CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 2

Outline

- Review of Linear Algebra
 - vectors and matrices
 - products and norms
 - vector spaces and linear transformations
 - eigenvalues and eigenvectors
- Introduction to Matlab

Why Linear Algebra?

- For each data point, we will represent a set of features as feature vector
 - [length, weight, color,...]
- Collected data will be represented as collection of (feature) vectors
 - $[l_1, W_1, C_1, ...]$ $[l_2, W_2, C_2, ...]$ $[l_3, W_3, C_3, ...]$...
- Linear models are simple and computationally feasible

Vectors

$$\begin{array}{c}
x_{2} \\
x_{1} \\
x_{1} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{2} \\
x_{n}
\end{array}$$
• n-dimensional row vector $\mathbf{x} = [\mathbf{x}_{1} \ \mathbf{x}_{2} \ \dots \ \mathbf{x}_{n}]$
• n-dimensional row vector is column vector $\mathbf{x}^{T} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{n} \end{bmatrix}$
• Vector product (or inner or dot product)

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x}^T \boldsymbol{y} = \boldsymbol{x}_1 \boldsymbol{y}_1 + \boldsymbol{x}_2 \boldsymbol{y}_2 + \ldots + \boldsymbol{x}_n \boldsymbol{y}_n = \sum_{i=1\ldots k} \boldsymbol{x}_i \boldsymbol{y}_i$$

More on Vectors

- Euclidian norm or length $|\mathbf{x}| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^{n} \mathbf{x}_{i}^{2}}$
- If |x|=1 we say x is normalized or unit length
- Angle θ between vectors **x** and **y** cos $\theta = \frac{x}{|x|}$

 Thus inner product captures direction relationship between *x* and *y*

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and |x|=|y|=1
- Euclidian distance between vectors x and y

$$|\mathbf{x}-\mathbf{y}| = \sqrt{\sum_{i=1...n} (\mathbf{x}_i - \mathbf{y}_i)^2}$$

Linear Dependence and Independence

- Vectors X₁, X₂,..., X_n are linearly dependent if there exist constants α₁, α₂,..., α_n s.t.
 1. α₁ X₁ + α₂ X₂ + ... + α_n X_n = 0
 2. at least one α_i ≠ 0
- Vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent if $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_n \mathbf{x}_n = \mathbf{0} \implies \alpha_1 = \dots = \alpha_n = \mathbf{0}$

Vector Spaces and Basis

- The set of all n-dimensional vectors is called a vector space V
- A set of vectors $\{u_1, u_2, ..., u_n\}$ are called a basis for vector space if any v in V can be written as $v = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$
- *u*₁,*u*₂,...,*u*_n are independent implies they form a basis, and vice versa
- $u_1, u_2, ..., u_n$ give an orthonormal basis if $1.|u_i| = 1 \quad \forall i$ $2. u_i \perp u_j \quad \forall i \neq j$

n by m matrix A and its m by n transpose A^T

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{X}_{11} & \boldsymbol{X}_{12} & \cdots & \boldsymbol{X}_{1m} \\ \boldsymbol{X}_{21} & \boldsymbol{X}_{22} & \cdots & \boldsymbol{X}_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ \boldsymbol{X}_{n1} & \boldsymbol{X}_{n2} & \cdots & \boldsymbol{X}_{nm} \end{bmatrix}$$

$$\boldsymbol{A}^{T} = \begin{bmatrix} \boldsymbol{X}_{11} & \boldsymbol{X}_{12} & \cdots & \boldsymbol{X}_{n1} \\ \boldsymbol{X}_{12} & \boldsymbol{X}_{22} & \cdots & \boldsymbol{X}_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ \boldsymbol{X}_{1m} & \boldsymbol{X}_{2m} & \cdots & \boldsymbol{X}_{nm} \end{bmatrix}$$

Matrix Product

- # of columns of A = # of rows of B
- even if defined, in general AB≠BA

- Rank of a matrix is the number of linearly independent rows (or equivalently columns)
- A square matrix is non-singular if its rank equal to the number of rows. If its rank is less than number of rows it is singular.
- Identity matrix $I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$
- Matrix A is symmetric if A=A^T

- Matrix **A** is **positive definite** if $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j} \mathbf{A}_{i,j} \mathbf{x}_i \mathbf{x}_j > \mathbf{0}$
- Matrix **A** is **positive semi-definite** if $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j} \mathbf{A}_{i,j} \mathbf{x}_i \mathbf{x}_j \ge \mathbf{0}$
- Trace of a square matrix **A** is sum on the elements on the diagonal $tr[A] = \sum_{i=1}^{n} a_{ii}$

- Inverse of a square matrix A is matrix A⁻¹ s.t. AA⁻¹ = I
- If A is singular or not square, inverse does not exist. Pseudo-inverse A⁺ is defined whenever A^TA is not singular (it is square)
 - $\mathbf{A}^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}}$
 - $\mathbf{A}^{\dagger}\mathbf{A} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$

- Determinant of n by n matrix **A** is $det(A) = \sum_{k=1}^{n} (-1)^{k+i} a_{ik} det(A_{ik})$
 - Where A_{ik} obtained from A by removing the ith row and kth column
- Absolute value of determinant gives the volume of parallelepiped spanned by the matrix rows $\{\beta_1 a^1 + \beta_2 a^2 + \dots + \beta_n a^n\}$ $\beta_i \in [0,1] \quad \forall i$

Linear Transformations

 A linear transformation from vector space V to vector space U is a mapping which can be represented by a matrix M:

• *u* = *Mv*

- If U and V have the same dimension, *M* is a square matrix
- In pattern recognition, often U has smaller dimensionality than V, i.e. transformation M is used to reduce the number of features.

Eigenvectors and Eigenvalues

Note: A0= λ 0 for any λ , not interesting)

- Given n by n matrix **A**, and nonzero vector **x**. Suppose there is λ which satisfies $Ax = \lambda x$
 - x is called an eigenvector of A
 - λ is called an eigenvalue of **A**
- Linear transformation *A* maps an eigenvector *v* in a simple way. Magnitude changes by λ, direction
 - If $\lambda > 0$

Eigenvectors and Eigenvalues

- If A is real and symmetric, then all eigenvalues are real (not complex)
- If A is non singular, all eigenvalues are non zero
- If A is positive definite, all eigenvalues are positive

- Starting matlab
 - xterm -fn 12X24
 - matlab
- Basic Navigation
 - quit
 - more
 - help general
- Scalars, variables, basic arithmetic
 - Clear
 - + * / ^
 - help arith
- Relational operators
 - ==,&,|,~,xor
 - help relop
- Lists, vectors, matrices
 - A=[2 3;4 5]
 - A'
- Matrix and vector operations
 - find(A>3), colon operator
 - * / ^ .* ./ .^
 - eye(n),norm(A),det(A),eig(A)
 - max,min,std
 - help matfun

- Elementary functions
 - help elfun
- Data types
 - double
 - Char
- Programming in Matlab
 - .m files
 - scripts
 - function y=square(x)
 - help lang
- Flow control
 - if i== 1else end, if else if end
 - for i=1:0.5:2 ... end
 - while i == 1 ... end
 - Return
 - help lang
- Graphics
 - help graphics
 - help graph3d
- File I/O
 - load,save
 - fopen, fclose, fprintf, fscanf