CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 2

Outline

- Review of Linear Algebra
- vectors and matrices
- products and norms
- vector spaces and linear transformations
- eigenvalues and eigenvectors
- Introduction to Matlab

Why Linear Algebra?

- For each data point, we will represent a set of features as feature vector
- [length, weight, color,...]
- Collected data will be represented as collection of (feature) vectors
- $\left[l_{1}, w_{1}, c_{1}, \ldots\right]\left[l_{2}, w_{2}, c_{2}, \ldots\right]\left[l_{3}, w_{3}, c_{3}, \ldots\right] \ldots$
- Linear models are simple and computationally feasible

Vectors

- n-dimensional row vector $\boldsymbol{x}=\left[\begin{array}{llll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \ldots & \boldsymbol{x}_{n}\end{array}\right]$
- Transpose of row vector is column vector $\boldsymbol{x}^{T}=\left[\begin{array}{c}\boldsymbol{x}_{1} \\ \boldsymbol{x}_{2} \\ \vdots \\ \boldsymbol{x}_{n}\end{array}\right]$
- Vector product (or inner or dot product)
$\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{y}=\boldsymbol{x}_{1} \boldsymbol{y}_{1}+\boldsymbol{x}_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{i=1 . . \boldsymbol{k}} x_{i} y_{i}$

More on Vectors

- Euclidian norm or length $|\boldsymbol{x}|=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}=\sqrt{\sum_{i=1 . . . \boldsymbol{n}} \boldsymbol{x}_{i}^{2}}$
- If $|\boldsymbol{x}|=1$ we say \boldsymbol{x} is normalized or unit length
- Angle θ between vectors x and $y \cos \theta=\frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{|\boldsymbol{x} \| \boldsymbol{y}|}$

$\begin{aligned} & y^{4} \\ & x \\ & \cos \theta=0 \\ & x^{T} y=0 \end{aligned}$ x orthogonal to y $x \perp y$	$\begin{gathered} \cos \theta=1 \\ x^{T} y=\|x \\| y\|>0 \end{gathered}$	

- Thus inner product captures direction relationship between \boldsymbol{x} and \boldsymbol{y}

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and $|x|=|y|=1$
- Euclidian distance between vectors x and y

$$
|x-y|=\sqrt{\sum_{i=1 . . n}\left(x_{i}-y_{i}\right)^{2}}
$$

Linear Dependence and Independence

- Vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ are linearly dependent if there exist constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ s.t. 1. $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}=0$

2. at least one $\alpha_{i} \neq 0$

- Vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ are linearly independent if $\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \boldsymbol{x}_{2}+\ldots+\alpha_{n} \boldsymbol{x}_{n}=\mathbf{0} \Rightarrow \alpha_{1}=\ldots=\alpha_{n}=\mathbf{0}$

Vector Spaces and Basis

- The set of all n-dimensional vectors is called a vector space V
- A set of vectors $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ are called a basis for vector space if any \boldsymbol{v} in \boldsymbol{V} can be written as $\boldsymbol{v}=\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\ldots+\alpha_{n} \boldsymbol{u}_{n}$
- $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}$ are independent implies they form a basis, and vice versa
- $u_{1}, \boldsymbol{u}_{2}, \ldots, u_{n}$ give an orthonormal basis if 1. $\left|u_{i}\right|=1 \quad \forall i$

2. $\boldsymbol{u}_{i} \perp \boldsymbol{u}_{\boldsymbol{j}} \quad \forall \boldsymbol{i} \neq \boldsymbol{j}$

Matrices

- n by m matrix A and its m by n transpose A^{\top}

$$
A=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 m} \\
x_{21} & x_{22} & \cdots & x_{2 m} \\
\vdots & \vdots & \cdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n m}
\end{array}\right] \quad A^{T}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{n 1} \\
x_{12} & x_{22} & \cdots & x_{n 2} \\
\vdots & \vdots & \cdots & \vdots \\
x_{1 m} & x_{2 m} & \cdots & x_{n m}
\end{array}\right]
$$

Matrix Product

$$
\begin{array}{r}
A B=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 d} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n d}
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
b_{21} & \cdots & b_{2 m} \\
b_{31} & \cdots & b_{3 m} \\
\vdots & \cdots & \vdots \\
b_{d 1} & \cdots & b_{d m}
\end{array}\right]=\left[\begin{array}{c}
\\
c_{i j} \\
\square
\end{array}\right]=C \\
c_{i j}=\left\langle a^{i}, b_{j}\right\rangle \\
\begin{array}{l}
a^{i} \text { is row } \boldsymbol{i} \text { of } A \\
b_{i} \text { is column } j \text { of } B
\end{array}
\end{array}
$$

- \# of columns of $A=\#$ of rows of B
- even if defined, in general $\boldsymbol{A B} \boldsymbol{=} \boldsymbol{B A}$

Matrices

- Rank of a matrix is the number of linearly independent rows (or equivalently columns)
- A square matrix is non-singular if its rank equal to the number of rows. If its rank is less than number of rows it is singular.
- Identity matrix $\quad I=\left[\begin{array}{cccc}0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right], A_{=A}$
- Matrix \boldsymbol{A} is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{\top}$

Matrices

- Matrix A is positive definite if

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\sum_{i, j} \boldsymbol{A}_{i, j} \boldsymbol{x}_{i} \boldsymbol{x}_{j}>\mathbf{0}
$$

- Matrix A is positive semi-definite if

$$
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=\sum_{i, j} \boldsymbol{A}_{i, j} \boldsymbol{x}_{i} \boldsymbol{x}_{j} \geq \mathbf{0}
$$

- Trace of a square matrix \boldsymbol{A} is sum on the elements on the diagonal

$$
\operatorname{tr}[A]=\sum_{i=1}^{n} a_{i j}
$$

Matrices

- Inverse of a square matrix \boldsymbol{A} is matrix \boldsymbol{A}^{-1} s.t. $\boldsymbol{A A}^{-1}=\boldsymbol{I}$
- If \boldsymbol{A} is singular or not square, inverse does not exist. Pseudo-inverse \boldsymbol{A}^{\dagger} is defined whenever $\boldsymbol{A}^{\top} \boldsymbol{A}$ is not singular (it is square)
- $\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}$
- $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{\boldsymbol{1}} \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}$

Matrices

- Determinant of n by n matrix \boldsymbol{A} is

$$
\operatorname{det}(A)=\sum_{k=1}^{n}(-\mathbf{1})^{k+i} a_{i k} \operatorname{det}\left(A_{i k}\right)
$$

- Where $\boldsymbol{A}_{i k}$ obtained from \boldsymbol{A} by removing the ith row and kth column
- Absolute value of determinant gives the volume of parallelepiped spanned by the matrix rows

$$
\begin{gathered}
\left\{\beta_{1} a^{1}+\beta_{2} a^{2}+\ldots+\beta_{n} a^{n}\right\} \\
\beta_{i} \in[0,1] \forall i
\end{gathered}
$$

Linear Transformations

- A linear transformation from vector space \boldsymbol{V} to vector space \boldsymbol{U} is a mapping which can be represented by a matrix \boldsymbol{M} :
- $u=M v$
- If U and V have the same dimension, \boldsymbol{M} is a square matrix
- In pattern recognition, often \boldsymbol{U} has smaller dimensionality than \boldsymbol{V}, i.e. transformation \boldsymbol{M} is used
 to reduce the number of features.

Eigenvectors and Eigenvalues

Note: $\mathrm{A} 0=\lambda 0$ for any λ, not interesting

- Given n by n matrix \boldsymbol{A}, and nonzero vector \boldsymbol{X}. Suppose there is λ which satisfies $\boldsymbol{A x}=\lambda \boldsymbol{x}$
- \boldsymbol{x} is called an eigenvector of \boldsymbol{A}
- $\boldsymbol{\lambda}$ is called an eigenvalue of \boldsymbol{A}
- Linear transformation \boldsymbol{A} maps an eigenvector \boldsymbol{v} in a simple way. Magnitude changes by λ, direction
- If $\lambda>0$

$$
\text { - If } \lambda<0
$$

Eigenvectors and Eigenvalues

- If \boldsymbol{A} is real and symmetric, then all eigenvalues are real (not complex)
- If \boldsymbol{A} is non singular, all eigenvalues are non zero
- If \boldsymbol{A} is positive definite, all eigenvalues are positive

MATLAB

- Starting matlab
- xterm -fn 12X24
- matlab
- Basic Navigation
- quit
- more
- help general
- Scalars, variables, basic arithmetic
- Clear
- + - */ ^
- help arith
- Relational operators
- ==,\&,|,~,xor
- help relop
- Lists, vectors, matrices
- $A=[23 ; 45]$
- A'
- Matrix and vector operations
- find(A>3), colon operator
- * / ^ .* ./ .^
- eye(n),norm(A), $\operatorname{det}(A)$, eig(A)
- max,min,std
- help matfun
- Elementary functions
- help elfun
- Data types
- double
- Char
- Programming in Matlab
- .m files
- scripts
- function $y=$ square (x)
- help lang
- Flow control
- if $\mathrm{i}==1$ else end, if else if end
- for $i=1: 0.5: 2$... end
- while $i==1$... end
- Return
- help lang
- Graphics
- help graphics
- help graph3d
- File I/O
- load,save
- fopen, fclose, fprintf, fscanf

