
Hybrid Mathematical Symbol Recognition using Support Vector Machines

Birendra Keshari and Stephen M. Watt
Department of Computer Science

University of Western Ontario
London, Ontario, Canada N6A 5B7

{bkeshari,watt}@orcca.on.ca

Abstract

Recognition of mathematical symbols is a challenging
task, with a large set with many similar symbols. We present
a support vector machine based hybrid recognition system
that uses both online and offline information for classifica-
tion. Probabilistic outputs from the two support vector ma-
chine based multi-class classifiers running in parallel are
combined by taking a weighted sum. Results from the exper-
iments show that giving slightly higher weight to the on-line
information produces better results. The overall error rate
of the hybrid system is lower than that of both the online
and offline recognition systems when used in isolation.

1. Introduction

Providing mathematical input to computer applications
in handwritten 2D-form promises to be much more conve-
nient and natural than in a linear form form because of the
2D syntax of common mathematical notation. The major
challenges in recognizing handwritten mathematical sym-
bols are the large symbol set, many similar looking sym-
bols, diagrams etc.

Experiments by various researchers have shown support
vector machines (SVMs) to be well suited for symbol recog-
nition. In [12], SVMs were shown to outperform other
learning algorithms such as neural nets, HMM and near-
est neighbor. According to the comparison results in [8],
SVMs perform better than HMM on different UNIPEN data
subsets. We further explore multi-class SVMs that produce
posterior probabilities instead of a single label for the task
of hybrid mathematical symbol recognition.

Offline symbol recognition operates on the image of the
symbol. On the other hand, online systems operate on ink
strokes obtained directly from pen devices such as graph-
ics tablets, Tablet PCs and PDAs. The task of recogniz-
ing symbols from their images is usually more challenging
than recognizing them from the traces due to the fact that

the online information such as trace points, time, pen sta-
tus and pressure, provide complete information about how
the symbol was written. But treating the online strokes as
an image also has advantages. For example, a writer can
write the same symbol using different stroke orders, stroke
directions and stroke numbers. This can make the online
features ambiguous, and although the symbols look similar,
such symbols easily get mis-classified, especially if the pat-
tern is not present in the training set. Such problems can be
tackled by treating the ink strokes as an image. Thus, offline
and online information can be complementary to each other
and combining them can make the recognition system more
robust.

Previous work has been done on combining online and
offline features to improve online and offline recognition [5,
6, 11]. Very closely related work is done in [14], which
combines Hidden Markov Model based online and offline
recognizers. The input data is first recognized by an online
recognizer and then converted to an offline bitmap which
is recognized by the offline system. Their experiments on
digit recognition show that offline and online features are
complementary to one another. In this paper, we use multi-
class SVM classifiers that produce probability estimates ac-
cording to the method described in [15] and show our results
on a large set of mathematical symbols. Offline features are
extracted in a different way than in [14] and different online
features are used.

We discuss support vector machines in Section 2. Sec-
tion 3 describes the system architecture. Online and offline
recognizers are presented in Sections 4 and 5. We discuss
the implementation in Section 6. Section 7 presents the ex-
perimental results and finally conclusions are drawn in Sec-
tion 8.

2. Support Vector Machines

SVMs are supervised learning methods that have been
widely and successfully used for pattern recognition in dif-
ferent areas. SVMs are based on the dual ideas of VC

dimension and structural risk minimization principle [13].
The decision boundary in SVMs is a hyperplane that sepa-
rates the two classes, leaving the largest margin between the
vectors of the two classes. However, in real life, problems
can be linearly in-separable. To deal with this problem, a
non-linear decision surface is obtained by lifting the feature
space into a higher dimensional space. A linear separating
hyperplane is found in the higher dimensional space that
gives a non-linear decision surface in the original feature
space. The decision function of the SVM can be expressed
as follows

f(x) =
∑

i

αiyiK(x, xi) + b (1)

where yi is the label of training pattern xi and x is the
pattern to be classified. Parameters αi and b are found
by maximizing a quadratic function subject to some con-
straints [13]. K(x, xi) = φ(x)·φ(xi) is the kernel function,
where φ maps the feature vectors into a higher dimension
inner product space. The most commonly used kernels are:

• K(a, b) = exp(−γ||a− b||2), γ > 0 (radial basis fns)

• K(a, b) = (γ(a · b) + r)d, γ > 0 (polynomial)

• K(a, b) = tanh(γ(a · b) + r) (sigmoid)

Although a SVM is primarily a binary classifier, multi-
class classifiers can be created by combining several bi-
nary classifiers. One-against-all, one-against-rest and DAG
SVM are the popular techniques to combine binary classi-
fiers to build multi-class SVMs. Comparisons between dif-
ferent methods in [3] show that DAG and one-against-one
are more suitable for practical use than the other existing
methods.

The outputs from standard SVMs are not calibrated
probability estimates. More interesting tasks such as post-
processing and combining classifiers can be done with
SVMs when the outputs are probability estimates instead
of labels, and obtaining posterior probabilities with SVMs
is an important topic. A good measure can be the distance
of the pattern from the hyperplane. Platt [7] developed a
method to transform this distance into a posterior probabil-
ity by applying a sigmoid function on the outputs of the
SVM as follows:

p(y = 1|f(x)) =
1

1 + exp(Af(x) + B)
(2)

where f(x) is the output from the SVM. Parameters A and
B are obtained by minimizing the negative log-likelihood
function on training data. An efficient way to do this has
been described in [15] which has also been implemented in
the libsvm [1] library.

Offline Feature
Extractor SVM2

SVM1Online Feature
Extractor

Sample

Online
Features

Offline
Features

P(Ci|X and ONF)

P(Ci|X and OFF)

Combined Result(X)

Figure 1. System architecture.

3. System Architecture

Our system can be viewed as the composition of four
modules: Offline and Online Feature Extractors and Offline
and Online SVM based classifiers, as shown in Figure 1. To
recognize sample X, copies of its ink strokes are provided
to both the online and offline feature extractors. These fea-
ture extractors extract the online and offline features after
preprocessing the sample and provide the feature vectors to
SVM1 (online classifier) and SVM2 (offline classifier) re-
spectively. The online and offline components may be run
in parallel. Online classifier outputs P (Ci|X and ONF),
the probability that the sample belongs to class Ci given
the sample’s online features. Similarly, the offline classifier
outputs P (Ci|X and OFF), the probability the sample be-
longs to class Ci given the sample’s offline features. The
probability estimates from both classifiers are combined to
decide the final class of the sample.

4. Online Recognizer

Each sample is pre-processed and feature vectors are ex-
tracted to train the online SVM and to predict the sample as
described below.

4.1. Preprocessing

The following steps are involved in preprocessing:

• Smoothing: The following central smoothing is used
to remove noise:

xi = 0.25xi−1 + 0.5xi + 0.25xi+1

yi = 0.25yi−1 + 0.5yi + 0.25yi+1

• Filling intermediate points: We fill the intermedi-
ate points between every pair of consecutive points on
each stroke by linear interpolation. This removes the
time information but we found that spatial alignment is
more useful than temporal alignment of the points on

Figure 2. Processing input sample by
smoothing, filling and resampling.

the strokes. Hence, we place the points on the strokes
at equal distance during resampling.

• Resampling: We resample the points to reduce the to-
tal number of points on each stroke to 11. This is done
by selecting every N/11th point, where N is the total
number of points on the stroke.

• Size Normalization: Each stroke is scaled by
1/max(h, w), where h and w are height and width
of the bounding box of the symbol. Strokes are then
translated so that the whole symbol fits inside a square
of unit length and their centers coincide.

Figure 2 illustrates these preprocessing steps.

4.2. Online Feature Vector

The online feature vector for each stroke is extracted af-
ter the symbol is preprocessed. The feature vector consists
of coordinates of each point on the stroke, sines and cosines
of the angles made by the line segments on the stroke, sines
and cosines of the turning angles between line segments
and the center of gravity of the symbol. Turning angle
is calculated as shown in Figure 3. Center of gravity is
(
∑

i(xi/N),
∑

i(yi/N)), where N is the total number of
points and (xi, yi) are the coordinates of each point. Sim-
ilar features have been used in [12]. It was found that co-
ordinates and angle information are the most discriminating
features. The decrease in error rate of the online system
was very small when the size of the feature vector was in-
creased by introducing new geometric features such as rel-
ative length. However, the number of support vectors was
reduced.

5. Offline Recognizer

For the offline recognizer the online data for an isolated
symbol has to be converted into an image. In [14] the points
obtained from the online data are connected by straight lines
and filter growing is applied to the foreground area three
times to obtain the offline image before scaling down. In

id31761781 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Figure 3. Turning Angle (θ).

Figure 4. Original sample and its scaled down
version (zoomed).

our case, we store the sample files in InkML [2] format.
These files are loaded and rendered using black ink on a
white background using Microsoft’s Tablet PC SDK. Since
pressure information is used to give stroke width while ren-
dering, this information is available to the offline recog-
nizer. The area under the bounding box of the symbol is
captured and converted into a bitmap. We scale down the
original bitmap by a factor of 15/ max(w, h), with w and h
the width and height of the symbol bounding box, using a
high-quality bilinear interpolation filter. We pad extra white
pixels horizontally or vertically to make the bitmap 15× 15
pixels in size. This method also preserves the aspect ratio.
Figure 4 shows the rendered sample input and the zoomed
version of its offline feature.

The final feature vector to be used by the SVM classifier
is (I1, I2, ..., IN) where Ii is the intensity (gray level) of the
pixel at point i and N = w × h, the total number of pixels
in the image.

6. Implementation

Our implementation employs the libsvm library [1] to
train the classifiers and predict new test samples. Feature
extractors generate the feature vector in a format usable by
libsvm and features are scaled between 0 and 1. Radial
basis functions (RBF) are used as the kernel for both of the
classifiers. We use the one-against-one strategy for multi-

class classification and posterior probabilities are obtained
through an optimization performed on the pairwise class
probabilities [15].

Best values of parameters γ and C are obtained by per-
forming a grid search using cross-validation on the data by
taking γ = 2−15, 2−13, ..., 23 and C = 2−5, 2−3, ..., 215.

The outputs from the two classifiers are combined by
taking the weighted sum as follows

P (Ci|X) = αP (Ci|X, ONF) + βP (Ci|X, OFF) (3)

where α and β are weights assigned to the online and of-
fline classifiers respectively (α + β = 1). There are many
approaches to combining classifiers. We decided to take the
weighted sum of the probabilities from the two classes after
studying the results presented in [4].

7. Experiments and Results

The symbol set consisted of 137 unique mathematical
symbols which can be categorized into Latin characters (up-
per and lower), digits, Greek characters, relational opera-
tors, arrows, basic operators, logical operators, delimiters,
special characters and miscellaneous characters. Samples
were collected from 5 different users using a Tablet PC hav-
ing an ink resolution of 24570 × 18428 and pressure levels
from 0 to 255. The size of the data was increased artificially
5 times using the tangent distance method explained in [9].
The data was collected and stored in InkML format for bet-
ter portability. Separate experiments were carried out for
writer–dependent and writer–independent tests to observe
the effect of combining the recognizers on the overall per-
formance of the system.

7.1. Writer Dependent Test

Symbols were read one by one from each user’s sam-
ple file and separated uniformly into 5 files (index moduluo
5). One of these files was used for training and the rest for
testing. Thus, a training size of 20% was taken and 5 ex-
periments were carried out by training the classifier on one
file and testing it on the balance. Parameters γ and C were
determined by performing a grid search using 5-fold cross-
validation on the training set with the help of the grid search
tool available in [1] . The quantities Acci

on and Acci
off , de-

noting online and offline accuracies in the ith experiment,
were determined by evaluating online and offline classifiers
separately on the test data. Different values of α and β were
plugged into equation 3 to determine the combined prob-
ability. Based upon the combined probability, the overall
combined accuracy Accoverall was calculated. We define
the change in overall combined accuracy in the ith exper-
iment, 4Acci, with respect to the maximum of the online
and offline accuracies as follows

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ha

ng
e

in
 a

cc
ur

ac
y(

%
)

Alpha

Change in overall accuracy of the system as a function of alpha

Figure 5. Effect of alpha on overall com-
bined accuracy in 5 experiments (writer de-
pendent).

4Acci = Acci
overall −max(Acci

on, Acci
off). (4)

Figure 5 shows the plot of α verses change in combined
accuracy for each of the 5 experiments. An average change
in combined accuracy has been shown in Figure 6.

It is observed that the maximum gain in accuracy is about
10% for online recognizer and about 35% for the offline rec-
ognizer with a training size of 20%. The best choice of α
is difficult. However, as we can see from Figure 6, setting
0.5 < α < 0.6 seems to be most appropriate. In [14], the
error rate of the online recognizer was decreased by 43%.
But in our case, the online recognizer has a lower error rate
than the offline, and therefore the offline recognizer bene-
fited more from the combination. One of the main reasons
is the differences in the features. These experiments show
that online and offline features are complementary and their
combination is fruitful.

7.2. Writer Independent Test

For the writer independent test, we used sample files
from 4 users as training data and the one remaining file
as test data. This was repeated 5 times by taking differ-
ent combinations of sample files. Parameters γ and C were
determined by performing cross-validation similar to that
described in the previous section. The plot of the average
change in combined accuracy as a function of α is shown in
Figure 7. The maximum increment in the accuracy of the
online recognizer is about 5% and that of the offline recog-
nizer is about 22%. Values of α between 0.6 and 0.7 give
better results.

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ha

ng
e

in
 a

cc
ur

ac
y(

%
)

Alpha

Average change in overall accuracy of the system as a function of alpha

Figure 6. Average effect of alpha on overall
combined accuracy (writer dependent).

8. Conclusions and Future Work

We have presented a hybrid support vector machine
based mathematical symbol recognizer that performs better
than online and offline recognizers alone. Using probability
estimates from a SVM to combine the classifiers has been
shown to be very useful for the problem of mathematical
symbol recognition.

In particular, for mathematical symbol recognition, we
also believe that mathematical 2D context information can
play an important role. In the future, we plan to integrate
context information with this system. A 2D bigram/trigram
model can be automatically extracted from large mathemat-
ical corpora and can be used to predict symbols given con-
text information. We believe that the combination of such a
predictor with the offline and online recognizers can make
the system more robust.

References

[1] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines, 2001. http://www.csie.ntu.edu.
tw/∼cjlin/libsvm.

[2] Y.-M. Chee, K. Franke, M. Froumentin, S. Madhvanath, J.-
A. Magaa, G. Russell, G. Seni, C. Tremblay, S. M. Watt,
and L. Yaeger. Ink markup language (inkml), October 2006.
http://www.w3.org/TR/InkML/.

[3] C.-W. Hsu and C.-J. Lin. A comparison of methods for
multi-class support vector machines. IEEE Transactions on
Neural Networks, 13(1):415–425, August 2002.

[4] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining
classifiers. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(3):226–239, March 1998.

-20

-15

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ha

ng
e

in
 a

cc
ur

ac
y(

%
)

Alpha

Change in overall accuracy of the system as a function of alpha

Figure 7. Average effect of alpha on overall
combined accuracy (writer independent).

[5] P. Lallican, C. Viard-Gaudin, and S. Knerr. From off-line to
on-line handwriting recognition. In Proceedings of Interna-
tional Workshop on Frontiers in Handwriting Recognition,
pages 303–312, 2000.

[6] S. Manke, M. Finke, and A. Waibel. Combining bitmaps
with dynamic writing information for on-line handwriting
recognition. In Proceedings of International Conference on
Pattern Recognition, pages 596–598, 1994.

[7] J. C. Platt. Probabilistic outputs for support vector machines
and comparison to regularized methods, pages 61–74. MIT
Press, 1999.

[8] E. H. Ratzlaff. Methods,report and survey for the compar-
ison of diverse isolated character recognition results on the
unipen database. In Proceedings of ICDAR, 2003.

[9] H. Schwenk and M. Milgram. Contraint tangent distance for
on-line character recognition. In International Conference
on Pattern Recognition, pages 515–519, August 1996.

[10] E. Smirnova and S. Watt. Combining prediction and recog-
nition to improveon-line mathematical character recogni-
tion. Technical report, University of Western Ontario,
2006. http:\\www.orcca.on.ca\TechReports\
TR-06-06.

[11] H. Tanaka, K. Nakajima, K. Ishigaki, K. Akiyama, and
M. Nakagawa. Hybrid pen-input character recognition sys-
tem based on integration of online-offline recognition. In
Proceedings of ICDAR, pages 209–212, 1999.

[12] E. Tapia and R. Rojas. Recognition of on-line handwrit-
ten mathematical expressions in the e-chalk system-an ex-
tension. In Proceedings of ICDAR, 2005.

[13] V. Vapnik. Statistical Learning Theory. John Wiley & Sons,
New York, 1998.

[14] A. Vinciarelli and M. Perrone. Combining online and offline
handwriting recognition. In Proceedings of ICDAR, pages
844–848, 2003.

[15] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates
for multi-class classification by pairwise coupling. Jour-
nal of Machine Learning Research, 99(5):975–1005, August
2004.

