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Abstract
Object identification (OID) is specialized recognition where
the category is known (e.g. cars) and the algorithm recog-
nizes an object’s exact identity (e.g. Bob’s BMW). Two spe-
cial challenges characterize OID. (1) Inter-class variation is
often small (many cars look alike) and may be dwarfed by il-
lumination or pose changes. (2) There may be many classes
but few or just one positive “training” examples per class.
Due to (1), a solution must locate possibly subtle object-
specific salient features (a door handle) while avoiding dis-
tracting ones (e.g. specular highlights). However, (2) rules
out direct techniques of feature selection. We describe an
on-line algorithm that takes one query image from a known
category and builds an efficient “same” vs. “different” clas-
sification cascade by predicting the most discriminative fea-
ture set for that object. Our method not only estimates the
saliency and scoring function for each candidate feature, but
also models the dependency between features, building an
ordered feature sequence unique to a specific query image,
maximizing cumulative information content. Learned stop-
ping thresholds make the classifier very efficient. To make this
possible, category-specific characteristics are learned auto-
matically in an off-line training procedure from labeled im-
age pairs of the category, without prior knowledge about the
category. Our method, using the same algorithm for both
cars and faces, outperforms a wide variety of other methods.

1. Introduction
Object identification is specialized object recognition where
the category is known (e.g. faces or cars) and one must rec-
ognize the exact identity of objects. The classes to be dis-
tinguished are not categories, e.g. cars versus non-cars (the
problem of Object Categorization), but rather specific ob-
jects, like Bob’s BMW or Jen’s Ford. The hierarchical nature
of categories suggests a continuum between these two prob-
lems: vehicles to cars to sedans to Phil’s sedan. In this paper,
we focus on the identification end of this continuum, where

Figure 1: An Identification Problem: Which cars match?
The two cars on the left were photographed from camera 1.
Which of the four images on the right, taken by camera 2,
match the cars on the left?

the Object Identification (OID) problem poses different chal-
lenges than its coarser cousin, Object Categorization (OC).
Specifically, in OID problems (1) the inter-class variation is
often small (many cars look alike), and this variation is often
dwarfed by illumination or pose changes (see Fig. 1); and (2)
there are many classes (each object is a separate class) but
few (in our case just one) positive “training” examples per
class (e.g. one image representing “Bob’s BMW”).

People are good at identifying individual objects from fa-
miliar categories after seeing them only once. Consider faces.
We zero in on discriminative features for a person such as a
prominent mole or unusually thick eyebrows, yet are not dis-
tracted by equally unusual but non-repeatable features such
as a messy strand of hair or illumination artifacts. Domain
specific expertise makes this possible: having seen many
faces one learns that a messy strand of hair is not often a
reliable feature. Human vision researchers report that acqui-
sition of this expertise is accompanied by significant behav-
ioral and physiological changes. Diamond et al. [4] showed
that dog experts perform dog identification differently than
non experts; Tarr et al. [11] argued that the brain’s fusiform
face area does visual processing of categories for which ex-
pertise has been gained.

The processes that occur during Object Categorization
(OC) and Object Identification (OID) can be formally char-
acterized. In functional notation, the stages for OC are

1. (Off-line) trainer Tcat: class training images 7→ Ccat,
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2. (On-line) classifier Ccat: test image 7→ class label.
There is nothing novel here, just the standard paradigm of
statistical learning. It relies implicitly on having enough ex-
amples of each class to learn discriminative features.

For OID, we assume off-line access to plenty of examples
of the category (cars, dogs, faces). We then must develop
an on-line classifier for a future image of Bob’s BMW, given
only one example of it. We decompose the on-line process
into two stages: (a) producing an “identifier”, a classifier spe-
cialized to reidentify a specific object based on a single exam-
ple of it, and (b) running the “identifier” on the incoming data
stream. These on-line stages are preceded by the off-line pro-
cess of learning category specific characteristics, resulting in
an “identifier generator”. Thus, the three stages for OID are

1. (Off-line) trainer Tid: category training images 7→ Hid,
2. (On-line) identifier generator Hid: object image 7→ Cid,
3. (On-line) classifier Cid: test image 7→ {same, different}.
We stress that step 1 learns category specific characteris-

tics, while step 2 creates an object specific classifier. Now we
address details.

First we need to pick a family of classifiers Cid. Motivated
by the success of patch (a.k.a. part or fragment) based repre-
sentations ([12, 8]) for OC, we use them for OID as well.
Specifically, we develop an OID system whose generated
classifier Cid (step 3) is a patch-based classification cascade
similar to that of Vidal-Naquet et al. [12], where evidence
from features is accumulated incrementally until a “same” or
“different” decision can be made. The tricky part is to give
Hid the ability to pick out object specific discriminative fea-
tures (e.g. a prominent door handle in one car, a roof rack
in another). But how can we know that a patch containing
a prominent door handle is discriminative, based on a single
image, when we have never seen a door handle exactly like it
before?

The core of our approach is to use hyper-features, which
are generic position and appearance characteristics of a patch.
Examples include location of a patch, edge contrast in the
patch and the dominant oriented energy in the patch. We
might, in the process of becoming a car identification expert,
expect to learn that patches about half-way up with strong
edge contrast and a dominant horizontal orientation are par-
ticularly informative. When given the specific example of
Bob’s BMW, the identifier generator Hid could produce an
object-specific cascade with the first test based on the patch
containing the door handle. Whereas for Jen’s Ford, the same
set of hyper-features will result in a different ordering of
salient patches, resulting in a different classification cascade
with the first test using a patch containing the roof rack (see
Fig. 4).

More precisely, to instantiate Cid (step 2), the functionHid

is given a single image of the object (e.g. Bob’s BMW) and
produces a sequence of patches ordered from most informa-
tive to least, that maximizes the cumulative information con-

tent. This sequence is object-specific, and may emphasize
different parts of each object.

Off-line training Tid (step 1), given a set of image pairs
from the category, each pair labeled “same” or “different,”
produces a class-specific Hid by learning (a) a saliency model
for image patches as a function of patch characteristics like
position and appearance (hyper-features), (b) a dependency
model between image patches based on similarity of their
hyper-features, and (c) a set of thresholds for the cascade.
The specific hyper-features used are themselves automati-
cally selected during this training step from a large pool of
candidate patch characteristics.

In contrast to some other “one-shot” learning algorithms
[10, 7], where off-line training involves finding priors for
a fixed model, our Tid actually learns how to identify an
arbitrary number of good features for the given category.
Thus our final classifier Cid, while always a cascade of im-
age patches taken from the probe object, will have a differ-
ent set of patches (in size, location, and count) for each ob-
ject. To score a patch and its correspondent in a probe im-
age, our technique uses generalized linear models (GLMs)
to estimate a generative model for the dissimilarity between
patch pairs. “Same” and “different” distributions based on
the hyper-features of the patch are estimated. These distri-
butions are used both to estimate the saliency of a patch (by
computing the expected mutual information between the dis-
similarity and decision variables) and to score a patch pair by
comparing the likelihood under the same and different distri-
butions. By estimating bivariate “same” and “different” dis-
tributions for neighboring patches, we model the dependency
relationships, allowing us to compute a sequence of patches
with high joint information content.

Section 2 summarizes our previously published work on
using hyper-features for visual identification [1]. That work
had a serious limitation: it assumed that the patches were
independent. This assumption is clearly false, especially
for nearby and overlapping patches. To make that system
work, we allowed only a single patch size and added a sim-
ple penalty term for a patch that was not a local maximum.
Here we allow the system to pick patches of varying sizes,
forcing us to model the patch dependencies. This model and
its estimation from the training data is described in Section 3.
With this dependency model, we build the cascade in Sec-
tion 4 by finding stopping thresholds for making “same” or
“different” decisions. Section 5 details our extensive experi-
ments on multiple car and face data sets.

2. Learning Hyper-Features
We begin by outlining the basic components of our system,
some of which were previously detailed in [1]. As the main
focus of this paper is modeling patch dependency (Section 3)
and building the classification cascade (Section 4), we only
summarize these components and ask the reader to refer to [1]
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for additional details and motivations for our choices. We de-
scribe the training (Tid), identifier generating (Hid), and clas-
sification (Cid) functions in reverse order, starting with the
final form of the object-specific classifier. In the following,
we assume that all images are known to contain objects of the
given category (e.g. cars or faces) and have been brought into
rough correspondence (see Section 5 for details).

2.1. Classifier Cid

The classifier Cid decides if a test (a.k.a. database, right) im-
age IR is the same (C = 1) or different (C = 0) than the
probe (a.k.a. query, left) image IL it was trained for.

Patches. Our classifier consists of a sequence of im-
age patches from the probe image IL and denoted F L

j for
1 ≤ j ≤ m. Unlike our previous algorithm from [1], these
patches can have different sizes and resolutions (by using dif-
ferent levels of a Gaussian pyramid). Generally speaking,
larger patches are sampled at lower resolutions, keeping the
complexity of the patches approximately constant. The gray-
scale (we currently don’t use color information) pixels of
the patch are encoded by applying a first derivative Gaussian
odd-symmetric filter at four orientations (horizontal, vertical,
and two diagonal), giving four signed numbers per pixel.

Matching. Each encoded patch F L
j is matched to an

equally sized area in the test image IR, by searching for
the most similar patch F R

j within some small neighbor-
hood around the expected location (according to the coarse
alignment). The distance function that this search mini-
mizes is one minus the normalized correlation dj = 1 −
CorrCoef(F L

j , F R
j ) between the encoded patches. The ap-

pearance distance dj is used as evidence for deciding if IL

and IR are the same (C = 1) or different (C = 0).
Likelihood Ratio Score. To convert dj to a score, Cid

stores probability distributions P (dj |C = 1) and P (dj |C =
0) for each patch and computes the log likelihood ratio.
(Note: to limit the number of variables in this discussion, dj

can refer to both the random variable over which we estimate
a distribution and the specific measured distance value for a
particular patch pair). After m patches have been matched,
assuming for now that the patches are statistically indepen-
dent, we score the match between images IL and IR using
the sum of log likelihood ratios of matched patches:

R =
m∑

j=1

log
P (dj |C = 1)

P (dj |C = 0)
. (1)

To evaluate this, we must evaluate P (dj |C = 1) and
P (dj |C = 0). In our system, both of these take the form
of gamma distributions Γ(dj ; θ

C=1
j ) and Γ(dj ; θ

C=0
j ), where

the parameters θC=1
j and θC=0

j are defined as part of the clas-
sifier Cid for each patch and are set by Hid based on hyper-
features.

Making a Decision. In [1], Cid matched a fixed number of

patches (m), computed the score R by Eq. 1, and compared it
to a threshold λ. R > λ meant that IL and IR are the same.
Otherwise they are declared different. In Section 4 of this
paper, we define a cascade from the sequence of patches by
applying thresholds after each patch has been matched.

To summarize, the classifier Cid is defined by a sequence
of patches of varying sizes (denoted F L

j ) taken from the
probe image IL. Additionally, a pair of parameters θC=1

j

and θC=0
j that define the distributions P (dj |C = 1) and

P (dj |C = 0) are associated with each patch.

2.2. Classifier Generator Hid

The classifier generator Hid must take in a single probe im-
age IL of a new object from the given category and produce a
sequence of patches F L

1 , ..., F L
m and their associated gamma

parameters, θC=1
1 , ..., θC=1

m and θC=0
1 , ..., θC=0

m , for scoring
based on the appearance distance measurement dj (which is
measured when the patch F L

j is matched to a location in the
test image IR).

Estimating θC=1
j and θC=0

j . Since being able to estimate
a good θC=1

j and θC=0
j (θj for short) for any patch j is also

the key to picking good patches, we start with this step. Con-
ceptually, we want θj to be influenced by what patch F L

j

looks like and where it is on the object (see the discussion
of hyper-features in Section 1). First, we extract a prede-
fined set of hyper-features from the patch such as [x pos,
x pos2, size, resolution, contrast3, vertical energy, ...].
Let Zj = [Z1, ..., Zl]

T be a vector of these hyper-features for
patch j, and let θj be parameterized as θ = {µj , γj}. Now
we define a generalized linear model (GLM) [9], which links
these hyper-featuresZ to the gamma distribution (Γ()) model
for P (dj |C = 1) and P (dj |C = 0):

P (dj |Z, C) = Γ(dj ; α
µ
C · Zj, α

γ
C · Zj), (2)

where the second and third arguments to Γ() are mean
µ and shape γ parameters. Each α (there are four of
these α

µ
C=0, α

γ
C=0, α

µ
C=1, α

γ
C=1) is a vector of parameters

of length l that weights each hyper-feature monomial Zi.
The key point to notice is that given a hyper-feature encod-
ing (the definition of which patch characteristics to extract)
and the linear weights α, we can estimate the distributions
P (dj |C = 1) and P (dj |C = 0) for any probe image patch
F L

j , based on its position and appearance.
Estimating Saliency. If we define the saliency of a patch

as the amount of information about the decision C likely
to be gained if the patch were to be matched, then it is
straightforward to estimate saliency given P (dj |C = 1) and
P (dj |C = 0). Intuitively, if P (dj |C = 1) and P (dj |C = 0)
are similar distributions, we don’t expect much useful infor-
mation from a value of dj . On the other hand, if the dis-
tributions are very different, then dj can tell us a great deal
about our decision. Formally, this can be measured as the mu-
tual information between the decision variable C and the ran-
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Figure 2: Bivariate Gamma Distributions. The two plots on
the left and the two on the right each show a typical pair of bivari-
ate gamma distributions for C = 1 and C = 0. In the left pair,
the marginals are uncorrelated (ρ = 0), while in the right pair the
marginals are highly correlated (ρ = 0.85).

dom variable dj . To emphasize the fact that the distribution
P (dj |C) is a fixed function of F L

j (see above), we slightly
abuse notation and refer to the random variable from which
dj is sampled as F L

j . With this notation, computing the mu-
tual information between F L

j and C gives us a measure of
the expected information gain from a patch with particular
hyper-features:

I(F L
j ; C) = H(F L

j ) − H(F L
j |C).

Here H() is Shannon entropy.
Finding Good Patches. With the above mutual informa-

tion formula, we can estimate the saliency of any patch. Thus
defining a sequence of patches to examine in order, from
among all candidate patches, is straightforward: for each
candidate patch estimate the distributions P (dj |C = 1) and
P (dj |C = 0) from the hyper-features; compute the mutual
information I(F L

j ; C); sort the patches by I(F L
j ; C); and

take the top m patches. The problem with this procedure is
that the patches are not independent: once we have matched
a patch F L

j , the amount of additional information we are ex-
pected to derive from matching patch a F L

i that overlaps F L
j

is less then I(F L
i ; C) would suggest. We discuss a solution

to this problem in Section 3.
However, assuming that this dependency problem can be

solved, we have a complete algorithm for generating the
classifier Cid from a single image, given a definition of the
hyper-features to extract (the patch statistics Z) and the lin-
ear weights α.

2.3. Off-line Training Tid

The task of the off-line training step Tid is to define the hyper-
feature encoding Z and to learn the weights α that link this
encoding to the distributions P (dj |C = 1) and P (dj |C = 0).
This step is given a large collection of image pairs from
the category, where each left-right image pair is labeled as
“same” or “different”. A large number of patches F L

j are
sampled from the left images and matched to the right images
(by finding the best matching F R

j ) in the same manner as dur-
ing classification Cid (see Matching in Section 2.1), and the
appearance distance dj is recorded. For each patch, a large
set of candidate hyper-features are also extracted from the po-

Figure 3: Patch Correlations. On each image, the patches most
correlated with the white-circled patch are shown. Notice that in
the left image, where the patch sits in an area with a highly visi-
ble horizontal structure, the most correlated patches all lie along the
horizontal features. Contrast this with the right image, showing cor-
relation of patches with a patch sitting on a wheel, where the most
correlated patches are those that strictly overlap the white-circled
patch.

sition and appearance of the left patch F L
j . This data gives

rise to 2 generalized linear regression problems: one for the
“same” (C = 1) set and one for the “different” (C = 0) set.
Our solution involves (1) a feature selection step which finds
a hyper-feature encoding (Z) by choosing a small subset from
the candidate set of hyper-features, and (2) a maximum like-
lihood estimation step to fit α

µ
C=1, α

γ
C=1 and α

µ
C=0, α

γ
C=0.

3. Modeling Pairwise Relationships Be-
tween Patches

In Section 2, we described our model to score a probe image
patch F L

j and its best match F R
j by modeling the distribution

of their distance in appearance, dj , conditioned on the match
variable C. Furthermore, in Section 2.2, we described how
to infer the saliency of the patch F L

j for matching based on
these distributions. As we noted in that section, this works
for picking the first patch, but is not optimal for picking sub-
sequent patches: once we have already matched and recorded
the score of the first patch, the amount of information gained
from a nearby patch is likely to be small, because their scores
are likely to be correlated. Intuitively, the next chosen patch
would ideally be a highly salient patch whose information
about C is as independent as possible from the first patch.
Similarly, the third patch should consider both the first and
the second patches.

Let F L
(k) represent the kth patch picked for the cascade and

let F L
(1...n) denote the first n of these patches. Assume we

have already picked patches F L
(1...n) and we wish to choose

the next one, F L
(n+1), from the remaining set of F L

j ’s. We
would like to pick the one that maximizes the information
gain or the conditional mutual information:

I(F L
(n+1); C|F L

(1...n)) = I(F L
(1...n+1); C) − I(F L

(1...n); C).

This quantity is difficult to estimate, due to the need to
model the joint distribution of all F L

(1...n) patches. How-
ever, note that the information gain of a new feature is up-
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Figure 4: The Ten Most Informative Patches. The ten rectangles on each object show the top ten patches our algorithm selected for the
classification cascade for that object. The face model seems to prefer features around the eyes, while the 2 car models (2 data sets, top and
bottom) tend to both like wheels but differ in their interest in the roof region. Notice, however, that even within a category each cascade is
unique, highlighting interesting appearance features for that object. The patches are color coded according to their order, from dark red (1)
to dark blue (10).

per bounded by the information gain of that feature relative
to any single feature that has already been chosen. That is,

I(F L
(n+1); C|F L

(1...n)) ≤ min
1≤i≤n

I(F L
(n+1); C|F L

(i)). (3)

Thus, rather than maximizing the full information gain,
we select the new feature that maximizes this upper bound
on the amount of “new” information:

arg max
j

min
i

I(F L
j ; C|F L

(i)), (4)

where i varies over the already chosen patches, and j

varies over the remaining patches. This formulation (Eq. 4)
follows that of Vidal-Naquet et al. [12].

3.1. Dependency Model
To compute (4), we need to estimate conditional mutual in-
formations of the form

I(F L
j ; C|F L

(i)) = I(F L
j , F L

(i); C) − I(F L
(i); C).

In Section 2.2, we showed that we can determine the sec-
ond term, I(F L

(i); C), from the estimated gamma distributions
for P (d(i)|C = 1) and P (d(i)|C = 0). Similarly, to calculate
I(F L

j , F L
(i); C), we need an estimate of the bivariate distribu-

tions for P (d(i), dj |C = 1) and P (d(i), dj |C = 0). If the
d(i) and dj are independent conditioned on C, then these are
straightforward to compute from the known marginal distri-
bution parameters for d(i) and dj . To model the dependent
case, we employ Kibble’s bivariate gamma distribution [6],
which has four parameters: K(µ1, µ2, γ, ρ), 0 < ρ < 1. µ1

and µ2 are mean parameters for the marginals, and γ is a
dispersion parameter for both marginals (the formulation re-
quires these to be equal). ρ is the correlation between d(i)

and dj , and varies from 0, indicating full independence of
the marginals, to 1, in which the marginals are completely
correlated (see figure 2).

To make this formulation work, the marginal distribution
parameters must be constrained to be equal (µC=1

j = µC=1
(i) ,

as well as γC=1
j = γC=1

(i) )1. Therefore, for the computation
of the conditional mutual information of F L

j conditioned on
F L

(i), we force the marginal distribution of the already cho-
sen patch (F L

(i)) to be equal to the marginal distribution of
the patch currently being considered (F L

j ). Given that our
method for comparing all patches is the same, namely nor-
malized correlation, this usually means a very minor per-
turbation to the estimated distribution of F L

(i) when the two
patches are strongly correlated. On the other hand, when the
marginals are originally fairly different, the two patches tend
to be uncorrelated. In this case, the exact shapes of F L

(i)’s
distributions are less relevant to the computation of Eq. (4).
Since we are always setting the first two parameters of the
Kibble’s distribution to be the same, we will henceforth write
it with three parameters (e.g. K(µC=0

j , γC=0
j , ρ)).

3.2. Predicting Patch Correlations from Hyper-
Feature Differences

Given the above formulation, we have reduced the problem of
finding the next best patch, F L

(n+1), to the problem of estimat-
ing the correlation parameter ρ of Kibble’s bivariate gamma
distribution for any pair of patches F L

(i) (one of the n patches
already selected) and F L

j (a candidate for F L
(n+1)). The in-

tuition is that patches that are nearby and overlapping or that
lie on the same underlying image features (for example the
horizontal line on the side of the car in Figure 3) are likely to
be highly correlated, whereas two patches that are of differ-
ent sizes and far away from one another are likely to be less
so.

We model ρ, the last parameter of K(µC=1
j , γC=1

j , ρ)

and K(µC=0
j , γC=0

j , ρ), similarly to our GLM estimate of
its other parameters (see Section 2.2): we let ρ be a linear
function of the difference of various hyper-features of the

1More precisely the γ’s must be equal (this is a requirement of Kibble’s

formulation), while the µ’s must satisfy
µC=1

j

µC=1
(i)

=

µC=0
j

µC=0
(i)
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two patches, F L
(i) and F L

j . Clear candidates for these co-
variates are the difference in position and size of the two
patches, as well as some image-based features such as the
difference in the amount of contrast within each patch. To
ensure 0 < ρ < 1, we use a sigmoid link function

ρ = (1 − exp(β ·Y))−1,

where Y is our vector of hyper-feature differences and β

is the GLM parameter vector.
Given a data set of patch pairs F L

(i) and F L
j and asso-

ciated distances d(i) and dj (found by matching the “left”
patches to a “right” image of the same or of a different ve-
hicle), we estimate the linear coefficients β. This is done by
maximizing the likelihood of K(µC=1

j , γC=1
j , ρ) using data

taken from image pairs that are known to be the “same”2 and
K(µC=0

j , γC=0
j , ρ) using data taken from “different” image

pairs. Also similarly to Section 2.3, we choose the encod-
ing of Y automatically, by the method of forward feature se-
lection [5] over candidate hyper-feature difference variables.
As anticipated, the top ranked variables encoded differences
in position, size, contrast, and orientation energy. Our final
model uses the top 10 variables.

4. Building the Cascade
Now that we have a model for patch dependence, we can cre-
ate a sequence of patches F L

j (see Section 2.2) that, when
they are matched, collectively capture the maximum amount
of information about the decision C (same or different?). The
sequence is ordered so that the first patch is the most infor-
mative, the second slightly less so and so on. The final step
of creating a cascade is to define early stopping thresholds on
the log likelihood ratio sum R that can be applied after each
patch in the sequence has been matched and its score added
to R (see Section 2.1).

We assume that we are given a global threshold λ (see
Section 2.1) that defines a global choice between selectiv-
ity and sensitivity. What remains is the definition of thresh-
olds at each step, λaccept

(k) and λ
reject

(k) , which allow the system

to accept (declare “same”) if R > λ
accept

(k) or reject (declare

“different”) if R ≤ λ
accept

(k) , otherwise continue by matching
patch k +1. To learn these thresholds, we run Hid on the left
images and the resulting classifier Cid on the right images of
our training data set. This will produce a performance curve
for each choice of k, the number of patches included in clas-
sification score, including k = m, the sum for which λ is
defined. Our goal for the cascade is for it to make decisions
as early as possible (tight thresholds) but, on the training set,
never make a mistake on any pair which was correctly clas-
sified using all m patches and the threshold λ. These two
constraints exaclty define the thresholds λ

accept

(k) and λ
reject

(k) .
2µC=1

j
and γC=1

j
are estimated from F L

j
by the method of Section 2.3

and are fixed for this optimization.

Figure 5: Precision vs. Recall Using Different Numbers of
Patches. These are precision vs. recall curves for our full model.
Each curve represents the performance tradeoff between precision
and recall, when the system uses a fixed number of patches. The
lowest curve uses only the single most informative patch, while the
top curve uses up to 100 patches. The 85% recall rate, where the
different models of Figure 6 are compared, is noted by a vertical
black dashed line. A magenta X, at recall = 84.9 and precision =
84.8, marks the performance of the cascade model.

5. Results and Conclusion
The goal of this work was to create an identification system
that could be applied to different categories, where the al-
gorithm would automatically learn (based on off-line train-
ing examples) how to select category-specific salient features
from a new image. In this section, we demonstrate that after
category training, our algorithm is in fact able take a single
image of a novel object and solely based on it create a highly
effective “same” vs. “different” classification cascade of im-
age patches. Specifically, we wish to show that for visual
identification each of the following leads to an improvement
in performance in terms of accuracy and/or computational ef-
ficiency:

1. breaking the object up into patches (a.k.a parts, frag-
ments), matching each one separately and combining
the results,

2. differentiating patches by estimating a scoring and
saliency function for each patch (based on its hyper-
features),

3. modeling the dependency between patches to create a
sequence of patches to be examined in order, and

4. applying early termination thresholds to the patch se-
quence to create the cascade.

We tested our algorithm on 3 different data sets: (1) cars
from 2 cameras with significant pose differential, (2) faces
from news photographs, and (3) cars from a wide-area track-
ing system with 33 cameras and 1000’s of unique vehicles.
Examples from these 3 data sets are shown in Figure 4, with
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Figure 6: Comparing Performance of Different Models. The
curves plot the performance of various models, as measured by the
false-positive rate (fraction of different pairs labeled incorrectly as
same), at a fixed recall rate of 85%. The y-axis shows the log error
rate, while the x-axis plots the log number of patches the models
were allowed to use (up to a max of 100). As the number of patches
increases, the performance improves until a point, after which it
levels off and, for the models that order patches according to in-
formation gain, even decreases (when non-informative patches be-
gin to pollute the score). The (red) model that does not use hyper-
features (i.e. uses the same distributions for all patches), performs
very poorly compared to the hyper-feature versions, even when it is
allowed to use 100 patches. The second curve from the top uses our
hyper-feature model to score the patches, but random selection to
pick the patch order. The position only model uses only position-
based hyper-features for selecting patch order (i.e. it computes a
fixed patch order for all cars). The light blue model sorts patches
by mutual information, without considering dependencies. The last
curve shows our full model based on selecting patches according
to their conditional mutual information, using both positional and
image-based hyper-features. Finally, the magenta X at 2.58 patches
and 1.02% error shows the performance of the cascade model.

Figure 7: How many patches does it take to make a decision?
This histogram shows the number of patches that were matched by
the classification cascade before a decision could be made. On av-
erage, 2.2 patches were required to make a negative (declaring a
difference) decision, and 8.0 patches to make a positive one.

Recall Rate 60% 70% 80% 90%
PCA + MahCosine 82% 73% 62% 59%
Filter + NormCor 83% 73% 67% 57%

No Hyper-Features 86% 73% 68% 62%
Random 10 Patches 79% 71% 64% 60%

Top 1 CMI Patch 86% 76% 69% 63%
Top 50 CMI Patches 92% 84% 75% 67%

CMI Cascade 92% 84% 76% 66%

Table 1: Precision vs. Recall for Faces.
Each column denotes the precision associated with a given recall
rate along the P-R curve. PCA + MahCosine and Filter + Norm-
Cor are whole face comparison techniques. PCA + MahCosine is
the best curve produced by [3], which implments PCA and LDA al-
gorithms with face-specific preprocessing. Filter + NormCor uses
the same representation and comparison method as our patches, but
applied to the whole face. The last 4 all use our patch based system
with hyper-features. The last 3 uses conditional mutual informa-
tion based patch selection, where the number of patches allowed is
set to 1, 50, and variable (cascade), respectively. The cascades use
between 2-3 patches on average to make a decision.

the top 10 patches of the classification cascade. For each data
set, a different automatic preprocessing step was applied to
detect objects and approximately align them. After this, the
same identification algorithm was applied to all 3 sets. For
lack of space, we detail our experiments on data set 1, enu-
merate the results of data set 2, and only summarize our expe-
rience with data set 3. Qualitatively, our results on the three
are consistent in showing that each of the above aspects of
our system improves the performance, and that the overall
system is both efficient and effective.

5.1. Cars 1
358 unique vehicles (179 training, 179 test) were extracted
using a blob tracker from 1.5 hours of video from 2 cam-
eras located one block apart. The pose of the cameras rela-
tive to the road (see Figure 1) was known from static cam-
era calibration, and alignment included warping the sides of
the vehicles to be approximately parallel to the image plane.
Within training and testing sets, about 2685 pairs (true to
false ratio of 1:15) of mismatched cars were formed from
non-corresponding images, one from each camera. These in-
cluded only those car pairs that were superficially similar in
intensity and size. Using the best whole image comparison
method we could find (normalized correlation on blurred fil-
ter outputs) on this set produces 14% false positives at a 15%
miss rate. This data set is available from [Anonymous].

Figure 6 compares several versions of our model by plot-
ting the false-positive rate (y-axis) with a fixed miss rate of
15% (85% recall), for a fixed budget of patches (x-axis). The
85% recall point was selected based on Figure 5, by pick-
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ing the equal error point given the 1 to 15 true-to-false ratio.
The Random Order curve uses our hyper-feature model for
scoring, but chooses the patches randomly. By comparing
this curve to its neighbors, notice the performance gain as-
sociated with differentiating patches based on hyper-features
both for scoring (No Hyper-Features vs. Random Order) and
for patch selection (Random Order vs. Mutual Information).
Comparing Mutual Information vs. Conditional MI shows
that modeling patch dependence is important for choosing a
small number of patches (see range 5-20) that together have
high information content (Section 3). Comparing Position
Only (which only uses positional hyper-features) vs. Condi-
tional MI (which uses both positional and appearance hyper-
features) shows that patch appearance characteristics are sig-
nificant for both scoring and saliency estimation. Finally, the
cascade performs (1.02% error, with mean of 2.58 patches
used) as well as the full model and better than any of the
others, even when these are given an unlimited computation
budget.

Figure 5 shows another way to look at the performance of
our full model given a fixed patch (computation) budget (the
Conditional MI curve of Figure 6 represents the intersection
of these curves with the 85% recall line). The cascade per-
formance is also plotted here (follow the black arrow). The
distribution of the number of patches it took to make a deci-
sion in the cascade model is plotted in Figure 7.

5.2. Faces
We used a subset of the “Faces in the News” data set de-
scribed in [2], where the faces have been automatically de-
tected from news photographs and registered by their algo-
rithm. Our training and test sets each used 103 different peo-
ple, with 2 images per person. This is an extremely difficult
data set for any identification algorithm, as these face images
were collected in a completely uncontrolled manner (news
photographs). Table 5 summarizes our results for running the
same algorithm as above on this set. Note the same pattern as
above: the patch based system generally outperforms whole
object systems (here we compare against state of the art PCA
and LDA algorithms with face specific preprocessing using
CSU’s implementation [3]); estimating a scoring and saliency
function through hyper-features greatly improves the perfor-
mance of the patch based system; the cascade, using less
than 3 patches on average, performs as well as always us-
ing the best 50 patches (performance actually declines above
50 patches).

5.3. Cars 2
We are helping to develop a wide-area car tracking system
where this component must reidentify vehicles when they
pass by a camera. Detection is performed by a blob tracker
and the images are registered by aligning the centroid of the

object mask (the cameras are located approximately perpen-
dicular to the road). We tested our algorithm on a subset of
data collected from 33 cameras and 1000’s of unique vehi-
cles, by learning an identifier generating function (Hid) for
each camera pair (this way, the system incorporates the typ-
ical distortions that a vehicle undergoes between these cam-
eras). Typical equal error rates for our classification cascade
are 3-5% for near lane (vehicle length ∼140 pixels) and 5-7%
for far lane (∼60 pixels), again using 2-3 patches on average.
Whole object comparison (several different techniques) and
using patches without hyper-features generally resulted in er-
ror rates that were twice as large.
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