
AN EXPLORATION OF HOMOTOPY SOLVING
IN MAPLE

K.HAZAVEH,∗ D.J. JEFFREY,∗ G.J.REID,∗

S.M.WATT,∗ A.D.WITTKOPF†

∗Ontario Research Centre for Computer Algebra,
The University of Western Ontario,

London, Ontario, Canada
† Centre for Experimental and Computational Mathematics,

Simon Fraser University,
Vancouver, British Columbia, Canada

Homotopy continuation methods find approximate solutions of a given system by

a continuous deformation of the solutions of a related exactly solvable system.

There has been much recent progress in the theory and implementation of such
path following methods for polynomial systems. In particular, exactly solvable

related systems can be given which enable the computation of all isolated roots of

a given polynomial system. Extension of such methods to determine manifolds of
solutions has also been recently achieved. This progress, and our own research on

extending continuation methods to identifying missing constraints for systems of

differential equations, motivated us to implement higher order continuation meth-
ods in the computer algebra language Maple. By higher order, we refer to the

iterative scheme used to solve for the roots of the homotopy equation at each step.

We provide examples for which the higher order iterative scheme achieves a speed
up when compared with the standard second order scheme. We also demonstrate
how existing Maple numerical ODE solvers can be used to give a predictor only
continuation method for solving polynomial systems. We apply homotopy contin-

uation to determine the missing constraints in a system of nonlinear PDE, which

is to our knowledge, the first published instance of such a calculation.

1. Introduction

Newton’s local method for square polynomial systems is a classical method
for finding a root of systems with finitely many roots. Homotopy continua-
tion methods [1] deform the known roots of a related system into the roots
of the system of interest, and can calculate all the (isolated complex) roots
of such systems.

Recent developments by Sommese, Verschelde and Wampler [20,19] in-
clude the extension of such homotopy methods to non-square (over- and

145

146

under-determined systems), and characterize the components or manifolds
of solutions of such systems. This is part of the rapidly developing area
of Numerical Algebraic Geometry initiated in [23]. This yields new meth-
ods for problems which have been traditionally approached with symbolic
methods from Computer Algebra, such as factorization [3], Gröbner bases
and the completion of systems of partial differential equations. We have
extended this work to systems of differential equations in [14], and initiated
a study of Numerical Jet Geometry, using homotopy methods.

Despite the availability of very well developed implementations for ho-
motopy continuation methods [26,12] surprisingly little has been imple-
mented in the context of computer algebra systems for numerical solutions
for polynomial systems. We note that, for example, Gröbner bases in Maple
are limited to polynomials with rational coefficients. In Maple, the existing
solvers focus on univariate equations. Even when working with a powerful
Polynomial Homotopy Continuation package (in our case we have exten-
sively used Verschelde’s PHCpack [26]) we found the ability to perform
experiments and try out ideas in a rich environment such as Maple to be
a valuable asset. The work we discuss here represents a starting point for
Maple, since many of the other standard algorithms of Numerical Alge-
braic Geometry (such as the computation of mixed volumes) still are not
implemented in that context.

Existing Homotopy implementations in Maple include the univariate
program of Fee [6]. In that work Fee truncates the Riemann zeta function,
and uses a very efficient homotopy method he has developed for analytic
functions to find roots of this truncated function in a given domain. Root
counts are verified by using Cauchy’s integral formula, using numerical
quadrature, around the boundary of the domain. Kotsireas [11] has devel-
oped a multivariate fixed step homotopy method in Maple.

We have implemented a variable step homotopy continuation method
in Maple, both for second and third orders, using the code of Smith [18]
as a starting point. We compare the methods, and apply them to a vari-
ety of problems arising in polynomial system solving. For scalar functions,
higher-order schemes are often called Halley methods [7], because of Hal-
ley’s discovery in Newton’s era. Higher-order schemes allow more rapid
convergence and larger step sizes in processes such as homotopy solution
techniques.

In this paper, we first present the higher order method for solving a
single scalar equation. Then in the next section we apply it to systems,
and extend it to a homotopy method. In the applications section we apply

147

it to some well-known examples having finitely many roots. Finally we give
the first published example of a method using homotopy continuation to
identify the missing constraints in a nonlinear system of PDE.

2. Iterative schemes

Newton’s method to find solutions of a single nonlinear equation f(x) = 0 is
well known; it is also well known that the method is second order and that
higher-order methods have been derived [25,7]. Here we start by giving a
uniform treatment of the higher-order scalar schemes, as a preparation for
the vector case.

Consider solving the scalar equation f(x) = 0, given an initial estimate
x0 for the solution. We expand f(x) as a Taylor series around x0

f(x) = f(x0) + (x− x0)f ′(x0) + 1
2 (x− x0)2f ′′(x0) + · · · . (2.1)

Setting ∆ = x − x0 and assuming f(x) = 0, we can solve for ∆ by series
reversion. Abbreviating f(x0) to f for clarity, gives

∆ = − 1
f ′
f − f ′′

2(f ′)3
f2 +

3(f ′′)2 − f ′f ′′′

6(f ′)5
f3 + · · · . (2.2)

The series is written as shown to emphasize that it is a series in powers
of f(x0), where f(x0) will be small in some sense when x0 is close to the
root being sought. The classical Newton iteration is obtained by taking one
term of this series; taking two terms gives the third-order scheme

∆ = − f

f ′
− f ′′f2

2(f ′)3
, (2.3)

which has been called Chebyshev’s method. The Halley form of (2.3) is

∆ = − f

f ′ − 1
2ff

′′/f ′
. (2.4)

One derivation of this form solves (2.1) by writing 0 = f + f ′∆+ 1
2f

′′∆2 as

−f = (f ′ + 1
2f

′′∆)∆ .

Now assume that the ∆ within the parentheses can be approximated by its
Newton approximation, obtaining

−f = (f ′ + 1
2 (−f/f ′)f ′′)∆ ,

148

and solve this equation for ∆. None of the methods above can be applied
at a point x0 where f ′(x0) = 0, and Halley’s method cannot be used for a
function satisfying 2(f ′)2− ff ′′ = 0, which means any function of the form
f(x) = 1/(Ax+B).

For the vector case, we use Cartesian-tensor notation [9]. When ap-
plying these results to homotopy methods, we shall give equivalent results
in vector-matrix notation. Let f : Rm → Rm be a vector function, with
component functions fi. Let f depend upon the vector x, which in turn
has components xj . We wish to solve fi(x) = 0, starting from an initial
estimate x(0). We direct the reader to the literature where a multivariate
Halley method of the type below is given [5].

The Taylor series for f about x(0) can be written using ∆j = xj−x(0)
j :

fi(x(0)) = fi(x(0)) + fi,k(x(0))∆k + 1
2fi,kh(x(0))∆k∆h + · · · . (2.5)

Let f̌ki be the inverse of fi,k, defined by f̌kifi,j = δkj , where δkj is the
Kronecker delta. The inverse exists and can be readily computed. Setting
the left side of (2.5) to zero and solving to first order in ∆, we obtain the
standard Newton iteration: ∆k ≈ −f̌kifi. To obtain a third-order formula,
we avoid reverting (2.5) by adopting the simplified approach used above.
We write ∆j ≈ −f̌jifi + ∆̃j , and substitute this into (2.5). Solving for ∆̃,
we obtain a third-order expression for ∆, analogous to the Chebyshev form
above:

∆k ≈ −f̌kifi − 1
2 f̌ki fi,jh f̌j` f`f̌hm fm . (2.6)

An equivalent form of the third-order scheme can be found that is closer to
Halley’s scalar form. Convert (2.5) into an equation for ∆ as

−fi = fi,k∆k + 1
2fi,kh∆k∆h = ∆k(fi,k + 1

2fi,kh∆h) .

We replace ∆h with its Newton approximation and get

−fi = ∆k(fi,k − 1
2fi,khf̌h,mfm) = ∆kTik .

Denoting the inverse of T by Ť we obtain the Halley form as

∆k = −fiŤki . (2.7)

In the scalar case, if the two third-order schemes (2.3) and (2.4) are
computed in a näıve way, Halley’s form reduces the operation count by one
multiplication, but in the vector case, we have an additional matrix inverse
to compute (or linear system to factor).

In moving from a second-order method to a third-order method, there
are two separate effects to consider: the speed of convergence and the

149

basin of attraction. If an estimate x(0) is sufficiently close to an isolated
non-singular root x(e), then with each iteration a second-order method will
approximately double the number of digits that are correct, while a third-
order method will triple that number [8]. Thus, for example, an estimate
that is correct to 1 digit can be improved to 8 digits in 3 second-order
steps or 2 third-order steps. Since the computation of the second derivative
term is often expensive, in the scalar case, a higher-order method is usually
not an advantage. However, in the vector case, an iteration requires a
matrix inverse, making the iteration more expensive. In addition higher
order derivatives for polynomial systems can be cheaply obtained (e.g. by
automatic differentiation [4]) and this opens the possibility that the third-
order method will be more efficient.

If an initial estimate x(0) is further away from the root, and the conver-
gence theorems do not apply, then we must consider the basins of attraction
of the root. Graphical presentations of how particular basins of attraction
change with the iterative scheme have been published recently [25]. We
expect the basin of attraction to be larger for higher-order methods, but
have yet to investigate this.

3. Homotopy Method

Consider a system of equations p(x) = 0, which we wish to solve. Both
p and x are vectors. Suppose we possess a system of equations q(x) = 0
whose solutions are already known. Then the homotopy function

H(x, t) = q(x)(1− t) + tp(x) = q(x) + t(p(x)− q(x)) , (3.1)

is such that H(x, 0) = q(x) = 0 is a vector system with known solutions,
and the system we want to solve is H(x, 1) = p(x) = 0. We deform from
the system at t = 0 to the one at t = 1 in variable steps ∆t. The homotopy
parameter t is often called “time.”

At a given time t, our problem is to solve H(x, t) = 0, and this is done
using a iterative scheme. Usually this is a second-order (Newton) scheme,
but here a third-order scheme will be used. Since the solution is iterative,
a starting estimate is needed. This can be obtained either from the known
solutions to q(x) = 0, or from the solution at an earlier time, t′. Typically
this is the previous time step, that is, t = t′ + ∆t. Each homotopy step
consists of a predictor stage and a corrector stage. During the predictor
stage, a starting estimate is generated for the root, then refined in the
corrector stage.

150

An appropriate start system is now described for the homotopy. Let
p(x) = (p1(x), . . . , pn(x)) = 0 denote the system of n polynomial equations
in n unknowns that we wish to solve. Let dj denote the total degree of
the jth equation (that is, the degree of the highest order monomial in the
equation). Then such a start system is

qj(x) = eiφj

[
x

dj

j −
(
eiθj

)dj
]

= 0 (j = 1, 2, . . . , n), (3.2)

where φj , θj are random real numbers in the interval [0, 2π]. The equation
above has the obvious particular solution xj = eiθj and the complete set of
starting solutions for j = 1, 2, . . . , n, is given by:

{exp(iθj + 2πik/dj) : k = 0, 1, . . . , dj − 1}. (3.3)

Bézout’s Theorem states that the number of isolated roots of such a system
is bounded above by d1d2 · · · dn. In particular, with the above start system,
with probability 1, each isolated root will lie at the end of an analytic homo-
topy path originating from one of the starting roots [1]. Bézout’s Theorem
can be proved by the “method of degeneration,” which uses arguments very
similar to homotopies [29,27]. More efficient methods use mixed volume to
get a smaller upper bound on the number of isolated roots [12], and indeed
Bernstein’s proof [2] provides a constructive homotopy method.

3.1. Predictor

First note that solving H(x, t) = 0, where x(0) = α is an exact known root
of q(x) = 0, is equivalent to solving d

dtH = 0, x(0) = α and so to solving

Hx
dx

dt
+Ht = 0, x(0) = α, 0 ≤ t ≤ 1 (3.4)

whereHx is the Jacobian ofH with respect to x1, . . . , xn. Naturally this has
led to the use of ODE software for higher order predictors in continuation
methods [1, Section 6.3] and [13]. One extreme is not to use any corrector
steps.

For convergence the path should stay in the basin of attraction of the
sought after isolated root at t = 1. To ensure this, most approaches use
a combination of corrector and predictor steps. In particular the residuals
are monitored to see that they have the characteristic pattern of reduction
consistent with the convergence of Newton’s method when in the basin of
attraction of a root [26]. More recent results on the rigorous identification
of the onset of convergence are given in Shub and Smale [17]. If only
predictor steps are used, then at the end of a step H will typically have

151

a small nonzero value, and the next step will involve solving a slightly
perturbed problem H = δ, x(∆t) = α̃. This can lead to an accumulation of
error, unless residuals are carefully monitored.

ODE integrators usually adapt their step length according to relative er-
ror, whereas corrector methods for Newton’s method usually use a combina-
tion of residual and relative errors. Specifically the residual error ‖H(x, t)‖
at time t and the error, ‖∆x‖, where ∆x is the difference between succes-
sive values of x, are compared with a working tolerance ε. A challenge then
is to reflect the additional residual control in ODE integrators.

Another view of homotopy solving is that of solving a differential equa-
tion on a manifold (that is, solving a differential-algebraic equation). Both
Visconti [28] and Arponen [24] have implemented DAE solving methods in
Maple, and it would be of interest to use these in homotopy solving.

Differentiating the ODE (3.4) yields expressions for the higher order
derivatives:

Hx
d2x

dt2
+
d

dt
Hx

dx

dt
+
d

dt
Ht = 0, Hx

d3x

dt3
+ · · · = 0, · · · etc, (3.5)

where d
dt = ∂

∂t + Σj
dxj

dt
∂

∂xj
. As is well-known, this leads to predictor meth-

ods of any order. For example, a higher order predictor method is easily
given which is analogous to the higher order corrector method given in the
next section.

3.2. Corrector

In path-following methods, corrector methods refine the solutions at a fixed
time t. The appropriate inclusion of such a corrector phase after each pre-
dictor step, can eliminate the accumulation of error involved in pure pre-
dictor ODE based methods. In this section we describe a multivariate cor-
rector method (also see a related multivariate Halley method given in [5]).
Suppose we have an estimate x, which we wish to improve by computing
x+ ∆x at a fixed t. Expanding about (x, t) to second order gives:

H(x+ ∆x, t) = H(x, t) +Hx∆x+O(∆x2) . (3.6)

Here Hx is the Jacobian matrix of the vector system H. We use the lan-
guage of linear algebra here, because it is more convenient for implemen-
tation in Maple. Then to second order H(x, t) +Hx∆x ≈ 0 and we define
this second order approximation of the solution x + ∆x as x + ∆̃x where
∆̃x satisfies the (vector) system

Hx∆̃x = −H, (3.7)

152

which as usual will be directed to linear solvers, instead of the more ex-
pensive computational approach of inverting Hx. Now expanding to third
order gives:

H(x+ ∆x, t) = H(x, t) +Hx∆x+ (∆x)THxx(∆x)/2 +O(∆x3) , (3.8)

where (∆x)T is the transpose of the column vector ∆x. If the i-th compo-
nent of H is denoted by Hi, then in the equation above, Hi

xx is an n × n

matrix with entries Hi
xjxk

. Suppose ∆x = ∆̃x+ ˜̃∆x. Then ∆̃x is of order 2

and ˜̃∆x satisfies (3.8) to order 3. Substitution of this expression into (3.8),

using (3.7), ignoring terms in ∆x∆̃x, and the above, then shows that ˜̃∆x
satisfies to third order the following:

Hx
˜̃∆x = −(∆̃x)THxx(∆̃x)/2. (3.9)

¿From a computational point of view, notice the difference between the
above expression (3.9) and (2.6). Here the number of computations has
been reduced. Also notice that two linear systems must be solved: (3.7)
and (3.9). The coefficient matrix is Hx in both cases, so naturally a gain in
performance can be realized by computation of an LU factorization, which
can then be used twice.

3.3. Implementation of the Homotopy Algorithm

We were guided in part by Verschelde’s excellent program PHCPack [26].
Another highly developed program is the one by T.Y. Li and his team [12]
which enables highly efficient computation of mixed volumes. An efficient
and parallel implementation of polyhedral continuation in Matlab is the
work of Kim and Kojima [10].

We have made use of the LinearAlgebra Package in Maple, and in par-
ticular its interface to NAG Library routines.

Using the predictor and corrector methods given above, we now wish to
step from t = 0 to t = 1. The key to efficiency lies in the use of a variable
step size. The strategy used in our code is based on counting the number
of iterations used at each step. If the corrector step succeeds in only one
iteration, then the step size is increased by the factor 1.25 before the next
step is taken. If the number of iterations needed at any step is too large,
then the step size is decreased. The number of iterations that we count
as too large is a parameter that can be tuned. More elaborate stepping
schemes have been described elsewhere.

153

Again for efficiency, the problem H(x, t) = 0 is solved to a lower ac-
curacy along the path, and then when a possible solution is obtained at
t = 1, the “end game” is entered and the solutions are obtained to a greater
accuracy. Typically the maximum number of iterative improvements is in-
creased.

Having an environment such as Maple opens up the possibilities to use
automatic differentiation to calculate the higher order derivatives. Specif-
ically the derivatives are encoded as programs for which good complexity
estimates are known [4].

4. Application to some polynomial systems

The algorithms above were coded in Maple with a parameter that allowed
us to turn the third-order terms on and off. In comparing performance of
the codes, we can select between many different metrics. In complicated
systems such as Maple, there is a particular difficulty of separating the
efficiency of the mathematical method from the details of the programming.
For this reason, we have selected to test the average size of a step and the
number of iterative loops used by the corrector code.

We apply the code to the following simple problems: the intersection of
2 curves given by

x2 + y2 = 1, x+ 2y − 6 = 0 ; (4.1)

a univariate problem similar to the well-known Wilkinson polynomial

(x− 1)(x− 2)(x− 3)(x− 4)(x− 5) = 0 ; (4.2)

and a cyclic 3 roots problem

a+ b+ c = 0 , ab+ bc+ ca = 0, abc− 1 = 0. (4.3)

Results for these three problems are denoted by the rows labelled Wilkon-
son5, curves2 and cyclic3 in the Table below. Also included in that table
are some relatively small problems taken from the selection of demo prob-
lems given at the Demos link on Jan Verschelde’s web site [26]. These
problems have rows labelled by their designation at Verschelde’s web site
(noon3, lorentz, eco5d).

The six problems listed were solved using a second order homotopy
code based on the algorithms described above. Then the same problems
were solved using basically the same code, but with a third-order iterative
scheme. For each case, the number of steps taken was recorded and the
average step size computed. Also counted was the total number of times

154

the iterative solver was called (abbreviated as Iters below). In all cases, the
third-order method used fewer steps and fewer iterations. These statistics
are presented in the table below, using N for second order and H for third
order.

Problem N-Time N-Steps N-Iters H-Time H-Steps H-Iters
Wilkinson5 2.83 161 285 2.59 119 163
curves2 0.97 60 93 1.05 51 71
cyclic3 4.20 207 360 3.84 149 218
noon3 26.90 1202 2381 24.06 722 1242
lorentz 9.64 391 904 8.80 236 422
eco5d 83.93 2481 5479 78.71 1528 2723

5. Pure Predictor Method in Maple

This section contains a description, illustrated by an example, of the use
of existing tools in Maple to apply homotopy methods to the computation
of the roots of a polynomial system. Consider a system of three quadratic
equations in three variables,

p1 =26x2−55xy+37xz−94x−65y2+90yz−38y−46z2+28z+88=0,

p2 =64x2−22xy−37xz+68x−84y2+80yz+23y−20z2−7z+4=0, (5.1)

p3 =−77x2+40xy+21xz+55x+61y2+5yz+66y−83z2−26z+27=0.

We solve this system by deforming the roots of the simpler exactly solvable
system

q1 =(x− s1)2−1=0, q2 =(y−s2)2−1=0, q3 =(z−s3)2−1=0. (5.2)

The homotopy equations are
Hj = tpj + αj(1− t)qj = 0 (αj 6= 0, j = 1, 2, 3). (5.3)

Following the method of Section 3.1, we differentiate each equation in
(5.3) with respect to t and obtain a differential system for x(t), y(t), z(t).
The system, with initial conditions corresponding to the known solutions
of (5.2), is numerically integrated from t = 0 to t = 1.

The complex parameters sj in (5.2) are used in the heuristic method of
this section to avoid path problems. For example these problems include
path crossing when the starting points are real. Values of s1 = 2 + i,
s2 = 1 − i, s3 = −1 + 2i were chosen for the experiment, though a more
rigorous choice would have been the starting system (3.2). In addition,
the free constants αj , used in construction of the homotopy equation (5.3),

155

were chosen to be the leading coefficients of the input equations (5.1) with
respect to the same variable as the corresponding known solution equation
from (5.2).

Integration of the system should be done with care. Direct techniques
are of little use, as they require bringing the system into a symbolic solved
form for its derivatives before application of the integration technique. The
coefficients of the system can be arbitrarily large, depending on the order
and density of the system. Performing Gaussian elimination on such a
system to bring the system into a solved form for its derivatives is very
expensive and often results in numerical instability. Here this problem is
addressed by retaining the matrix form of the system, and numerically
solving for the derivatives at each predictor step after the coefficients are
evaluated at the corresponding time t. This is done in the numerical ODE
solvers in Maple 8 using the new option implicit=true in the call to the
numerical ODE solution procedure.

Many existing numerical ODE solvers are restricted to the use of real
data, though the path of the system solutions must clearly be complex (as
the solutions themselves are complex valued in general). Maple’s numerical
solvers can handle complex data, but in general the use of the real solver
in Maple applied to the real and imaginary parts of the system is more
efficient for low degree polynomial systems.

The following Maple 8 script applies the process described above.

The input system

pols1:=[26*x^2-55*x*y+37*x*z-94*x-65*y^2+90*y*z-38*y-46*z^2+28*z+88,

64*x^2-22*x*y-37*x*z+68*x-84*y^2+80*y*z+23*y-20*z^2-7*z+4,

-77*x^2+40*x*y+21*x*z+55*x+61*y^2+5*y*z+66*y-83*z^2-26*z+27]:

Polynomials with known roots

pols0 := [coeff(pols1[1],x,2)*(x^2-1), coeff(pols1[1],y,2)*(y^2-1),

coeff(pols1[1],z,2)*(z^2-1)]:

A complex shift - for evaluation of known solution polynomials

sx := 2+I: sy := 1-I: sz := -1+2*I:

pols0 := eval(pols0,{x=x-sx,y=y-sy,z=z-sz}):

Now construct the homotopy system

hsys := eval({seq((1-t)*pols0[i]+t*pols1[i],i=1..3)},

{x=x(t),y=y(t),z=z(t)}):

dsys := diff(hsys,t):

Split the system into real and imaginary parts

split:={x(t)=xr(t)+I*xi(t),y(t)=yr(t)+I*yi(t),z(t)=zr(t)+I*zi(t)}:

tmp := collect(eval(expand(eval(dsys,split)),I=II),II):

dsys:={seq(coeff(tmp[i],II,0),i=1..3),

seq(coeff(tmp[i],II,1),i=1..3)}:

156

The initial conditions corresponding to the known solutions

idata :=[seq(seq(seq({xr(0)=2*i-1+Re(sx),xi(0)=Im(sx),

yr(0)=2*j-1+Re(sy),yi(0)=Im(sy), zr(0)=2*k-1+Re(sz),zi(0)=Im(sz)},

k=0..1),j=0..1),i=0..1)]:

Loop through the data, and obtain the solution for each

for id in idata do

Construct the dsolve/numeric procedure

dsn := dsolve(dsys union id, numeric, implicit=true):

Obtain the solution at t=1 and print it.

sol := dsn(1);

print(evalf[7](

eval([x=xr(t)+I*xi(t),y=yr(t)+I*yi(t),z=zr(t)+I*zi(t)],sol)

));

end do:

The output from running this script is

[x = 1.384601 + 0.5873485 I,

y = -2.516459 - 0.1233784 I,

z = -1.181569 + 0.7662005 I]

[x = 1.041660 + 2.196067 I,

y = -0.1078828 - 3.715860 I,

z = 1.630095 - 1.988129 I]

[x = 0.1122859 + 0.3201893*10^(-6) I,

y = 0.1227375 + 0.1602351*10^(-6)I,

z = -0.8616124 - 0.3224805*10^(-7)I]

[x = 0.4493258 + 0.8280515*10^(-6)I,

y = 1.316899 - 0.7538583*10^(-6)I,

z = 1.685232 - 0.1398326*10^(-6)I]

[x = 1.384601 - 0.5873477 I,

y = -2.516459 + 0.1233783 I,

z = -1.181569 - 0.7661998 I]

[x = 1.041658 - 2.196065 I,

y = -0.1078817 + 3.715856 I,

z = 1.630094 + 1.988127 I]

[x = -2.656328 + 5.385065 I,

y = -1.330291 + 4.515593 I,

z = 1.681109 + 4.152297 I]

[x = -2.656328 - 5.385073 I,

y = -1.330290 - 4.515598 I,

z = 1.681113 - 4.152299 I]

The computation took around 1 second on a 1.5GHz machine. Of course
a Newton improvement could be done at the end to increase accuracy.
Evaluation of the original quadratic equations Eqn. (5.1) yields residuals
of magnitude less than 10−4. This reflects the working tolerances of the
default method (10−7). Tightening of these tolerances to 10−10 provides

157

solutions having residuals of less than 10−6 (in 2.5 sec.), and a further
reduction of the tolerances to 10−12 provides solutions having residuals of
less than 10−8 (in 5.5 sec.).

6. Application to a Nonlinear System of Partial Differential
Equations

In this section we give a new application of homotopy methods to systems of
partial differential equations. Specifically we apply our generalization [14]
of the methods of Sommese, Verschelde and Wampler [20] to the following
nonlinear system of PDE for u = u(x, y):

∂2u

∂y2
− ∂2u

∂x∂y
= 0,

(
∂u

∂x

)p

+
∂u

∂x
− u = 0. (6.1)

The aim is to complete (6.1) to an involutive system as defined by the
geometric theory of PDE (see [16] and the references therein). This system
first appeared in an article to illustrate a new exact elimination algorithm
for simplifying systems of PDE [15]. We present, for the first time, a PDE
example of the interpolation-free homotopy method described in [14, §6.4],
made possible by the works [21,22].

We confine ourselves to the case p = 2. In terms of jet coordinates
(which are formal indeterminates corresponding to derivatives of the de-
pendent variables, etc.) this is a differential polynomial system in the jet
space of second order J2 ≈ C6. The zero set of the maps defining the PDE,
its so-called jet variety, is:

{(u, ux, uy, uxx, uxy, uyy) ∈ J2 : uyy − uxy = 0, u2
x + ux − u = 0}. (6.2)

Here we have suppressed the independent variables x, y since they don’t
appear explicitly in the PDE. In [14] some homotopy tools for the new
area of Numerical Jet Geometry were described, which are now applied to
identify the missing constraints of the system (6.2). This completion process
can be viewed in J∞ as generating a descending sequence of manifolds, until
that sequence stabilizes.

Setting

φ1 = uyy − uxy, φ
2 = u2

x + ux − u , (6.3)

the system (6.3) is differentiated (prolonged) up to and including order 2
yielding a system denoted by R, with the associated jet variety:

V (R) := {(u, ux, uy, uxx, uxy, uyy) (6.4)

∈ J2 : φ1 = 0, φ2 = 0, Dxφ
2 = 0, Dyφ

2 = 0}.

158

Here Dx and Dy are the usual formal total derivatives so that Dxφ
2 =

(2ux + 1)uxx − ux = 0, etc. Thus we have 4 equations in the 6 unknowns
(u, ux, uy, uxx, uxy, uyy). Now regarded as a submanifold of J2, the dimen-
sion of V (R) satisfies dim V (R) ≤ 4 since we already have 2 obviously
independent PDEs φ1 = 0 and φ2 = 0, and dim J2 = 6. To check if V (R)
has components of dimension 4 in J2, we intersect it with a random 2 di-
mensional linear subspace of C6. This linear space is the solution set of 4
random linear equations of the form:

ψj := aj0+aj1u+aj2ux+aj3uy+aj4uxx+aj5uxy+aj6uyy = 0, (6.5)

where j = 1, 2, 3, 4 and the ajk are random complex floating point numbers.
The equations (6.5) together with those in (6.4) form a system of 8 equations
for 6 variables for the intersection of V (R) with this subspace. Following the
procedure in [20] we square the system by incorporating 2 slack variables
z1, z2. The resulting square system now has 8 equations in 8 unknowns:

φ1 + ν11z1 + ν12z2 = 0,

φ2 + ν21z1 + ν22z2 = 0,

Dxφ
2 + ν31z1 + ν32z2 = 0, (6.6)

Dyφ
2 + ν41z1 + ν42z2 = 0,

ψj + γj1z1 + γj2z2 = 0 (j = 1, 2, 3, 4),

where the ν’s and γ’s are random floating point complex numbers.
Applying our Maple program Homotopy to this system yields no solu-

tions with z1 = 0, z2 = 0. Thus we conclude, numerically, that there are
no 4 dimensional components in V (R). Next we check for 3 dimensional
components by removing one of the random linear equations, and one of
the slack variables (e.g. z2 by setting νj2 = γj2 = 0 in (6.6)) so that the
system remains square. Again no solutions are found with z1 = 0 so we
conclude that there are no 3 dimensional components. Removing z1 and
one of the remaining random linear equations, and running Homotopy, we
find that there are solutions, so we conclude that there exist 2 dimensional
components in V (R). A more thorough analysis using the methods of [20]
shows that there is only one irreducible component. We conclude that
dim V (R) = 2.

We prolong (differentiate) the system R to order 3 in J3 ≈ C10 resulting
in the system of equations whose variety we will denote by DR:

φ1 = 0, φ2 = 0, Dxφ
2 = 0, Dyφ

2 = 0, Dxφ
1 = 0, (6.7)

Dyφ
1 = 0, Dxxφ

2 = 0, Dxyφ
2 = 0, Dyyφ

2 = 0.

159

In addition to prolongation, yet another fundamental operation in the jet
geometry of differential equations is the projection π : Jq −→ Jq−1. As de-
scribed in [14] we implement projection (geometric elimination) onto Jq−1

by adjoining random linear equations in the Jq−1 variables alone.
For example to compute dim π(DR) we adjoin the random linear equa-

tions in the form (6.5). Slack variables are incorporated to square the
system, and similarly it is determined that dim π(DR) = 1. Next we cal-
culate D2R, its dimension, and the dimensions dim π(D2R), dim π2(D2R)
of its projections. We summarize the dimensions of these systems below:

dimR = 2
dim π(DR) = 1 dimDR = 1
dim π2(D2R) = 1 dim π(D2R) = 1 dimD2R = 1

For a projection of the output system π`(DkR) to be involutive, it should
satisfy a projected dimension test and have involutive symbol [30]. Verifying
the projected dimension test involves checking for the maximum ` ≤ k, if it
exists, such that its dimension satisfies dim π`(DkR) = dim π`+1(Dk+1R).
This is first satisfied when k = ` = 1, since dim π(DR) = dim π2(D2R).
Without going into technical details, the involutive symbol test is achieved
by computing dimensions. In particular, the dimensions of the symbols of
the systems above can be determined from their dimensions above. We find
that the dimension of the symbol of π(DR) is zero, and hence is involutive.
This is in agreement with the results found in [15]. A finer analysis, using
homotopy methods, shows that V (R) in J1 factors into 2 irreducible 1
dimensional components, in accordance with the exact results found in [15].
In particular the exact constraints found by [15] in J1 are uy(uy − ux) =
0, u2

x + ux − u = 0.
The involutive system π(DR) can be used to state existence and unique-

ness theorems for solutions, and give also the conditions for initializing
consistently numerical solvers [24], thus improving their stability.

Finally we mention that if p > 2 in (6.1) then as shown in [15] compo-
nents with higher multiplicity than one can occur (we note that it is always
numerically possible to determine when we are in the multiplicity one case,
using the methods of Sommese, Verschelde and Wampler, and to bound the
multiplicity in the other cases). In the exact case this means that formal
derivatives of PDE may not yield the same results as geometric derivatives,
and our interpolation-free method may terminate prematurely, before all
constraints are found. In the case that the given ideals are radical, then

160

this problem does not occur (this is a generalization of the algebra-geometry
correspondence to PDE), and is achieved in the exact case for our example
by constructing representations for radicals of algebraic ideals occurring
in the computation. In the approximate case the interpolation dependent
methods play the same role. However constructing an interpolation-free
method in the higher multiplicity case remains an open problem, which is
important because of the higher complexity of the interpolation dependent
methods.

7. Acknowledgements

Two of the authors (GR and KH) thank Jan Verschelde for helpful discus-
sions. GR thanks Ilias Kotsireas, and Chris Smith for discussions.

References

1. E. L. Allgower, K. Georg. Numerical path following. In P. G. Ciarlet, J. L.
Lions, eds. Scientific Computing (Part 2), 3–203. Volume 5 of Handbook of
Numerical Analysis, North-Holland, 1997.

2. D. N. Bernstein. The number of roots of a system of equations. (Russian)
Functional Anal. Appl. 9(3) (1975), 183–185 (English Translation, 1976).

3. R. M. Corless, A. Galligo, I. S. Kotsireas, S. M. Watt. A geometric-numeric
algorithm for absolute factorization of multivariate polynomials. In T. Mora,
ed. Proceedings of ISSAC 2002, Lille, France, 37–45. ACM Press, 2002.

4. G. Corliss, C. Faure, A. Griewank, L. Hascoët, U. Naumann (eds.) Auto-
matic Differentiation 2000: ¿From Simulation to Optimization. Springer,
New York, 2001.

5. A. A. M. Cuyt, L. B. Rall. Computational implementation of the multivari-
ate Halley method for solving nonlinear systems of equations. ACM Trans-
actions on Mathematical Software (TOMS), Archive 11(1) (1985), 20–36.

6. G. Fee. Computing Roots of Truncated Zeta Functions. Poster. MITACs
Annual Meeting, Pacific Institute of the Mathematical Sciences, June, 2002.

7. E. Halley. Methodus nova, accurata & facilis inveniendi radices aequationum
quarumcunque generaliter, sine praevia reductione. Philos. Trans. Roy. Soc.
London 18 (1694), 139–148.

8. D. J. Jeffrey, M. W. Giesbrecht, R. M. Corless. Integer roots for integer-
power-content calculations. In X.-S. Gao, D. Wang, eds. Computer mathe-
matics, Proceedings of the Fourth Asian Symposium ASCM 2000, 195–203.
Lecture Notes Series on Computing 8, World Scientific, Singapore, 2000.

9. H. Jeffreys. Cartesian tensors. Cambridge University Press, 1965.
10. S. Kim, M. Kojima. CMPSm: A continuation method for polynomial sys-

tems (Matlab Version). In A. M. Cohen, X. Gao, N. Takayama eds. Math-
ematical Software, ICMS2002 Beijing, China, Aug 17–19, 2002. World Sci-
entific, Singapore, 2002.

161

11. I. S. Kotsireas. Homotopies and polynomial system solving I. Basic Princi-
ples. SIGSAM Bulletin 5(1) (2001), 19–32.

12. T. Y. Li. Numerical solution of multivariate polynomial systems by homo-
topy continuation methods. Acta Numerica 6 (1997), 399–436.

13. B. N. Lundberg, A. B. Poore. Variable order Adams-Bashforth predictors
with error-stepsize control for continuation methods. SIAM J. Sci. Statist.
Comp. 12(3) (1991), 695–723.

14. G.J. Reid, C. Smith, J. Verschelde Geometric completion of differential sys-
tems using numeric-symbolic continuation. SIGSAM Bulletin 36(2) (2002),
1–17.

15. G. J. Reid, A.D. Wittkopf, A. Boulton. Reduction of systems of nonlinear
partial differential equations to simplified involutive forms. Eur. J. of Appl.
Math. 7, 604–635.

16. G. J. Reid, P. Lin, A. D. Wittkopf. Differential elimination-completion algo-
rithms for DAE and PDAE. Studies in Applied Mathematics 106(1) (2001),
1–45.

17. M. Shub, S. Smale. Complexity of Bezout’s theorem V: Polynomial time.
Theoretical Computer Science 133(1) (1994), 141–164.

18. C. Smith. Further Development in HomotopySolve for Maple 7. Undergrad-
uate Thesis, Department of Applied Mathematics, University of Western
Ontario. 2002.

19. A. J. Sommese, J. Verschelde. Numerical homotopies to compute generic
points on positive dimensional algebraic sets. J. Complexity 16(3) (2000),
572–602.

20. A. J. Sommese, J. Verschelde, C. W. Wampler. Numerical decomposition of
the solution sets of polynomial systems into irreducible components. SIAM
J. Numer. Anal. 38(6) (2001), 2022–2046.

21. A. J. Sommese, J. Verschelde, C. W. Wampler. Using monodromy to de-
compose solution sets of polynomial systems into irreducible components.
In C. Ciliberto, F. Hirzebruch, R. Miranda, M. Teicher (eds.) Application
of Algebraic Geometry to Coding Theory, Physics, and Computation, 297–
315. Proceedings of a NATO Conference, February 25–March 1, 2001, Eilat,
Israel. Kluwer Academic Publishers, 2001.

22. A. J. Sommese, J. Verschelde, C. W. Wampler. Symmetric functions applied
to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal.
40(6) (2002), 2026–2046.

23. A. J. Sommese, C.W. Wampler. Numerical algebraic geometry. In J. Rene-
gar, M. Shub, S. Smale (eds.) The Mathematics of Numerical Analysis, Pro-
ceedings of the AMS-SIAM Summer Seminar in Applied Mathematics, Park
City, Utah, July 17–August 11, 1995, Park City, Utah, 749–763. Lectures
in Applied Mathematics Volume 32, 1996.

24. J. Tuomela, T. Arponen. On the numerical solution of involutive ordinary
differential systems. IMA J. Numer. Anal. 20 (2000), 561–599.

25. J. L. Varona. Graphic and numerical comparison between itarative methods.
Mathematical Intelligencer 24 (2002), 37–46.

162

26. J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver
for polynomial systems by homotopy continuation. ACM Transac-
tions on Mathematical Software 25(2) (1999), 251–276. Software site:
http://www.math.uic.edu/~jan.

27. J. Verschelde. Polynomial homotopies for dense, sparse and determinan-
tal systems. Mathematical Sciences Research Institute Preprint # 1999-041,
1999. Available online at http://www.msri.org.

28. J. Visconti. Numerical Solution of Differential Algebraic Equations, Global
Error Estimation and Symbolic Index Reduction. Ph.D. Thesis. Laboratoire
de Modélisation et Calcul. Grenoble. 1999.

29. A. Weil. Foundations of Algebraic Geometry. AMS Colloquium Publications.
Volume XXIX, Providence, Rhode Island, 1962.

30. A. D. Wittkopf, G. J. Reid. Fast differential elimination in C: The CDiffElim
Environment. Comp. Phys. Comm. 139(2) (2001), 192–217.

