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Abstract

The first official version of the OpenMath specification was
released in December. This paper presents the first imple-
mentation of this standard, in the form of a C library. To
ensure a faithful realization, a second, independent imple-
mentation with the same API was built using Aldor (A*).
We describe how the C library has been embedded in two
main-stream computer algebra systems, Maple and Reduce,
which can now communicate with each other and Aldor,
and with specialized programs also linking the libraries. We
discuss some of the problems encountered in developing the
API, and the solutions we have chosen.

1 INTRODUCTION

The goal of OpenMath is to define a platform-independent
standard for the representation of mathematical objects so
that they may be exchanged in a meaningful way between
various software tools.

This paper describes an implementation of the first of-
ficial version of this specification. The libraries providing
this implementation have been incorporated by principals
of the Axiom/Aldor, Maple, and Reduce systems, allowing
pre-release versions of these systems to inter-communicate.

This article presents OpenMath from a pragmatic point
of view, relating the experience we have gained implement-
ing two libraries and converting three applications. This
perspective is influenced by our past experience in the de-
sign of mathematical communication and interoperability
software [5] [6] [13].

OpenMath is still evolving. Feedback from this first im-
plementation is necessary to ensure that it can successfully
achieve its goals. By now, we feel it is certainly mature
enough to be used, and to start to write OpenMath servers
for existing applications. This experience will help focus
future efforts.

The origin of OpenMath dates to 1992 and discussions
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among Maple developers as to how to best organize commu-
nication among mathematical software packages. At that
time, Maple developers were emerging from the experience
of developing bridges between Maple and Matlab, and Maple
and Mathcad. Clearly there would be occasion to communi-
cate with other software packages, and the process of devel-
oping special, proprietary mechanisms on each occasion was
undesirable. An open standard for the communication of
mathematical objects was needed. To this end, Prof. Gaston
Gonnet organized a workshop at the ETH Zurich in Decem-
ber 1993, seeking the participation of potentially interested
members of the computer algebra community.

Three years have passed since that first workshop, and
in the intervening time many individuals have contributed
time and effort to this goal of achieving an open standard.
Steady progress has been made through a series of work-
shops, roughly one every six months.

A first detailed proposal was formulated by Stefan
Vorkoetter [12]. These workshops then established the
OpenMath Objectives Committee and the OpenMath Com-
munications Committee. This served as a starting point for
detailed electronic discussions, during which the committees
formulated their advisory reports [2] [3] [9], and members
produced a public report [1].

On December 15, 1996, the first official version of Open-
Math was released [10], and is available through the Open-
Math web site http://wuw.openmath.org. This release con-
sists of a set of content dictionaries (CDs), covering basic
mathematical concepts. This version takes on the commit-
tees’ reports as a foundation, but differs in several significant
respects.

Subsequent releases of OpenMath will include additional
CDs, enriching the set of treated objects. (Also available
is prototype software, for earlier experimental, versions of
OpenMath.) The overall direction of the OpenMath effort
has been governed by its Steering Committee, consisting of
A. Cohen (Chair), G. Gonnet, M. Seppéald, R. Sutor and
S. Watt.

During the period of OpenMath’s evolution, a number of
other communication schemes have developed or matured:

The Multi Protocol, developed by Gray, Kajler, Wang
and others [7] [8], is an extensible protocol where user-
supplied handlers allow efficient communication of mathe-
matical objects, and is particularly well adapted to the com-
munication of symbolic/numeric data.

The Central Control system provided a programmable



hub geared towards complex interactions between mathe-
matical processes. Users provided interface classes describ-
ing the services of mathematical packages [5]. This was
based on a simple underlying mathematical data commu-
nication scheme, ASAP [6].

The MathLink protocol has been used by Wolfram Re-
search for user-interfaces and other programs to commu-
nicate with Mathematica computation servers[14]. Its use,
however, requires proprietary software. Similarly Maple and
Azxiom have made use of proprietary protocols for communi-
cation between the mathematical engine and user interface
processes.

The MathBus interchange format, developed by Zippel
and others [15], is an interesting recent initiative focusing
on a small, low-level core of structures into which represen-
tations used by a wide variety of languages can be mapped.

The HTML Math Working Group has as its mandate to
define a format for representing mathematical formulae in
HTML [11].

Each of these efforts is somewhat related to OpenMath,
but are largely orthogonal to OpenMath’s key issue: How
to convey specific mathematical objects and commands be-
tween algebra systems so that their meanings are preserved.
To a first approximation, the low-level interchange mech-
anisms (ASAP, Mathlink, MathBus) do not concern them-
selves with high-level mathematical meaning. The interfaces
oriented toward programming (Central Control, MP, Math-
Bus), do not concern themselves with what, specifically, is
transmitted. The work in HTML Math is primarily oriented
toward rendering.

Because of this orthogonality, many of the participants
in the works cited above are also are engaged in the Open-
Math definition. For example, the HTML Working Group
has about a 20% overlap with OpenMath, and is seriously
considering using OpenMath annotations to convey mathe-
matical meaning in those cases where it is desired.

This article is organized as follows: In section 1 we have
presented the history of OpenMath and its relation to other
work. Section 2 describes the salient technical aspects of
the first release of OpenMath, including “content dictionar-
ies”, “phrase books”, and “encodings”. Section 3 presents
our C-language applications programming interface (ApI) for
building and communicating OpenMath objects. Section 4
provides a somewhat detailed example of how our library
has been incorporated into the Maple computer algebra sys-
tem. Section 5 describes an Aldor library realizing the same
API and inter-operable with the C library. The article closes
with some general conclusions and acknowledgements.

2 OPENMATH

The goal of OpenMath is to define a standard way of repre-
senting mathematical objects so that they can be exchanged
between various software tools. Examples of such tools are
general purpose or specialized computer algebra systems,
document preparation systems, Web browsers displaying
formula, equation editors, databases containing mathemat-
ical information and so on. The exchange can take place
through various media such as regular files, electronic mail,
cut and paste and other interprocess communication means.

The motivation for defining OpenMath is well under-
stood. A real need exists: people would like to write pro-
grams (for example, numerical programs, for efficiency rea-
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sons) that can be run from computer algebra systems, use
specialized programs (usually not available as servers) from
their favorite general purpose system or use symbolic com-
putation facilities (or some other existing mathematically
oriented program) from their own applications.

The user would like to be able to exchange examples or
results via e-mail or try the same problem, copied from a
Web page, in Axiom, Maple or Mathematica. A common
semantically rich format to represent mathematical objects
in texts would allow powerful search engines to be built to
explore databases of mathematical articles.

2.1 Representing mathematical objects

We distinguish three layers of representations for a mathe-
matical object. The first is a private (internal) representa-
tion to a given program. The second is its representation
as an OpenMath object. The third is a representation of
the corresponding OpenMath object as a byte stream that
is used as the external form (the low-level form that is actu-
ally exchanged). The hierarchy of these layers corresponds
to the way OpenMath is normally integrated into an appli-
cation. The application uses its internal representation for
an object. This can be converted to an OpenMath object,
and then saved or transmitted as a byte stream.

The correspondence between an object in an application
(in its application-dependent representation) and an Open-
Math object is done via a phrase book. A phrase book is
a piece of software that performs the translations. How to
establish the correspondence is described in content dictio-
naries. A content dictionary maps the semantic level to the
OpenMath level and describes which mathematical object
the corresponding OpenMath object denotes. This overall
organization is pictured in Figure 2.

The OpenMath object can be considered abstract: An
application does not need to construct OpenMath objects.
It could, for example, simply output encodings that are pre-



defined implementations of such objects. An intermediate
“data-structure” level can also be considered. This level
would describe an implementation of OpenMath objects in-
side an application.

2.2 OpenMath objects

An OpenMath object can be viewed as a term or a tree. The
leaves are the basic and atomic objects: integers (signed,
of unbounded length), floating-point numbers, symbols and
strings. Although one might argue that floating-point num-
bers are not true mathematical objects, their use in mathe-
matical applications is often necessary, and OpenMath also
aims to be useful for numerical applications. Two additional
classes of basic objects are supported by the prototype: vari-
ables and byte arrays (used to exchange arbitrary binary
data).

For strings and floating-point numbers, there are some
implementation choices to be made regarding the character
set and the formats supported. Strings contain Unicode
characters. Floating-point numbers can be both single and
double precision and follow IEEE formats.

Symbols are at the heart of OpenMath. Each symbol
has a name and is a member of a content dictionary. Each
symbol has a prescribed, defined meaning. This meaning is
given (informally) in its home content dictionary.

The nodes of the trees representing OpenMath objects
are made of applications (and Error objects, in our proto-
type). An application is made of a function (an OpenMath
object) and a sequence of arguments (other OpenMath ob-
jects). Errors are made of a symbol and a sequence of argu-
ments (arbitrary OpenMath expressions).

Any OpenMath object may be attributed with a se-
quence of pairs, each pair consisting of an attribute name (a
symbol) and an attached value (an OpenMath object).

2.3 Content dictionaries

A content dictionary defines a set of related concepts and
operations as a set of symbols. It can also define one or
more representation for some objects (such as multivariate
polynomials).

Content dictionaries are written in a specific syntax and
can be viewed as SGML documents (a DTD is available). It
is possible to translate this form to OpenMath, making a
content dictionary an OpenMath object. We have written
a program (cd2om) that performs this translation as part
of our prototype. The structure of a content dictionary is
specified by a special content dictionary, called Meta.

Some information is attached to the symbols in a dic-
tionary. There is a Description element, giving, in words,
the meaning of the symbol. A FunctorClass element gives
properties, such as the arity, for use by other programs. A
Signature element is used to give the type of the arguments
and the result (for functions), using a little type language.
Further information on the entries of a dictionary can be
found in the Meta dictionary itself. As a first example, here
is how the boolean value true is defined in the Basic dictio-
nary:
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<CDDefinition>

<Name> true </Name>

<Description>

The boolean value true

</Description>

<FunctorClass> Constant </FunctorClass>
</CDDefinition>

This is the definition of the multiplication operator in the
same dictionary:

<CDDefinition>
<Name> * </Name>
<Description> The multiplication operator of any

commutative ring </Description>

<FunctorClass> Binary, Operator </FunctorClass>
<CDAttributes> Associative, Commutative
</CDAttributes>
<Signature> (complex complex) -> complex
</Signature>
<Signature> (real real) -> real
</Signature>
<Signature> (rational rational) -> rational
</Signature>
<Signature> (integer integer) -> integer
</Signature>
<Signature> (symbolic symbolic) -> symbolic
</Signature>
<CMP> a*b=b*a, commutativity </CMP>
<CMP> a*(bxc)=(a*b)*c, associativity </CMP>
<CMP> a*l=1xa=a, identity </CMP>
<CMP> ax0=0%a=0 </CMP>

</CDDefinition>

The CMP element contains a “commented mathematical
property” (in the form of an equation or formula and an
associated description).

Apart from Basic, two other dictionaries have been writ-
ten, one for handling multivariate polynomials, Poly, and
one for linear algebra. The dictionary for polynomials is
quite different from Basic. Although it basically defines a set
of concepts related to polynomials (such as degree, factor-
ization, resultant. . .), there are two noticeable points: a cer-
tain emphasis on representation issues (including structural
constraints on some OpenMath objects) and an attempt to
specify some computational behaviour for OpenMath appli-
cations that handle (part of) this dictionary.

One of the interests of OpenMath is to enable the use of
specialized servers. It is important to promote the writing of
OpenMath-compliant servers by placing as few constraints
as possible on the programmers of these packages. The Poly
dictionary has been designed with the idea that it could
be simple to use for a server dealing only with polynomial
computations. Hence we have defined a particular represen-
tation for polynomials (distributed with dense monomials).
This representation is rather abstract as it does not intro-
duce names for variables. It explicitly contains the polyno-
mial ring as the set of the coefficients and the number of
variables. In our experience, this information is necessary
for many specialized servers.

It is not always easy to express constraints on the struc-
ture of OpenMath objects made from the symbols of a dic-
tionary. One of the main reasons is that a symbol such as
gcd is meant to denote the GCD of a set of polynomials, no



matter how the polynomials are represented. Such a func-
tion should thus accept both “symbolic” arguments (a list of
symbolic objects meant to be polynomials) and the polyno-
mials in the specific representation defined in Poly. Another
solution would be to have one ged for one (or several) partic-
ular representation and another gcd to express the general
notion of polynomial GCD. The solution we have chosen is,
however, more in the spirit of Basic and the opinions ex-
pressed during OpenMath meetings.

One question we have not answered is whether it should
be possible to have “symbolic” objects inside certain con-
structors (e.g. a power which is not an OpenMath integer
as an argument of a monomial constructor, or a symbolic
ring (a variable) as an argument of the constructor for poly-
nomials). We explicitly forbid this in the first version of
Poly.

2.4 Specifying the meaning of the symbols and the
behavior of OpenMath applications

The purpose of OpenMath is to define representations for
mathematical objects. It is not intended to be used to com-
pletely specify the behavior of applications using mathemat-
ical objects. In fact, it would be beside the point to exactly
specify the behaviour of any OpenMath, for at least two
reasons:

e an OpenMath object is intended to represent a math-
ematical object and thus the same OpenMath object
could be sent to many applications, e.g. a typesetter,
and a symbolic computation system,

e even when dealing with programs that compute, exact
specifications could be impractical or too constraining
for a given system to become OpenMath compliant.

On the other hand, one of the goals of OpenMath is
that a program needing to perform a mathematical opera-
tion should be able to dispatch the request to one of several
systems. For example, to factor an integer a program could
use Maple, Axiom or Pari to do the job. This is possible only
if all severs computing integer factorizations answer in a sim-
ilar way. We should therefore not hesitate to specify what
OpenMath applications (the computing ones) should return
as results. Compliance in this sense is simple enough, and
is obviously very useful. This kind of specification can be
made with a dictionary using particular symbols to encap-
sulate the results. An example would be a symbol factored
to express the result of a factorization or GroebnerBasis to
describe the result of a Grobner basis computation.

Concretely, a general compliance rule for the Poly CD
can be stated as: for an OpenMath application to recognize
this dictionary, it must implement some of the operations to
provide results using Poly constructors.

This means that if the OpenMath version of a computer
algebra system claims to implement polynomial factoriza-
tion, another application can send it an OpenMath object as
described in the comment associated to the factor symbol
and the result will be return as defined, i.e. as the factored
symbol application whose arguments are described in the
corresponding entry of the dictionary.

3 A C INTERFACE

We have designed a first ¢ Application Programming Inter-
face (API) for OpenMath and implemented it as a library.
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At present the library has been tested only on Unix-based
machines, even though an earlier version has been deployed
on Mircosoft Windows.

The current API can be partitioned in three parts: The
first part deals with OpenMath objects, content dictionaries
and devices (described below). The second part contains a
set of functions to create various kind of devices. The third
part contains functions to implement interprocess commu-
nication.

The first part can be further divided: There is a first
set of functions to deal with symbols and content dictionar-
ies. A second set deals with abstract devices, from which
OpenMath objects are read and written. The operations on
devices are such that they may be realized with files, sockets
or shared objects. A third set of operations build OpenMath
expressions in devices, and read OpenMath expressions from
devices.

These three sets could be complemented with a fourth for
manipulating OpenMath objects directly in an application.
However, it is not clear at present that there is a real need
for this set.

The current devices are composed as two-layered objects.
The top layer is for encoding and the bottom layer is for
I/O. This I/O layer abstracts the manner in which data
corresponding to encodings are read and written. The en-
coding layer uses the facilities provided by the I/O layer for
low-level input and output.

In the current library, a device provides access to the
two structures corresponding to its two layers, allowing the
programmer to develop new /O possibilities and new encod-
ings. This last possibility is clearly temporary, to support
easy experimentation.

3.1 Building OpenMath objects

The most important function of an OpenMath library is
to provide operations to build OpenMath objects. Our API
implements a model similar to that of MathLink [14] or ASAP
[6], where expressions are built inside a device. We give an
example showing how to output (build) the expression x +
y. First, we would obtain the + as a symbol from the Basic
dictionary. There are several ways to do this. The simplest
is to define the content dictionary and construct the symbol
in it:

OMCD_t *Basic;

OMsymbol_t *plus;

Basic = OMgetCD("Basic");

plus = OMmakeSymbol(Basic, "+");

Then the expression can be “built” in the device dev by the
following sequence of operations:

OMbeginObject (dev) ;
OMputApp (dev) ;
OMputSymbol(dev, plus);
OMputVar (dev, "x");
OMputVar (dev, "y");
OMputEndApp (dev) ;
OMendObject (dev) ;

Unlike ASAP and MathLink, the API implements a brack-
eted model for compound expressions: One starts with a
“begin” call. Then the subexpressions are given (in the case
of an application the first argument is the function). Fi-
nally, an “end” call closes the construct. The building of a



compound object in a device always begins with a call to
OMbeginObject and ends with a call to OMendObject.

3.2 Building devices

Devices are built with the OMmakeDevice. This function’s
first argument specifies an encoding by a symbolic constant,
and the second argument is a pointer to an OMIOstruct_t
object. These objects are normally produced by other func-
tions of the API. For example, to create a device that reads
from the standard input on uses:

dev = OMmakeDevice(OM_ENCOD_SGML, OMIOFile(stdin));

The OMIOFile function is used to create the I/O structure
that reads from stdin.

Two different encodings are available. The first,
OM_ENCOD_SGML, is a SGML-like encoding that uses only
“printable” Ascii characters. It is human-readable, edit-
able and suitable for transmission via e-mail and can be
included in documents. OM_ENCOD_BIN is the “binary” en-
coding, which is more compact (about 65%) and faster to
encode and decode. It is therefore the encoding of choice for
interprocess communication. Note that there was no real
effort to produce an encoding as compact as possible. Using
general-purpose compression algorithms on binary encoded
objects can reduce the size of the message by a factor of
three. For compact transmission, one would compose the
1/0 layer with a compression layer and retain the advan-
tages of straightforward code.

The library provides several functions to construct I/0
structures, such as OMIOFiles, to use FILE objects from
the standard ¢ library, or OMIOfd to use UNIX file descrip-
tors. The OMIOstringIn and OMIOstringOut functions can
be used to make devices that input and output to strings,
and can be useful, for example, to implement cut-and-paste.
It is possible to build an “internal device” to keep the object
in memory (shared memory).

3.3 Interprocess communication

The communication layer is built on the device layer, and
uses connections as its basic abstraction. A connection is a
set of devices that can be used to send and receive Open-
Math objects.

Connections are described by the OMconn_t type, An
OMconn_t is a structure with two user-accessible fields in
and out. in is a pointer to a device to be used for input.
out is pointer to a device to be used for output.

The I/O structure in a device provides all the necessary
interface functionality to use a broad range of transmission
or communication means (e.g. distributed object protocols).
The current library directly provides some facilities based on
TCP for handling connection-oriented communication.

The TCP-based functions allow binding and connections
at particular 1P addresses (to implement or connect to
servers running at some specified addresses) as well as a way
to start a given server (establishing the connection). The ¢
prototypes for these functions are
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OMstatus_t OMlaunch (OMconn_t *con,
char *mach, char *cmd);

OMstatus_t OMlaunchEnv (OMconn_t *con,
char *mach, char *cmd, char *env);

OMstatus_t OMserveClient (OMconn_t *conn);

where mach is a machine name, cmd is a command to run the
server and env is an environment (a sequence of environment
variables with their values). OMserveClient is the function
that has to be called in the server (when it is launched by
its client) to establish this side of the connection.

These functions use the remote shell (rsh) mechanism
to run the commands. The addresses are chosen dynam-
ically and passed via environment variables to the remote
processes.

For applications that run on the same (UNIX) machine,
a more efficient interprocess mechanism can be used (UNIX
domain sockets). OMlaunch and OMlaunchEnv transparently
do this if the remote machine is localhost.

3.4 Peculiarities of interprocess communication

It has been recognized in the OpenMath meetings that a
broad range of problems arise from general multiprocess
configurations. For concreteness, the initial attention has
focussed on the case where two processes exchange data.

Going from a simple model (where objects are read from
and written to persistent storage) to real interprocess com-
munication, can introduce several technical problems with
protocols, negotiations and urgent messages. Although this
can be legitimately considered as outside the scope of the
OpenMath definition, we need to cope with this in an Open-
Math implementation. Otherwise, the specification may be
useless for certain classes of applications and some users may
be forsed to implement ad-hoc solutions, rendering interop-
erability very difficult.

When two processes use the same internal format for
machine integers or floating-point numbers, it is natural to
want the ability to use that format, i.e. to negotiate the
whole encoding or part of the encoding.

Especially for interactive applications, such as a graphi-
cal interface talking with a computation engine using Open-
Math, it is necessary to support the possibility of interrupt-
ing a computation or, more generally, to support out-of-
band messages (urgent messages that are not part of the
normal communication, usually occurring asynchronously).
An example where this kind of facility could be useful would
be a message sent during a calculation to query how much
processor time had been used.

One difficult point is the handling of interrupts which
occur while a response is being generated, especially when
the response is large or sent as it is being computed. In this
case, it is necessary that the sender be able to abort the
transmission of an object (because the receiver cannot wait
until it is finished). A special “premature end of object”
tag can be sent to this effect. To overcome the problem of
a large item, it is sufficient to internally “chop” data into
large blocks.

There is no real problem for handling negotiations. It
can be done transparently (from a user point of view) in the
functions that set up the connections.



Handling interruptions and out-of-band data is more
problematic and system-dependent. Depending on the way
the application is organized and the operating systems the
two processes are running on, various methods can be used
for interruptions, including explicit polling on some condi-
tions and handling an asynchronous event such as a signal
either explicitly sent or received as the result of setting an
urgent condition on some object (such as a socket descrip-
tor).

To avoid resorting to the lowest common denominator
(and encouraging incompatible ad-hoc solutions), the fea-
tures that are needed can be specified in OMmakeConn and
checked by the functions that can perform the connection.
If the connection cannot be made with the required feature,
it will fail. This is the reason why creating a connection is
separate from establishing the connection.

4 OPENMATH AND MAPLE

Our ¢ library has been linked with a development version
of Maple provided by Waterloo Maple Incorporated. In this
OpenMath version of Maple, all the functions in the ¢ li-
brary can be accessed through Maple procedures. On top
of that, we have written some Maple code to implement the
phrase book (translations between OpenMath objects and
Maple objects) and some useful functions (such as functions
that read/write OpenMath objects to files).

This version can communicate with (and run) OpenMath
applications. For example, it can compute a Grobner basis
through the Aldor server (see 5.2). Here is the (somewhat
simplified) source code for the animGrobner procedure that
uses the Grobner server:

# For visual feedback, run the server in an "xterm"
ANIMSERVER :=
"xterm -e /u/kama/safir/gaetano/ALDOR/ANIM/animl";

animGrobner := proc(display, machine, 1)
local 1, display, conn;
global ANIMSERVER, keepPolyVarName;

conn := OMmakeConn(5000);

if not
OMlaunchEnv(conn, machine, ANIMSERVER,

"DISPLAY=" . display) then

ERROR("cannot connect to server");

fi;

# Now the connection is established and

# we can send the polynomials as a list

OMwrite (OMconnOut (conn), Maple2DMPList(1));

# to avoid renaming the variables

keepPolyVarName := true;

# convert the result of the animation program

# back to Maple.

RETURN (OM2Maple (OMread(OMconnIn(conn))));
end:

This version of Maple can also be called by another appli-
cation and can thus be used as an OpenMath Maple server.
This feature was implemented at the Maple level by reading
a startup file which calls the OMserveClient function and
OMserve in a loop. This last function can be defined as:
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OMserve := proc(conn)
local req, res;
req := OMread(OMconnIn(conn));
res := Maple20M(OM2Maple(req));
OMwrite (OMconnOut (conn), res);
end:

Here are a few numbers that give an idea of the effort
involved in making Maple an OpenMath application. The
basic interface to the C library and Maple functions that
read/write OpenMath objects are 300 lines of Maple code.
The functions that support the Maple phrase book are an-
other 500 lines of Maple code (this includes support of both
the Basic and Poly dictionaries). The most cumbersome
part in implementing the phrase book was writing the code
to check that expressions have the correct form, and the
code to deal with errors.

4.1 A Maple phrase book

The Maple phrase book is implemented by two functions.
Each function performs the translation in a top-down man-
ner using a table. In many cases, the correspondence is triv-
ial and the table records a simple mapping between Open-
Math symbols and Maple symbols. The OMregisterSimple
function is used to declare the mapping:

OMregisterSimple("Basic", "pi", Pi);
OMregisterSimple("Basic", "exp", exp);

When the mapping is more complicated the tables record
functions that are called to translate OpenMath or Maple
expressions. In the Basic dictionary, the integration and dif-
ferentiation operators use a lambda abstraction to represent
functions whereas Maple uses plain algebraic expressions.
The translation for derivatives is declared as

OMregisterOM("Basic", "diff", OMdiffToMaple);
OMregisterMaple("diff", OMMapleToDiff);
OMregisterMaple("Diff", OMMapleToDiff);

where OMdiffToMaple and OMMapleToDiff are some suitable
functions that receive the whole (untranslated) arguments of
the corresponding operators.

Implementing the phrase book for Basic is essentially
trivial. Implementing the phrase book for the Poly dictio-
nary is a little bit more complicated due to the fact that
Maple does not use a canonical representation for polynomi-
als. In this case, specific functions have been written to ex-
plicitly convert Maple expressions to polynomials using the
constructors defined in this dictionary. The inverse mapping
is realized by attaching suitable functions to the construc-
tors (such as DMP and DMPL).

5 OPENMATH AND ALDOR

From a long term perspective, APIs for OpenMath should
be developed for various programming languages. For many
other languages, it will be sufficient to link the C library and
provide cover functions. This will not always be possible,
however, so it is important to verify that two independent
implementations can interact properly.

A natural choice of another language for experimenting
with OpenMath principles, was Aldor (A*) — the Axiom
extension language [13]. Aldor is a strongly typed language
based on category and domain constructors. In this context,



every mathematical object has a unique type. This differs
from systems such as Maple or Reduce, and trying to make
these systems exchange mathematical objects is a typical
example of what OpenMath aims to achieve. (We note that
it would have been possible to use the C library directly from
Aldor, but this would not have provided the verification we
sought.)

A first Aldor API for OpenMath has been implemented
as a set of domains and has been tested on UNIX machines.
An Aldor server, based on this library performing animated
Grdébner basis computation, has been developed and tested
with Maple and Reduce.

5.1 The Aldor API

The Aldor library is based upon the same structure as the C
library. The layered implementation of devices in the C API
is made explicit in Aldor by using parameterized categories
and domains. The I/O layer is abstracted by the OMioCat
category which exports the minimal set of functions needed
for reading/writing the data exchanged by OpenMath com-
pliant applications. The encoding layer is abstracted by the
category OMcodingCat, parameterized by a given I/O layer.
It is then possible to combine any encoding (a domain of
category OMcodingCat) with any I/0 layer (a domain of cat-
egory OMioCat).

A domain implementing the I/O layer must export basic
functions for low-level input and output of characters:

define OMioCat: Category == with {
CHAR ==> Character;
OMS ==> OMstatus;
flush: % => 0OMS;
putchar: (Char, %) -> OMS;
print: (String, %) -> OMS;
getchar: % —-> Union(stat: OMS, char:Char);

lookahead: % -> Union(stat: OMS, char:Char);

As the current version of the Aldor compiler did not sup-
port any exception handling mechanism®, a function which
writes to or reads from an I/O object must return an Union
type to handle a possible failure. The OMstatus type ex-
presses the relevant information:

OMstatus: BasicType with {
success: %
syntax__error: %;
system__error: %;
unknown__error: %;

} == add {

Notice that an I/O error is different from an OpenMath
error object, which is a possible answer returned by an
OpenMath application. Similarly to the C ApI the Open-
Math expressions are “built” inside the device using a brack-
eted model for compound expressions:

!'Note in proof: Exceptions have been added in the interim, and
are now in alpha test.
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define OMcodingCat(I0: OMioCat): Category == with {

0OMS ==> (OMstatus;

integer: (I0, Integer) -> OMS;

float: (10, Float) -> QOMS;

string: (I0, String) -> OMS;

beginApply: I0 -> OMS;

endApply: I0 -> 0MS;

beginAttrib: I0 -> OMS;

endAttrib: I0 -> OMS;

gettype: I0 -> Union(stat: OMS, typ: OMtype);
gettag: I0 -> 0MS;

integer: I0 -> Union(stat: OMS, int: Integer);
float: I0 -> Union(stat: OMS, flo: Float);
string: I0 -> Union(stat: OMS, str: String);

The functions exported by a domain, typed by the cate-
gory OMcodingCat (i.e an encoding), input and output an
OpenMath encoding directly on the I/O and may avoid
representing OpenMath objects in memory. Nevertheless,
the data-structure level has been implemented through the
domain OMexpr, and OpenMath objects can be built and
stored in an Aldor program. For now, two I/O-domains and
two encoding-domains have been implemented. The 0Mfile
and OMsocket domains respectively implements a file-based
and a socket-based I/O layer. The OMbinary and OMsgml
domains respectively implements a binary and a SGML-like
encoding of OpenMath objects. Given an I/O-domain as
parameter, the OMbinary (or OMsgml) domain constructor
returns an OpenMath device. For example, the line

import from OMsgml(OMsocket);

provides an Aldor program with all the functions to read and
write OpenMath objects encoded in an sGML-like format on
a socket-based device.

5.2 An Aldor server

If the use of OpenMath becomes widespread, it is ex-
pected that a number of existing mathematical programs
will be converted to OpenMath compliant servers so as to
be broadly used by other programs. To experiment with the
OpenMath Aldor library in this spirit, we converted an exist-
ing Aldor program to an OpenMath server. To understand
an ab initio conversion, we selected a program not written
by any of the authors of this article. This program animates
the computation of a Grobner basis of a set of polynomials
over the rationals for a fixed ordering [4]. Given the phrase
book to translate back and forth between a polynomial and
the corresponding OpenMath object, the transformation is
rather trivial and consists mainly in replacing standard in-
put/output calls by those provided by the OpenMath li-
brary. The animation server understands objects from the
Poly content dictionary, and can be used by either Maple,
Reduce or another Aldor program.



6 CONCLUSION

Concrete implementations have been an important step in
the evolution of OpenMath. The initial prototypes devel-
oped by Stefan Vorkoetter and John Abbott have been im-
portant first steps, and we feel that the present work has
been a useful next stage.

Cooperation of computer-algebra system principals has
been a key ingredient in our being able to demonstrate in-
termediate versions of this work at OpenMath workshops
over the past year. From this we have received immediate
feedback, allowing us to adapt our approach in response.
Consequently, at the OpenMath workshop in Dublin, parts
of our demonstration version were sufficiently mature to be
taken almost directly into the first official OpenMath release.

At this point OpenMath is ready for external use. With
the CDs defined in OpenMath version 1.0, it is possible for
two mathematical programs to exchange free expressions of
a general class, as well as semantically rich multivariate
polynomials. This is immediately useful, e.g., in circum-
stances where the same test suite must be used for programs
in different computer algebra environments, as in the poly-
nomial test suite for Frisco (ESPrRIT IV LTR 21.024).

The libraries described in this paper are being placed on
the INRIA FTP server, as well as www.openmath.org, so in-
dividuals will not have to program from scratch to make use
of OpenMath. In fact, as the transport layer for mathemat-
ical objects may evolve somewhat over time, those wishing
to insulate themselves from this change could program using
this API and rely on the library to track any changes.

Much time has been spent in the OpenMath meetings
on the detailed implementation aspects of this protocol. It
seems that now the most challenging and important work is
in the definition of CDs which are at once well-defined and
useful for additional areas of mathematics.
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