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Abstract

Dynamicprogrammingona scanlineis oneof theoldest
andstill popularmethodsfor stereocorrespondence. While
efficient,its performanceis far fromthestateof theart be-
causethe vertical consistencybetweenthescanlinesis not
enforced. We re-examinetheuseof dynamicprogramming
for stereo correspondenceby applying it to a tree struc-
ture, as opposedto the individual scanlines.Thenodesof
this tree are all the image pixels, but only the “most im-
portant” edgesof the 4 connectedneighbourhoodsystem
are included. Thusour algorithm is truly a global opti-
mizationmethodbecausedisparityestimateat onepixelde-
pendson thedisparityestimatesat all theotherpixels,un-
like thescanlinebasedmethods.Weevaluateour algorithm
on the benchmarkMiddlebury database. Thealgorithm is
very fast, it takesonly a fraction of a secondfor a typical
image. Theresultsare considerably betterthan that of the
scanlinebasedmethods.While theresultsare not thestate
of theart, our algorithmoffers a goodtradeoff in termsof
accuracyandcomputationalefficiency.

1 Intr oduction

Stereocorrespondenceis aninherentlyambiguousprob-
lem. To reduceambiguities,mostalgorithmsmakeassump-
tionsaboutscenegeometry. Onereasonableandcommonly
madeassumptionis thata sceneis piecewisesmooth.This
implies that the recovered stereocorrespondencemap

�
shouldalsobepiecewisesmooth.

Therearemany waysto implementtherequirementof a
piecewise smoothdisparitymap,see[19] for an excellent
review of stereoalgorithms.Usingtheterminologyof [19],
onepopularapproachis calledglobaloptimizationandit is
basedon directly optimizinganobjective function.

In global optimization, the constraintson the disparity
map

�
areformulatedinto anobjectivefunctionE(d)which

is thenminimizedoverall imagepixels.A typicalobjective

functionhasthefollowing form:��� ����� �	��
��
�� ������� �	������������� �����
(1)

The data term,
� ��
��


penalizesany disagreementof the
disparity map

�
with the observed data. That is

� ��
��

is

small if thepixels that
�

putsin correspondencehave sim-
ilar intensities,andlarge if the pixels that

�
putsin corre-

spondencediffer significantly in intensities. The smooth-
nessterm,

�	�����������
measuresthe extent to which

�
is not

piecewise smooth. For computationalfeasibility, in most
methods

�������������
measuresthedifferencein disparityonly

betweenthepixels thatarethenearestneighbourson the  
connectedpixel grid.

Exceptfor somespecialcases[18, 13], optimizing the
energy function in 1 is NP-hard.We will breakthe global
optimizationmethodsin two groups: the 1D optimization
methodsandthe2D optimizationmethods.

The1D optimizationmethods[1, 16, 8, 19] canbeseen
as drasticallysimplifying the objective function in equa-
tion (1). They enforcepiecewise smoothnessonly in the
horizontaldirection,andso the optimizationis reducedto
onedimension.Thatis the

�	�!���������"� ���
doesnotcontainany

termsbasedonneighbouringpixelsin theverticaldirection.
Assumingthatthereare# scanlines,theenergy functionin
equation(1) canbewritten asa sumof # energy functions,
onefor eachscanline,andeachonecanbeoptimizedsepa-
ratelyfrom theothers.This optimizationcanbeperformed
efficiently andexactlyusingdynamicprogramming.

We shouldclarify that traditionally the methodswhich
we herecall 1D optimizationmethodsare called the dy-
namicprogrammingmethods,andthat thesemethodstyp-
ically startby formulatingthe objective function on an in-
dividual scanline$ , without ever formulating a global ob-
jective function of the type in equation(1). However any
suchdynamicprogrammingmethodcanbe trivially refor-
mulatedwith a global objective function, and it is conve-%

TheScanlineOptimizationmethodof [19] wasthefirst methodwhich
directly formulatedenergy functiononanindividual scanline,asfaraswe
areaware.

1



nientfor usto referto themas1D optimizationmethodsto
emphasisethe onedimensionalnatureof the optimization
that they perform. The 1D optimizationmethodsare not
truly globaloptimizationmethodsbecausethedisparityes-
timateat a pixel dependsonly on the disparityestimateof
pixelson thesamescanline,but is completelyindependent
of thedisparityestimateson theotherscanlines.

Theperformanceof 1D optimizationmethodsis farfrom
thestateof theart [19], sincepiecewisesmoothnessin en-
forcedonly in thehorizontaldirection.Themostnoticeable
artifactwhich distinguishesthe resultingdisparitymapsof
such methodsis the horizontal “streaking” which results
from the lack of coherencein the vertical direction. Most
methods[16, 2, 4] try to improveresultsby postprocessing
betweenthescanlines,with variousdegreesof success.The
advantageof the 1D optimizationmethodsis that they are
simpleto implementandareefficient.

The 2D optimization methods enforce piecewise
smoothnessin bothhorizontalandverticaldirections.Tra-
ditional 2D optimizationapproachesto approximate

�
in-

cludesimulatedannealing[12], continuationmethods[3],
mean-fieldannealing[11]. While interestingfrom the the-
oreticalpoint of view, thesemethodsareratherinefficient.
Recently, graph-cuts[6, 15] andbelief propagationmeth-
ods[20, 9] havebeenappliedquitesuccessfullyto optimize
equation(1). Thesemethodsarerelatively efficientandpro-
duceexcellentresultsaccordingto the recentstereoevalu-
ation on datawith groundtruth conductedby [19]. Still
thesemethodsarefar from real time, andtheir theoretical
complexity is not quiteclearbecausethey areiterative.

The motivation behindour work is to usethe powerful
and efficient optimizationtool provided by dynamicpro-
gramming,but applyit to astructuremoresuitedto enforce
piecewise continuity than a scanline. Dynamic program-
ming canbeappliedto graphswithout loops,in particular,
to trees[17]. Dynamicprogrammingon a treeis almostas
efficientasthatona onedimensionalarray.

It is bestto minimizetheenergy in equation(1) on a 2D
grid, but it an NP-hardproblemin general.If we think of
1D optimizationalgorithmsasusinga collectionof scan-
lines to approximatea grid, thenthis is an obviously poor
approximation.A treestructureis a significantlybetterap-
proximationto a2D grid. Thefirst (small)advantageis that
a treecontains&('*) moreedgesof theoriginal grid than
thecollectionof scanlines,where& is thenumberof rows.
Thesecond,moreimportant,advantageis thatsincea tree
structureis connected,theestimateof disparityatonepixel
dependson theestimateof disparityat all theotherpixels.
Thusdynamicprogrammingona treeis a truly globalopti-
mizationalgorithm. Contrastthis with the individual scan-
lines approximationto a grid, wherethe disparity at one
pixel dependsonly on pixelsat thesamescanline.Thelast,
andthemostimportantadvantageis thatoutof hugenumber

of possibletreestructureswe canchoosethe treestructure
which contain“most important” edgesof the grid. Con-
trastthis againwith the individual scanlineapproximation,
wherethereis nochoicebut to takeall thehorizontaledges.

Our algorithmis not a 1D optimizationmethodbecause
it operatesacrossboth vertical andhorizontaldimensions.
However it is alsonot a true 2D optimizationmethod,be-
causeit operatesonly amongthechosendirectionsin the2
dimensions,thatis thedirectionsgivenby thetreestructure.

Our algorithmis simpleto describeandimplement.We
start with modelling an objective function of the type in
equation(1). Ideally, it hasto beoptimizedonagraphstruc-
turewhich is a grid of pixels. However dynamicprogram-
ming is not applicableto a grid. Thuswe removethe”least
important”edgesfrom thisgrid until theremaininggraphis
a tree,andthenwe apply thedynamicprogrammingto the
resultingtree.Themostimportantandinterestingquestion
is what arethese“least important” edgesfor our problem.
Wepresentpossibleapproachesto thisquestionin section3.
For now we just saythatthesearetheedgesbetweenpixels
which arelesslikely to have thesamedisparity.

To implementdynamicprogrammingefficiently, we use
the methodsdevelopedby [10]. Typically, if a treehas &
nodesandthenumberof possibledisparityvaluesis + , then
the straightforward dynamic programmingtakes , � #-+/. �
time. However for a certainrestrictedbut still quiteuseful
type of energy functions,the runningtime canbe reduced
to , � #-+ � , which is thecomplexity of ourmethod.

Recently, treestructureshavebeenusedfor energy mini-
mizationin tree-reweightedmessagepassing,see,for exam-
ple [21, 14]. Theseapproachesarequitedifferentfrom our
work, they arebasedon iteratively passingtree-reweighted
messages,and in certaincasesthereare someoptimality
guarantees.Our approachis muchsimpler, but alsomuch
moreefficient.

WeevaluateouralgorithmonthebenchmarkMiddlebury
database.Theresultsfall in themiddlerange,asexpected.
The stateof the art resultsaregiven by the morecompu-
tationally costly 2D optimizationalgorithms. Our results
areby far betterthanthoseof methodsbasedon 1D opti-
mization.Therunningtime is excellent,just a fractionof a
secondfor theimagesin this database.Thusour algorithm
shouldbesuitablefor a realtime implementation.

This paperis organizedasfollows. We startin section2
by explaining how dynamic programmingcan be imple-
mentedefficiently using methodsin [10] . In section3
we discusshow we choosea tree structure. In section4
we presentour experimentalresults.Futurework is in sec-
tion 5.



2 Efficient Dynamic Programming on a Tree

In this section,we first describetheenergy functionwe
canoptimize,thenweshow how to optimizeit exactlywith
dynamicprogrammingon a tree,and lastly we show how
weusemethodsin [10] to significantlyreducethecomplex-
ity for a restrictedtypesof energy functions.

2.1 Energy Function

Let 0 ��1324� � beatreegraphwith vertices
1

andedges
�

.
By definitionof a tree,verticesareconnectedandthereare
no cycles. All pixelsof the left imageform theverticesin1

. For theedges
�

, wechooseonly asubsetof thestandard -connectedgrid formed by the edgesbetweenthe pixels
which arethenearestneighboursin theimage.This subset
is chosensothatit formsatree,wegivedetailsin section3.

We cannow write theenergy in equation(1) thatwe op-
timize on a treestructuremoreexplicitly. We matchpix-
els in the left imageto the pixels in the right image. Thus
our setupis not symmetric,unlike mostscanlinebaseddy-
namicprogrammingalgorithms.We alsodo not handlethe
uniquenessandorderingconstraints.. This is a smallprice
to payfor themuchimprovedaccuracy. Let 5 bea pixel in
theleft imageand

�76
bethevalueof disparitymap

�
atpixel5 . Let & � � 6 � bethematchingpenaltyfor assigningdispar-

ity
� 6

to pixel 5 . For example,& � � 6 � canbe the absolute
differencebetweenthepixel 5 in theleft image,andpixel 5
shiftedby

� 6
in the right image. In our framework, & � � 6 �

canbe arbitrary. We describethe & � � 6 � that we actually
usein section4. Thedatatermin equation(1) canbenow
writtenas 6987: & � � 6 � .

Let ; � �76 2 �7<=� be the smoothnesspenalty for assigning
disparities

�76
and

�7<
to 5 and > which are connectedby

anedgein ourgraph.To enforcesmoothnesson thedispar-
ity map, ; � �96 2 �7<?� shouldbe a monotonicallynondecreas-
ing function in the absolutedisparitydifference@ � 6 ' � < @ .
To preserve discontinuitiesin the disparitymap, ; � � 6 2 � < �
shouldnot grow too big so that thepenaltyfor a largedis-
continuity is not prohibitively heavy. In our framework,; � � 6 2 � < � can be arbitrary, but somechoicesof ; � � 6 2 � < �
leadto moreefficient implementation.We will furtherdis-
cussour choicefor ; � � 6 2 � < � in section2.3. The smooth-
ness term for the whole image can be now written asA 6?B <�C�87D ; � �96 2 �9</� . Thustheenergy functionthatwe seek
to optimizeis givenby equation(2).

��� ���E� 6F87: & � � 6 �G�H� A 67B <�C�87D ;
� � 6 2 � < ���

(2)

I
Loosingtheorderingconstraintis actuallynot a loss,in our opinion,

sincethe orderingconstraintis violated in practice. Most dynamicpro-
grammingalgorithmsusetheorderingconstraintfor efficient handlingof
symmetricstereocorrespondenceformulation.

2.2 Optimization with Dynamic Programming

Dynamicprogrammingon a treeis a trivial generaliza-
tion of dynamicprogrammingon a linear arraystructure.
Wefollow [10] in describinghow it canbedone.Let JLK 1
be the root vertex of our tree. Obviously the minimum of
the energy in (2) is independentof the choiceof J . Since
thedynamicprogrammingalgorithmpresentedin this sec-
tion findstheminimumof theenergy in 2, any choiceof J
leadsto the samesolution.M Let depthof the J be 0, and
depthof all other NOK 1

be the numberof edgesbetween
theroot J andN on theshortestpathbetweenJ andN .

EachnodeN , excepttheroot, hasa parent5 � N � , andthe
depthof 5 � N � is equalto thedepthof N minus1. If nodeN
is not a root, thenthe minimum valueof the energy in (2)
onthesubsetof thegraphconsistingof asubtreerootedat N
andtheedgebetweenN and5 � N � canbewritten recursively
asa functionof

� 6 AQP C (thedepthassignedto 5 � N � ):
� P � � 6 AQP C ���SRUTWV�FX 87Y & � � P ��� ; � � P 2 � 6 AQP C �G� Z 87[ X

� Z � � P � 2
(3)

where \ P is the setof childrenof N . Let ] P � � 6 A^P C � be the
optimumdisparityassignmentto N asa function of

� 6 AQP C .
It canbe definedby replacing&`_a# with bcJFde&`_f# in equa-
tion (3).

Theoptimaldisparityassignmentfor therootnodeJ can
bewrittenas

]�gh � bcJ9d RUTiV�Fj 87Y & � � h �G� Z 87[ j
� Z � � h � �

(4)

If N is a leaf node(that is the nodewithout children),then\ P is empty. Thereforefor aleaf N , functions
� P and ] P are

not recursive andcanbe evaluateddirectly. Let k be the
maximumdepthin thetree.Theoptimizationof theenergy
in equation(2) startsby evaluatingthefunctions

� P and ] P
for eachnodeN at depth k . Now we canevaluate

� P and] P for all the nodesat depth kl'm) becauseany child n
of sucha nodehasdepth k , andthereforewe havealready
evaluated

� Z and ] Z atthepreviousstep.Weproceedeval-
uating

� P and ] P in orderof decreasingdepthuntil theroot
is reached.Oncetheroot is reached,wecancomputeits op-
timal disparityassignment.Thenwe usetheoptimalvalue
attherootandgodown thetreein orderof increasingdepth,
computingtheoptimaldisparityassignmentsfor eachnode,
usingthealreadycomputedfunctions ] P .

If + is thesizeof set o , thencomputing] P and
� P takes, � +e. � time each,becausefor eachpossiblevalueof

� 6 AQP C
wehaveto cycleoverall possiblevaluesof

� P whensearch-
ing for minimumin equation(3). Thustheoverallcomplex-
ity is , � +/.4# � , where# is thenumberof nodesin the tree.p

Unlessthe global minimum is not unique, in which casechoiceof
differentrootscouldleadto differentsolutions,but eachof thesesolutions
givesaglobalminimumof theenergy function.



The 1D optimizationmethodsalso have theoreticalcom-
plexity , � +e.4# � . However dynamicprogrammingon a tree
is slightly slower in practice,becausetreetraversalis less
efficient thananorderedarraytraversal.

2.3 Impr oving Efficiency

For larger + , complexity , � +/.4# � is notdesirable.Weuse
the methodsin [10] to significantlyreducethe complexity
of dynamicprogrammingfor a restrictedtypesof energies.
In particular, considerthefollowing smoothnesspenalty:

;q � 5 �/2 > � ��� r if
� 6 �s� <

n 6t< otherwise
(5)

This ; q � 5 � 2 > � � is often usedfor energy basedstereocor-
respondence[6, 9], and is a simplediscontinuitypreserv-
ing smoothnessterm. We usesubscript u to denotethat; q � 5 � 2 > � � comesfrom thePottsmodelin Markov Random
Fields. Thereis no penaltyif neighbouringpixels areas-
signedthe samedisparity. If neighbouringpixels are as-
signeddifferent disparities,then there is a fixed penaltyn 6t< which is independentof @ � 6 ' � < @ . This penaltymay,
however, dependon the individual pixels 5 and > as ex-
pressedby coefficients n 6t< . We have used ;q to evaluate
our algorithm,althoughany energy functionof the type in
equation(2) can be used. Note that the efficiency of dy-
namicprogrammingcanbeimprovedfor moregeneralen-
ergy functions[10].

Let
� q � ��� be the energy function in equation(2) with

thesmoothnesspenaltygivenby ;q � 5 �=2 > � � in equation(5).
For thisenergy function,computationof ] P and

� P in equa-
tion (3) canbereducedfrom , � +e. � time to , � + � time. For
generalenergy functions

��� ���
, givenfixeddisparityvalue

of the parentnode
� 6 X

we have to searchover all possible
valuesof

� P to find the one which minimizes
� P � � 6 AQP C � .

Considernow the energy function given by
� q � ��� . The

smoothnesspenalty ; q � � 6 AQP C 2 � P � is binary, it is either0 or
a constantindependentof

� 6 AQP C and
� P . Thereforetheopti-

mumdisparityfor thechild N canbefoundin constanttime,
without searchingover all possiblerangeof disparityval-
uesin o . We first computeis thedisparityvalue

� Pv which
minimizes& � � P ��� Z 87[ X � Z � � P � . Notethat

� P v is inde-
pendentof

� 6 AQP C andcanbecomputedin , � + � time. Then
for eachpossibledisparityvalueof aparent,

� 6 AQP C , thereare
only two choicesfor theoptimumdisparityassignmentforN . First choiceis thedisparityof theparent,

� 6 AQP C , in which
case;q � � 6 A^P C 2 � P �w� r in equation(3). Thesecondchoice
is
� P v , in whichcase;q � � 6 AQP C 2 � P �yx� r , unless

� 6 AQP C �s� P v .
Thusfor eachnodeN , both

� P and ] P arecomputedin, � + � time, andthe total complexity of dynamicprogram-
ming reducesto , � #-+ � , a considerablesaving for larger + .

3 Choosinga TreeStructure

The biggestadvantageof our algorithm over 1D opti-
mizationis that we get to choosethe subsetof edgesover
which to optimizewith dynamicprogramming.Thisallows
to choosethe most “important” edgesfor our tree, rather
thanbeinglimited to all thehorizontaledges,asin 1D op-
timization. This sectionexplainshow we find thesemost
“important” edges.We discusstwo possibletreechoices,
named,respectively, theMID treeandtheMIDDT tree.

3.1 MID Tree

By includinganedgebetweenpixels 5 and > in our tree,
we areenforcingthe constraintthat pixels 5 and > should
havesimilardisparities.Sincewearelimited to atreestruc-
ture,unlike the2D optimizationmethods,we mustchoose
a subsetof edgesthat link thepixelswhich aremostlikely
to have thesamedisparitya priori. To find suchpixels,we
make useof the intensity informationprovidedby the left
image. Let z � 5 � denotethe intensityof pixel 5 in the left
image.If neighbouringpixels 5 and > havesimilar intensity
valuesz � 5 � and z � > � , thenthey aremorelikely to have the
samedisparitya priori. This is becausedisparitydisconti-
nuitiestendto align with intensitydiscontinuities.

Thus the first approachto choosinga tree structureis
quitesimplebut workssurprisinglywell. Let 0w{ � ��1324� { �
beagraphwith vertices

1
consistingof all theimagenodes

andedges
� { consistingof all theedgesbetweenthenear-

est neighbouringpixels, that is
� { is simply the standard connectedgrid. For eachpair of neighbouringpixels 5

and > , assignweightsN 6�< � @ z � 5 � '|z � > � @ to the edgebe-
tween5 and > . Constructtheminimumspanningtreeof 0 {
andlet that treeto be thetreestructurefor our algorithm.}
Let us call sucha tree the minimum intensity difference
tree(abbreviatedthe MID tree),becauseit is the treewith
theminimumsumof intensitydifferencesacrosstheedges.
Sinceedgeweights N 6t< are integersin a small range,the
edgesortingcanbeperformedin lineartime. Thereforethe
minimumspanningtreecanbecomputedin basicallylinear
time,seeany standardalgorithmsbook,for example[7].

Let uscomebackto our smoothnesspenalty ; q � �76 2 �7<?�
in equation(5). For stereocorrespondence,theweightcoef-
ficient n 6t< is oftenmadeto bea monotonicallydecreasing
functionof intensitydifference@ z � 5 � '~z � > � @ . This is done
with exactly thepurposeof reflectingthefact thatdisparity
discontinuitiestend to align with intensitydiscontinuities.
Thusthe larger is thedifference@ z � 5 � '|z � > � @ , thesmaller
is ;q � � 6 2 � < � . Considera 2D optimizationproblemon a
grid with the energy as in equation(2) and n 6t< set to be
a monotonicallydecreasingfunctionof intensitydifference�

The minimum spanningtree is simply the tree that connectsall the
verticesof �E� andthesumof its weightsis minimumoutof all suchtrees.



@ z � 5 � '�z � > � @ . We canregarda treestructureasanapprox-
imation to the the 2D grid. Then our MID tree chooses
the edgesof the maximumweight asan approximationto
the2D grid. This is reasonablebecauseedgeswith smaller
weights n 6t< contribute lessto the energy, and if we have
to removeany edgesfrom thegrid, theedgeswith smallestn 6t< shouldbediscardedfirst.

3.2 MIDDT Tree

Sincethenumberof edgesis by far largerthanthenum-
ber of intensities, in any image, there are large sets of
edgeswith the sameabsoluteintensity difference. Thus
therearelarge subsetsof edgeswhich have equalweightsN 6�< � @ z � 5 � '�z � > � @ . ThereforetheMID treeis usuallynot
unique,and the particularMID chosenfor our algorithm
will dependontheimplementationdetails,ratherthansome
meaningfulcriterion.

This leadsusto amoreinterestingchoiceof a treestruc-
ture. For theMID tree,we usedour prior belief which was
basedon a purely local criterion: if two pixelshave similar
intensities,thenthey are likely to have similar disparities.
We canextendthis criterion to a lesslocal one: thedeeper
pixels 5 and > are insidea homogeneousintensity region,
the more likely they are to have the samedisparity. This
prior belief is basedon observation that disparity discon-
tinuity is lesslikely to lie acrossa homogeneousintensity
region. Of coursewe have to somehow define“deepinside
ahomogeneousregion”.

We usedistancetransform[5] to measurehow deepa
pixel 5 is insidea homogeneousintensityregion. Let � bea
thresholdonintensitydifference.Let � bethesetof all pix-
elsin theimagewhichhavetheabsoluteintensitydifference
with oneof its neighbourslargerthan� . Thatis

� �s� 5�@�@ z � 5 � '�z � > � @���� for someneighbour >?� �
Thustheset � consistsof pixelswhich arenot insidea ho-
mogeneousintensityregion,andso � includespixelswhich
areright on theborderof a homogeneousintensityregion.
Now for a pixel 5 , define�`� 5 ���HRUTWV<487� � _;!� � 5 2 > � 2 (6)

where
� _;!� � 5 2 > � is thedistancebetweenpixels 5 and > . We

usetheManhattanor blockdistance,which is just theabso-
lutedifferencein coordinatesof 5 and > . In thiscase,

�
can

be computedparticularlyefficiently. For all pixels,
�

can
becomputedin just two passesover theimage[5].

If
�`� 5 � is large,thenit is insideahomogeneousintensity

region. Let k ��RU�=��6 �
. Define edgeweights � 6t<��k�' $.

���`� 5 ��� �`� > ��� andusetheminsteadof weightsN 6t<
for theminimumspanningtree� algorithmin section3.1.�

abbreviatedMST

In practice,however, weights � 6t< work worsethan N 6t<
becauseof the sensitivity to the parameter� . Suppose� is
too large. Considertheextremecasewhen � is equalto the
maximumintensitydifferenceobservedin the image,Sup-
posethat thereis only oneedgewith this maximuminten-
sity difference. Then set � containsonly 2 pixels (those
with themaximumintensitydifferencebetweenthem),and
weights� 6�< measuretheaveragedistanceof 5 and > to the
two pixelsin � , completelyignoringall theotherintensity
informationin theimage.

If � is small, weights � 6t< are reasonable,but thereare
many edgeswith weight 0. Thus, again, thereare many
possibleminimum ��� , anda particularchoicewill depend
on implementationratherthansomemeaningfulcriterion.

Wefoundthatit is bestto combineedgeweightsN 6t< and� 6t< asfollows.Let N 6t< bethemostimportantfactorand� 6t<
bethesecondaryfactorusedto breaktieswhenN 6t< is equal
for two or moreedges.Let � ��RU�=� A 6?B <�C�87D3� � 6t< . Define
thecombinededgeweightsas

� 6t< � ����N 6t< � � 6t< (7)

Thuswhensearchingfor thenext edgeto insertin thespan-
ning tree,we first selectedgeswith the smallestvalueofN 6t< (that is the edgeswith the smallestabsoluteintensity
difference)andany ties arebrokenby weights� 6�< , that is
theedgesdeeperinsideauniformregionaregivenaprefer-
ence. We call the resultingMST asMIDDT tree,because
we first usethe intensitydifferenceinformation,and then
thedistancetransforminformation.

4 Experimental Results

For thematchingtermwe used

& � � 6 ��� &�_a# � @^] � 5 � 'H� � 5�' � 6 � @ 2�� � 2
where ] � 5 � is theintensityof pixel 5 in theleft image,and� � 5 ' � 6 � is theintensityof pixel 5 shiftedby disparity

� 6
in theright image,and

�
is aparameterusedto make & � � 6 �

robustto outliers. In practice,we set
� � ) r . Our smooth-

nessterm, ;q � � 6 2 � < � is in equation(5). The parameter
�

in equation(2), whichmeasurestherelative importancebe-
tween

� ��
��

and

� �����������
was set to )¡ r . For the MID

versionof thealgorithm,thereareno additionalparameters
to set.For theMIDDT version,we used� �H¢ .

We havetestedouralgorithmon thebenchmarkMiddle-
bury database[19]. £ Figure2 shows theaccuracy of oural-
gorithmsalongwith therankat thetimeof evaluationin the
squarebrackets. Thereare4 stereopairs,namedTsukuba,
Sawtooth, VenusandMap, respectively. The error is com-
putedasthepercentageof pixelsfar from thetruedisparity¤

Weusedthecoloredimages,excepttheMap, for whichcoloredimage
is notavailable.



(a)Tsukuba (b) Sawtooth (c) Venus (d) Map

Figure1.

by more than 1. Thesestatisticsare collectedfor all un-
occludedimagepixels(shown in columnall), for all unoc-
cludedpixels in the untexturedregions (shown in column
untex.), andfinally for all unoccludedimagepixelscloseto
adisparitydiscontinuity(shown in columndisc.).

As expected,the resultsfall in the middle range. The
MIDDT algorithmgivesbetterresults,andwassubmitted
officially to the Middlebury databaseThe rank of MIDDT
is 20 out of 36 algorithmscurrently in the database.The
disparity mapsfor the MIDDT algorithm are in figure 1.
Thereis very little horizontal“streaking”in theresults,but
thereis alsoa little vertical “streaking”becausethereis no
biasto eitherhorizontalor verticaldirections.

Our algorithmis very fasthowever, it runsin a fraction
of a secondfor all theimagesin this database,whereasthe
algorithmswhich do give the stateof the art performance
aremuchslower andmostof themareiterative. Our algo-
rithm shouldbeagoodcandidatefor realtime implementa-
tion. TheMiddlebury databasehas2 new sceneswhich
havemuchmorecomplex geometry, calledteddyandcones.
Thesescenesare not includedinto the official evaluation
yet. Our results(computedon our own by excluding the
occludedpixels)are: for the teddyscene)� � ¥/¢§¦ and ¨ � ©�¦
errorwith thresholdof ) and

¥
, respectively; for thecones

scene) ¥"� ¨�) ¦ and̈
� ¥ ¡ ¦ errorwith thresholdof ) and

¥
, re-

spectively. Thereare4 methodsbasedon 1D optimization
in theevaluationtable,andby acoincidencethey havecon-
secutive ranks25 to 28, which is almostat thevery bottom
of the table. This direct comparisonof our methodto the
1D optimizationmethodsmaynot be fair. Eachof the 1D
optimizationmethodsusesadifferentcostfunctionanddif-
ferent typesof postprocessingto alleviate the “horizontal
streaking”artifacts.Thusthedifferencein performancebe-
tweenour methodandthe1D optimizationmethodscould
possiblybedueto thedifferencesin thecostfunctions.

To evaluateour methodon an equal footing with the
1D optimization,we implemented1D scanlineoptimiza-
tion with our objective function, but optimized it on the
scanlinesinsteadof the tree. Now the objective functions

(a)Teddy (b) Cones

Figure4.

are identical (up to the parameters),andany differencein
the resultsis dueto the fact thatwe optimizethe objective
functionon thetree,ratherthanthescanlines.For ouralgo-
rithm, we chosethe sameparametersfor all the imagesin
thedatabase,andof coursethey werechosento optimizethe
results.For the1D optimization,eventhoughwe areusing
the sameobjective function, a different set of parameters
will optimize the results. To make our comparisonmore
favourableto the1D methods(andto decreasethetime for
manualparametersearch),for eachimagein the Middle-
bury databasewefoundthebestparametersseparately. This
would not beadmissibleif we wereplanningto submitthe
resultsof 1D optimizationmethodto thedatabaseofficially.
However it is perfectlyacceptablefor our purposes,since
we createa biasin favour of 1D optmizationmethods,but
still will beableto concludethatour methodis moreaccu-
rate. The resultsfor this 1D optimizationalgorithmarein
figure3,weonlyshow theerrorfor all unoccludedpixels,so
thesenumbersshouldbecomparedwith our resultsin fig-
ure2 undercolumnall. If submitted,the algorithmwould
getrank27. For all stereopairs,excepttheMap, the1D op-
timizationperformssignificantlyworsethanour algorithm.
For the Map images,we wereableto tunethe parameters
to geta slightly betteraccuracy thanthatof bothMID and
MIDDT algorithms. However the rangeof theseparame-
tersis faroff therangefrom theotherstereopairs.TheMap



Tsukuba Sawtooth Venus Map
Algorithm all untex. disc. all untex. disc. all untex. disc. all disc.
MID 2.17[14] 0.66[8] 11.53[14] 1.59[19] 0.93[22] 8.82[18] 1.39[11] 1.39[10] 7.59[11] 1.32[20] 11.44[23]
MIDDT 1.77[13] 0.38[5] 9.48[14] 1.44[21] 0.84[25] 6.87[17] 1.21[11] 1.41[13] 5.04[6] 1.45[23] 13.00[27]

Figure2. Our resultsonMiddlebury Database

Tsukuba Sawtooth Venus Map
BestParameters ª¬«®f¯ , °±«®f¯ ª�«`f² , °³«®f´ ª¬«�¯= , °³«µ� ª¬« ¶�¯ , °�«®f²
all error 4.98 6.68 3.83 0.96

Figure3. 1D optimizationresultsonMiddlebury Database

stereopair is highly textured,andthatis thereasonwhy 1D
optimizationperformswell onit, thereis noneedfor disam-
biguationby usingverticalsmoothnessconstraint.The1D
optimizationrunsapproximately3 times fasterin our im-
plementationbecausetraversinga lineararrayis fasterthan
traversinga tree.

5 Future Work

In the future, we plan on further investigatingthe tree
structureselection.In particular, we areinterestedin using
resultsfrom imagesegmentationfor selectinga treestruc-
ture. Imagesegmentationalgorithmsgive a collection of
homogeneousintensitysegments,thuswe canusedistance
transformfrom segmentborderasa treeweight.Segmenta-
tion algorithmsmaygive morerobustresultsthanour sim-
ple MIDDT approach. This also would provide an inter-
estinglink betweenour algorithmandsegmentationbased
stereocorrespondencealgorithms.
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