

LLE: Face expressions



From S. Roweis and L.K. Saul, 2000

LLE: Face expressions



From S. Roweis and L.K. Saul, 2000

Isomap vs. LLE

Tenenbaum: "Our approach [Isomap], based on estimating and preserving global geometry, may distort the local structure of the data. Their technique [LLE], based only on local geometry, may distort the global structure," he said.

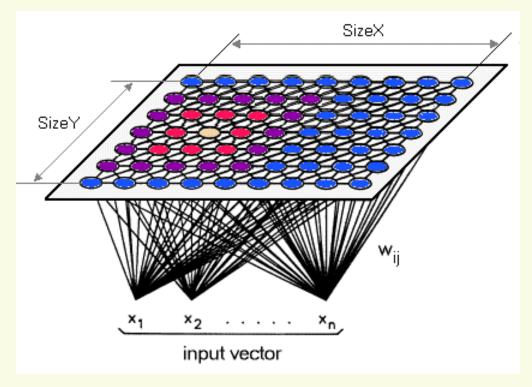
Kohonen Self-Organizing Maps

- The goal, again, is to map samples to a lower dimensional space s.t. inter-sample distances are preserved as much as possible
- Kohonen maps produce a mapping from multidimensional input onto a 1D or 2D grid of nodes (neurons)
- This mapping is topology preserving, that is similar samples are mapped to nearby neurons
- Kohonen maps learn without teacher
- Kohonen maps have connection to biology
 - Similar perception input lead to excitation in nearby parts of the brain

Kohonen Self-Organizing Maps (SOM)

 Interconnected structure of units (neurons) which compete for the signal. Usually neurons arranged on 1D

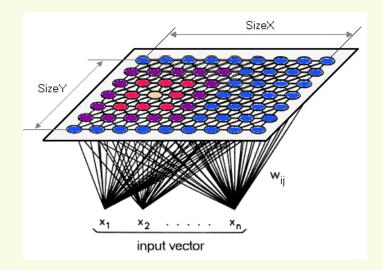
or 2D grid



- SOM algorithm learns a mapping from input samples to the 2D (1D) grid of neurons
- Each neuron is represented by weights \mathbf{w}_{ij} , the number of weights = dimensionality of an input sample

Kohonen Self-Organizing Maps (SOM)

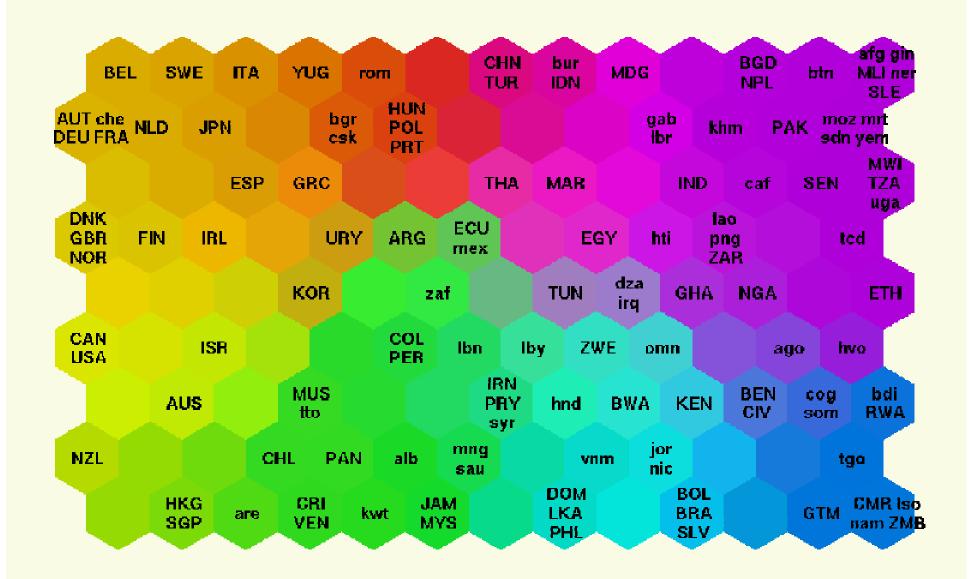
- Training
 - Repeat steps 1,2,3 until convergence or maximum number of iterations
 - 1. Select sample x_i
 - 2. Find the neuron n closest to x_i (i.e. the distance between x_i and the neuron weights w_{ii} is minimum
 - 3. Adjust the weight of *n* and the weights of neurons around *n* so that they move even closer to sample *x_i*
 - The neighborhood size is initially large, but shrinks with time



Kohonen SOM World Poverty Map

- Example from Helsinki University of Technology Finland
- World Bank statistics of countries in 1992
 - 39 features describing various quality-of-life factors, such as state of health, nutrition, educational services
 - countries that had similar values of the indicators found a place near each other on the map
 - different clusters on the map were automatically encoded with different bright colors, nevertheless so that colors change smoothly on the map display
 - As a result of this process, each country was in fact automatically assigned a color describing its poverty type in relation to other countries
 - The poverty structures of the world can then be visualized in a straightforward manner: each country on the geographic map has been colored according to its poverty type.

Kohonen SOM World Poverty Map



Kohonen SOM World Poverty Map

