
Color- and Texture-Based Image Segmentation Using EM 
and Its Application to Content-Based Image Retrieval 

Serge Belongie, Chad Carson, Hayit Greenspan, and Jitendra Malik 
Computer Science Division 

University of California at Berkeley 
Berkeley, CA 94720 

{ sj b,carson,hayit,malik} 63 cs.berkeley.edu 

Abstract 

Retrieving images from large and varied collections using 
image content as a key is a challenging and importantprob- 
lem. In this paper we present a new image representation 
which provides a transformation from the raw pixel data to 
a small set of image regions which are coherent in color and 
texture space. This so-called “blobworld” representation is 
based on segmentation using the Expectation-Maximization 
algorithm on combined color and texture features. The tex- 
ture features we use for the segmentation arise from a new 
approach to texture description and scale selection. 

We describe a system that uses the blobworld representa- 
tion to retrieve images. An important and unique aspect of 
the system is that, in the context of similarity-based query- 
ing, the user is allowed to view the intemal representation 
of the submitted image and the query results. Similar sys- 
tems do not offer the user this view into the workings of the 
system; consequently, the outcome of many queries on these 
systems can be quite inexplicable, despite the availability of 
knobs for adjusting the similarity metric. 

1 Introduction 
Very large collections of images.are growing ever more 

common. From stock photo collections to proprietary 
databases to the Web, these collections are diverse and often 
poorly indexed; unfortunately, image retrieval systems have 
not kept pace with the collections they are searching. The 
shortcomings of these systems are due both to the image 
representations they use and to their methods of accessing 
those representations to find images: 

0 While users generally want to find images containing 
particular objects (“things”) [4, 61, most existing im- 
age retrieval systems represent images based only on 
their low-level features (“stuff’), with little regard for 
the spatial organization of those features. 

0 

0 

In 

Systems based on user querying are often unintuitive 
and offer little help in understanding why certain im- 
ages were returned and how to refine the query. Often 
the user knows only that he has submitted a query for, 
say, a bear and retrieved very few pictures of bears in 
return. 

For general image collections, there are currently no 
systems that automatically classify images or recog- 
nize the objects they contain. 

this paper we present a new image representation, . -  

“blobworld,” and a retrieval system based on this repre- 
sentation. While blobworld does not exist completely in 
the “thing” domain, it recognizes the nature of images as 
combinations of objects, and both querying and learning in 
blobworld are more meaningful than they are with simple 
“stuff’ representations. 

We use the Expectation-Maximization (EM) algorithm to 
perform automatic segmentation based on image features. 
EM iteratively models the joint distribution of color and 
texture with a mixture of Gaussians; the resulting pixel- 
cluster memberships provide a segmentation of the image. 
After the image is segmented1 into regions, a description 
of each region’s color, texture, and spatial characteristics is 
produced. In a querying task, the user can access the regions 
directly, in order to see the segmentation of the query image 
and specify which aspects of the image are important to the 
query. When query results are returned, the user sees the 
blobworld representation of the returned images; this assists 
greatly in refining the query. 

We begin this paper by brieflly discussing the current state 
of image retrieval. In Section 2 we describe the blobworld 
representation, from features through segmentation to region 
description. In Section 3 we present a query system based 
on blobworld, as well as results from queries in a collection 
of highly varied natural images. 

675 

http://cs.berkeley.edu


Current image database systems include IBM’s Query by 
Image Content (QBIC) [18], Photobook [20], Virage [IO], 
Candid [ 141, and Chabot [19]. These systems primarily use 
low-level image properties; several of them include some de- 
gree of automatic segmentation. None of the systems codes 
spatial organization in a way that supports object queries. 

Classical object recognition techniques usually rely on 
clean segmentation of the object from the rest of theimage 
or are designed for\fixed geometric objects such as machine 
parts. Neither constraint holds in our case: the shape, size, 
and color of objects like cheetahs and polar bears are quite 
variable, and segmentation is imperfect. Clearly, classical 
object recognition does not apply. More recent techniques 
I211 can identify specific objects drawn from a finite (on 
the order of 100) collection, but no present technique is 
effective at the general image analysis task, which requires 
both image segmentation and image classification. 

Promising work by Lipson et al. [I61 retrieves images 
based on spatial and photometric relationships within and 
across image regions. Little or no segmentation is done; the 
regions are derived from low-resolution images. 

Earlier work has used the EM algorithm and/or the Min- 
imum Description Length (MDL) principle to perform seg- 
mentation based on motion [ 1,251 or scaled intensities [26], 
but EM has not previously been used on joint color and 
texture. Related approaches such as deterministic anneal- 
ing [ 113 and classical clustering [ 121 have been applied to 
texture segmentation without color. 

The blobworld representation is related to the notion of 
photographic or artistic scene composition. In the sense 
discussed in 2231, the blobworld descriptors constitute an 
example of a summary representation because they are con- 
cise and relatively easy to process in a querying framework. 

Blobworld is distinct from color-layout matching as in 
QBIC in that it is designed to find objects or parts of ob- 
jects. Each image may be visualized by an ensemble of 2-D 
ellipses, or “blobs,” each of which possesses a number of 
attributes. The number of blobs in an image is typically less 
than ten. Each blob represents a region of the image which 
is roughly homogeneous with respect to color or texture. 
A blob is described by its dominant colors, mean texture 
descriptors, and spatial centroid and scatter matrix. (See 
Figs. 3 -4  for a visualization of blobworld.) 

2.1 
Our goal is to assign the pixels in the original image to a 

relatively small number of groups, where each group repre- 
sents a set of pixels that are coherent in their color and local 
texture properties; the motivation is to reduce the amount 

Extracting color and texture features 

2 The blobworld image representation 

676 

of raw data presented by the image while preserving the in- 
formation needed for the image understanding task. Given 
the unconstrained nature of the images in our database, it is 
important that the tools we employ to meet this goal be as 
general as possible without sacrificing an undue amount of 
descriptive power. 

2.1.1 Color 
Color is a very importaat cue in extracting informa- 

tion from images. Color histograms are commonly used 
in content-based retrieval systems [18, 19, 241 and have 
proven to be very useful; however, the global characteriza- 
tion is poor at, for example, distinguishing between a field 
of orange flowers and a tiger, because it lacks information 
about how the color is distributed spatially. It is important 
to group color in localized regions and to fuse color with 
textural properties. 

We treat the hue-saturation-value (HSV) color space as 
a cone: for a given point ( h ,  s ,  w), h and sw are the angular 
and radial coordinates of the point on a disk of radius v at 
height U; all coordinates range from 0 to 1. Points with 
small w are black, regardless of their h and s values. The 
cone representation maps all such points to the apex of the 
cone, so they are close to one another. The Cartesian coor- 
dinates of pointsin the cone, (sw cos(2nh), sw sin(2!.n;h), w), 
can now be used to find color differences. This encoding 
allows us to operationalize the fact that hue differences are 
meaningless for very small saturations (those near the cone’s 
axis). However, it ignores the fact that for large values and 
saturations, hue differences are perceptually more relevant 
than saturation and value differences. 

2.1.2 Texture 
Texture is a well-researched property of image regions, 

and many texture descriptors have been proposed, including 
multi-orientation filter banks [ 171 and the second-moment 
matrix [5, 81. We will not elaborate here on the classical 
approaches to texture segmentation and classification, both 
of which are challenging and well-studied tasks. Rather, we 
introduce a new perspective related to texture descriptors and 
texture grouping motivated by the content-based retrieval 
task. 

While color is a point property, texture is a local- 
neighborhood property. It does not make sense to talk about 
the texture of zebra stripes at a particular pixel without spec- 
ifying a neighborhood around that pixel. In order for a 
texture descriptor to be useful, it must provide an adequate 
description of the underlying texture parameters and it must 
be computed in a neighborhood which is appropriate to the 
local structure being described. 

The first requirement could be met to an arbitrary degree 
of satisfaction by using multi-orientation filter banks such as 
steerable filters; we chose a simpler method that is sufficient 



(a) flow; (b) flow; (c) 2-D texture; (d) edge (e) uniform 
a =  1.5 a = 2.5 a =  1.5 a=O 0 = 0  

Figure 1. Five sample patches from a zebra im- 
age. (a) and (b) have stripes (1-D flow) of dif- 
ferent scales and orientations, (c) is  a region o f  2-D 
texture, (d) contains an edge, and (e) is  a uniform 
region. 

for our purposes. The second requirement, which may be 
thought of as the problem of scale selection, does not enjoy 
the same level of attention in the literature. This is unfortu- 
nate, since texture descriptors computed at the wrong scale 
only confuse the issue. 

In this work, we introduce a novel method of scale selec- 
tion which works in tandem with a fairly simple but informa- 
tive set of texture descriptors. The scale selection method is 
based on edgebar polarity stabilization, and the texture de- 
scriptors arise from the windowed second moment matrix. 
Both are derived from the gradient of the image intensity, 
which we denote by V I .  We compute V I  using the first 
difference approximation along each dimension. This oper- 
ation is often accompanied by smoothing, but we have found 
this preprocessing operation unnecessary for the images in 
our collection. 

To make the notion of scale concrete, we define the scale 
to be the width of the Gaussian window within which the 
gradient vectors of the image are pooled. The second mo- 
ment matrix for the vectors within this window, computed 
about each pixel in the image, can be approximated using 

where G, (z , y) is a separable binomial approximation to a 
Gaussian smoothing kernel with variance u2. 

At each pixel location, Mu (2, y) is a 2 x 2 symmetric 
positive semidefinite matrix; thus it provides us with three 
pieces of information about each pixel. Rather than work 
with the raw entries in Mu, it is more common to deal with 
its eigenstructure [2, 51. Consider a fixed scale and pixel 
location, let XI and A2 (XI 2 Xz) denote the eigenvalues of 

Mu at that location, and let q5 denote the argument of the 
principal eigenvector of Mff  . When XI is large compared to 
X2, the local neighborhood possesses a dominant orientation, 
as specified by 4. When the eigenvalues are comparable, 
there is no preferred orientation, and when both eigenval- 
ues are negligible, the local neighborhood is approximately 
constant. 

Scale selection 

We may think of (T as controlling the size of the integra- 
tion window around each pixel within which the outer prod- 
uct of the gradient vectws is averaged. (T has been called 
the integration scale or arti$cial scale by various authors 
[5, 81 to distinguish it from the natural scale used in linear 
smoothing of raw image intensities. Note that CT = u ( x ,  y); 
the scale varies across the image.’ 

In order to select the scale at which Mff  is computed, 
i.e. to determine the function ~ ( x ,  y),  we make use of a 
local image property known as polarity.’ The polarity is 
a measure of the extent to which the gradient vectors in a 
certain neighborhood all point in the same direction. (In the 
computation of second moments, this information is lost in 
the outer product operation; i.e., gradient vector directions 
differing by 180’ are indistinguishable.) The polarity at a 
given pixel is computed with respect to the dominant ori- 
entation q5 in the neighborhood of that pixel. For ease of 
notation, let us consider a fixed scale and pixel location. We 
define polarity as 

The definitions of E+ and E- are 

and 

where [q ]+  and [ q ] -  are the rectified positive and negative 
parts of their argument, f i  is a unit vector perpendicular to 4, 
and Q represents the neighborhood under consideration. We 
can think of E+ and E- as measures of how many gradient 
vectors in Q are on the “positive side” and “negative side” 
of the dominant orientation, respectively. Note that p ranges 
from 0 to 1. A similar measure is used in [ 151 to distinguish 
a flow pattern from an edge. 

‘Strictly speaking, eqn. (1) is a sliding inner product, not a convolution, 

2Polarity is related to the yuudruturephuse as discussed in [7, 91. 
since ~ ( z ,  y) is spatially variant. 

677 



The polarity p, varies as the scale (r changes; its behavior 
in typical image regions can be summarized as follows: 

Edge: The presence of an edge is signaled by po holding 
values close to 1 for all (r. 

Texture: In regions with 2-D texture or 1-D flow, pa  decays 
with 0 due to the presence of multiple orientations. 

Uniform: In a constant-intensity neighborhood, p ,  takes 
on arbitrary values since the gradient vectors have 
negligible magnitudes and therefore arbitrary angles. 

The process of selecting a scale is based on the derivative 
of the polarity with respect to scale. First, we compute the 
polarity at every pixel in the image for o‘k = k/2, k = 
0, 1, . . . , 7 ,  thus producing a “stack’ of polarity images 
across scale. Then, for each I C ,  the polarity image computed 
at scale (rk is convolved with a Gaussian with standard de- 
viation 2Crk to yield a smoothed polarity image For 
each pixel, we select the scale as the first value of ok for 
which the difference between successive values of polarity 
wok - FOk-,) is less than 2%. In this manner, we are per- 
forming a soft version of local spatial frequency estimation, 
since the smoothed polarity tends to stabilize once the scale 
window encompasses one approximate period. Since we 
stop at (rk = 3.5, the largest period we can detect is approx- 
imately 10 pixels. Note that when the period is undefined, 
as is the case in uniform regions, the selected scale is not 
meaningful and is set to zero. We declare a pixel to be 
uniform if its mean contrast across scale is less than 0.1. 

Another method of scale selection that has been proposed 
[8] is based on localizing extrema across scale of an invariant 
of M,, such as the trace or determinant. In this algorithm, 
which is applied to the problem of estimating the slant and 
tilt of surfaces with tangential texture, it is necessary to 
perform natural smoothing at a scale tied to the artificial 
scale. We found that this extra smoothing compromised the 
spatial localization ability of our scale selection method. 

Texture features 

Once a scale CT* is selected for each pixel, that pixel is 
assigned three texture descriptors. The first is the polarity, 
p,.. The other two, which are taken from M O + ,  are the 
anisotropy, defined as a = 1 - X2/X1, and the normalized 
texture contrast, defined as c = 2 d m . ’  These are 
related to derived quantities reported in [8]. 

2.1.3 
The color/texture descriptor for a given pixel consists of 

six values: three for color and three for texture. The three 
color components are the color-cone coordinates found after 

Combining color and texture features 

31f we use a centeredlrst difference kernel in the gradient computation, 
the factor of 2 makes c range from 0 to 1. 

spatial averaging using a Gaussian at the selected scale. 
The three texture components are ac, pc, and c, computed 
at the selected scale; the anisotropy and polarity are each 
modulated by the contrast in analogy to the construction 
of the color-cone coordinates. (Recall that anisotropy and 
polarity are meaningless in regions of low contrast.) In 
effect, a given textured patch in an image first has its texture 
properties extracted and is then replaced by a smooth patch 
of averaged color. In this manner, the color and texture 
properties in a given region are decoupled; for example, a 
zebra is a gray horse plus stripes. 

Note that in this formulation of the colodtexture descrip- 
tor, orientation and selected scale do not appear in the feature 
vector; as a result, grouping can occur across variations in 
scale and orientation. 

2.2 Grouping with the EM Algorithm 
Once an image has been processed using the above fea- 

ture extraction scheme, the result is a la-ge set of 6-D feature 
vectors, which we may regard as points in a 6-D feature 
space. In order to divide these points into groups, we make 
use of the Expectation-Maximization (EM) algorithm [3] to 
determine the maximum likelihood parameters of a mixture 
of li‘ Gaussians inside the 6-D feature space. 

The EM algorithm is used for finding maximum likeli- 
hood parameter estimates when there is missing or incom- 
plete data. In our case, the missing data is the region to 
which the points in the feature space belong. We estimate 
values to fill in for the incomplete data (the “E-Step”), com- 
pute the maxiniurn likelihood parameter estimates using this 
data (the “M-Step”), and repeat until a suitable stopping cri- 
terion is reached. 

The first step in applying the EM algorithm is to initialize 
a mean vector and covariance matrix to represent each of 
the K groups. We initialize the means to random values 
and the covariances to identity matrices. (In earlier work 
we chose the initialization for EM carefully, but we have 
found that the initialization has little effect on the quality 
of the resulting segmentation.) The update scheme allows 
for full covariance matrices; variants include restricting the 
covariance to be diagonal or a constant times the identity 
matrix. Full covariance matrices suit our problem, since 
many plausible feature clusters require extruded covariance 
shapes, e.g. the shades of gray along the color cone axis. 

Upon convergence, the Gaussian mixture parameters can 
be inspected to determine what color/texture properties are 
represented by each component of the mixture. Some ex- 
amples of groups that can form include the following: 

e bright, bluish, and textureless regions (e.g., sky) 

e anisotropic and non-polar regions (e.g., zebra hide) 

e green weak-isotropic texture (e.g., grass) 

678 



We have thus far not discussed how to choose IC, the 
number of mixture components. Ideally we would like to 
choose that value of Ii' that best suits the natural number of 
groups present in the image. One readily available notion of 
goodness of fit is the log-likelihood. Given this indicator, we 
can apply the Minimum Description Length (MDL) princi- 
ple [22] to select among values of IC. As a consequence of 
this principle, when models using two values of Ii' fit the 
data equally well, the simpler model will be chosen. For our 
experiments, I( ranges from 2 to 5. 

Once a model is selected, the next step is to perform 
spatial grouping of those pixels belonging to the same 
color/texture cluster. We first produce a I<-level image 
which encodes pixel-cluster memberships by replacing each 
pixel with the label of the cluster for which it attains the high- 
est likelihood (see Fig. 2(d)). To enforce a small amount of 
spatial smoothness in this representation, we apply a 3 x 3 
maximum-vote filter to the raw cluster-membership image. 
Finally, we run the resulting image through a connected- 
components algorithm to produce a set of labeled image 
regions (see Fig. 2(e)). (Alternatively, one could enforce 
spatial constraints by appending the pixel coordinates to the 
feature vectors, though we observed that this method too 
often yields unsatisfactory segmentations.) 

2.3 Describing the regions 
We store a simple description of each region's color, 

texture, and spatial characteristics. (See Fig. 2(f) for a visu- 
alization of the stored representation.) 

Color and texture descriptors 
The two dominant colors within a connected component 

are chosen by using the EM algorithm to fit a mixture of 
two Gaussians in the HSV cone. The details are as before 
except that in this case we restrict the covariances to be a 
constant times the identity matrix. Upon convergence, the 
two mean vectors are recorded as the dominant colors in the 
region. When the color distribution inside the HSV cone 
is in fact unimodal, both means become nearly coincident; 
we have not found it necessary to apply model selection 
between I< = 1 and Ii' = 2. 

For each image region (blob) we store the mean texture 
descriptors (i.e., anisotropy, orientation, contrast) and the 
top two colors. We do not store the selected scale, since we 
want to be invariant to scales in the range U,+ = 0,  . . . ,3.5. 
Although polarity is used for scale selection, we discard it 
here, since in any textured or uniform region it is approxi- 
mately zero by virtue of the scale selection process. 

Figure 2 Creating the blobworld representation. 
(a) Original image. 
(b) Scale estimated using polarity. The values range 
from U = 0 (black) t o  CT = 3.5 (white). 
(c) The six components o f  the color/texture fea- 
ture vectors, each bounded 'between 0 (white) and 
1 (black). Top: the locally smoothed color-cone co- 
ordinates. Bottom: the texture coordinates; f rom 
left t o  right, ac, pc ,  and c. The zebra hide is highly 
anisotropic and in general has high texture contrast. 
The polarity is largest around the edges, where the 
shading gradient points primarily in one direction. 
(d) The results o f  clustering these feature vectors 
into I< = 2 , 3 , 4 , 5  groups using EM t o  learn a mix- 
ture o f  Gaussians Pixel cluster memberships are 
shown as one o f  up t o  five gray levels. The MDL 
principle suggests t h a t  the rightmost image (I< = 5) 
provides the best segmentation o f  the data. Most 
noticeable in th is segmentation are oriented texture, 
which is found throughout the zebra hide, and uni- 
form or low-contrast texture, which accounts for 
most of the background. 
(e) The segmentation for I< = 5 after application o f  
a 3 x 3 max-vote filter. Each connected component 
in this image which possess;es an area greater than 
2% of the total image area produces a blob. 
(f) The blobworld representation. Each blob en- 
codes summary information about the underlying 
color, texture and shape properties. 

679 



Spatial descriptors 
The geometric descriptors of the blob are simply the 

centroid c and scatter matrix S of the blob region; the cen- 
troid provides a notion of position, while the scatter matrix 
provides an elementary shape description. In the querying 
process discussed in Section 3.1, centroid separations are 
expressed using Euclidean distance. The determination of 
the distance between scatter matrices is based on the three 
quantities [det(S)]’/’ = m, 1 - K ~ / K I ,  and B .  ( K I  

and ~2 are the eigenvalues of S; B is the argument of the 
principal eigenvector of S.) These three quantities represent 
approximate area, eccentricity, and orientation. 

> >  

3 Image retrieval by querying 
Anyone who has used a search engine, text-based or oth- 

erwise, is familiar with the reality of unwanted matches. 
Often in the case of text searches this results from the use 
of ambiguous keywords, such as “bank” or “interest” [27]. 
Unfortunately, with image queries it is not always so clear 
why things go wrong. Unlike with text searches, in which 
the user can see the features (words) in a document, none 
of the current content-based image retrieval systems allows 
the user to see exactly what the system IS looking for in 
response to a similarity-based query. Simply allowing the 
user to submit an arbitrary image (or sketch) and set some 
abstract knobs without knowing how they relate to the in- 
put image in particular implies a degree of complexity that 
searching algorithms do not have. As a result, a query for 
a bear can return just about any object under the sun if the. 
query is not based on image regions, the segmentation rou- 
tine fails to “find’ the bear in the submitted image, or the 
submitted image contains othei distinctive objects. Without 
realizing that the input image was not properly processed, 
the user can only wonder what went wrong. In order to help 
the user formulate effective queries and understand their re- 
sults, as well as to minimize disappointment due to overly 
optimistic expectations of the system, the system should 
display its representation of the submitted image and the 
returned images. 

3.1 Querying in blobworld 
In our system, theuser composes aquery by submitting an 

image and seeing its blobworld representation, selecting the 
blobs to match, and finally specifying the relative importance 
of the blob features. The user may also submit blobs from 
several different images. (For example, a query might be 
the disjunction of the blobs corresponding to airplanes in 
several images, in order to provide a query that looks for 
airplanes of several shades.) 

We define an “aiomic query” as one which specifies a 
particular blob to match (e.g., “like-blob-1”). A “compound 
query” is defined as either an atomic query or a conjunction 

or disjunction of compound queries (“like-blob-1 and like- 
blob-2”). In the future, we might expand this definition to 
include negation (“not-like-blob-1”) and to allow the user to 
specify two blobs with a particular spatial relationship as an 
atomic query (“like-blob- 1 -left-of-blob-2”). 

Once a compound query is specified, we score each 
database image based on how closely it satisfies the com- 
pound query. The score pi for each atomic query (like-blob- 
i) is calculated as follows: 

1. Find the feature vector vi for the desired blob bi .  This 
vector consists of the stored color, texture, position, 
and shape descriptors. 

2. For each blob b j  in the database image: 

(a) Find the feature vector vj for b j  

(b) Find the Mahalanobis distance between vi 
and v j  using the diagonal covariance ma- 
trix (feature weights) set by the user: 
d; j  = [(vi - w ~ j ) ~ C - ~ ( v ;  - vj)]’. 

(c) Measure the similarity between bi and b j  using 

pi j  = e-  2 . This score is 1 if the blobs are 
identical in all relevant features; it decreases as 
the match becomes less perfect. 

Q 

3. Take pi = maxj p i j ,  

The compound query score for the database image is cal- 
culated using fuzzy-logic operations [ 131. For example, if 
the query is “like-blob-1 and (like-blob-2 or like-blob-3),” 
the overall score for the image is min(p1, max(p2, p?} } .  
The user can also specify a weighting cri for each atomic 
query. If “like-blob-i” is part of a disjunction in the com- 
pound query, the weighted score for atomic query i is 
pi = c ~ i p i ;  if it is in a conjunction, its weighted score is 

We then rank the images according to overall score and 
return the best matches, indicating for each image which 
set of blobs provides the highest score; this information 
will help the user refine the query. After reviewing the 
query results, the user may change the weighting of the blob 
features or may specify new blobs to match. 

p; = 1 - cTi ’ (1 - pi). 

3.2 Results 
We have performed a variety of queries using a set of 

2000 images from the commercial Core1 stock photo col- 
lection. We used the following categories: African Spe- 
cialty Animals; Air Shows; Arabian Horses; Bald Eagles; 
Bears; Canadian Rockies; Caribbean; Cheetahs, Leopards, 
Jaguars; China; Death Valley; Deserts; Elephants; Fields; 
France; Kenya; Night Scenes; Sheep; Sunsets; Tigers; and 
Wild Animals. Sample queries are shown in Figs. 3-4. 

6 80 



Figure 3. Blobworld query for tiger images. 28% of 
the t o p  50 images are tigers; tiger images make up 
5% o f  the database. 

07 - - B _  

~~~~, ; 0 5  kc- --fl-__ -81 

0 3  

0 2  

0 1  

0 Figure 4. Blobworld query for zebra images. 24% of 
the top  50 images are zebras, while less than 2% o f  
the images in  the database are zebras. 

681 

i o  20 30 40 so 60 7n 80 9n 100 
numbu of images retiuned 

Figure 5. Tiger query performance 

08 

"'k ,s--T-<:'--o--*-- -0-- -- -8 - - 
0 ,  i o  M 30 do so 60 70 80 90 100 

nunher ofmagerrctiuncd 

Figure 6. Zebra query performance 

$ 0 4  

03 

0 , k  za 30 40 ro 60 70 so Po ,d, 
number nf imager rehuned 

Figure 7. Airplane query performance. 



3.2.1 Comparison to color histograms 
We have compared our results to those obtained using 

color histogram matching, following the procedure of Swain 
and Ballard [24]. The color histogram for each image uses 
8 divisions for the intensity axis and 16 for each oppo- 
nent color axis. Given a query image with histogram Q $ ,  
each database image (with histogram 0,) receives score 
E, IQ, - D, I. As before, we rank the database images and 
return the best matches. Figures 5-8 show how the precision 
changes as more images are returned; the blobworld query 
results are better than the color histogram results, except for 
the tiger query. We believe the good color histogram results 
for the tiger query occur largely because of the limited nature 
of the test database; few non-tiger images in this collection 
have significant amounts of both orange and green. Adding 
pictures of, say, orange flowers in a field would degrade the 
color histogram performance without significantly affecting 
the blobworld performance. 

We have proposed a new method which uses Expectation- 
Maximization on color and texture jointly to provide an 
image segmentation, as well as a new image representation 
(blobworld) which uses this segmentation and its associated 
descriptors to represent image regions explicitly. We have 
demonstrated a query mechanism that uses blobworld to 
retrieve images and help guide user queries. 

Acknowledgments 
We would like to thank David Forsyth, Joe Hellerstein, 

Ginger Ogle, and Robert Wilensky for useful discussions 
related to this work. This work was supported by an NSF 
Digital Library Grant (IRI 94-1 1334) and NSF graduate 
fellowships for Serge Belongie and Chad Carson. 

References 
[I] S. Ayer and H. Sawhney. Layered representation of motion 

video using robust maximum-likelihood estimation of mix- 
ture models and MDL encoding. In Proc. Int. Con$ Comp. 
Vis., pages 777-784,1995. 

[2] J. Bigiin. Local symmetry features in imageprocessing. PhD 
thesis, Linkoping University, 1988. 

[3] A. Dempster, N. Laird, and D. Rubin. Maximum likeli- 
hood from incomplete data via the EM algorithm. J. Royal 
Statistical Soc., Sex B ,  39(1):1-38, 1977. 

[4] P. Enser. Query analysis in a visual information retrieval 
context. J. Doc. and TextManagement, 1(1):25-52, 1993. 

[5] W. Forstner. A framework for low level feature extraction. 
In Proc. Eur Conj Comp. Vis., pages 383-394,1994. 

[6] D. Forsyth, J. Malik, and R. Wilensky. Searching for digital 
pictures. Scientific American, 276(6):72-77, June 1997. 

[7] W. T. Freeman apd E. H. Adelson. The design and use of 
steerable filters. IEEE Trans. Pattern Analysis and Machine 
Intelligence, 13(9):891-906, 1991. 

[8] J. Ggrding and T. Lindeberg. Direct computation of shape 
cues using scale-adapted spatial derivative operators. Int. J. 
Comp. Vis., 17(2):163-191, Feb 1996. 

[9] G. H. Granlund and H. Knutsson. Signal Processing,for 
Computer Vision. Kluwer Academic Publishers, 1995. 

[lo] A. Gupta and R. Jain. Visual information retrieval. Comm. 
Assoc. Comp. Mach., 40(5):70-79, May 1997. 

[ l l ]  T. Hofmann, J. Puzicha, and J. M. Buhmann. Deterministic 
annealing for unsupervised texture segmentation. In Proc. 
Int. Workshop on Energy Min. Methods in Conzp. Vis. and 
Putt. Rec., pages 213-228, 1997. 

[12] A. K. Jain and F. Farrokhnia. Unsupervised texture segmen- 
tation using Gabor filters. Pattern Recognition, 24( 12): 1 167- 
1186,1991. 

[13] J.-S. Jang,C.-T. Sun, and E. Mizutani. Neuro-FuzzyandSoft 
Computing. Prentice Hall, 1997. 

[I41 P. Kelly, M. Cannon, andD. Hush. Query by image example: 
the CANDID approach. In SPIE Proc. Storage and Retrieval 
for  Image and Video Databases, pages 238-248,1995. 

[15] T. Leung and J. Malik. Detecting, localizing and grouping 
repeated scene elements from an image. In Proc. Eur. Con.  
Conzp. Vis., pages 546-555,1996. 

[16] P. Lipson, E. Grimson, and P. Sinha. Configuration based 
scene classification and image indexing. In Proc. IEEE 
Comp. Soc. Con$ Comp. Vis. and Pattern Recogn., pages 
1007-1 01 3,1997. 

[17] J. Malik and P. Perona. Preattentive texture discrimination 
with early vision mechanisms. J. Opt. Soc. Am. A ,  7(5):923- 
932,1990. 

[18] W. Wiblack et al. The QBIC project: querying images by 
content using colour, texture and shape. In SPIE Proc. Stor- 
age and Retrieval for  Image and Video Databases, pages 

[19] V. Ogle and M. Stonebraker. Chabot: Retrieval from a re- 
lational database of images. IEEE Computer, 28(9):40-48, 
Sep 1995. 

[20] A. Pentland, R. Picard, and S .  Sclaroff. Photobook: Content- 
based manipulation of image databases. Int. ,I. Coinp. Vis., 
18(3):233-254, 1996. 

[21 j J. Ponce, A. Zisserman, and M. Hebert. Object Repuesen- 
tation in Computer Vision-II. Number 1144 in LNCS. 
Springer, 1996. 

[22] J. Rissanen. Modeling by shortest data description. Auto- 

[23] U. Shaft and R. Ramakrishnan. Data modeling and querying 
in the PIQ image DBMS. IEEE Data Engineering Bzdletira, 
19(4):28-36, Dec 1996. 

[24] M. Swain and D. Ballard. Color indexing. bit. J. Cory?. Vis., 

[25] Y. Weiss and E. Adelson. A unified mixture framework for 
motion segmentation: Incorporating spatial coherence and 
estimating the number of models. In Proc. IEEE Conzp. Soc. 
Con$ Conzp. Vis. andPattern Recogn., pages 321-326,1996. 

[26j W. Wells, R. Kikinis, W. Crimson, and F. Jolesz. Adaptive 
segmentation of MRI data. In Int. Con$ on Conzp. Vis., 
Virtual Reality and Robotics in Medicine,pages 59-69,1995. 

[27] D. Yarowsky. Word-sense disambiguation using statistical 
models of Roget’s categories trained on large corpora. In 
Proc. Int. Col$ Conzp. Linguistics, pages 454-460, 1992. 

173-187,1991. 

nzafica, 141465-471, 1978. 

7(1):11-32, 1991. 

682 


