
CS 434a-541a
Nov. 8, 2004  Midterm

Problem 1 (15%): Consider a one dimensional two category classification problem. Suppose the 
class conditional densities are given by p(x|c1)=N(2,1) and

(a) Design the ML classifier
(b) Suppose priors are P(c1)=2/3 and P(c2)=1/3.  Design the MAP classifier
(c) Suppose priors are equal and the loss functions are as follows: loss for deciding c1 when 
the true class is c2 is 30, loss for deciding c2 when the true class c1 is 20. Loss for deciding 
the true class is 0.  Design the Minimum Bayes risk classifier.

In each case above,  give the decision boundaries and decision regions

Instructions: Show all the work
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Solution:

(a) According to ML classifier, 

For x <0 and x > 3, p(c2|x) = 0, so decide class 1.  

For  0<= x <= 3,    
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(b) According to MAP classifier, 

For x <0 and x > 3, p(c2|x) = 0, so decide class 1.  

For  0<= x <= 3,    
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3.32 >3 so only class 1 is possible.  Therefore decision regions and boundaries are:
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(c) According to Bayes classifier, since priors are equal,  

For x <0 and x > 3, p(c2|x) = 0, so decide class 1.  

For  0<= x <= 3,    
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Problem 2 (8%): Suppose you have a three category 4 dimensional classification problem.  Each 
class has a multivariate normal distribution.  The  covaraince matrices are equal for all 
classes and are 

The  means for each class are, respectively,

all classes have equal prior.  Using the MAP classifier,  classify sample  
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Solution: In case of equal priors and equal covariance matrices, we choose the class which has 
closest mean according to the Mahalanobis Distance

Inverse of the diagonal  matrix is                              , which is easy to compute 
since we know that

,  where         is the kth element on the diagonal

We can find the answer by observing that  σσσσ1 is much bigger than σσσσ2 ,σσσσ3 , and σσσσ4 . Thus 
we can just look at the first feature for classification, and the closest mean is 1, which 
means x should be classified as class 1. 

Alternatively, we could compute all 3 distances without making shortcuts.
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Problem 3 (12%): Consider a one dimensional two category classification problem. Suppose the 
class conditional densities are given by 

Suppose you have collected data for class 1 and stored it in array  D1= {1,5} and data for 
class 2  and stored it in array D2={3,6,9}.   

(a)  Find the maximum likelihood estimates for parameters θθθθ1 and θθθθ2.
(b)  Using ML classifier, find decision regions and decision boundaries using the 

parameters estimated in (a)
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Solution: 
(a)   The likelihood for the data for class 1 is  

Take the derivative and set it to 0:

θθθθ1=0  is not a valid solution because p(x|c1) = 0 is this case, which is not a density.
Similarly, the likelihood for the data for class 2 is  

Take the derivative and set it to 0:
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Problem 4 (6%): Sketch the best one dimensional representation of the following two dimensional 
set of samples

(a)

(b)

(c)

Solutions



Problem 5 (8%): Recall that the idea behind the Fisher linear discriminant is to project samples to a 
line so that samples from different classes  project to clusters on a line which overlap as little 
as possible. Let the projected means be µµµµ1, µµµµ2 and the projected variances be  σσσσ2

1, σσσσ2
2. 

Suppose we want to modify the Fischer linear discriminant approach by using a different 
objective function J(v) for finding the best line direction v to project samples to.  We plan on 
maximizing J(v). Which of the following would be a good objective functions to use, which are 
not? Give 1 sentence explanations.

(a)

(b)

(c)

(d)  
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Solutions

This is not a good objective function because it 
does not enforce small projected variance for 
class 2 

This is not a good objective function because it 
enforces differences between variances to be 
small, but we need the individual varinces for 
each class to be small

Good objective function because it enforces 
differences between the means to be large, and 
the individual variances for each class to be 
small

Not good objective function because it enforces 
variance for the second class to be large, abut 
we need it to be small



Problem 6 (15%): Consider  a one dimensional two class classification problem, where we 
have collected the following  data  for each class: D1 = {-1,-2,3,3,6,7} and                     
D2 = {-3,-2,3,5,8}.   Suppose we decided to use Parzen windows with window width h = 2
and ϕ ϕ ϕ ϕ (x) defined as 

(a) Classify sample  x = 4 using the ML classifier
(b) Show that the density estimates using Parzen windows with ϕ ϕ ϕ ϕ (x) given as above 

are true density functions
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Solution: 

(a)

(b) To show that density estimate is a true density, all we need to show that  the 

window function ϕϕϕϕ(u) is nonnegative and it’s integral is 1. 

Obviously ϕϕϕϕ(u) >=0, since                      is nonnegative between –1 and 1 
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Thus x = 4 should be classified as class 2
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Problem 7 (10%): Suppose we have a collected the following   one dimensional data from three 
classes: D1={1,7,8,9,10}, D2={2,3,4,11,12}, D3={5,6}. 
(a) classify  sample 6.6 using knn  algorithm with k=6
(b) Apply the editing algorithm to the data and show the reduced  set of samples it finds

Solution: 

(a)

(b) Samples  3, 8, 9, 12 have all the neighbors in the Voronoi diagram of the same 
class, and thus they can be removed.   The resulting reduced set of samples: 
D1={1,7,10}, D2={2,4,11,}, D3={5,6}. 

1 2 3 4 5 6 7 8 9 10 11 12
6.6

Nearest 6 neighbors of 6.6 are 7,8,9 from class 1 and 5,6 from class 3 and 4 from 
class 2.  Thus the largest number of neighbors is from class 1 and 6.6 should be 
classified as class 1

1 2 2 2 3 3 1 1 1 1 2 2



Problem 8 (15%):
(a) Write pseudo code for minimizing  with gradient decent the objective function 

where v is a vector of unknowns of size n, and A,B,C are completely known matrices of 
size n by n.  
(b) Suppose you do not limit the number of iterations performed by your algorithm.  How 
should you set the learning rate to ensure the convergence of your algorithm?
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Solution: 

(a) We can write  

(b) Learning rate as above, 1/k will work because the steps eventually will be too 
small to pass the condition of the while loop
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Problem 9 (11%): Give a one sentence answer to the questions below:

(a) Which classifier should you use for minimum error rate classification? 
Map Classifier

(b) What does it mean to say that  2 features are negatively correlated? 
When one increases, the other tends to decrease, and when one decreases, the other 
tends to increase

(c) Suppose we have an estimator θθθθ∗∗∗∗ for a parameter θθθθ . State 2 conditions for θθθθ∗∗∗∗ to be a 
good estimator of θ θ θ θ .                                      
Estimator θθθθ∗∗∗∗ should be unbiased and have low variance

(d) Name one difference between ML and Bayesian parameter estimation
(1)In Bayesian estimation, unknown parameter is modeled as a random variable, while in 
ML estimation it is a unknown but fixed;(2) BPE envolves integration, MLE envolves 
differentiation

(e) Suppose we are not happy with our classifier and decide to increase the number of 
features hoping to improve the performance. Suppose classification error goes up, 
instead of expected down.  Name one reason why this may have happened.
(1) overfitting; (2) samples are not dense enough

(f) Name one drawback for using k nearest neighbors rule for density estimation   
(1) The resulting density is usually not even a density, (2) Has discontinuities

(g) Name one advantage for using weights b=[1,1,…1]t in the MSE procedure                   
(1) The resulting MSE  solution is basically identical to Fischer’s linear discriminant
solution; (2) MSE solution approaches the Bayes discriminant function as the number of 
samples goes to infinity

(h) Suppose you are using gradient descent and printing out the value of the objective 
function at each iteration.  This value has been going down, as it is supposed to, for 100 
iterations, but then at iteration 101 it went  up.  What happened?                                    
We overshot the a local minimum

(i) For which functions gradient decent should not be even attempted?                      
Discontinuous functions

(j) Suppose we have 5 samples and we know that the first  sample should lie closer to the 
separating hyperplane and the last sample should lie far from the separating hyperplane, 
compared to the other samples.  Suggest an appropriate b for the MSE procedure.         
b = [1 10 10 10 100]

(k) What is an optimal data distribution for a linear discriminant function? 
Gaussian distribution with equal covariances


