

An Interactive Mathematical Handwriting

Recognizer for the Pocket PC

by

Bo Wan

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
December, 2001

 Bo Wan 2002

 iii

Abstract

Handwriting is the primary input method for hand-held computers because they are

too small physically to have keyboards.

To investigate the requirements for upcoming computer algebra systems on hand-

held computers, we designed and implemented an application for recognizing on-line

handwritten mathematical expressions on the pocket PC. The objective was to translate

handwriting mathematical expressions into corresponding presentation MathML, which

can be understood by computer algebra systems.

This application consists of three components: 1) a handwriting recognizer for

recognizing individual mathematical symbols, 2) a structural analyzer for interpreting and

maintaining the relationship between symbols of the expression, and 3) a generator for

generating MathML code. Currently it is able to recognize simple expressions including

polynomial equations, fractions, trigonometric functions, allowing nested structures. This

application could serve as a bridge for mathematical users to interact with the computer

algebra systems on hand-held computers.

Keywords: handwriting recognition, mathematical expression recognition, presentation

MathML, Pocket PC, computer algebra system

 iv

Acknowledgements

First and foremost, I would like to extend my sincerest gratitude to my supervisor,

Dr. Stephen Watt, for his consistent guidance, encouragement and support during my

graduate studies, and for his time and patience for reading and correcting my thesis.

Many thanks to Mr. Luca Padovani and Dr. Bill Naylor for their precious advice

and help during the design and implementation of the program, and for reading and

correcting part of my thesis.

Thanks to Mr. Jason Selby and Mr. Yannis Chicha for configuring the

development tools and the Windows 2000 operating system that I have used for my

thesis, and to Ms. Yuzhen Xie, Mr. Igor Rodianov and Mr. Cosmin Oancea for their

important comments.

My thanks also go to Dr. Rob Corless, Ms. Bethany Heinrichs, Ms. Janice

Wiersma, Ms. Dianne McFadzean, Ms. Cheryl McGrath, and every other person who has

given me help in various forms during my stay in the ORCCA lab and the Department of

Computer Science.

Finally, my deepest thanks go to my family, especially my parents, for many

years of love and support, and my lovely wife Jenny Li Zheng, for sharing the good and

hard times with me over all these years. Without them, this thesis will not be possible.

 v

Table of Contents

Certificate of Examination... ii

Abstract... iii

Acknowledgements .. iv

Table of Contents .. v

Table of Figures.. viii

Chapter 1 Introduction ... 1

1.1 Why Is Handwriting Important? .. 1
1.2 Why Handwriting Math? ... 2
1.3 Need for Computer Algebra Systems for PDAs.. 2
1.4 How to Input Math on PDAs? ... 3
1.5 Problems of Existing Handwriting Recognizers.. 5
1.6 Thesis Objectives ... 6
1.7 Organization of the Rest of the Thesis... 7

Chapter 2 Handwriting Recognition Review .. 9

2.1 On-line and Off-line Recognition .. 10
2.2 Pattern Recognition Methods... 11

2.2.1 Bitmap Comparison ... 11
2.2.2 Histogram Methods.. 12
2.2.3 Neural Networks .. 12

2.3 Statistical Approach - Hidden Markov Model (HMM) ... 13
2.4 Structural and Syntactical Approaches .. 13
2.5 Elastic Matching .. 15

Chapter 3 Handwriting Recognition Design ... 16

3.1 General Considerations.. 16
3.1.1 Development Tools.. 16
3.1.2 Dissection of the Application... 17
3.1.3 The User Interface.. 17

3.2 The Handwriting Recognizer ... 20
3.3 Preprocessing ... 20

3.3.1 Size Normalization... 20
3.3.2 Smoothing.. 21
3.3.3 Point Distance Normalization.. 22

3.4 Recognition by Elastic Matching... 23
3.4.1 Elastic Matching in Detail ... 23
3.4.2 More About the ElasticRecognizer .. 27
3.4.3 Handling Recognition Errors ... 27

 vi

Chapter 4 Review of Mathematical Expression Recognition 29

4.1 The Problems of Mathematical Expressions Recognition 29
4.2 Properties of Mathematical Expressions.. 30

4.2.1 Basic Symbols.. 31
4.2.2 Binding, Fence and Operator Symbols .. 31
4.2.3 Explicit and Implicit Operators.. 32
4.2.4 Context-Sensitive Roles... 33

4.3 Processes for Mathematical Recognition... 33
4.4 Symbol Recognition... 34

4.4.1 Recognizing Large Sets of Symbols .. 35
4.4.2 Segmentation of Symbols in Mathematical Expressions................................. 35

4.5 Structural Analysis... 37
4.5.1 The Goal of Structural Analysis .. 37

4.5.1.1 Systems with No Knowledge about Mathematics 37
4.5.1.2 Systems That Know Mathematics .. 38
4.5.1.3 Systems in Between .. 39

4.5.2 Structural Analysis Problems... 40
4.5.2.1 Identifying Spatial Relationships.. 40
4.5.2.2 Identifying Implicit Operators .. 41

4.5.3 Methods for Structural Analysis .. 42
4.5.3.1 Syntactic Methods... 42
4.5.3.2 Projection-profile Cutting ... 44
4.5.3.3 Graph-rewriting... 44
4.5.3.4 Procedurally-Coded Mathematical Rules ... 45
4.5.3.5 Other Approaches ... 46

4.5.4 On-line Approaches vs Off-line Approaches... 46

Chapter 5 Structural Analysis Design.. 47

5.1 Overview.. 47
5.1.1 The Goal of Our Project... 47
5.1.2 Structural Analysis Methods – Grammars vs Procedural Code....................... 47
5.1.3 Design for the Structural Analysis... 48

5.2 The Expression Tree .. 49
5.3 Locate the Nearest Neighbor (NN) Node .. 51
5.4 Locating the Correct Position of a New Node ... 52
5.5 Approach for Direction Determination.. 52
5.6 Special Cases ... 54
5.7 Row Direction Check... 56

5.7.1 The Algorithm.. 57
5.7.2 Refinement of Bounding Box Operations.. 59

5.8 Column Direction Check ... 61
5.8.1 Finding the Relevant Parent with the ColParent Routine 62
5.8.2 Insert the Node into Expression Tree... 64

5.9 Superscript and Subscript Direction Check ... 67
5.9.1 Superscript Direction Check .. 68
5.9.2 Subscript Direction Check ... 70

 vii

Chapter 6 MathML Generation ... 71

6.1 Generate MathML with Preorder Tree Traversal .. 71
6.2 Final Check on Expression Tree .. 72

6.2.1 Split Nodes When Necessary... 72
6.2.2 Merge Nodes When Necessary.. 73
6.2.3 Add Missing Implicit Operators .. 74
6.2.4 Identify Ambiguous Implicit Operators... 74

Chapter 7 Existing Problems and Future Work... 76

7.1 Handwriting Recognition Problems... 76
7.2 Structural Analysis Problems... 77

7.2.1 Square Root.. 78
7.2.2 Matrices.. 79

7.3 Future Improvement... 80

References.. 84

Appendix A: The ModelBuilder Application .. 88

Vita ... 90

 viii

Table of Figures

Figure 1.1 The mathematical expression templates as in Adobe FrameMaker 6.0 4

Figure 1.2 Screen shots of the mathematical expression recognizer. 7

Figure 2.1 Direction values used in Freeman’s chain code ... 13

Figure 2.2 Some handwriting characters and their primitive features. 14

Figure 2.3 Nine possible ways to write the character ‘5’ .. 14

Figure 3.1 The Jot character set. .. 19

Figure 3.2 A character and its bounding box... 19

Figure 3.3 The point to point distance measurement in elastic matching........................ 24

Figure 3.4 Illustration of an ambiguous character ... 28

Figure 4.1 Overview of mathematical expression recognition processes........................ 34

Figure 4.2 Remove ascenders and descenders is essential for structural analysis........... 41

Figure 4.3 Implicit operators should be determined globally .. 42

Figure 5.1 An illustration of forming a number from digit nodes. 55

Figure 5.2 An illustration of splitting a node containing function names. 56

Figure 5.3 Different groupings for nodes in a row. ... 57

Figure 5.4 Cases that bounding boxes fail to correctly reflect the relationship between

sub-expressions. ...59

Figure 5.5 The bounding box hierarchy of the expression axy
by conditional bounding

box updating...61

Figure 5.6 The expression tree of expression a2+((b)+c) .. 61

Figure 5.7 The steps of expression tree rearrangement from “a2” to “ 2a ”. 66

Figure 5.8 The steps of expression tree rearrangement from “a234” to “a23 4 ”. 67

Figure 5.9 Expression tree after superscript direction check. .. 69

Figure 5.10 Expression tree after subscript direction check. .. 70

Figure 6.1 The corresponding expression tree and presentation MathML code of

expression (a2+ab). ..72

 ix

Figure 6.2 Split alphabet string node that is not really a function name in the final

check. ...73

Figure 6.3 Merge alphabet string node with its adjacent integer node to form a node

representing a variable. ... 73

Figure 6.4 Add necessary implicit operators to the expression tree. 74

Figure 7.1 The bounding box hierarchy of the expression a c+ 78

Figure 7.2 An expression that contains matrices. .. 79

Figure A.1 Screen shots of building a model for the Roman letter “a” with the

ModelBuilder. ..89

1

Chapter 1 Introduction

1.1 Why Is Handwriting Important?

Since the middle of the 1990s, the market for small hand-held computers has been

seeing a surge in popularity. Small hand-held computers, also known as Personal Digital

Assistants (PDAs), are portable computers that are small enough to be held in one's hand

or carried around in a pocket. Hand-held PCs, pocket PCs, and Palm series devices, etc.

are all hand-held computers. Among them the most popular today are pocket PCs running

Windows CE and PDAs running Palm OS.

Compared with Palm devices, pocket PCs are much more powerful: A pocket PC is

equivalent to an Intel Pentium machine in speed, while a Palm device is equivalent to an

Intel 386 machine. A Palm OS based device usually has up to 33 MHz, 16-bit CPU, and 2

- 8 MB of memory, while a pocket PC usually has 32/64-bit CPU at a speed of 70 - 206

MHz, and 16 - 32 MB of memory. A pocket PC also has better display resolution (320 x

240) over Palm devices (160 x 160). In fact, Palm PDAs are used typically only as

advanced digit organizers. On the contrary, a pocket PC is meant to be a fully functional

PC, therefore it catches more interests from the software developers’ community.

As PDAs are made smaller to be easy to be carried around, it is no longer possible

for them to physically have conventional keyboards as input devices. Handwriting is one

of the most natural ways for human-computer interaction. Therefore it becomes a primary

input method for hand-held devices. Each of these devices has a specially made screen

called a digitizer. When one writes on the digitizer with a special stylus, the writing is

digitized as a sequence of points, at the same time an electronic ink trace is displayed on

the digitizer. Recognition software is used to analyze the sequence of points and pass the

recognition result to other applications.

2

1.2 Why Handwriting Math?

The variety of built-in handwriting recognizers shipped with the hand-held

computers have very limited function. They were designed with the assumption that

people will use these devices for writing short memos, editing simple texts, storing

addresses and telephone numbers, etc. This assumption is becoming increasingly

challenged however. People expect hand-held computers eventually to serve the same

purposes as desktop or laptop computers do. Although currently we cannot obtain this

goal, hopefully this can be done with the improvement of hardware of hand-held

computers. However, the handwriting recognizers may prevent us achieving this goal if

we can not improve them. Computer algebra systems provide an example, handwriting

math is preferred as input, and this makes it necessary for the recognition of

mathematical expressions.

Handwriting for mathematics is a perfect example of non-linear input. The usual

input for handwriting cannot be used in this context: mathematical input is a cross

between drawing and handwriting. The study of handwriting math will no doubt

eventually be related to research on other non-linear input methods, such as chemical

formulas, musical notation, and so on.

1.3 Need for Computer Algebra Systems for PDAs

If we take a look at the computer algebra systems like Maple or Mathematica,

widely used in the scientific research and academic world, we are deeply impressed by

their functionality. At the same time we can not help thinking: Can we use them on

PDAs? For now, the answer is “no”, but with a few advances the answer can be “yes”.

The major limitations that prevent hand-held computers to be able to host this kind

of software is their CPU speed, memory and storage capacity, which are now barely

powerful enough. Compred with desktop and laptop computers, the CPU speed of PDAs

is very slow (206MHz of Compaq iPAQ’s StrongARM processor vs 2GHz of the latest

Intel Pentium 4 processor). Also PDAs use expensive flash memory as both memory and

secondary storage, which is not practical for computer algebra systems since they require

3

a great deal of memory and storage. For these reasons there are not yet commercial

computer algebra products available for hand-held devices. However, we can expect

things to change quickly.

Let’s take a very brief look at the record of processor speed. In 1965 Gordon

Moore, the co-founder of Intel, observed that the number of transistors per square inch on

integrated circuits had doubled every year since the integrated circuit was invented, and

predicted that this trend would continue for the foreseeable future. His prediction is

known as Moore’s Law. In the past three decades, the development of computer hardware

almost has followed Moore’s Law. For example, the speed of CPUs has doubled almost

every 18 months, and this trend still holds right now. Today, Compaq’s iPAQ pocket PC

is already as fast as the fastest desktop PC (Intel Pentium 200) of four years ago.

From here we can be sure that with the fast improvement of computer hardware, in

the very near future, PDAs will be powerful enough to host many applications that they

cannot host now, including computer algebra systems. This will no doubt be a great help

to the users like physists, engineers, and science students. However, there is a problem

that must be solved in order to take advantage of the computer algebra systems on these

devices: how to input math in the computer algebra systems on PDAs?

1.4 How to Input Math on PDAs?

Inputting mathematical expressions into a computer is usually more difficult than

that of plain text because mathematical expressions typically consist of a two-

dimensional layout of special symbols and Greek letters in addition to Roman letters,

digits and other symbols. Such a large number of symbols are impossible to input into a

computer with the conventional keyboard using single keystrokes.

One way to deal with this problem is to make use of some extra keys in the

keyboard along with a set of unique key sequences for representing other special

symbols[29]. Another way to deal with this is to mark up the special characters and

symbols, as in TEX. These approaches require intensive training and practice, and from

the user’s point of view are not easy to use.

4

Certain applications such as mathematical editors and computer algebra systems

use equation templates. The templates provided by the application include most of the

mathematical elements, such as symbols, delimiters, relations, functions, calculus, and

matrices. All the user needs to do is to select the corresponding templates to complete the

expression. Figure 1.1 shows the templates provided by Adobe FrameMaker 6.0. This

approach is WYSIWYG (What You See Is What You Get), and there is almost no

training necessary for the user. It is therefore quite popular. However, the user has to

switch between the templates and the editing area all the time. As a result this approach

usually slows the user down. Another problem is that the templates take quite a lot

display area. For desktop computers or laptop computers, this is not a major problem

because the monitors are large enough. But for hand-held computers with very limited

display areas, the templates take an area that is intolerable. Obviously, this approach is

impratical on hand-held computers.

Figure 1.1 The mathematical expression templates as in Adobe FrameMaker 6.0

It could be a good idea to take advantage of the pen-based computing technologies

and simply write mathematical expressions on an electronic tablet (digitizer) for the

computer to recognize them automatically. This should be the most user-friendly method

because writing mathematical expressions on a digitizer is much alike writing on a piece

of paper. For hand-held computers, this seems to be the only reasonable option. The

problem with this approach, of course, is to find a good recognizer.

5

1.5 Problems of Existing Handwriting Recognizers

Since handwriting is the primary way of input on PDAs, the preferred method for

user to interact with computer algebra systems will also be handwriting. There must be an

application that can correctly recognize handwriting mathematical expressions and

translate them into a form that can be understood by the computer algebra systems.

Unfortunately no such an application is available at this time for the pocket PC

environment.

The built-in handwriting recognizers of the hand-held computers are not capable to

do this for several reasons:

Firstly, they can only recognize a very limited set of symbols, normally those

provided by a standard keyboard. They are not able to recognize most of the

mathematical symbols like square root () and integral sign (∫).

Secondly, in some recognizers like Windows CE’s default recognizer, Roman

letters, digits and other symbols are recognized serially in special regions of the input

area called a Soft Input Panel (SIP), making it impossible to input mathematical

expressions.

Thirdly, even if the recognizers allow free writing and can recognize all symbols of

an expression, they have no knowledge at all about the spatial relationship between the

symbols. For example, Microsoft Transcriber is the newest handwriting recognizer on

Window CE, it allows free writing and has a pretty good recognition rate. However, it

assumes that the handwriting is either a line of text or a picture. A simple expression like

“y=x2” will be recognized as “y=x2”, or sometimes as “y=”, and treat “x2” as a picture

depending on the handwriting.

The main reason for above problems is that in a mathematical expression, symbols

are arranged in a two-dimensional structure, the spatial relationship between the symbols

has embedded mathematical meaning. The ability of a recognizer to recognize

mathematical expressions depends on the understanding of the spatial relationship.

Unfortunately, existing handwriting recognizers are unable to recognize such geometric

6

relationships. They always assume the input to be linear. That is, characters are written

adjacently in the horizontal direction.

1.6 Thesis Objectives

In response to the above problems, we have designed and implemented an

experimental pocket PC application for recognizing handwriting mathematical

expressions and generating corresponding presentation MathML code. The primary

objective is to 1) find an effective way to recognize handwritten mathematical symbols,

and, more importantly, 2) correctly extract the meaning of the expressions from the

spatial relationships of the symbols. Here we use pocket PC as a lower end platform to

study the problems of recognizing mathematical handwriting expressions. However, the

ultimate goal will be to develop practical mathematical handwriting recognition

techniques that can be used on all the platforms.

Our application is developed under Microsoft Embedded Visual C++ 3.0. The

target platform is the pocket PC, and the actual device we have used is a Compaq iPAQ

3600 pocket PC running Microsoft Window CE 3.0. Our program is composed of a

handwriting recognizer for recognizing individual handwritten mathematical symbols, a

two-dimensional structural analyzer for interpreting the relationship between recognized

symbols and maintain recognized relationships in a expression tree, and a generator to

produce presentation MathML code according to the expression tree.

The application works as follows: it provides the user with a graphical interface

which looks like a scratch pad (Figure 1.2(a)). The user can write inside the input area

with a special stylus. Every time a symbol is finished, it will be recognized and the result

will be shown in the panel named “Recognized”. At the same time, another panel named

“Candidates” will show other possible candidates for the symbol. In case a recognition

error occurrs, the user can change it easily by picking the correct alternative from the

candidate window. Once the symbol has been recognized, the structural analyzer will

analyze its relationship with other symbols of the expression and integrate the new

7

symbol into a proper position of the expression tree. At any time the user can click on the

menu “Edit → Go MathML” to view the generated MathML code in a pop up window

(Figure 1.2(b)).

Figure 1.2 Screen shots of the mathematical expression recognizer.
(a) the user interface including the input area and window for recognition

result and recognition candidates.
(b) the display of the corresponding generated MathML code

1.7 Organization of the Rest of the Thesis

In the remainder of this thesis we review the problems and existing research related

to both handwriting recognition and mathematical expression recognition and also

describe and discuss the studies we have performed.

Chapter 2 reviews the problems of handwriting recognition as well as the research

results that have been reported on handwriting recognition during the past three decades,

with more focus on “on-line” handwriting recognition.

In Chapter 3 we first briefly describe the general design issues such as what

development tools to use, how the entire application should be structured, how the user

interface should appear, whether to use Unicode or not, etc. Then we introduce in detail

 (a) (b)

8

the elastic matching method that is used in the handwriting recognizer of this thesis, and

the design and implementation of our handwriting recognizer – the ElasticRecognizer.

In Chapter 4, we first describe the main features of mathematical expressions and

the problems that must be deal with in recognizing their two-dimensional structure. Then

we introduce how existing research deals with these problems.

Chapter 5 is dedicated to the details of our approach in the structural analysis

procedure, including how to determine the distance and relation between sub-expressions,

how to find the proper location and attach a new symbol into the expression tree, and so

on.

A relatively short Chapter 6 mainly introduces the approach we use to generate

MathML code according to the contents of the expression tree, including postprocessing

of the expression tree and MathML code generation.

The last chapter, Chapter 7, addresses the results we have achieved, the existing

problems with the application, and future work that should be done for fixing current

problems as well as improving performance and usability.

Finally, Appendix A briefly introduces the ModelBuilder application that is used to

build and maintain models for the ElasticRecognizer.

9

Chapter 2 Handwriting Recognition Review

Handwriting is one of the most natural ways of communication between people.

What makes this possible is the fundamental property of handwriting as described by

Tappert et al. [36]:

The fundamental property of writing which makes communication

possible is that differences between different characters are more significant

than the differences between different drawings of the same character. Some

people argue that there are exceptions to this. Since O and 0 (or I and 1) can

be drawn identically, although context usually provides information necessary

to distinguish letters from numbers. Nevertheless, written communication is

not possible without this fundamental property.

Research on handwriting recognition has been going on for nearly forty years. In

1957, the earliest electronic tablet (or digitizer) called Stylator was invented [15]. It was

followed in 1963 by a better known device called the RAND tablet [13]. These devices

were able to detect the X-Y coordinates of the tip of a writing tool, therefore able to

digitize the handwriting into a sequence of points. As a result the research on character

recognition began. This activity has been neatly summarized as having “lasted through

the 1960’s, ebbed in the 1970’s, and renewed in the 1980’s” [35]. With the increasing

popularity of hand-held computers, digital notebooks, and advanced mobile phones,

handwriting recognition has gained more interest recently. A great many books and

papers in this field have been published, and at the same time, more and more

commercial products become available. However the handwriting recognition problem is

so complex, our understanding of this problem is still far from mature. Up to now there is

no solution that could solve this problem both efficiently and completely.

In this chapter we address the problems of handwriting recognition and review the

research on these problems.

10

2.1 On-line and Off-line Recognition

The existing handwriting recognition methods can be divided into two main

categories: off-line and on-line recognition. “On-line recognition means that the machine

recognizes the writing while the user writes. The term real-time, or dynamic, has been

used in place of on-line” [36]. Off-line handwriting recognition, by contrast, is performed

on the scanned image of the handwriting [36].

Off-line handwriting recognition is a subset of Optical Character Recognition

(OCR), which also does recognition on machine-printed characters. Basically, in OCR

the characters are either written by a user or printed by a machine (printer, plotter, etc.), a

scanner is then used to acquire an image of the characters. Recognition is performed on

the scanned image.

Both on-line and off-line systems have their advantages and disadvantages.

In the on-line approach, each completed character is recognized immediately, this

makes it easy for the recognizer to interact with the user and receive user’s feedback. For

example, the user can fix a recognition error right away. On-line systems also have the

advantage of being able to capture more information of the writing. The information is

usually dynamic, includes the number of strokes (a stroke is the writing from pen down to

pen up), the order of the strokes and the direction of the writing for each stroke. It is even

possible to get the information of the speed and the acceleration of the writing within

each stroke [34]. This information makes the recognition work easier than off-line

recognition. However, due to the nature of interacting with the user, the recognition speed

is critical for an on-line system, it must be able to respond fast enough in real time to

user’s actions.

In off-line recognition there is neither interaction between the recognition program

and the user nor any dynamic information. The recognizer thus has to do more than an

on-line recognizer. One advantage is that for off-line systems there are no restrictions on

the recognition speed: speed is only a measure of performance, but not of quality.

Another advantage is that in off-line systems all symbols can be seen at the same time,

and therefore more contextual information can be provided to the recognition process.

11

Obviously, the on-line approach provides more interaction, and therefore is more

user-oriented, and is superior to off-line approach for our application. Based on this

observation, in this thesis, the on-line approach is selected.

One issue that needs to be addressed here is that even in an on-line system, there

are still two ways to perform the recognition. One way is to perform the recognition “on

the fly”, as soon as the user finishes a character, it will be recognized. The other way is to

perform recognition in batch mode, where recognition will not be performed until all

characters have been entered. Our choice was to use the first style because it offers better

interaction.

In the past forty years many different approaches have been proposed for character

recognition, such as pattern recognition, statistical, syntactic and structural approaches.

Some of these are off-line methods but can be easily modified to be used in on-line

situations. We outline these on-line recognition methods in the following sections.

2.2 Pattern Recognition Methods

In this category of methods, recognition is performed statically. The information of

pen motion is not used at all, and the only thing that gets examined is the collection of

points left by the pen. This is much like off-line methods, but not exactly the same. The

off-line methods have to extract the points from a bit map, at the same time try to get rid

of possible noises. For on-line methods this is not a problem.

Methods in this category include bitmap comparison, histogram comparison, and

neural networks. Among these methods, the neural networks are the most widely used,

and provide the best recognition. The following is a brief introduction of the methods in

this category.

2.2.1 Bitmap Comparison

This method compares the bitmaps of both the writing and the models (templates),

and calculate the number of pixels that differ as distance [21]. The model that gives the

minimum distance is the recognized.

12

This method is simple and has good recognition speed. However, the recognition

rate on handwriting is very poor [22]. It only works well on machine-printed symbols.

2.2.2 Histogram Methods

This method calculates the one-dimensional projection of both the unknown and

the model bitmaps, and compare their histograms [21]. The method requires that the

histogram must be unique for each character, therefore it is not working well with large

set of characters.

2.2.3 Neural Networks

Neural Networks [27] crudely simulate the signal propagation found in human

brains. Brain cells are connected together as a network. Each cell has several activation

levels, the current activation level is determined by the activation signal a cell receives

from other cells. In neural networks nodes are also connected in a network, and the signal

transmission is controlled by activation functions. A typical neural network has a layered

structure with an input layer for receiving input information, and an output layer for

encoding the results in the activation of the output nodes. In between, any number of

layers is possible.

In handwriting recognition, the image of the handwriting is given to the neural

network, which extracts the features such as size, position, directional features, and shape

features from the drawing and feed them to the input nodes. The output layer consists of a

vector of nodes, each of which corresponds to a character. The activation value of each

output node equals the probability for the corresponding character to match with the

drawing.

The main advantage of a neural network is that it is trainable, it can adapt the

activation function in order to match the input patterns to output patterns. However, the

training process is usually tedious. Futhermore, the networks are usually too large in size

to be used on hand-held computers.

Quite a number of mathematical recognition systems, including Ha et al. [20],

Dimitriadis and Coronado [14], and Marzinkewitsch [26] use neural networks.

13

2.3 Statistical Approach - Hidden Markov Model (HMM)

HMMs have been used successfully in both speech recognition [2] and handwriting

recognition [10]. Simply speaking, an HMM is a finite state automaton in which the

transitions between states are probabilistic rather than deterministic. The transition

probabilities are based on the probability of occurrence of the various features. In

handwriting recognition, the writing is processed to extract its features. The features are

then compared to the HMM, which contains nodes for all the characters of the character

set. The first terminal node reached is the recognized symbol. Like neural networks,

HMMs are also trainable.

2.4 Structural and Syntactical Approaches

These approaches use both structural information and syntactic rules in the

recognition. In brief, they use grammar rules to describe different shapes in a formal

language, which uses a set of features such as straight line, dot, counter-clockwise /

clockwise curve, and loop. as tokens. In the recognition, the features are extracted from

the writing and then processed by the grammar.

The most important issue in these systems is to correctly extract the features from

the unknown. Usually Freeman’s chain code [17] (Figure 2.1) is used to determine how a

point is connected to the next in the sequence of points. It consists of eight values, 0 to 7,

to indicate the eight possible directions.

Figure 2.1 Direction values used in Freeman’s chain code

0

1 2 3

4

5 6 7

14

In the preprocessing stage, all values that are the same as their preceding ones in the

chain code are removed in order to shorten the final chain code without lose important

information. This is necessary to improve the recognition speed. The resulting chain code

is then analyzed to obtain the primitive features.

This approach is model based: once the primitive feature of an unknown character

is obtained, the grammar will compare them with the collection of models to find the one

closest in shape. Figure 2.2 shows the structural representation of some characters in

Chan and Yeung’s system [6].

One problem with this approach is that different people write in different ways, and

even the same person may not always write a character in the same fashion. It is

impossible to exhaust all the ways to write a character. Futhermore, making a model out

of each of the ways means a huge collection of models, which is not good for the

performance. For example, Figure 2.3 shows 9 possible ways to write the digit “5” (from

Chan and Yeung [6]). Another problem is that analyzing and extracting features from

handwriting is very complicated.

Figure 2.2 Some handwriting characters and their primitive features.
A primitive feature contains both a shape and a direction.

Figure 2.3 Nine possible ways to write the character ‘5’

15

2.5 Elastic Matching

Elastic matching is commonly used in on-line handwriting recognition, and many

on-line handwriting recognition systems were developed with it [32]. This method was

first introduced in 1988 by Tappert [34], who used elastic matching as recognition engine

in a run-on handwriting system.

Elastic matching is a model based technique, and it is an application of the dynamic

programming algorithm. In this method, the comparison between the unknown character

and a given model is done dynamically. Compared with structural and syntactic

approaches, this method does not need to do complex feature extraction. In our

recognizer, elastic matching is used. In the next chapter we discuss this method in more

detail when introducing our handwriting recognizer.

16

Chapter 3 Handwriting Recognition Design

 There are many questions to be answered before we can actually begin writing a

program. We have to decide what development tools to use, what kind of user interface

should the program provide, how the whole application should be structured, and so on.

In this chapter we address these issues first, then move on to the details of our design for

handwriting recognition.

3.1 General Considerations

3.1.1 Development Tools

Microsoft Visual C++ and Java are two of the most widely used development tools

right now. Both of these are very powerful and easy to use. For example, both language

provide many built-in classes which make it very easy to develop GUI (Graphic User

Interface) and handle Windows events. There are always arguments going on about

which one is better, and the answer is never clear.

One advantage of Java is that it is platform independent; a Java program can run on

any kind of machine as soon as they have Java Virtual Machine (JVM) installed.

However, at the current time interpreted Java programs are quite slow at runtime for both

desktop PCs and PDAs compared with programs written in C and C++.

Compared with Java, Microsoft Visual C++ does not have the luxury of being

platform independent. Its program is specific to Windows/DOS platforms. In our case,

we chose the Microsoft product for the reasons below. The programming language used

is Microsoft Embedded Visual C++.

1. The target platform is a pocket PC, which has a much slower CPU than desktop

machines. For example, the fastest pocket PC, Compaq iPAQ machines, have 206

MHz StrongARM CPU, while the fastest Intel CPU today runs at 2.0GHz.

Furthermore, handwriting recognition is a computationally intensive procedure. No

doubt speed will be critical in our project, and Java will be a bad choice from this

point of view.

17

2. Microsoft Windows CE is currently the most mature operating system for pocket

PC, and it is relatively stable. More importantly, it supports Unicode, which is a

must for our application since most of the mathematical symbols can only be found

in Unicode.

3. A simplified version of Microsoft Visual C++ - Microsoft Embedded Visual C++ is

specially designed for developing Windows CE applications.

3.1.2 Dissection of the Application

In order to recognize mathematical expressions, this application needs to do three

things: (1) take handwriting input from the user; (2) recognize individual symbols; (3)

recognize the relationship between neighbouring symbols.

Our application is designed exactly in this way. It contains a user interface which

receives input from the user, a handwritting recognizer for recognizing individual

symbols, an analyzer which performs the structural analysis, and a procedure for

generating presentation MathML for the recognized expressions. Each part is a module

independent from the others, which make it easy to be changed in the future.

3.1.3 The User Interface

The user interface interacts with the user directly. Its main responsibility is to

receive handwriting input from the user and to feed back the recognition results to the

user. It is required not only to be able to record the data of each symbol, but also be able

to keep the two-dimensional information of expressions.

In order to meet these requirements, we decided to use an interface similar to those

of drawing applications. Our interface provides a window for the user to write

mathematical expressions and two display panels for displaying recognition results and

candidates of handwritten symbols. Most of the existing recognizers on pocket PC are not

suitable for this purpose because they designate different regions for the input of letters,

digits and other symbols. It is impossible in this way to input mathematical expressions

since the relationships between symbols are not kept.

18

Two questions have to be answered at this stage: (1) Should a symbol allowed to be

in multi-stroke or must it be in single-stroke? (2) How to distinguish one symbol from

another if multi-stroke method is allowed?

• Multi-Stroke vs Single-Stroke

Single-stroke symbols are easy from a developer’s point of view. The program

simply examines pen-down and pen-up events to know when a symbol finishes and the

next one begins. The disadvantage is that each symbol has to be mapped to a unique one-

stroke alphabet, and this results in somewhat strange looking alphabets. The Jot character

set (Communication Intelligence Corp.), Graffiti (Palm Inc.), and UniStroke (Xerox) are

all single-stroke methods (There are exceptions, say, i, j and x, etc. can be finished in two

strokes. However, single-stroke is the dominate case, therefore they are still considered as

single-stroke alphabet). Figure 3.1 shows the Jot character set. Single-stroke recognition

works fine when the symbol set is small in size. However, when it comes to the case of

mathematical symbols, single-stroke is not applicable because the set of mathematical

symbols has a very large size, it is impossible to find a unique single-stroke

representation for each of the symbols. Even if it were possible to design such an

alphabet, it would be impossible to remember.

Multi-stroke characters are more user friendly, they allow user to write a character

in the usual way without the hassle to memorize the mapping between one-stroke

alphabets and their real identities. The problem is that it is hard to distinguish one symbol

from another. The general way to deal with this problem is to require the writer wait for a

short interval between characters.

• Our Interface Design

Our design is in multi-stroke mode. In this design a stroke contains a sequence of

points and a bounding box (A bounding box is the smallest rectangle which entirely

encloses a figure, Figure 3.2 shows a bounding box). Each symbol is called a scribble, it

consists of one or more strokes and a bounding box. In the program there is an internal

timer running in the background to distinguish one scribble from another. The timer starts

at every pen up, if a new stroke starts before the timer expires, the timer will be cancelled

19

and the new stroke will be considered part of the same scribble, otherwise it will be

considered as the first stroke of a new scribble.

Figure 3.1 The Jot character set.
(from CIC Jot User’s Guide, www.cic.com)

Figure 3.2 A character and its bounding box

Special attention is also paid to the spatial distance between strokes. If a new stroke

is far enough from the previous stroke, the new stroke will be considered as the first

stroke of a new scribble, even if the interval between the two strokes is within the

threshold of the timer. This is reasonable because when two strokes are far apart, they

cannot be within the same scribble.

 A dot means the start point of the stroke

20

The thresholds for both the timer and the distance between two consecutive strokes

are configurable, they can be changed to meet the needs of different writers.

3.2 The Handwriting Recognizer

In the design of the handwriting recognizer, we use an abstract class called

Recognizer. The actual recognizer used by the system is its subclass called

ElasticRecognizer, which makes use of the elastic matching algorithm. By this design, it

is very easy to change to other handwriting recognition methods.

When a scribble is completed by the writer, it is not ready to be recognized yet.

Depending on the algorithm used by the handwriting recognizer, different types of

preprocessing have to be performed. Recognition is then performed on the preprocessed

data. In the following sections, we introduce the details of preprocessing for elastic

matching and the elastic matching algorithm itself.

3.3 Preprocessing

The main purpose for preprocessing is to normalize data, therefore increase

recognition rate and speed. For the elastic matching algorithm, three preprocessing steps

are needed. They are size normalization, point distance normalization, and smoothing.

3.3.1 Size Normalization

In handwriting recognition, the size or location of a symbol should not affect the

recognition result. However, in many algorithms, especially model-based methods, the

recognization result depends on the distance between the unknown and the model. The

distance itself actually depends on the distance between points of the unknown and the

model. In other words, the size and location do affect the result. To solve this problem, it

is necessary to performe size normalization on the writing.

This operation rescales all input characters and models to a common size without

changing their shape, and at the same time moves their centroid (the point at the center of

the bounding box of a character) to the same X-Y coordinate. By doing this, it can be sure

21

that patterns of the same shape will have the maximum overlap and therefore the

minimum distance.

It does not matter what the actual ratio for rescaling is, and where to move the

centroid point. What matters is that the operation must be consistent for all the patterns.

We arbitrarily chose to rescale all patterns to the size of 100 pixels maximum in height or

width, whichever is larger, and move their centroids to the point (50, 50). The calculation

is performed using the following equations (Equation 3.1 to 3.7). Here cx , cy are the X,

Y coordinates of the centroid, xr and yr are the horizontal and vertical radii of the

character, minx and miny are the minimum X, Y coordinates of the bounding box, while

maxx and maxy are the maximum X, Y coordinates of the bounding box.

Equation 3.1 2
minmax xx

cx +=

Equation 3.2 2
minmax yy

cy +=

Equation 3.3 2
minmax xx

xr
−=

Equation 3.4 2
minmax yy

yr −=

Equation 3.5),max(yx rrr =

Equation 3.6)(5050 r
xx

new
coldx −+=

Equation 3.7)(5050 r
yy

new
coldy −+=

3.3.2 Smoothing

Writing on the digitizer is not as easy as writing on a piece of paper because the

surface of digitizer is usually slippery. This difficulty may introduce noise. On the other

22

hand, a local sharp change in angle usually causes digitizing noise. Smoothing is a widely

used way to deal with this problem.

In smoothing, usually a point is averaged in some way with its neighbouring points

[32]. In our recognizer, we also used this strategy by averaging each point with its two

neighbors, with the exception that the end points of a stroke will not be processed. The

actual calculation is performed as in equation 3.8 and equation 3.9.

Equation 3.8
1 1

3
i i ix x x

ix − ++ +′ =

Equation 3.9
1 1

3
i i iy y y

iy − ++ +′ =

3.3.3 Point Distance Normalization

The last step of preprocessing is to normalize the distance between points. The

generic way to do this is to start with the first point of a stroke, remove all the points that

are at a distance smaller than a given threshold from it, then starts with the next available

point and do the same operation, this process goes on until the end point is reached.

This process reduces the number of points involved in the recognition, and

therefore reduces the amount of computation and increases recognition speed. This

process is performed after size normalization, therefore it is guaranteed that the points in

both the unknown and the models are evenly spread out, regardless their original size.

The hardest thing in distance normalization is to choose a proper threshold. If the

threshold is too small, the improvement of recognition speed may not be effective, on the

contrary, a large threshold may greatly reduce the recognition rate. Experiments by

Scattolin [32] showed that for patterns normalized to 100 pixels, the recognition rate is

not affected for a threshold up to 6 pixels. In this thesis we follow this result and use 6

pixels as the threshold.

23

3.4 Recognition by Elastic Matching

Once the preprocessing is done, the ElasticRecognizer is ready to perform

recognition on the preprocessed scribble with the elastic matching algorithm. This

algorithm has several advantages:

1. The research results by Hellkvist [21] showed that systems with elastic matching

have higher recognition rate over systems using the Histogram method, Hidden

Markov Model, and Neural Networks. Tappert [35] also reported that recognition

rate is high for elastic matching.

2. Elastic matching is quite robust, it handles writing errors quite well.

3. Compared with other model-based algorithms especially the structural and syntactic

methods, elastic matching requires fewer models. This saves memory space, which

is important for PDAs, because on these devices both data storage and computation

take place in the flash memory.

3.4.1 Elastic Matching in Detail

Elastic matching is very similar to string matching. They both calculate the

minimum distance between two sequences of items by means of the dynamic

programming algorithm. Actually elastic matching can be considered a special case of

string matching where the strings are sequences of points instead of characters, and the

purpose is to find the minimum distance between an unknown string (unknown character)

and a collection of reference strings (models).

String matching has three possible operations: insertion, deletion and direct

matching. Each of these operations has an associated cost. When matching two strings,

we apply each of the possible operations and obtain the smallest total cost. When string

matching is done, it is guaranteed that the total cost obtained is the smallest possible

distance between the two strings. This makes inexact matching a main feature of the

string matching method. Characters between the two strings can have one-to-one

mapping which is equivalent to direct matching, or many-to-one mapping which is

24

equivalent to insertion, and some characters in a string may be skipped therefore do not

map to any character in the other string, which is equivalent to deletion.

Elastic matching works in the same way. The Euclidian distance between two

points, one from the model and one from the unknown, is used as the cost associated with

each of the three operations. The output of the matching procedure is the minimum

distance between the unknown character and a given model. Like string matching, elastic

matching is inexact, points of the unknown pattern and the model can have one-to-one or

many-to-one mapping, it is also possible that some point may be skipped. This is a reason

that makes elastic matching robust: “bad” points are usually skipped during the inexact

matching.

Figure 3.3 illustrates the distance measurement of elastic matching, in which there

are both many-to-one and one-to-one mapping between points of the model and points of

the unknown, no points get skipped here.

Figure 3.3 The point to point distance measurement in elastic matching.
(from Scattolin [32])

Equation 3.10 shows the calculation of distance between the unknown and the

model. In which (,)D i j means the total distance between the unknown point sequence

25

starting at index i and the model sequence starting at index j .),(jiδ means the distance

between the i th point of the unknown and the j th point of the model. The goal is to

minimize (,)D i j .

Let’s take a look at the most general case in this algorithm, the 1,0 >> ji case.

We can find that the three sub-cases are very similar to the insertion, deletion, and direct

matching operations in string matching. When calculating the distance (,)D i j , we always

have three options: we can match the next point of the unknown to either the next point

of the model,)1,1(−− jiD , or the same point of the model,),1(jiD − , we can also skip

a point in the model,)2,1(−− jiD . The minimum of the three cases is selected. This

algorithm is called Dynamic Programming, which is a general technique for solving

discrete optimization problems. In this algorithm, each step of computation depends on

the result of the dynamic decision process in the previous step.

In Equation 3.10, the special cases when i=0 or j=0 are used to penalize the

algorithm when one of the sequences runs out of points. As described by Hellkvist [21],

adding these special cases into elastic matching algorithm resulted in better results.

Equation 3.10

1

0

1

0

(0,) 0

(,0) 0

(1,)(,) (,) min 0, 1
(1, 1)

(1,)

min (1, 1) 0, 1

(1, 2)

j

k

i

k

k if i

k if j

D i jD i j i j if i j
D i j

D i j

D i j if i j

D i j

δ

δ

δ

−

=

−

=

=

=

 −= + > = − −
 −

 − − > >
 − −

∑

∑

Note that in Equation 3.10 we represent the algorithm in such a way that is similar

to recursion. However a recursive approach would be very inefficient since intermediate

values will be evaluated over and over again. So in the actual implementation, we

surround this problem by building a lookup table for the result of all the D(i,j) values,

therefore each value will be calculated only once.

26

The distance function δ (Equation 3.11) calculates the distance between one point

in the unknown and one point in the model.

Equation 3.11 2 2(,) () ()i j i j i ji j x x y y Cδ φ φ= − + − + −

In this function, two factors have been considered:

1) The first factor is the Euclidian distance between the two points. Strictly

speaking, 22)()(jiji yyxx −+− is not really a Euclidian distance but its square. There

are two reasons for not calculating the square root: (1) there is no significant

improvement in the δ function even if Euclidian distance is used. (2) Not performing

square root evaluation saves computation time. This is the main reason. Experiments by

Scattolin [32] shows that in their elastic matching recognition system, about 60-80% of

computation time has been spent on evaluating the distance function. Ignoring square

root evaluation step will no doubt improve performance significantly.

2) The second factor is the orientation and curvature of the stroke. This

information is also important and should not be ignored. In Equation 3.11, C is an

empirically determined constant and φ represents the angle of elevation of the tangent to

the point. Equation 3.12 shows the calculation of φ .

Later in the recognition process, the calculated distance is divided by the number of

points of the unknown pattern to acquire the average distance per point. (Equation 3.14,

n is the number of points in the unknown, m is the number of points in the model). This

makes distance independent of the number of points, and therefore makes it possible to

meaningfully compare patterns of different lengths.

Equation 3.12

1
1

1
1

1

arccos

arccos

i i
i i i

i i
i i i

i i

x x
y y

hyp

x x
y y

hyp

i n

φ

φ π

φ φ

+
+

+
+

−

 −
= <

 − = + ≥

 = =

where

27

Equation 3.13 2
1

2
1)()(iiii yyxxhyp −+−= ++

Equation 3.14
n

mnD
mn

),(
),(=∆

 It is now clear why and how the elastic matching method calculates the minimized

distance between the unknown pattern and a given model. By calculating the minimized

distance between the unknown pattern and all available models, we can compare the

distances we have obtained and select the one that gives the minimal distance to be the

recognition result.

3.4.2 More About the ElasticRecognizer

In this thesis, the ElasticRecognizer uses exactly the above elastic matching

technique. At the initialization stage, the application loads all model files into memory,

and preprocesses each of them in the same way it does to unknown symbols. The

preprocessed models are used until the program exits.

Whenever a new scribble (symbol) is finished by the user, it is handed over by the

application to the ElasticRecognizer, which performs the recognition and returns the

recognized character as well as a list of candidates to the application. The application

then displays the result and candidates in the corresponding area of the user interface.

3.4.3 Handling Recognition Errors

Like every other recognition methods, elastic matching is not error free:

Recognition errors always happen. In our case the errors can be divided into three

categories:

1. Some characters are not distinguishable at all, context information has to be used to

tell one from the other. For example “1” (digit one) and “l” (lower case “L”) are

exactly the same. In this example, if the “l” is in “21” we might suspect the

character is digit one, while in “seal” we would guess it is the lower case “L”.

28

2. Some characters can be written in an ambiguous way, which makes it error prone

for recognition. For example, in Figure 3.4 the character is in a pattern between “a”

and “d”.

3. In our application, a timer is used to distinguish the end of one scribble from the

start of another one. Sometimes the user may write too fast, resulting in two

intended scribbles being considered as one. It is also possible that the user writes

too slow such that strokes of the same character are considered as belonging to two

different scribbles.

Figure 3.4 Illustration of an ambiguous character

For the ElasticRecognizer, the first two categories of recognition errors are handled

by allowing the user to select the correct one from the list of candidates.

The way we handle the third kind of error is to establish undo and redo features in

the application. Therefore the user can undo the writings until the incorrect writing has

been erased, then the writer can write again. Furthermore, the threshold for the internal

timer is configurable, the user can change the default time interval between strokes to a

value that makes him or her comfortable. The problem with this solution is that it is not

friendly enough to the user. This issue will be discussed in Chapter 7.

29

Chapter 4 Review of Mathematical Expression
Recognition

Like handwriting recognition, structural analysis of two-dimensional patterns also

has a long history, it started in the 1960s. However, only very few researchers paid

attention to the special problems in recognizing mathematical expressions [8].

In recent years, the widespread use of the Internet makes it an important way for

scientific communication. For example, both online digital libraries and distance learning

rely on the Internet. A great deal of existing knowledge, including mathematical

knowledge, has to be transformed into electronic form in order to be processed by

computers and used through the Internet. The need for transforming the mathematical

knowledge into electronic form therefore becomes the primary driving force in the

research of mathematical expressions recognition. And the demands for efficient ways to

input mathematical expression into computers boost the research in this area even further.

In this chapter we review the current status of research in this area, and leave the

details of the corresponding part of our application until next chapter.

4.1 The Problems of Mathematical Expressions Recognition

The ability of a recognizer to recognize mathematical expressions depends on the

understanding of the two-dimensional structure of the expressions. This is true whether

the expression is written on an electronic digitizer or be a scanned image.

OCR is the most popular method for converting text documents (on paper) into

electronic form, but this method cannot recognize embedded mathematical expressions in

the document. OCR software generally treats mathematical expressions as

unrecognizable pictures. Existing on-line handwriting recognition software has the same

problem. Even though they can recognize handwriting quite well, they do not understand

the meaning of the expression. The reason for this is that mathematical expressions differ

greatly from text. Characters in a text are always placed one after another, and the only

30

thing needed is to recognize the characters sequentially. In contrast, each mathematical

expression contains a two-dimensional structure, in which a symbol may be in the same

row with other symbols, be above or under other symbols, or be contained in other

symbols, etc. Different spatial relations generally encode different mathematical

meaning. Therefore, recognizing the structural of an mathematical expression is

orthogonal to recognizing individual symbols. However structural analysis can provide

contextual information as feedback to improve symbol recognition. To be able to

automatically recognize mathematical expressions, a recognizer must be able to

understand the two-dimensional structure as well as its mathematical meaning.

Based on the above observations, people have put much effort into mathematical

expression recognition, both for off-line (typeset and handwriting) and on-line cases.

4.2 Properties of Mathematical Expressions

As mentioned before, in a mathematical expression the symbols are usually

arranged in a complex two-dimensional structure. In addition, the symbols with different

roles may have different sizes based on the convention in mathematics. In an expression,

usually neighboring symbols are grouped locally into sub-expressions. Neighboring sub-

expressions can then be grouped into higher level sub-expressions. The grouping goes on

and on, and finally we have a hierarchical structure representing the entire expression.

This grouping of mathematical expressions is very complicated and is not easy to

be recognized. This is because “mathematical notation is not formally defined, and is

only semi-standardized, allowing many variations and drawing styles” [4].

A typical mathematical expression contains two types of symbols. The first type

includes all basic symbols, the second type includes binding, fence and operator

symbols. Each type of symbol has its own grouping criteria. Furthermore, there are two

types of operator symbols, namely explicit and implicit operators. What makes

recognition even harder is that some of the symbols may have different meanings

depending on their context. In the following we discuss the different types of symbols in

detail.

31

4.2.1 Basic Symbols

Although every symbol has its own meaning, it may represent another meaning

when it is grouped together with other symbols. This happens quite often to symbols such

as digits and Roman letters.

1. Digits: When a couple of digits are of the same size and placed adjacent to each

other in a horizontal line, they are normally considered as one unit. Otherwise the

symbols are not in the same unit. For example, 123 is considered a single unit that

represents an integer, while 123 contains two units, namely 12 and 3.

2. Roman Letters: Like digits, when a set of characters are placed adjacently in a

horizontal line, they might be considered as one unit. This occurs for function

names like sin, cos, tg (or tan) and log (or ln), or keywords like lim. Therefore it is

necessary to check a group of letters for possible function names or keywords

before treating them as the multiplication of individual symbols.

3. Other Symbols: Most symbols other than Roman letters and digits should be

considered as separate units. However there are exceptions. For example, when a

dot is adjacent to digits in a horizontal line, the dot and those digits should be

grouped together as one unit that represents a floating point number.

4.2.2 Binding, Fence and Operator Symbols

Symbols in this category have special grouping methods, generally they group the

symbols adjacent to them into one unit.

1. Binding Symbols: Symbols like ∑, �, , and fraction bar, etc. dominate the sub-

expressions around them. For example, in
0

k

i

i
=
∑ , ∑ dominates the other three sub-

expressions k, i, and i=0, and groups them together to represent the summation of

integers from 1 to k.

The problem is that for complex expressions, it is usually hard to properly decide

the relation between binding symbols and their neighboring sub-expressions.

2. Fence symbols: Fence symbols include parentheses (“(” and “)”), square brackets

(“[” and “]”), etc. These symbols always appear in pairs: an open symbol is

32

matched by a corresponding close symbol. Each matching pair groups the sub-

expressions enclosed in them together as one sub-expression. For example, in the

expression a(b+c), the pair of parthenses group the three symbols b, +, and c as one

sub-expression.

3. Operator symbols: Operator symbols like +, −, × and /, etc. dominate their

operands and group the operands together into one unit. For example, in ba + , +

groups its operand a and b together as one sub-expression, then in
c

ba + , ba +

becomes the operand of the fraction bar, which groups ba + and c together as a

higher level grouping unit.

Each operator also has an associated precedence. We say that operator symbols with

lower precedence dominate operator symbols with higher precedence when they are

lined up. For example, in expression cba ×+ the + dominates the × , therefore the

× groups b and c , and + groups a and cb × .

4.2.3 Explicit and Implicit Operators

Explicit operators are those operator symbols that are visible in the mathematical

expression. As introduced above, operator dominance and operator precendence are used

in their grouping rule.

An expression could also contain implicit operators, or spatial operators. These

operators are not visible: they determine the relationships between symbols simply by

their relative positions. For example, in a2, 2 is the superscript of a, representing the

square of a. While in a2, 2 is the subscript of a representing a variable name.

Determining implicit operators is not trivial. The same spatial relation may

represent different implicit operators. For example, in expression b
ca , a is adjacent to b

c ,

representing the multiplication of a and b
c . But in expression 2

31 , the same spatial

relation means the sum of 1 and 2
3 . In another example, the superscript relation in

33

expression a2 means the square of a, while in ∫
2

0
xdx the superscript relation between 2

and the integral sign indicates 2 to be the upper bound of the integral operation.

4.2.4 Context-Sensitive Roles

Some symbols play different roles in mathematical expresisons depending on their

context. For example, a dot can be a decimal point or a multiplication operator depending

on its position and neighboring symbols. For another example, in expression ,xdx∫ dx is

part of the integral notation, while in dxay + , dx means the multiplication of d and x .

Mathematical notation has many dialects, and it is nearly impossible for a method

to cover all the dialects. As a result, almost all systems are based on a subset of the

mathematical notations.

4.3 Processes for Mathematical Recognition

The existing mathematical expression recognition systems require a variety of input

data. Some systems work on on-line data, i.e. expressions as they are written. Other

systems work on off-line data. The off-line systems can further be divided into two

categories. One category recognizes the scanned image of mathematical expressions only,

while the other category allows mathematical expressions to be mixed with text and

pictures (these systems are able to locate mathematical expressions from the documents).

Despite the big difference between them, both on-line systems and off-line systems have

similar recognition processes.

Understanding a mathematical expression typically involves two stages: symbol

recognition and structural analysis. Symbol recognition recognizes individual symbols in

the expression, while structural analysis recognizes the embedded meanings from the

spatial relationship between the symbols, and maintains the relationships in a

corresponding tree structure.

Different systems may carry out the above two stages in different orders. The

majority of them perform the symbol recognition first, then the structural analysis. But

34

there are also systems that do the structural analysis before symbol recognition, or

perform the two stages concurrently. Some methods even skip the symbol recognition

step, assuming that the symbols have already been recognized prefectly. Figure 4.1

illustrates the recognition process of both on-line and off-line system, with symbol

recognition stage prior to the structural analysis stage. The following sections are reviews

of these two major stages of mathematical expression recognition.

Figure 4.1 Overview of mathematical expression recognition processes.

 (Chan and Yeung [8])

4.4 Symbol Recognition

Mathematical symbol recognition is exactly the character recognition problem. As

discussed in Chapter 3, there has been a long history for research on character

recognition, and there are a lot of recognition approaches. Here we will not talk about

symbol recognition itself again, but some special issues closely related to symbol

recognition: recognizing a large set of symbols, and segmentation of symbols in an

expression.

35

4.4.1 Recognizing Large Sets of Symbols

Most character recognition systems claim to have high recognition rates on typeset

or handwritten characters, but their test results are usually based on a limited set of

characters, namely, Roman letters, digits, punctuation symbols, and probably some Greek

letters. When the set is scaled up to a size that includes all mathematical symbols, these

systems probably will not work properly without suitable modification (add more models,

more syntax rules, etc.).

Currently there are no reported experiments for recognizing large sets of symbols,

but theoretically it is possible. This can be demonstrated by the research on recognition of

Chinese characters (also known as Kanji in Japanese) in both Chinese and Japanese. The

research has already gained very impressive results, and there are related commercial

products (both OCR and handwriting recognition) available in the market currently with

reasonable performance. Since the set of Chinese characters is larger in size than that of

the mathematical symbols, the technologies used in these systems will no doubt be very

useful for mathematical symbol recognition.

4.4.2 Segmentation of Symbols in Mathematical Expressions

In on-line systems, symbols are written on an electronic tablet stroke by stroke, one

symbol after another. The pen-down and pen-up events automatically distinguish one

stroke from another, pen-down means the start of a stroke, and the following pen-up

indicates the end of that stroke. What needs to be done is to determine whether a stroke

should belong to one symbol or another (in multi-stroke mode). The common way is to

ask the writer wait a short while after finishing a symbol. The advantage of this way is

that the segmentation can be guaranteed to be correct once the threshold of delay between

symbols is set properly. In our system, we set up a configurable delay threshold between

strokes. If the delay exceeds the threshold then the new stroke is considered as the first

stroke of a new symbol. Besides the above method, there are also other ways. For

example, Chen and Yin’s system [11] uses a much different method. In their system, each

stroke is surrounded by a frame (actually the same as a bounding box). The X and Y

projections of consecutive frames are analyzed for any overlap. Overlapped frames will

36

be considered as strokes of the same symbol. The system has special rules to unify

symbols with disconnected components, such as i, j, ,≥ ,≤ and =. It also has special

rules to handle the square root symbol.

For off-line systems, things are much different. In these systems, an expression

comes in as a scanned image, what the system sees is just a two-dimensional array of

pixels, there is no information about strokes or symbols at all. The system has to detect

and isolate symbols from each other through segmentation, which is not easy to do.

Since the topic of segmentation is not relevant to on-line recognition, we only

introduce it briefly. Few methods have been proposed for segmenting symbols up to now,

most of them make use of the X and Y projections to analyze the expression.

Okamoto et al. applied “recursive projection-profile cutting” in their system

[30,31]. This method cuts the vertical projection profile first, followed by horizontal

projection profile cutting on each resulted region. Then this process is applied recursively

on all resulted regions until no more cutting is possible. The result is a tree structure,

where each node represents an isolated symbol of the expression. The problem with this

approach is that it will fail for symbols with disconnected components (i, j, ,≥ ,≤ and

=, etc.), and symbols that contain other symbols (e.g. the square root).

Ha et al. [20] proposed a design similar to the above. In this system, recursive X

and Y cutting is carried on the bounding boxes of primitives. The resulting tree is then

traversed to fix errors. Nodes may be split or merged, so nodes in the final tree will be

correctly isolated symbols.

Faure and Wang [16] used X and Y projections to segment handwritten

mathematical expressions. Since this method fails for closely-written symbols, symbols

with separate components, and symbols that contain other symbols, they used a “mask-

removal operation” to fix these errors. This operation first detects “mask symbols” such

as square roots, fraction bars, or other long or tall strokes, then remove the mask symbols

and apply X and Y projections again to segment remaining symbols.

From the above we can see that the segmentation problem is easier for on-line

recognition systems than for off-line systems. Off-line systems usually have to use

37

special operations to fix errors of segmentation, but this is not the case for most on-line

systems.

4.5 Structural Analysis

Much of the meaning of a mathematical expression is embedded in the spatial

relationship between the symbols of the expression. Correctly interpreting the spatial

relationships is the prerequisite for a good mathematical expression recognizer, since the

final expression tree will be largely based on the spatial relations. Therefore structural

analysis, sometimes called symbol-arrangement analysis, is very important in

mathematical expression recognition.

Compared with the symbol recognition step, structural analysis seems more

important. For example, several systems actually carry spatial analysis before symbol

recognition. Some researchers even completely skipped the symbol recognition step and

directly perform the structural analysis, assuming that all symbols have already been

recognized.

In this section we address the problems of structural analysis first, then introduce

the existing works related to this topic.

4.5.1 The Goal of Structural Analysis

Generally speaking, the goal of structural analysis in a mathematical expression

recognition system (unless specially specified, we are talking about on-line system only)

is to correctly recognize the spatial relationships and implicit operators between symbols.

However, how this step should be done depends mainly on the ultimate goal of the entire

recognition system, or how much should the system know about mathematics.

4.5.1.1 Systems with No Knowledge about Mathematics

If the main purpose of the system is to recognize and display handwritten

mathematical expressions, i.e. to be used as a mathematical editor, then the only

important information is the two-dimensional arrangement of the symbols. The structural

38

analyzer only needs to know a very limited set of implicit operators, such as superscript

and subscript, there is no need to worry about the mathematical meaning at all. For

example, the program does not care about the meaning of the string “sin” in the

expression.

The on-line mathematical expression recognition system by Chen and Yin [11] is

such a system. This system puts a lot of emphasis on stroke grouping (symbol separating)

and symbol recognition. Relatively little effort is put into structural analysis. The system

recognizes such relationships as Up, Down, Superscript, Subscript and inline (row), and

uses some context information to solve some ambiguity cases, but it does not care about

the meaning of the expression. Finally a symbol relation tree is built to display the

expression.

4.5.1.2 Systems That Know Mathematics

If the mathematical expression recognition system is expected not only to recognize

the expression, but also to be able to know whether the expression is valid or not, then

there should be a lot of things for the structural analyzer to do. This means that the

system will be largely knowledge driven.

Besides recognizing all symbols, the system has to be able to correctly detect all

implicit operators, and check the validity of the expression at the end of the structural

analysis. For example, the system will report that the expression 2 2cos sin 1a + = is

invalid since the argument is missing for the function sin (2sin a is equivalent to

2(sin)a). If the designers are very ambitious, the system may even have an integrated

engine to evaluate the expression and report possible logical errors. For example, the

system would report that the proposed equation 1 2 5+ = is invalid since the left hand

side is not equal to the right hand side. The result will be an expression tree, ready to be

used in either display or mathematical evaluation.

Unfortunately, no such systems are available currently. The reason is that there are

too many rules and notational variants involved in mathematics. Developing such a

perfect system would be very hard. Even if done, the parsing would be very

39

computationally expensive. Therefore people compromise between the above two kinds

of systems.

4.5.1.3 Systems in Between

This category consists of systems which are a compromise between the above two

categories, they have limited knowledge about the common rules and notational variants

in mathematics. These systems can usually recognize the implicit operators in an

expression, for example, they know that the implicit operator in the expression 2
31 is a

plus, while in b
ca the implicit operator is a multiplication. They can also understand

function names (e.g. sin), keywords (e.g. lim), and some context sensitive cases (e.g. dx

has different meanings in expression dx cy+ and expression xdx∫). Some systems may

also contain limited error detection and correction abilities. However, their knowledge

about mathematics will not go beyond these conditions, they may not query an expression

such as 1 2 5+ = . Generally speaking, the structural analysis of these systems results in

an expression tree. The tree contains enough information about spatial relationships as

well as implicit operators that it can be used as a basis for generating different

representations of the expression, such as TEX and MathML.

Several systems have used this approach. Chan and Yeung [5,7] used hierarchical

decomposition in their system to parse mathematical expressions. Their system puts a lot

of effort on detecting and correcting such syntactic errors as missing function arguments

or operands, invalid implicit operators, missing binding or fence symbols, etc. Their

system can also find some semantic errors, for example, anα+ is corrected as tanα . The

final result is an expression tree.

Smithies et al. [33] developed a handwriting-based equation editor that parses

handwriting expressions into a parse tree (expression tree), then the parse tree can be

converted into several output formats such as Lisp-like expression, Mathematica and

LATEX. This system does not really know much about mathematics, it actually requires

the user to realign symbols when the structural analysis result is not correct.

40

4.5.2 Structural Analysis Problems

How to correctly interpret the spatial relationship between symbols is the major

problem of structural analysis. The recognizer has to distinguish all possible relations,

such as superscript, subscript, row, above, below, enclose, etc. A second aspect of the

problem is to correctly detect all implicit operators.

4.5.2.1 Identifying Spatial Relationships

Spatial relationships are critical for the recognition of implicit mathematical

operators. Although mathematics is relatively standardized, it allows many variations.

There is no specific defintion for the spatial relationships, therefore it is not clear how to

identify the relationships.

To make it easy to identify the spatial relationship between symbols, people come

up with lots of conventions. For example, the superscript of a symbol should be at the

upper-right corner of that symbol, and should have a size smaller than that symbol. It is

easy to know what a2 means. However, the conventions are not formally defined,

therefore are not always followed. This is paritcularly true in handwriting recognition

systems, where handwritten symbols may be in bad style or erratic, a2 can be written as

a2, which has no difference between the size of both symbols.

Problems also come from the fact that there is no clear separation of positions

between horizontal adjacency and superscript or subscript. For example, in the following

five expressions: (1). a2, (2). a2, (3). a2, (4). a2, (5). a2, the spatial relationships

between a and 2 changed from row to superscript, however the relationship in expression

(2), (3), and (4) are hard to determine.

In the Roman alphabet, some letters like b, d, h and t contain ascenders (an

ascender is the portion of a lowercase letter that rises above the main body of the letter).

Some letters like g, y, j, q, and p contain descenders (a descender is the portion of a

lowercase letter that falls below the baseline). The other letters contain no ascenders or

descenders. Ascenders and descenders are not considered to be the main body of a letter.

When identifying the spatial relationship between symbols. This issue has to be

41

considered, otherwise the relationship may be identified incorrectly. For example, the

expression in Figure 4.2 can be correctly interpreted as pb only if we exclude the

ascender and descender of the symbols in the spatial relationship identification process.

Figure 4.2 Remove ascenders and descenders is essential for structural analysis.

4.5.2.2 Identifying Implicit Operators

Implicit operators, like superscript, subscript, multiplication, matrix, and so on, are

indicated by the two-dimensional layout of symbols. The spatial relationship between two

symbols, however, is not necessarily enough to determine the implicit operator. For

example, in Figure 4.3, symbol y could be the superscript of symbol x (yx , an implicit

operator superscript exists between x and y), but it is also possible that x and y form that

alignment coincidentally (yxz , no implicit operator between x and y, instead there exists

an impilcit multiplication operator between xz and y). The reason is simple: the baseline

of the expression can not be decided locally. We must obtain the baseline globally and

decide the spatial relationship based on that.

In some mathematical expressions, presuperscripts and presubscripts are also used.

This makes it more complicated. For example, in expression ,n ma C n may be a

presubscript of C instead of the subscript of a. In that case there is no implicit operator

between a and n, but an implicit operator between a and nCm. Usually these problems are

connected with special binding symbols like ,∏ C (combination), etc. Therefore when

42

these symbols appear in an expression, the possibilities of pre-superscript and pre-

subscript have to be checked.

Figure 4.3 Implicit operators should be determined globally

4.5.3 Methods for Structural Analysis

Existing mathematical expression recognition systems use a variety of approaches

to analyze the two-dimensional arrangement of symbols. Blostein and Grbavec [4]

surveyed the commonly used methods and divide them into four groups, namely,

syntactic methods, projection-profile cutting, graph-rewriting, and procedurally-coded

rules. In this part we introduce the existing structural analysis methods, following their

categorization with an additional part for the methods not included in the four groups.

4.5.3.1 Syntactic Methods

This group claims the most number of structural analysis methods. All methods in

this group have used some syntactic grammars.

Anderson [1] is one of the earliest person who used grammars to recognize

mathematical expressions. His system assumes that input symbols have already been

recognized, and symbols composing integers or real numbers have already been grouped

together. Using a top-down parsing scheme, his system starts with one syntactic goal and

all symbols of the expression. Each grammar rule starts with a set of symbols and a

syntactic goal, and the rule specifies how to partition the set of symbols into several

subsets, each with its own sub-goal. If a partition fails, the grammar rule reports failure,

causing the parser to try another rule. On the contrary, a successful partition will generate

43

several sub-goals. The algorithm keeps going until all the sub-goals are satisfied or all

possibilities have failed. The main drawback of this method is its inefficiency.

Beláid and Haton [3] came up with a system that uses both a top-down and a

bottom-up parser to recognize some simple mathematical expressions. The top-down

parser works the same way as Anderson’s system, it divides expressions into sub-

expressions. The bottom-up parser is used later to combine sub-structures into larger

structures. Compared with Anderson’s system, this design is more concise.

Chou [12] used a two-dimensional stochastic context-free grammar to recognize

noisy typeset mathematical equations. Each production rule of the grammar has an

associated probability, and a particular parse tree has a probability that is the product of

the probability of all involved production rules. Each production is allowed to use either

vertical or horizontal concatenation. The most likely parse is calculated by a dynamic

programming algorithm. This approach has a time complexity of O(n3).

Chang [9] used structure specification schemes to analyze the structures of

mathematical expressions. Like Anderson, his system assumes that symbols have already

been recognized. The structural analysis algorithm of this system put restrictions on the

syntactic approach, therefore it is more efficient than Chou’s method. The recognition

time is O(n2).

Lavirotte and Pottier [23] used a graph grammar to parse mathematical expressions

in documents. The system first extracts expressions from the document and builds a

graph, then it uses a graph grammar to parse and generate graphs. Each graph grammar

contains a start graph and a set of production rules, the rules are responsible for replacing

a matched sub-graph by another one. The advantage of this system is that no

backtracking is needed in parsing.

Chan and Yeung [5] used hierarchical decomposition parsing to interpret the

structure of mathematical expressions. The main techniques of this approach are left-

factoring, binding symbol preprocessing, and hierarchical decomposition, for improving

efficiency.

44

4.5.3.2 Projection-profile Cutting

A couple of researchers have used X-Y projection profile cutting to segment the

image of expressions, and build a spatial relationship tree based on the segmentation.

These methods usually build a symbol layout tree before recognizing the symbols, and no

parsing is involved. However, there are some cases that X-Y projection cutting can not

handle, for example, a square root. Special care must be taken in these cases. Futhermore,

in many cases, spatial relationship alone can not provide the correct grouping, especially

for context-sensitive relationships. Therefore it is usually necessary to fix errors after the

symbol recognition.

Okamoto et al.[30,31] applied recursive projection-profile cutting on mathematical

expressions. A symbol layout tree is obtained prior to the recognition of the symbols.

Special care is taken to handle symbols like square root, which can not be handled by the

projection profile cut.

Ha et al. [20] applied recursive X and Y cutting on the bounding box attributes of

primitives. The initial expression tree is build in top-down fashion, then it is traversed

bottom-up to fix errors.

Wang and Faure [37] proposed a method to automatically decompose expressions

into blocks (bounding boxes) by X and Y projections and label the spatial relationships

between symbols. This method analyzes spatial relationship without knowing the identity

of symbols, therefore it still works even when some symbols can not be recognized.

4.5.3.3 Graph-rewriting

Graph rewriting is a general computational technique that uses an attributed graph

to represent information and uses graph-rewriting rules to update the graph. The main

advantage of this approach is that it offers flexible formalism with a strong theoretical

foundation for manipulating two-dimensional patterns. Grbavec and Blostein [19] applied

this technique on mathematical expression recognition.

Their system assumes that all symbols of the expression have already been

recognized and an initial edgeless graph is built upon that. Each node of the graph

45

represents a symbol of the expression, with an attribute representing the spatial

coordinates of that symbol. The role of graph rewriting rules is to add edges that

represent potential spatial relationships. Corresponding operator precendences are stored

as edge attributes in order to determine how to group symbols into sub-expressions.

When a sub-expression is recognized, it is corresponding sub-graph is replaced by a

single node representing the sub-expression. The final graph will be a single node

representing the expression.

The recognition process involved in this algorithm contains four phases.

1. Build: Add edges to represent spatial relationships between symbols.

2. Constrain: Use domain knowledge (knowledge of notational conventions) to

remove contradictions and resolve ambiguities.

3. Rank: Group symbols into sub-expressions according to operator precedence.

4. Incorporate: Interprets sub-expressions by replacing a recognized sub-

expression with a single node.

This system consists around 60 graph-rewriting rules and provides good recognition

results on a small set of test expressions. However the execution is very slow and it could

not handle symbol recognition errors.

4.5.3.4 Procedurally-Coded Mathematical Rules

There are also some mathematical expression recognition systems that use

procedural code to embody the syntax for structural analysis.

In the system developed by Lee and Lee [24,25], an expression is represented by a

list of symbols in random order after symbol recognition. Each symbol is represented by

a bounding box. Then procedural code is used to recognize appropriate symbol groups, or

sub-expressions. Each recognized sub-expression is replaced by a new bounding box.

The final result is one bounding box representing the entire expression.

Okamoto et al. [30,31] used recursive X-Y projection profile cutting and an

extensive array of procedurally-coded recognition rules in the structural analysis. The

main role of the procedurally-coded rules is to correct particular recognition errors.

46

Compared with syntactic approaches, procedurally-coded methods usually have the

benefit of fast execution since no expensive parsing is needed. Also procedurally-coded

methods may be recursively coded more easily. A main disadvantage is that procedural

code is difficult to maintain or scale up since the implicit syntax rules are hard-coded in

the recognizer.

4.5.3.5 Other Approaches

Besides the above four groups of methods, other approaches using quite different

structural analysis techniques exist which add new ideas to the mathematical expression

recognition world.

Fukuda et al. [18] introduced the concept of Mathematical Element (ME). Each

ME may contain a set of symbols. Mutual spatial relationships between symbols are

associated with penalty functions. The algorithm calculates the penalty values for

different possible configurations of MEs and chooses the minimal one as the final result.

Miller and Viola [28] used convex hulls for grouping symbols and apply A* search

to search the best possible interpretation of an expression. Convex hull limits the growth

of the number of possible parses of the expression, resulting in an efficient algorithm.

4.5.4 On-line Approaches vs Off-line Approaches

One of the major differences between on-line and off-line mathematical expression

recognition systems is that in on-line systems, dynamic information such as timing

information can be used. As discussed before, dynamic information helps to distinguish

symbols from each other, therefore making the symbol recognition step easier.

At the structural analysis stage, there seems no big difference between on-line and

off-line systems. Of the variety of approaches we have introduced, there are no on-line-

recognition-specific approaches. On the other hand, approaches for off-line systems can

always be used by on-line systems, if necessary we can just ignore the dynamic

information. However, in general people will not do this. For example, it will not be a

good idea to use “X-Y projection profile cutting” in an on-line system.

47

Chapter 5 Structural Analysis Design

In this chapter we introduce our structural analysis method in detail. This includes a

brief discussion about the goal of our structural analysis procedure and the selection of

algorithms followed by detail of the implementation.

5.1 Overview

5.1.1 The Goal of Our Project

The goal of our program is to interpret the meaning of a mathematical expression,

and generate the corresponding presentation MathML code. The generated MathML code

is expected to be used as input for future pocket PC computer algebra systems.

In presentation MathML, all implicit operators of a mathematical expression are

explicitly represented in the same way as other symbols of the expression. It is essential

to recognize the implicit operators correctly, otherwise the generated MathML code will

be incorrect. On the other hand, the MathML representation of an expression contains

enough information for a computer algebra system to interpret the expression. As soon as

the MathML code can correctly represent the expression, the computer algebra system is

able to check the validity as well as evaluate the expression for us.

Therefore, in this thesis, we decided to make the structural analysis process be a

compromise between the approach taken in section 4.5.1.1 and that taken in section

4.5.1.2. It will have enough knowledge to recognize spatial relationships as well as

implicit operators, but will not have to worry about the semantics.

5.1.2 Structural Analysis Methods – Grammars vs Procedural

Code

We introduced in Chapter 4 four main approaches for structural analysis, i.e.

syntactic methods, X-Y projection-profile cutting (not suitable for on-line systems), graph

48

rewriting, and procedural code. Among these, we prefer the procedure code approaches

to syntactic methods and graph rewriting methods. We explain below why we made this

decision.

Syntactic methods and graph rewriting methods represent the majority of structural

analysis approaches, and they have a good recognition rate. However, all these methods

are good only for static expressions. They begin with the finished mathematical

expression and process all symbols of the expression in batch mode. In our project, what

we expect is that whenever a symbol is finished, it will be added to the expression tree,

i.e. process the expression on the fly. This means that the expression tree will keep

changing dynamically whenever there are new symbols added to the expression, until the

entire expression is finished. In order to use syntactic or graph rewriting methods, we

must start parsing the expression anew for every new symbol added to the expression.

This may dramatically slow down the whole application due to the fact that grammars are

computationally expensive. On the contrary, procedural code executes much faster, and

may be coded recursively with ease. This therefore meets our requirements for a PDA

better.

5.1.3 Design for the Structural Analysis

To correctly analyze the spatial relations in our design, the program requires that

symbols be separated spatially from each other when written. We also assume that

symbols are written from left to right, except for parentheses, which can be written after

the sub-expression they enclose.

The structural analysis process is based on the bounding boxes of symbols in an

expression. The recognized spatial relationships are represented in an n-ary tree structure,

in which each node represents either a symbol or an implicit operator.

Whenever a new symbol is recognized, the application will hand it over to the

structural analyzer to be analyzed. The analysis is carried out in the following steps: First

of all, the program will traverse the expression tree and find the node closest in distance

to the new symbol. Then the program will follow the path from the node to its ancestor

nodes, then analyze the relationship between the nodes and the new symbol, in order to

49

try to find out the most appropriate place for it in the expression tree. Next the program

will insert it in the expression tree. At the same time it adds the implicit operator involved

in the tree if necessary. Every time a new node is inserted into or removed from the tree

during tree rearrangement, the bounding boxes of all its ancestor nodes will be updated to

reflect the change. This process is repeated until the user finishes the entire expression.

In the next sections we detail our implementation of the structural analysis in the

following order:

• the organization of the expression tree.

• the way to find the right place for a symbol in the tree.

• the way to detect proper implicit operators.

5.2 The Expression Tree

The expression tree is the data structure that keeps all the information about the

spatial relationships among the symbols. Each node of the tree represents either a symbol

or an implicit operator. In the expression tree, leaf nodes contain no spatial relationships,

each node represents its own identity, on the contrary, each inner node of the tree

contains the spatial relationship between all its subtrees.

Whenever the structural analyzer receives a recognized scribble from the

ElasticRecognizer, it creates an expression tree node for that scribble. By design, each

tree node contains a set of attributes: a label, a scribble, a bounding box, a flag, and a list

of its children nodes. We describe these attributes below:

• The label represents the identity of the node. For a leaf node, if this node represents

an actual symbol in the expression then the label is the same as the recognized

symbol. Otherwise, the label would be the name of the implicit operator that the

node represents (in the fashion of presentation MathML). For example, the node

that represents digit 1 will have a label “1”, while a node representing the implicit

multiplication will have the label “⁢”.

For inner nodes of the expression tree, it is more complicated. The label could

be the name of an implicit operator (e.g. “msup” is the label for a node that

50

represent a superscript relationship), or the name of an explicit operator (e.g.

“mfrac” is the label for a node that represent the division operator), or sometimes

the concatenation of its children nodes labels (e.g. “12” is the label of a node whose

two children nodes represent 1 and 2 respectively).

To match the presentation MathML syntax, a couple of rules have been applied

when creating a node from a given scribble. For example, the label for fraction bar

is “mfrac”, the label for open parenthesis is “mfenced”, and the label for the node

representing inline relationships is “mrow”.

• The scribble contains all the strokes contained in this symbol, as well as its

bounding box and identity. Initially, the symbol is unknown, so its identity is also

unknown, the handwriting recognizer then recognizes the symbol, sets its identity,

and passes the modified scribble to the structural analyzer.

In order to preserve the spatial layout of each symbol, in the symbol recognition

step all preprocessing operations must be performed on a copy of the scribble, thus

leaving the scribble intact. Therefore, when a scribble is passed to the structural

analysis step, it contains exactly the same spatial layout information as before,

along with a recognized identity.

For the nodes of the expression tree that represent implicit operators, the

scribble attributes are absent since they do not exist in the list of user input symbols.

• The bounding box of an expression tree node contains the spatial information of

the subtree (sub-expression) that the node represents. For any leaf node, its

bounding box is the same as the bounding box of the scribble. We note that

bounding boxes of implicit operators do not make sense, and therefore the attribute

does not exist. For an internal node, its bounding box is the aggregation of all its

children nodes’ bounding boxes. By providing both the scribble and bounding box

attribute to the node, the application is able to keep the two-dimensional

information for both individual symbols and all possible sub-expressions of an

expression.

51

• The flag of a node is used to simplify the translation from an expression tree to

MathML code when structural analysis is done. By default the flag of each node is

true, but in some situations the flag will be modified so that the translation process

does not have to consider the corresponding node. For example, children nodes 1, 2

and 3 of the node “123” should not be considered individually, so the flag of these

three nodes should be set to false. The program will only consider the node “123” in

the translation.

• The children node list holds all the children nodes for a node. Due to the fact that

some spatial relationship may involve more than two symbols (e.g. the example

above), the list has no size limit. This attribute is implemented in the fashion of a

doubly linked list.

5.3 Locate the Nearest Neighbor (NN) Node

In order to determine the relationship between a new node and other nodes, the first

task is to find the nearest node in the expression to the new node. In the following we

shall describe the nearest neighbor node as the NN node.

The relationship between the new node and its nearest neighbor is the starting point

for the actual spatial relationship recognition procedure. This is because the new node

either forms a new sub-expression with its nearest neighbor (i.e. they belong to the same

subtree), or it belongs to a sub-expression that contains its nearest neighbor as a

descendant (i.e. the node is in the same subtree with an ancestor node of its nearest

neighbor node).

The way to do this is to traverse the entire expression tree, ignoring all nodes that

represent implicit operators and calculating their distance from the new node. The node

with the minimum distance is selected as the nearest neighbor of the new node. The

distance being calculated is the square of the Euclidean distance between the center of the

symbols.

52

5.4 Locating the Correct Position of a New Node

Once the NN node of the new node is found, it is used as the entry point for

locating the correct position of the new node in the expression tree. This is the key step in

structural analysis.

In a mathematical expression, the most common spatial relationship between

symbols are row (or inline), over, under, superscript, subscript and include. Among them

the inline relation is the most common one. There are also other relations such as

presuperscript and presubscript, but they are only used infrequently, therefore we shall

ignore them for now.

Determining the right place in the expression tree for a node is not a trivial thing.

Usually the information provided by the relation between the node and its NN node is far

from enough. The ancestor nodes of the NN node should also be taken into consideration.

For example, in the expression a2b the NN node of “b” is “2”, but there is no valid

relation between them, the actual relation is between “b” and “a2” (the parent node of

“2”).

In our algorithm, which locates the correct position of a node in an expression tree,

firstly we check whether the node is in the same row as a sub-expression (of course the

sub-expression contains the NN node, this is also true for the following cases); If the

answer is “no”, check whether the node is in the same column as a sub-expression; If the

answer is still “no”, then check whether the node is a superscript or subscript of any sub-

expression. Whenever such a sub-expression is located, we can perform necessary

modification on the tree to attach the node to it.

5.5 Approach for Direction Determination

Correctly determining the position of one symbol to another is critical for correctly

interpreting their spatial relationship. This is because the entire analysis process is based

on it. However, as discussed in section 4.5.2.1, spatial relations may not have a direct

correspondence with the required symbol. For example, there is no clear separation of

53

positions between horizontal adjacency and superscript or subscript relationships.

Conventions in the mathematical world may not be much help either, sometimes it is

harder to follow the conventions in handwriting than in typesetting. Superscript, for

example, is usually written in a smaller size in typesetting, but this is not necessarily the

case in handwriting. Users may find it hard to do this, especially when there are several

levels of superscripts as in expression
cba , also the symbol recognition rate will be

heavily affected for very small symbols. With these issues in mind, we generally would

ignore such conventions, particularly conventions about symbol size, only in some

special situations do we consider them.

Several things are done to make direction determination easy:

Firstly, we take ascender and descender into account. Ascender or descender does

not belong to the main body of a symbol and should be excluded. Strictly speaking,

finding the ascender or descender includes the partition of the structure of a symbol, for

example the loop strucutre of symbol “b” has to be recognized in order to get rid of the

ascender (the loop is the main body of “b”). Since our design currently does not have the

symbol structure analysis feature, we use a relatively naïve approach, where we assume

that the ascender or descender takes a fixed portion of a symbol. In the symbols “b” and

“p”, etc. the ascenders or descenders are fixed as 40 percent of the symbol’s height.

When calculating directions, only the part corresponding to the main body of a symbol’s

bounding box is used.

Secondly, we set up some thresholds to help determine the relative position of

bounding boxes.

• If the difference between the Y coordinate of the bounding boxes’ center points is

less than one third of the larger box’s height, we consider the two boxes to be in a

row. Here the Y coordinate of a box’s center point serves as the box’s base line.

• If the X-projection of one bounding box is inside that of the other bounding box, the

two boxes are considered to in a column (over or under).

54

• If the two bounding boxes are neither in a row nor in a column, then we calculate

the angle between them. Based on the angle, it can be determined whether the

direction between the boxes is superscript, or subscript, etc.

Now that we have introduced how the direction between bounding boxes is

calculated, we can begin to introduce the way to find the correct destination for a new

node in the expression tree. Some special cases must be checked first, then we must

check the row, column, superscript and subscript cases, in that order. Presuperscript and

presubscript relations are relative rare in mathematical expressions. As mentioned early

in this section, they will be ignored for now.

5.6 Special Cases

There are a couple of cases that should be taken care of specially. These cases are

either very straight forward and therefore can be done directly, or will be interpreted

incorrectly if treated normally. Below are some of the special cases. Note that in case 2 to

5, a new node is always in a row with its NN node and is to the right of the NN node.

1. If a symbol is the first of a expression, its corresponding node should be set as the

root node of the expression tree, and the analysis is done.

2. If the NN node is the open parenthesis “(”, then attach the new node as a child node

to the NN node.

3. If both nodes are digits, or NN node is a digit while the new node is a dot (‘.’), then

check the parent node of the NN node.

If the parent node’s label is a number, it means that the new node is part of that

number. So attach the new node as the right most child of the parent node, set its

flag to be false, at the same time change the label of the parent to be the

concatenation of its original label and the new node’s label. (Figure 5.1a)

If the parent does not exist, or its label is not a number, it means that the NN

node is the first digit of a multi-digit number. A node is created as the parent node

of both nodes, it becomes the root of the tree, or it takes the original place of the

55

NN node. Its label is the concatenation of both nodes, and it contains no scribble.

Both of its children will have the flag attribute as false. (Figure 5.1b)

 (a) (b)

Figure 5.1 An illustration of forming a number from digit nodes.
When a node is in a row with its NN node and both nodes are digits, they form
a number. In both diagrams the node “3” is the new node, “2” is its NN node.
(a) NN node is part of a multi-digit number, attach the new node to its parent.
(b) NN node is a one-digit number, create a multi-digit number from both nodes.

4. If both nodes are Roman letters, or the new node is a letter while the NN node is an

alphabet string (a string of Roman letters, excluding the special node names such

as mrow, msup, msub, mfenced, mfrac, etc.), try to check the parent of the NN node.

If the parent node does not exist or its label is not an alphabet string, NN node

represents the first letter of a string. What we must do is make a new node with both

nodes as its children then set its label as the concatenation of the children nodes.

This new node will either be the new root of the expression tree, or it will take the

original place of the NN node. This operation is very similar to that illustrated in

Figure 5.1(b).

If on the contrary the parent’s label is an alphabet string, one may be sure that

the NN node is part of an alphabet string. The program will process this string. If it

does not contain any function name, then attach the new node as the right most

child of the parent node. Otherwise, if the parent node contains a function name,

then the parent node will be split as follows: every child node representing a letter

prior to the function name will be separated from the parent node and becomes its

sibling node. Between each of these nodes there is a “&ImplicitTimes;” node

representing the implicit multiplication relation between them. What is left of the

parent node represents a function name, and the new node will be treated as the

… 123

2 1 3
2 … 3

2

… 23

3

12 …

2 1 3

56

argument of that function. Figure 5.2 illustrates how the parent node “abcos” is split

as the implicit multiplication of “a”, “b” and “cos” nodes.

Figure 5.2 An illustration of splitting a node containing function names.
In this diagram, the node “x” is the new node, the node “s” is its NN node, the
node “*” represents implicit multiplication, and the node “&af” represents
“⁡”

5. When the NN node is an alphabet string and the new node is a digit, a fraction bar

or an open parenthesis, we must make sure that its NN node is not part of a function

name. Otherwise a node split operation must be done on the NN node’s parent as in

Figure 5.2, and the new node will serve as the argument of that function. This

situation can be found in the sample expressions 2sin ,
b
asin , and ()ba +sin .

6. When a dot (‘.’) is at the subscript position of a digit, it can be sure that the dot

represents a decimal point. This case is handled exactly the same as in case 3.

7. Special operation is also prepared to handle the situation when an open parenthesis

is written later than the sub-expression it encloses.

5.7 Row Direction Check

Once all special conditions have been handled separately, we can make sure that

our general approaches will handle other non-special conditions properly.

Among the row, column, superscript and subscript relations, row direction is the

dominate one in a mathematical expression. More importantly, this relation can usually

involve long range grouping, a node can be grouped with a node that is spatially far

away, no matter what relation it has with its NN node. Column relation also has this

abcos …

a b c o s x

cos &af

mrow

… …

c o s

x

… a * b *

57

feature. So we start with these two directions first, only when the possibilities of long

range groupings have been excluded can we consider short range groupings.

The two-dimensional layout of a mathematical expression forms a complicated

hierarchical structure, in which the relation between a symbol (and its nearest neighbor in

most cases) can not reflect the correct grouping. Quite often a new node is not in a row

with its NN node but in fact it is in a row with a sub-expression that contains the NN

node. For example, in the expression “a2+”, “+” is not the subscript of “2”, instead it is

in a row with the sub-expression “a2”. Even when the new node and its NN node are in a

row they may not belong to the same place in the expression tree, especially when

parentheses are involved. In Figure 5.3(a) the node “+” and “b” belong to the same sub-

expression “mfenced”, while in Figure 5.3(b) the node “+” and “)” belong to different

sub-expressions.

We see from the above that the main purpose of the row direction check is to

distinguish these different conditions and determine the correct sub-expression to which a

node belongs.

 (a) (b)

Figure 5.3 Different groupings for nodes in a row.
(a) A node and its NN node are at the same location in the expression tree.
(b) A node and its NN node are at different locations in the expression tree.

5.7.1 The Algorithm

The key operation in this procedure is a routine called RowParent. If finds the

most applicable node in the expression tree to be the parent node, or occasionally sibling

node of a given node.

+ b

mfenced mrow

+ a

)

+

b

mfenced

+ a

58

Below is the algorithm for the routine RowParent:

 Routine RowParent{
newnode = the new node;
parent = NN node;
target = null;
while(parent != null){
 if(newnode is in a row with parent){
 if(parent is a ‘(’ without a matching ‘)’)
 return parent;
 else
 target = parent;

}
parent = the parent node of parent;

}
return target;

}

This algorithm starts with a given node newnode and its NN node parent. It first

checks their relationship, then checks the relationship between newnode and its

grandparent node, then its great grandparent node, and so on, until it exits when some

conditions are matched, or the root node has been reached. Each time a row relation is

found, the algorithm will update the target so that it is always the top most node that is in

a row with the newnode. During this bottom-up procedure, whenever the newnode is in a

row with an open parenthesis that has no matching close parenthesis, it can be sure that

newnode is enclosed in the parenthesis, therefore that node will be returned. Otherwise

whatever node the target refers to will be returned at exit, it could be a node or null if in

the case that there is no node in the tree in the same row as newnode.

Based on the value returned by the RowParent routine, target, we may proceed

differently. If the value is null, newnode is not in a row with any node in the expression

tree, so it will be passed to the other direction check method that follows. On the other

hand, if any node is returned, this node is either the parent node of newnode or the sibling

node of newnode.

In order to know whether target should be the parent node or a sibling node of

newnode, we must check whether target is a node that represents a row relation, e.g.

mrow, mfenced, etc. If it is, then it should be the parent node, otherwise a new node has

to be created to be the parent node of both nodes.

59

Both mrow and mfenced (open parenthesis) nodes represent row relationships, so if

target is any one of them, newnode will be attached to it as the rightmost child node.

Besides, if target is an open parenthesis and newnode is a close parenthesis, the flag of

newnode should be set to false. On the other hand, if the label of target is not “mrow”, we

must create an mrow node which has both target and newnode as children nodes (in that

order). It will take the place that target had taken before.

5.7.2 Refinement of Bounding Box Operations

The above RowParent routine intensively uses the relation between bounding

boxes. The bounding box of a sub-expression is the union of all children nodes’ bounding

boxes. The entire expression’s bounding box is the union of all the sub-expression’s

bounding boxes, as illustrated in Figure 5.4(a).

 (a) (b) (c)

Figure 5.4 Cases that bounding boxes fail to correctly reflect the relationship
between sub-expressions.

(a) The bounding box hierarchy of the expression abc
.

(b) Introduce row relation between ‘+’ and bc incorrectly considered as row relation

between ‘+’ and abc
.

(c) Introduce row relation between ‘+’ and abc
 incorrectly considered as subscript

relation between abc
 and ‘+’.

One problem the RowParent routine may encounter is that when a bounding box

becomes large, the baseline of the expression will change (the Y coordinate of the

centroid serves as the baseline), this causes the routine to be error prone. For example, in

Figure 5.4(b) the ‘+’ is in a row with the sub-expression bc, but its bounding box is

actually in a row with the entire expression. On the other hand, in Figure 5.4(c) the ‘+’ is

in a row with the entire expression, however its bounding box is actually in the subscript

We consider some commonly occurring situations.

60

position of that of the entire expression. Both cases result in an incorrect relationship

between bounding boxes.

To solve this problem, we came up with a method to update the bounding box of

expression tree nodes conditionally:

1. When the node represents a row relation, i.e. it is an mrow or mfenced node, its

bounding box will be updated in this way: horizontally, it is the union of all its

children nodes’ bounding boxes. Vertically, it is the minimum of the Y coordinates

of all the children nodes, or 10 pixels, if that is larger. The lower bound of 10 pixels

is used to handle situations like the bounding box of the minus sign and the fraction

bar. In these cases the height is very small and may affect the accuracy of relation

detection.

2. If the node represents column relation, such as mover, munder and munderover, its

bounding box will simply be the union of all the children nodes’ bounding boxes.

3. If the node represents the superscript or subscript relation, it contains two children

nodes where the second child is the superscript or subscript. Its bounding box is

updated in a way that the Y coordinates will be the same as the Y coordinates of the

bounding box of the first child node, while the X coordinates will be the union of

both children’s bounding box’s X coordinates. i.e. the superscript and subscript

children nodes only contribute their width but not their height to their parent node’s

bounding box.

By using conditional bounding box updating, each subtree of the entire expression

tree may have a different way of updating its bounding box in order to keep the bounding

box information meaningful for the sub-expression locally. At the same time solves the

problem discussed in Figure 5.4. Figure 5.5 shows the bounding box hierarchy of an

expression using conditional bounding box updating.

This RowParent algorithm we introduced here works quite well in practice. Let’s

look at a sample expression “a2+((b))+c”, whose tree structure is illustrated in Figure

5.6. When “2” is newnode, RowParent returns null indicate that it is not in a row relation

with “a”. When the newnode is any of the close parentheses, RowParent returns the

61

mfenced node that contains the matching open parenthesis. In other cases RowParent

always returns the appropriate parent node.

Figure 5.5 The bounding box hierarchy of the expression axy
by conditional

bounding box updating.
Arrow 1 is the bounding box for sub-expression xy; Arrow 2 is the bounding
box of the entire expression.

Figure 5.6 The expression tree of expression a2+((b)+c)

5.8 Column Direction Check

If the RowParent routine returns null for an input node in the above row direction

check then that node is not in a row with any other sub-expressions. In this case we

consider other possible directions. Amonst these column direction also involve long

range grouping. We therefore need to consider it before considering the superscript and

subscript relations.

The column direction check procedure tries to determine whether a given node is in

a column relation with any nodes in the expression tree. If such a node is found, the given

node will be inserted into the tree to form some kind of grouping with the determined

mrow

msup

a

mfenced

2

+

c mfenced

b)

+)

1

2

62

node. Otherwise, this procedure fails and the given node will be considered for other

possible relations, namely superscript and subscript.

The idea involved in this procedure is similar to that of the row relation check,

however there are more conditions to consider and the involved node rearrangements are

more complicated.

5.8.1 Finding the Relevant Parent with the ColParent Routine

The key operation is a routine called ColParent. This is intended to find the

applicable parent node in the column direction for a given node. However the node it

returns is not necessarily the parent node of the given node, the reverse is also possible,

depending on the symantics of both the given node and the returned node. Below is the

pseudo code for the algorithm:

 Routine ColParent{
newnode = the new node;
parent = NN node;
target = null;
if(parent is a fraction bar)
 return parent;
if(newnode is a fraction bar){
 while(parent != null){
 if(newnode is in a column with parent){
 if(parent is a fraction bar and is wider

than newnode)
 return target;
 target = parent;

 }
 parent = the parent node of parent;

 }
 }

else{
 while(parent!=null){
 if(newnode is in a column with parent){
 if(parent is fraction bar, integral or

summation sign)
 return parent;
 target = parent;
 }
 parent = the parent node of parent;
 }
}
return target;

 }

63

In this algorithm, initially only a node newnode and its NN node are available. If

the NN node is a fraction bar then we consider it to be the correct parent node for

newnode. This is based on the fact that when people write a fraction, they always finish

the fraction before they move over to another sub-expression. If the fraction bar is written

first, then the numerator or denominator will be written immediately after it, the order

does not matter, the fraction bar is always the parent node in the sub-expression.

If the NN node is not a fraction bar, it is necessary to follow up the path from the

NN node to its ancestor nodes and find the node that is most appropriate to be the parent

node of the newnode. This will be done in different ways depending on the newnode.

• If newnode is a fraction bar, check whether it is in the same column with the parent

node of the NN node, or recursively one of its ancestors.

At each time a match is found, we need to check this node. If it is a fraction bar that

is wider then the fraction bar of the newnode, it will be returned by the ColParent

routine. Otherwise the target node will be updated to refer to this node. Since this is

a bottom-up approach, target always refers to the highest level node that is in

column relation with the newnode.

Here we take the assumption that when two fraction bars are in a column, the wider

one is the parent node of the other. Otherwise it will occasionally be very hard to

tell their relationship, especially when there are no other sub-expression that may be

refered to detect the correct baseline. For example, the only way to distinguish

expression
c
b
a and

c
b
a

 is to compare the width of the two fraction bars in each

expression. Note that in handwriting math the size of symbols will not be of much

help.

• If newnode is not a fraction bar, the check starts with the NN node and follow up

the path to its ancestor nodes, in exactly the same order as above. Whenever a

match is found, if that node is either a fraction bar, or an integral sign or

summation, the node is considered to be the parent node of newnode and is returned

from the routine. If that node is not a fraction bar, integral sign or summation, the

64

target node will be updated to refer to that node, and the process continues. When

the routine exits, the node that target refers to will be returned. It represents the top

level node that is in column relation with the newnode.

5.8.2 Insert the Node into Expression Tree

If the returned value of the routine ColParent is a valid node, it is the place where

the newnode should be inserted into the expression tree. However this is not a trivial

thing to do. Two conditions should be considered in order to integrate the newnode into

the expression tree.

Firstly, the returned node is not necessarily the parent node of the newnode, or vice

versa. For example, if the fraction bar is written first in the imcompleted fraction a, it will

be the node returned by ColParent. It is also the parent node of “a” (the newnode). On

the contrary, if “a” is written first, it will be returned by ColParent, and it will be the

child node of the fraction bar (the newnode). If neither is the parent of the other then a

new node is created as the parent of both nodes.

Secondly, in our system the structural analysis is applied on the fly, whenever a

new symbol is written, it is recognized and attached to the expression tree. This causes a

problem when a new symbol is introduced, the previous structural analysis may be

proved wrong and has to be fixed. For example, when a fraction bar is written beneath the

b in ba , the meaning of the expression will change completely. Formerly b is the

superscript of a, now (in ba) b is the numerator of a fraction and the expression is the

implicit multiplication of a and the fraction. This kind of problem must be dealt with

correctly.

In our algorithm, we first check whether the previous analysis result is wrong, if it

is, then the expression has to be rearranged to fix the error. Otherwise it is not necessary

to modify the previous analysis results. In both conditions, we use the value (symbol) and

size information of the nodes to decide how to add the newnode to the tree. We detail our

methods below.

65

Is Rearrangement Needed?

When the ColParent routine returns a node that is in a column with the newnode,

we must find out whether the previous analysis result is wrong or not, but how? We

observed that this only happens if the previous analysis result is a superscript or subscript

relation. For this to happen, if the newnode is in a column with the superscript or

subscript node, it must be in a row with the parent node or an ancestor node of the

superscript or subscript node. In above example the fraction bar is in a row with the

symbol a, which has the same baseline as the sub-expression ab due to our conditional

bounding box updating method.

Therefore, we start with the parent of the node returned by ColParent routine, we

shall call it parent. If it is a superscript (msup) or subscript (msub) node, then we check

whether it is in a row with the newnode. If the result is positive then we stop the check

(here we say a match is found). Otherwise we do the same check on parent’s parent node,

grandparent node, and so on if necessary. Whenever a match is found during the process

the check will terminate. Let’s call the matched node match for convenience. If no match

has been found at all, we assume that the newnode does not affect the result of previous

structural analysis.

Rearrangement Cases

Expression tree rearrangement is required if a match is found in the above check.

The first step should be to detach the parent node from the expression tree and group it

with the newnode. There are three ways to group them together based on their symbols

and size.

1. If both parent and newnode are fraction bars, the wider one is considered to be the

parent of the other.

2. If either but not both of parent and newnode is a fraction bar, then the fraction bar is

considered to be the parent node.

3. In case neither of parent and newnode is a fraction bar, then we take the one with a

larger height to be the base. If the other one is above it, we create a new node mover

as the new parent of both nodes, otherwise we create a new node munder as the

66

parent of both nodes. To be consistent with presentation MathML, in both

conditions we make sure that the one with the larger height is the first child.

After detaching the node parent, what is left of the expression tree may or may not

need modification before the sub-tree formed by parent and newnode is added, depending

on the situation.

1. After detaching the parent, its original parent node has to be deleted. Figure 5.7

shows such an example. When the expression changes from 2a to 2a , the relation

msup is no longer valid. So after detaching the parent and grouping it with newnode

(Figure 5.7(b)), the node that match refers to (msup) is deleted, its child node a has

been moved to occupy the vacancy it leaves. The match also changes its reference

to this node (Figure 5.7(c)). After the rearrangement the expression tree correctly

reflects the structure of the expression (Figure 5.7(d)).

2. After detaching parent, its original parent node will not be deleted because that

relation still exists between other nodes. Figure 5.8 illustrates a sample expression

of this kind. When the expression changes from a234 to a 23 4 , the node 4 does not

belong to the superscript relation any more. In the rearrangement, 4 is removed

from the tree and grouped together with the fraction bar, while the node 234 has

been modified to reflect this change.

(a) (b) (c) (d)

Figure 5.7 The steps of expression tree rearrangement from “a2” to “ 2a ”.

Node mfrac is the newnode, node 2 is the parent, node msup is the match, and
node * means implicit multiplication. The diagrams reflect the following stages:
(a) before rearrangement;
(b) detach parent and group it with newnode;
(c) delete parent’s original parent node msup and reset match to refer to parent;
(d) after rearrangement.

msup

a 2

mfrac msup

a 2

mfrac

2

a mfrac

2 a mfrac

2

mrow

*

67

(a) (b) (c) (d)

Figure 5.8 The steps of expression tree rearrangement from “a234” to “a23 4 ”.

Node mfrac is the newnode, node 4 is the parent, node msup is the match, and
node * means implicit multiplication. The diagrams reflect the following stages:
(a) before rearrangement;
(b) detach parent and group it with newnode;
(c) modify parent’s original parent node to reflect the change;
(d) after rearrangement.

In both conditions stated above, the last step of the rearrangements (Figure5.7(d)

and Figure5.8(d)) have been done in the same way. It is guaranteed that match and the

sub-tree containing parent and newnode must be in a row relation. So we check whether

the parent node of match represents a row relation, if it does we can insert the other node

to the right of match. Otherwise create a new “mrow” node as the parent node of both

nodes, with match as the first child. This is placeed at the original position of match in

the expression tree. Finally, new node will be created for any implicit operator and

inserted between the two nodes as a sibling node.

Non-Rearrangement Cases

If there is no need to rearrange the expression tree the task is much simpler. Firstly

detach the parent from the tree and group it with newnode in exactly the same way as in

the rearrangement cases. Then put the newly formed sub-tree back where the parent node

was before it got detached. This completes the task.

5.9 Superscript and Subscript Direction Check

We can be sure that there is no long range grouping for the given node if both the

row direction check and column direction check fail to find an appropriate parent node

from the expression tree, for a given node. In this case, the most likely grouping will be

msup

a 234

mfrac

a

4

4

mfrac

4 mfrac

4

*

3 4

234

3

a msup

a 23

23

2
2 2 3

2 3

msup mfrac msup mrow

68

directly between the node and its NN node. It is only necessary to check for short range

grouping in the case of superscript and subscript relationships. Compared with the row

and column direction checks, superscript and subscript directions are much simpler to

handle.

5.9.1 Superscript Direction Check

If a node is the superscript of its NN node, we need to create a new node “msup” to

reflect this implicit operator. The “msup” node has two children nodes, the superscript

node will be the second child for sure, however, what will be the first child depends on

the context. Generally there are four possibilities.

1. If the NN node is a digit, we need to check its parent node first. Either the parent

node does not exist, or the parent node does not represent an integer or float

number, one may be sure that the NN node represents a one-digit number, therefore

the NN node is set as the first child of the “msup” node. On the contrary, if the

parent node represents a number, we know that the NN node is only part of that

number, therefore the parent node is selected as the first child of the “msup” node.

Expression 32 and 1002 belong to these two possible cases respectively (Figure 5.9

(a), (b)).

2. If the NN node is an alphabet string, there are also two options, depending on the

parent node of the NN node.

When the parent node does not exist, or it is label is not an alphabet string, it means

that the NN node itself is a one-letter string. Therefore the NN node is chosen as the

first child node of the “msup” node.

However, if the parent node does represent an alphabet string, tree rearrangement is

needed. The parent node will be split into several nodes as described in section 5.6

(special case 4). Whichever node contains the NN node (itself or another node that

has it as a child node) will be chosen as the first child node of the newly created

“msup” node. For example if the expression bcos2 is input to the node split

algorithm the results is two nodes, b and cos. The node cos will be the first child of

the “msup” node since it contains the NN node s (Figure 5.9 (c)). While in abc2, the

69

node split algorithm returns three nodes a, b and c. Node c will be the first child of

“msup” (Figure 5.9 (d)).

(a) 32 (b) 1002 (c) bcos2 (d) abc2 (e) (a+b)2

Figure 5.9 Expression tree after superscript direction check.
In all these cases “2” is the node to be checked, the shadowed node is its NN
node. The ‘*’ node represent implicit multiplication. The diagrams reflect the
following cases:
(a) NN node is a one-digit number.
(b) NN node is part of a multi-digit number.
(c) NN node is part of a function name.
(d) NN node is a letter that is not part of a function name.
(e) NN node is a close parenthesis.

3. Special care must be taken when the NN node is a close parenthesis. Usually a pair

of matching parentheses along with their enclosed sub-expressions are considered

as one unit. Therefore, in this situation we will fetch the parent node of the NN

node and make it the first child of the “msup” node (in our system, the parent of a

close parenthesis node is guaranteed to be the node that contains the matching open

parenthesis). In expression ()2ba + the first child node of “msup” is the sub-

expression ()ba + as a whole (Figure 5.9 (e)).

4. In all other cases, the NN node itself will be chosen (same as Figure 5.9(a)). An

example expression is a2.

3 2 2

0 0 1

msup

msup b

2

*

c o s

mrow

msup

c

a

2

b * * mfenced 2

+ b a

msup

)

msup

100

cos

mrow

70

5.9.2 Subscript Direction Check

Subscript direction check is quite similar to superscript direction check except that

it is impossible for parenthesis to have a subscript, and it is very rare for a digit to have a

subscript, eg. 52. We note that this is possible, for example a22 is a valid variable name,

or 52 to mean 5 modulus 2. We will not consider this case for now.

The subscript relation is represented by an implicit operator node “msub”. When a

node is in the subscript position of its NN node, such an “msub” node has to be created

first. Like “msup”, it also has two children, among which the second child is always the

subscript node, and the NN node is always the node being subscripted. However, in some

cases rearrangement is needed for the expression tree. Roughly speaking there are two

cases in subscript check:

1. If the NN node represents an alphabet string, we should check its parent node. If its

parent also represents an alphabet string, then node split is necessary to isolate the

NN node from its parent node, and make it the first child of the “msub” node. Note

that it is possible for a function to have a subscript, like in log2a, however we leave

this situation for now.

2. In all other cases, no tree rearrangement is necessary.

Figure5.10 shows examples for the above two cases.

(a) abc
2
 (b) a

2

Figure 5.10 Expression tree after subscript direction check.
In all these cases “2” is the node to be checked, and the shadowed node is its NN
node. The diagrams reflect the following stages:
(a) Node split is involved in the process.
(b) No node split is involved in subscript check.

a 2

msub

c

a

2

b * * c a 2 b

msub

a 2

mrow abc

71

Chapter 6 MathML Generation

In our system, the hierarchical structure of the expression tree is designed in such a

way that it will be trivial to translate the tree into presentation MathML. Firstly, MathML

keywords are used as the label of nodes as much as possible. For example, mrow is used

to represent row relation, mfenced is used to represent fenced row relation, mfrac is used

to represent fraction, and so on. Secondly, all implicit operators of the expression are

explicitly represented as nodes in the expression tree. Thirdly, a flag has been set for all

nodes that are not important for MathML code generation in order to mark them out.

6.1 Generate MathML with Preorder Tree Traversal

With these features, MathML code can be generated very easily. A preorder

traversal of the expression tree with minor changes will suffice. In our system, during the

preorder traversal, nodes that have been flagged as above (in section 5.6 and 5.7.1) are

ignored, the labels of other nodes are used either as tag names or values. For example,

mrow, mfenced, mfrac, msup, etc. are used as tag names. Some other nodes’ labels are

used as tag values, different tag names are added to them depending on their types. For

example tag name mn is used for numbers, mo is used for operators and implicit

operators, mi is used for variables. Figure 6.1 shows the relationship between the

expression tree and the presentation MathML code for the expression 2()a ab+ . The

MathML code generated by our traversal method will be exactly the same as that in the

figure.

It is therefore critical that the expression tree represents an expression correctly in

order that we generate error-free MathML code. Although in the structural analysis step

we have already considered and added as many implicit operators as we can, we may still

miss some implicit operators just like an ignorant human reader may miss some esoteric

implicit operators. There are even some implicit operators that can not be identified until

the last minute. No doubt a final check is necessary before generating the MathML code.

72

Figure 6.1 The corresponding expression tree and presentation MathML code of
expression (a2+ab).

6.2 Final Check on Expression Tree

The final check contains a couple of operations, including merging or splitting

some neighboring nodes, as well as implicit operator modifications. Some of the steps in

the final check, especially the implicit operator modifications, are highly experimental

and perhaps should not be part of the structural analysis at all, but rather should more

properly be part of a semantic analysis phase. Since we do not have a separating semantic

analysis phase we made these part of the structural analysis for now. This issue is

discussed in Chapter 7.

6.2.1 Split Nodes When Necessary

In our algorithm, whenever a symbol is written next to an alphabet string, we check

whether that string contains a function name, if a function name is found then the

alphabet string node is split, otherwise the node will be left alone.

In the final check step we must split all alphabet nodes that are not function names,

as well as the nodes that contain function names but are actually not. For example, in

expression a tg+ the tg has no arguments therefore should be considered as the implicit

multiplication between t and g, instead of the trigonometirc function tg. It is performed in

this way: for each node that contains a function name, check whether its next sibling node

contains a label “⁡”, a positive answer means that the node we are

checking is really a function name, and we should ignore that node. On the contrary, a

<mfenced>
 <msup>
 <mi>a</mi>
 <mn>2</mn>
 </msup>
 <mo>+</mo>
 <mi>a</mi>
 <mo>⁢</mo>
 <mi>b</mi>
</mfenced>

msup +

a 2

a &InvisibleTimes
;

b

mfenced

)

Note that the node ‘)’ has been flagged as false.

73

negative answer means that the node is not really a function name, therefore that node

will be split and treated as the implicit multiplication of all children nodes of that node

(Figure 6.2).

6.2.2 Merge Nodes When Necessary

In the expression tree of an expression, letters and digits are always represented by

different nodes. This results in the separation of letters and digits in the same variable,

like in the expression 11 21 31a a a+ = . In the final check this problem must be resolved.

What our system does is to check whether an alphabet string node has an adjacent integer

node, if it does then we merge the two nodes together by deleting the alphabet string node

and making it the leftmost child of the integer node. Sometimes it is also necessary to

remove the parent node if they are the only children nodes of that node. Figure 6.3

illustrates examples for both cases.

Figure 6.2 Split alphabet string node that is not really a function name in the final
check.

Figure 6.3 Merge alphabet string node with its adjacent integer node to form a
node representing a variable.

+ a

t

mrow

g

+ a t * g

mrow

tg

 (a) (b)

b

1

mrow

2

+ a

mrow

12 + a

1 2

b12

b

b

1

mrow

2

12 1 2

b12

b

Node ‘*’ means “⁢”

74

6.2.3 Add Missing Implicit Operators

Besides the above conditions, the final check step also identifies other possible

implicit operators. For example, when an mfenced node is adjacent to a node representing

a number, a letter, another mfenced node, a fraction, etc. There should be an implicit

multiplication between them. Figure 6.4 shows two of these cases.

Figure 6.4 Add necessary implicit operators to the expression tree.
In both diagrams the node “*” always represents “⁢”

After the final check, we can make sure that the preorder traversal of the expression

tree can generate correct presentation MathML code easily.

6.2.4 Identify Ambiguous Implicit Operators

Some implicit operators can not be identified until the last step. For example, in the

expression
c
ba the implicit operator between a and

c
b is implicit multiplication, but in

the expression
4
32 the implicit operator between 2 and

4
3 is an implicit plus. It is

impossible to identify the implicit operator until the fraction is finished.

In our initial design, in the final check, if a number is found to be followed by a

fraction whose numerator and denominator are both numbers, we would like to insert a

“&InvisiblePlus;” node between them. Otherwise we insert a “⁢” node. It

is possible that an expression can be treated in a different manner before and after it is

finished, but this presents no problem since a final check operation must be performed

every time before the MathML code is regenerated. Unfortunately the current MathML

version (MathML version 2.0) does not support “&InvisiblePlus;”, and therefore in this

 (a) a(a+b) (b) (a)(b)

mfenced a

a b) a b) +

mfenced a *

b)

mfenced

mrow

a)

mfenced

b)

mfenced

a)

mfenced *

mrow

+

mrow mrow

75

thesis no implicit operators are added for both
4
32 and

c
ba cases (to keep consistency,

although we could have inserted “⁢” for the
c
ba case).

We conclude that the MathML standard is lacking an invisible plus operator, it is

our hope that this shall become part of a future standard. Currently alternative markup for

presentation of
4
32 (ie.

4
32 + , with an invisible plus) is to associate the presentation with

the corresponding semantical meaning as follows (not supported by our program for

now):

<semantics>
 <mn>2</mn>
 <mfrac>
 <mn>3</mn>
 <mn>4</mn>
 </mfrac>
 <annotation-xml encoding=MathML-Content>
 <apply>
 <plus/>
 <cn>2</cn>
 <apply>

 <divide/>
 <cn>3</cn>
 <cn>4</cn>
 </apply>
 </apply>
 </annotation-xml>
</semantics>

76

Chapter 7 Existing Problems and Future Work

At this stage, our system still has many open issues. In the handwriting symbol

recognition part, the speed is quite slow, and the recognition rate becomes worse when

the symbol set size becomes large. In the structural analysis part, simple polynomial

expressions, fractions, integrations and summations can be recognized quite well.

However, complicated expression may not be recognized correctly, and such expressions

as square roots, matrices, etc. can not be recognized at this time. In the following we shall

address these problems and discuss possible solutions for them. Also we introduce

strategies to further improve the system.

7.1 Handwriting Recognition Problems

Our ElasticRecognizer is model based on the approach that whenever a new

scribble is delivered to the ElasticRecognizer, it is compared with all available models

and the model that gives the minimum distance is picked as the result. Elastic matching is

a computationally intensive algorithm, where the speed depends on the number of

models. Our testing program is currently provided with 52 models, the speed seems

acceptable in the Windows CE simulator on a Pentium III 800MHz desktop computer

with 256MB memory, but when it is run on the iPAQ3600 pocket PC (StrongARM

206MHz processor, 32MB memory), the speed is too slow for the system to be usable in

real life.

It is not possible to exclude the possibility of irrelevant symbol (model) appearing

to be the recognition result, when the model size becomes large. This implies that the

chances of recognition error may also become large as the model size becomes large.

Both of the above problems are connected with the size of the models used in the

system. However, a large model set enables the recognizer to recognize more symbols.

One possible way to surround this dilemma would be to introduce structural information

of the symbols, to the recognition scheme.

77

Different mathematical symbols have different structures. Some of them are quite

alike, especially in handwriting, for example a, d and q. While some of them are totally

different, for example, a and =. If we can make use of the structural (e.g. shapes)

information of the symbols and classify the symbols with different structural information

into different categories. When recognizing a symbol, the recognizer can first extract the

structural information from the symbol, then search the collection of categories to find

the category or categories that have matching structural information. The elastic matching

recognition will be based only on models in the matching categories. This will drastically

reduce the amount of computation and therefore speed up the recognition significantly.

Furthermore, since irrelevant symbols belong to different categories, they are not

considered in the recognition, this reduces the chance of recognition errors.

Another way to improve symbol recognition is to provide feedback from structural

analysis. The context information recognized in the structural analysis could be very

useful for handling symbol recognition errors or ambiguities.

It is also possible to improve the elastic matching algorithm itself. In this algorithm

each point of the model is considered to be of equal importance, and each point being

matched in the unknown contributes an equivalent amount to the total distance. Scattolin

[32] proposed an improved Weighted Elastic Matching algorithm that adds different

weights to each point of the model, and therefore allows the most significant distinctive

portions of the characters take on more importance. As a result the weighted elastic

matching algorithm results in better recognition rate.

7.2 Structural Analysis Problems

Our structural analysis algorithm is in an early stage of development and there are

still a lot of features that our structural analysis algorithm can not recognize. These

include square roots, matrices, presuperscript and presubscript. Also the system assumes

that symbols are written from left to right in the horizontal direction, except for

parenthesis. All these problems should be taken into account in order that the system

would be fully functional.

78

Our structural analysis algorithm is based on the relationship between bounding

boxes of symbols in the expression. However, some relationships in mathematical

expressions are so complicated that it is not easy to identify them through bounding

boxes. In the following we discuss problems relating square roots and matrices.

7.2.1 Square Root

When an expression contains square roots, the square root’s bounding box actually

overlaps the bounding boxes of all the symbols inside the square root. Recognition is

even more complex, because the centroid of the square root’s bounding box is in the

baseline of the sub-expression inside it. When new symbols are added to the sub-

expression, it is quite possible that the algorithm will treat the square root as its NN node.

Figure 7.1 illustrates this case, in which the centroid of the square root turns out to be the

NN node of the +. This causes failure of the structural analysis algorithm.

Another problem which is also caused by a special feature of the square root’s

bounding box is the following. Since the centroid of the square root’s bounding box is in

the middle of the sub-expression inside it, the relationship between the square root sub-

expression and other sub-expressions will be hard to correctly identify. This can be

clarified with the expression a b+ − . In this expression ‘-’ is in row direction with

a b+ , however, the node closest to it is not the square root sub-expression, but the node

‘b’. This will result in the ‘-’ being interpreted as part of the sub-expression a+b.

To solve this problem, it is necessary to set up some special rules such that when

square root is involved in the expression, specially designed techniques instead of general

techniques are used to check for relationship between nodes.

Figure 7.1 The bounding box hierarchy of the expression a c+ .

The dot pointed to by the arrow is the centroid of the square root.

79

7.2.2 Matrices

Compared with square root, matrix is even more difficult to interpret. Firstly, in an

mn× matrix, the nm elements are evenly distributed in n rows, with m elements per row.

In most cases, when a symbol is added to the matrix, it is usually very hard to determine

its closest neighbor because it is about the same distance from both the element above it

or the element to the left of it (suppose the matrix is filled from left to right and top to

bottom). For example, in the expression showed in Figure 7.2, the element 7 is the same

distance from 3 and 6.

The bounding box for a matrix should be the union of the bounding boxes of all the

elements and both square brackets. However, the distance between its centroid and other

sub-expressions will be much greater than the distance between its square brackets or

some of its elements and those sub-expressions. As in Figure 7.2, the distance between

the × and the right bracket of the left matrix is much smaller than the distance between

the × and the left matrix itself. This problem has to be solved in order to correctly

interpret the relationship between matrices and other sub-expressions.

1 5
1 2 3 4

2 6
5 6 7 8

3 7
9 10 11 12

4 8

 ×

Figure 7.2 An expression that contains matrices.

One suggestion for solving the structural analysis problem for matrices is this:

Format special rules to handle symbols within a matrix and outside a matrix separately.

Inside a matrix, consider horizontal relationship between symbols only, except the first

element of each row, this excludes the interference from symbols in the column direction.

When the matrix is finished, it will be treated as one unit. When determining the

relationship between the matrix and other sub-expressions, the bounding boxes of all

elements inside the matrix will not be considered, only the bounding box for the entire

80

matrix is considered. The matrix is thus treated as a single symbol, therefore guaranteeing

that the relation between the matrix and other sub-expressions can be correctly

interpreted by our algorithm.

7.3 Future Improvement

Currently, our implementation for structural analysis of mathematical expressions

uses a general tree. It contains its own methods for tree editing and traversal, which is

sufficient for the purpose of structural analysis and MathML code generation. However

there are disadvantages.

The main disadvantage is that it is not easy to modify expressions. Currently, to

modify an expression, the user has to apply the Undo operation to go back to the symbol

that should be changed, erase that symbol and write a new one. However, all the symbols

that are involved in the undo operations are also erased, and the user has to write them

again. This means that the system must perform symbol recognition and structural

analysis on all these symbols again. This is very time consuming and is not a user-

friendly strategy.

Our mathematical expression recognition system is a compromise between the

approach taken in section 4.5.1.1 and that taken in section 4.5.1.2. Right now the

structural analysis handles semantic analysis as well as spatial relationship analysis. It

would be better to make it modularized by separating the semantic part and make it an

individual semantic phase.

It is highly desirable to make expression modification more efficient and user-

friendly, i.e. allow editing of individual symbols in the expression without affecting other

symbols. This can be done in an event driven manner like this: whenever the user intend

to change a symbol in the expression, he/she can click that symbol on the digitizer and

the program will ask the user whether he/she wants to change that symbol. Once the

request is confirmed the clicked symbol will disppear and the user can write down a

desired symbol in that place. When the new symbol is done an event will be fired. It

contains enough information for the system to know how to locate the symbol in the

81

expression tree and how to change it, therefore the changes in the expression can be

reflected in the correct tree node without affecting other nodes of the expression tree.

Another disadvantage is that currently our system can not support dynamic symbol

rewriting, that is, when a symbol is recognized, it will be replaced by a typeset one at the

same location, with the correct font and size. The way to do this would be to link the

expression tree nodes with font objects, and each font object knows how to redisplay the

node it is linked to.

Our design for the expression tree is purely for converting handwriting

mathematical expressions to presentation MathML. Although it contains structural

relationships of the expression as well as semantic information like implicit operators, it

would be hard to use the expression tree for other purposes. For example, render it to

TEX, or display it as a tree view, etc. with different rendering methods. We realize this

problem and intend to move the design to this direction in the future. By doing this our

system will be more extensible and more flexible.

Mr. Luca Padovani is working on MathML rendering in our lab, the Ontario

Research Center for Computer Algebra (ORCCA) at UWO. His work keeps

synchronization between a presentation MathML tree and a rendering tree. Any changes

in the MathML tree can be reflected in the rendering tree automatically. Since the

rendering tree contains the semantics of the expression, it is able to render an expression

in many ways. For example, it can save the information as presentation MathML code

that can be accepted directly by computer algebra systems, and it can also render the

information into a tree view structure. This design can also be extended very easily to

other kinds of rendering ways that perform different tasks.

Mr. Padovani’s MathML tree is based on the DOM (Document Object Model), a

standard for representing an XML document in tree structure. The DOM contains a

complete set of methods for modification of the tree. Also each DOM tree node can be

linked to other objects, or to an event. So both the expression modification problem and

the symbol redisplay problem discussed above can be solved without changing the tree

design.

82

If we modify the design of the general expression tree in some way and link it to

Mr. Padovani’s work, then our mathematical expression recognizer will be much more

useful. Because the rendering tree can use many different rendering ways to satisfy

different recognition needs. The question is: what modification do we need to do for this

purpose? There are two options:

1. We can change the expression tree to be a DOM MathML tree. In this way our

expression tree can be directly synchronized with Mr. Padovani’s rendering tree. A

possible problem with this is that maintaining a MathML DOM tree is not easy,

especially when undo operation is performed. In this case it would be very hard to

rearrange the MathML tree. Futhermore, keeping the synchronization between the

MathML tree and the rendering tree is also hard, and it is even harder when undo

operation is performed.

2. An alternative way is to keep the current expression tree. However, we can generate

a MathML DOM tree from the expression tree. When rendering is needed we can

generate a MathML tree, which can be linked to the rendering tree. In this way we

do not have to worry about the synchronization between the MathML tree and the

rendering tree. The disadvantage of this approach is that we have to keep three trees

in the program therefore consume more of the limited resources.

No matter which of the two ways (or some other possible ways) we may choose to

modify the expression tree design, from the above we comprehend an overall view of an

ideal handwriting mathematical expression recognition system. We summarize this as

follows:

1. Individual handwritten mathematical symbols are recognized dynamically, with

contextual hints.

2. For each recognized symbol, structural analysis is carried out to interpret its relation

with other symbols, and the symbol is added to the expression tree correctly. This

expression tree can be either a DOM MathML tree or is able to generate a DOM

MathML tree.

83

3. A rendering tree is used to render the DOM MathML tree. It is synchronized with

the DOM MathML tree all the time and is able to render it in many different ways.

4. Each of the renderers would perform a different task. One renderer may generate

presentation MathML code, which is accepted as input by computer algebra

systems. Another renderer is responsible for generating a tree view of the

expression on the screen. Yet another renderer is able to generate corresponding

TEX code for the expression, and so on.

84

References

1. R. Anderson. Two-dimensional Mathematical Notation. In K.S.Fu, editors,

Syntactic Pattern Recognition, Applications, pages 147-177. Springer Verlag,

New York, 1977.

2. L.R. Bahl, F. Jelinek and R.L. Mercer. A Maximum Likelihood Approach to

Continuous Speech Recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 5:179-190, March 1983.

3. A. Beláid and J.P. Haton. A Syntactic Approach for Handwritten Mathematical

Formula Recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(1):105-111, 1984.

4. D. Blostein and A. Grabvec. Recognition of Mathematical Notation. In H.

Bunke and P.S.P. Wang, editors. Handbook of Character Recognition and

Document Image Analysis, pages 557-582, World Scientific, Singapore, 1996.

5. K.F. Chan and D.Y. Yeung. An Efficient Syntactic Approach to Structural

Analysis of On-line Hand-written Mathematical Expressions. Pattern

Recognition. 33(3): 375-384, 2000.

6. K.F. Chan and D.Y. Yeung. Elastic Structural Matching for On-line

Handwritten Alphanumeric Character Recognition. Technical Report CS98-07,

Department of Computer Science, Hong Kong University of Science and

Technology, March 1998.

7. K.F. Chan and D.Y. Yeung. Error Detection, Error Correction and Performance

Evaluation in On-Line Mathematical Expression Recognition. Pattern

Recognition, 34(8): 1671-1684, 2001.

8. K.F. Chan and D.Y. Yeung. Mathematical Expression Recognition: A Survey.

International Journal on Document Analysis and Recognition, 3(1): 3-15,

August 2000.

9. S.K. Chang. A Method for the Structural Analysis of Two-dimensional

Mathematical Expressions. Information Sciences, 2:253-272, 1970.

85

10. M. Chen and A. Kundu. A Complement to Variable Duration Hidden Markov

Model in Handwriting Recognition. In ICIP’94 (International Conference on

Image Processing), pages 174-178, 1994.

11. L.H. Chen and P.Y. Yin. A System for On-Line Recognition of Handwritten

Mathematical Expressions. Computer Processing of Chinese and Oriental

Languages, 6(1): 19-39, 1992.

12. P.A. Chou. Recognition of Equations Using a Two-dimensional Stochastic

Context-free Grammar. In Proceedings of the SPIE Visual Communications and

Image Processing IV, 1199: 852-863, Philadelphia, 1989.

13. M.R. Davis and T.O. Ellis. The RAND Tablet: A Man-machine Graphical

Communication Device. In Proceedings of Fall Joint Computing Conference,

pages 325-331, 1964.

14. Y.A. Dimitriadis and J.L. Coronado. Towards an ART Based Mathematical

Editor, that Uses On-line Handwritten Symbol Recognition. Pattern

Recognition, 28(6):807-822, 1995.

15. T.L. Dimond. Devices for Reading Handwritten Characters. In Proceedings of

Fall Joint Computing Conference, pages 232-237, 1957.

16. C. Faure and Z. Wang. Automatic Perception of the Structure of Handwritten

Mathematical Expressions. In R. Plamondon and C. Leedham, editors,

Computer Processing of Handwriting, pages 337-361, World Scientific,

Singapore, 1990.

17. H. Freeman. Computer Processing of Line Drawing Images. ACM Computing

Surveys, 6(1): 57-98, 1974.

18. R. Fukuda, S.I.F Tamari, et al. A Technique of Mathematical Expression

Structure Analysis for the Handwriting Input System. ICDAR’99 (International

Conference on Document Analysis and Recognition), 28:131-134, 1999.

19. A. Grbavec and D. Blostein. Mathematics Recognition Using Graph Rewriting.

In Third International Conference on Document Analysis and Recognition.

Montreal, pages 417-421, 1995.

20. J. Ha, R.M. Haralick and I.T. Phillips. Understanding Mathematical Expressions

From Document Images. ICDAR’95, 26:956-959, 1995.

86

21. S. Hellkvist. On-line Character Recognition on Small Hand-Held Terminals

Using Elastic Matching. Master’s Thesis, Department of Numerical Analysis

and Computing Science, Royal Institute of Technology, Stockholm, Sweden,

1999.

22. R.H. Kassel. A Comparison of Approaches to On-line Handwritten Character

Recognition. PhD thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, 1995.

23. S. Lavirotte and L. Pottier. Mathematical Formula Recognition Using Graph

Grammar. In Proceedings of the SPIE, 3305:44-52, San Jose, 1998.

24. H. Lee and M. Lee. Understanding Mathematical Expressions in a Printed

Document. In ICDAR’93, Tsukuba, Japan. pages 502-505, 1993.

25. H. Lee and M. Lee. Understanding Mathematical Expressions Using

Procedural-Oriented Transformation. Pattern Recognition. 27(3):447-457, 1994.

26. R. Marzinkewitsch. Operating Computer Algebra Systems by Handprinted

Input. In Proceedings of ISSAC, pages 411-413, Bonn, Germany, July 1991.

27. A. Meyer. Pen Computing - A Technology Overview and a Vision. Department

of Computer Science, University of Zürich, Switzerland, 1995.

(http://www.amug.org/amug/sigs/newton/nanug/PenReport/NewPenCom.html)

28. E.G. Miller and P.A. Viola. Ambiguity and Constraint in Mathematical

Expression Recognition. In Proceedings of the Fifteenth National Conference

on Artificial Intelligence. pages 784-791, Madison, Wisconsin, 1998.

29. Y. Nakayama. Mathematical Formula Editor for CAI. In Proceedings of the

ACM SIGCHI Conference on Human Factors in Computer Systems, 387-392,

Austin, Texas, 1989.

30. M. Okamoto and B. Miao. Recognition of Mathematical Expressions by Using

the Layout Structure of Symbols. In Proc. First International Conference on

Document Analysis and Recognition, Saint Malo, France, pages 242-250,

September 1991.

31. M. Okamoto and A. Miyazawa. An Experimental Implementation of Document

Recognition System for Papers Containing Mathematical Expressions. In H.

87

Baird, H. Bunke and K. Yamamoto, editors, Structured Document Image

Analysis, pages 36-53. Springer-Verlag, 1992.

32. P. Scattolin. Recognition of Handwritten Numerals Using Elastic Matching.

Master thesis, Department of Computer Science, Concordia University,

Montreal, Quebec, 1995.

33. S. Smithies, K. Novins and J. Arvo. A Handwriting-Based Equation Editor. In

Proceedings of Graphics Interface ’99, Kingston, Ontario, pages 84-89, 1999.

34. C.C. Tappert. Recognition System for Run-On Handwritten Characters. United

States Patent, 4731857, March 1988.

35. C.C. Tappert, C.Y. Suen and T. Wakahara. The State of the Art in On-Line

Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(8): 787-807, 1990.

36. C.C. Tappert, C.Y. Suen, et al. On-line Handwriting Recognition – A Survey.

The 9th International Conference on Pattern Recognition, 2:1123-1131, 1988.

37. Z. Wang and C. Faure. Structural Analysis of Hand-Written Mathematical

Expressions. In Proceedings of the 9th International Conference on Pattern

Recognition, pages 32-34, Rome, Italy, 1988.

88

Appendix A: The ModelBuilder Application

The handwriting recognizer, ElasticRecognizer, is model based. It is necessary to

find a way to create models as well as modifying existing models. For this reason we

designed and implemented a simple application called ModelBuilder.

The ModelBuilder is also implemented with Microsoft Embedded Visual C++

using MFC. The user interface is very similar to that of the mathematical expression

recognizer. Basically it is a drawing board for user to write on (Figure A.1(a)). A user can

write a symbol on the writing area, then select the menu Edit→Symbol to enter the

Symbol Settings window (Figure A.1(b)). This window displays the points of all strokes

of the symbol, and provides a list of available symbols. Once the corresponding symbol is

chosen, it is displayed at the upper left corner of the writing area (Figure A.1(c)), and a

link has been established between the handwritten symbol and its identity. The model can

then be saved to disk as a text file. In the ElasticRecognizer, the default location for

model files is the “\My Documents\MdlBase” of the pocket PC, therefore it is desired

to save model files into that directory in order for the ElasticRecognizer to load it.

It is true that file I/O is slow, especially when there are a large number of models.

However this design is better than hard coding every model. Our application is user-

dependent, a user can create and maintain his/her own models to make sure that his/her

handwriting be recognized well. With hard coding, there is no way to do that without

changing the source code, which is impossible. By storing model files on disk, a user can

simply add or delete files in the directory and the change can be automatically reflected

in the recognition. Futhermore, it is only necessary to load the models once at the

initiation stage of the application, then the models are ready to be used until the

application exits. So a little delay at the beginning will not be a big problem.

It is worth mentioning that the way we create models here is only a basic one. A

bad model may hinder the recognition. It is necessary to carry out some studies on this

issue, but we did not due to time restrictions. The Master thesis of Scattolin [32] has a

89

chapter discussing model selection problems and solutions. This would be a good

reference for future improvement of the ModelBuilder application.

Figure A.1 Screen shots of building a model for the Roman letter “a” with the
ModelBuilder.
(a) Write the model in the input area.
(b) Select the corresponding identity for the model.
(c) The model is ready to be saved to physical storage

 (a) (b) (c)

90

Vita

Name: Bo Wan

Place of Birth: Nanchong, China

Post-Secondary The University of Western Ontario
Education and London, Ontario
Degrees: 2000 - 2001
 M.Sc (Computer Science)

 Sichuan University
 Chengdu, China
 1991 - 1994
 M.Sc. (Genetics)

 Sichuan University
 Chengdu, China
 1987 - 1991
 B.Sc. (Microbiology)

Honors and Special University Scholarship
Awards: The University of Western Ontario

2000 - 2001

Dean’s Honor List Standing
The University of Western Ontario
1999 - 2000

Related work Teaching Assistant
Experience: The University of Western Ontario

 2000 - 2001

 Research Assistant
 The University of Western Ontario

 2000 - 2001

 Software developer
 Student Development Center

The University of Western Ontario
 2000

