
Streaming-Archival InkML Conversion

Birendra Keshari and Stephen M. Watt
Dept. of Computer Science

University of Western Ontario
London, Ontario, Canada N6A 5B7

{bkeshari,watt}@csd.uwo.ca

Abstract

Ink Markup Language (InkML) provides a platform–
neutral data format that can be used to represent, store and
transmit digital ink data. Both streaming and archival ap-
plications are supported through different uses of InkML’s
primitives. While streaming ink and archival ink data can
represent the same information, each supports certain oper-
ations more directly. Indeed, certain applications can ben-
efit from access to both representations of the same digital
ink data. In this paper we present an efficient method to
convert archival style InkML to streaming style and vice–
versa.

1. Introduction

Multimodal interaction becomes richer and more pow-
erful when it incorporates a pen input modality. With the
easy availability of pen–based devices such as tablet PCs,
graphics tablets and PDAs, interest in pen–based applica-
tions such as online handwriting recognition, mathematical
symbol recognition, electronic form filling, ink messaging
and authentication, has grown rapidly in the last few years.

For easy and flexible interchange of ink data between
packages, it is important to store digital ink in a standard
format. The data format should also consider and fulfill the
needs of diverse pen–based applications dealing with stor-
age, manipulation and transmissions of digital ink. Jot [3]
and UNIPEN [2] were popular formats to represent digital
ink before Ink Markup Language (InkML) [1]. UNIPEN is
very focused on handwriting recognition requirements and
is not optimized for data storage or real time data transmis-
sion. Jot is a proprietary format and is also not optimized
for these purposes. InkML, developed under the ægis of
the W3C Multimodal Activity Working Group, is a non–
proprietary format whose specification takes into account a
wide range of pen–based applications.

InkML is an XML–based language and therefore exten-
sions such as adding application–specific information to ink
files are easy. It can provide an accurate representation of
digital ink by recording information such as device charac-
teristics, pen tilt, pen pressure and so on. This information
can be useful for applications such as handwriting recogni-
tion and authentication.

The primitives of InkML allow ink data to be organized
in a variety of ways. There are two that are of particular
interest: One form, known as Archival InkML, allows all
declarative information to be given in one place and for
ink strokes to be organized and annotated hierarchically.
Another form, known as Streaming InkML, presents ink
strokes in time order and declarative information (brush
choice, etc) is given in–line, relative to an ambient cur-
rent state. Streaming style markups are more suitable for
applications that deal with transmission of ink. On the
other hand, archival style markups are optimized for ap-
plications that store digital ink for future purposes because
they can recorde more structure. Conversion between these
two styles is required by applications that operate in both
modes. Here, we present algorithms that provide efficient
conversion between these two styles of digital ink.

We discuss streaming and archival ink in Section 2. The
translation algorithm is presented in Section 3. Section 4
presents optimization issues to be considered and we Sec-
tion 5 concludes the paper.

2. Archival versus Streaming

As mentioned earlier, pen–based applications can be
broadly categorized into archival and streaming types.
Archival applications capture the digital ink from pen
devices and store it for future retrieval and processing.
In Archival InkML, all the contextual elements, such
as brush, trace format and so on, are defined within
<definitions> elements. Traces and trace groups
make direct references to these contextual elements. Such
a structure makes it possible to determine the context infor-

id92316984 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 1. Application using archival ink

id92516953 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 2. Applications using streaming ink

mation directly from the <definitions> alone. This
directly supports search and retrieval operations. Thus,
archival style markups are optimized for retrieval and anal-
ysis. An example of an archival application is shown in
Figure 1.

Streaming applications capture digital ink and transmit
the ink data between application components as it is gath-
ered. Similarly, they can also receive digital ink from other
streaming applications. Figure 2 shows an example of a
streaming application. In such applications, ink is generated
in an incremental order. Changes in the current context are
triggered by events such as change of brush. The structure
of InkML primitives in the streaming style allows one to
capture such events directly. Thus, streaming style markup
provides support for the incremental transmission of an ink
stream by capturing events.

In streaming style markup, the current context of each
trace or trace group depends on the previous context
changes and, unlike archival style markup, it can’t be de-
termined directly from the <definitions> alone. The
brush, trace format, ink source, canvas, canvas transform
and time are aspects of the current context. In InkML,
the current context is updated directly by embedding the

context2

canvasRef = "#can1"
canvasTransformRef = ""
traceFormatRef = #format1"
inkSourceRef = ""
brushRef = "#penA"
timeStampRef = ""

timeStampRef = ""
brushRef = "#penB"
inkSourceRef = ""
traceFormatRef = #format1"
canvasTransformRef = ""
canvasRef = "#can1"
contextRef = "#context1"

context1

contextRef = ""

Figure 3. Inheritance and overriding of con-
text through reference

contextual elements (e.g. <brush>, <traceFormat>
etc) within <context> or by making references to
already defined contextual elements through attributes
of <context> element (e.g. traceFormatRef,
inkSourceRef, brushRef) or both. However, a con-
textual element that has been already referenced by refer-
encing attribute can’t appear as a child of <context> and
vice–versa. Each <context> element updates the current
context and this can be viewed as overriding contextual el-
ements. For example, in the InkML fragment below,

<context xml:id="context1"
brushRef="#penA"
traceFormatRef="#format1"
canvasRef="#can1"/>

...
<context xml:id="context2"

contextRef="#context1"
brushRef="#penB"/>

since context2 makes reference to context1, all the
values of attributes are inherited from context1. How-
ever, brushRef="#penB" overrides the value of the
brush attribute (#penA). This is similar to inheritance and
overriding in object-oriented languages. This is illustrated
in Figure 3.

id2260671 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 4. Streaming (left) and archival (right)
ink markup structure conversion

Although both styles of InkML are equivalent, they im-
pose different requirements on the markup processor and
generator. It is desirable to create archival ink from stream-
ing if we want to store the data for future retrieval and ma-
nipulation. Streaming ink can be generated from archival if
we want to know about the event changes that caused the
generation of the ink. For example, such a conversion is
required to animate the ink in the way it was written or
to transmit the archival ink to other applications. There-
fore, translation tools for the conversion between these two
equivalent markup styles can be very useful.

3. The InkML Translation

Translation of InkML from one markup style to another
requires analysis of one structure and generation of another,
equivalent structure optimized for a different use. One can
view the translation problem as the re–arrangement and up-
date of InkML primitives while preserving semantics. This
is summarized in Figure 4. As we can see from the figure,
in Archival InkML the current state can be known directly
from the contextual elements that appear as children of the
<definition> element. But the determination of the
current state in streaming style may not be straightforward
because of the possibility of chains of multiple references.
The following sections discuss two translation algorithms
in detail.

Output Archival InkML

Input Streaming InkML

Save all <context> that
has ID

Generate new ID for all context

Determine current context and brush for each trace

Encapsulate trace within <traceGroup> element and
make referene to current context and brush

New definitions = old definitions + generated contexts

changes except brush and update
current context

Save old <definitions>

Figure 5. Streaming to archival translation

3.1. Streaming to Archival Translation

The central idea in Streaming to Archival InkML conver-
sion is to determine the context for each trace, put it inside
a <definitions> element and encapsulate traces with a
<traceGroup> element that makes reference to the ap-
propriate <context> element.

Figure 5 shows an activity diagram for streaming to
archival translation. The Streaming InkML is parsed
using an XML parser. The existing elements inside
<definitions> are saved for future use. New IDs of
the form “contextgN”, where N = 1, 2,..., are generated
for the contexts that don’t have IDs. The state of cur-
rent context is maintained in a data structure with fields
for the id, brush, trace format, canvas, canvas transform,
inkSource and timestamp. Whenever a change in context
occurs (through the <context> element), the state vari-
ables of the current context are updated. Traces that share
the same context are put within a shared <traceGroup>
element which makes reference to an explicit context with
the current state. Brushes are directly referenced by the
<traceGroup> through the brushRef attribute. All
traces are treated uniformly. The new <definitions>
to be put in the Archival InkML are given by the union
of the old <definitions> and the newly generated
<context> elements.

(incremental order)

Write <trace> encapsulated by <traceGroup>

(if necessary) and output generated InkML

Input Archival InkML

[more <traceGroup>]

[no more <traceGroup>]

Use "contextChanges" info to update the current context
Encapsulate contextual elements within <context>

c1 = contextof(traceGroup)
c2 = c1.contextRef
contextChanges = diff(c2,c1)

Extract <traceGroup> elements

Remove <context> elements
from <definitions>

 (Reflects event)

Figure 6. Archival to streaming translation

3.2. Archival to Streaming Translation

The main idea of archival to streaming translation
is to make explicit incremental context changes as an
archival ink collection is traversed. This translation cap-
tures the changes in context and presents them inline.
To do this, all the <context> definitions are removed
from <definitions> and saved temporarily. Each
<traceGroup> element is then processed in sequence.
Let c1 be the context referenced by <traceGroup>
and c2 be the context referenced by c1. Now, the
change in context δc is diff (c1, c2). Examples of such
changes are a change in brush or a change in trace
format. These changes are reflected in the InkML by
contextual elements (e.g. brush, trace format) encapu-
lated in <context> elements appearing in–line with the
<trace> and <traceGroup> elements. Traces with an-
notations (<annotation> or <annotationXML>) are
encapsulated within <traceGroup>s to contain the an-
notatiosn in the output streaming ink. In the absence of an-
notations, <traceGroup>s are not used. A stream of dig-
ital ink is output after each <traceGroup> is processed.
Thus, Streaming InkML is generated iteratively and the dig-
ital ink generated in each iteration shares the same context.
Figure 6 illustrates this process.

duplicate!

<trace> ... </trace>

 <context traceFormatRef="#t2"/>

<trace> ... </trace>

<trace> ... </trace>

C1

C2

C3

C4

CONTEXT IDs

(C1)

<context traceFormatRef="#t1" brushRef="#b1"/>

<context traceFormatRef="#t1" brushRef="#b2"/>

 <context brushRef="#b1"/>

Figure 7. An example of duplicate context

4. Optimization Issues

In Streaming InkML, the context at one point in the
stream might reproduce the context of a point in the stream.
Naı̈vely, this would cause the generation of redundant con-
texts in Streaming to Archival InkML translation. To reduce
the size of the generated Archival InkML, it is necessary to
avoid such redundant contexts.

An example of duplicate contexts being generated is
shown in Figure 7. The context of each trace in Stream-
ing InkML is assigned an ID during the conversion process
(section 3.1). The contexts C1 and C4 happen to be the
same (both have ‘1’ as traceformat and ‘b1’ as brush).

One situation where contexts would normally be often
repeated is in collaborative inking. If digital ink is collected
from different ink sources in a single InkML stream, then
the ink source might send contextual elements, even if its
current state is unchanged, in order to refresh the current
state at the receiver side.

Duplicate contexts can be removed from Archival
InkML by the process shown in Figure 8. All contexts ap-
pearing in the input archival ink are analyzed. Each context
is modeled by an object that has all of the attributes of a
<context> element as well as a pointer to an “original”
context, to be used in case it is a duplicate. As the contexts
are processed, the actual values of the attributes are deter-
mined by resolving the references and inheritence. The set
of contexts is then partitioned into equivalence classes using
the relation that contexts are equivalent if correspoinding
attributes, excluing “id” and “original”, have equal values.
Duplicate contexts are removed by choosing one represen-
tative from each equivalence class as the original and re-
placing all references to members of an equivalence class
with references to the original.

Input Archival Ink

vect = createVector()
Traverse <definitions>

duplicateVect = createVector()

duplicateVect.add(currentContext)
currentContext.original = original
remove this <context> from <definitions>

vect.add(currentContext)

Output Optimized Archival InkML

[no more <context>]

[more <context>]

[’vect’ has ’currentContext’]

[’vect’ doesn’t have ’currentContext’]

Find absolute values of different aspects of current context
currentContext = createCurrentContext(...)

Replace duplicate context IDs with originals
using ‘duplicateVect’
Update references to these contexts

Figure 8. Optimization of Archival InkML

5. Conclusions and Future Work

We have presented methods to translate streaming style
InkML to archival style and vice versa. We have also shown
an optimization to reduce the size of the Archival InkML.
We believe that such translators will be useful components
for pen–based applications that operate in both archival and
streaming mode. Our future work includes using these
translators in a collaborative inking environment to store ink
conversation for further processing and to recover serialized
ink from processed data.

References

[1] Y.-M. Chee, M. Froumentin, and S. M. Watt (editors). Ink
Markup Language (InkML), October 2006. http://www.
w3.org/TR/InkML/.

[2] I. Guyon. Unipen 1.0 Format Definition. The Unipen Con-
sortium, 1994.

[3] Slate corporation. JOT — A Specification for an Ink Storage
and Interchange Format, 1993.

[4] X. Wu. Achieving interoperability of pen computing with het-
erogeneous devices and digital ink formats. Master’s thesis,
The University of Western Ontario, London, ON, Canada, De-
cember 2004.

