
From MIT SketchML to InkML
or There and Back Again

Rui Hu
Computer Science Department
University of Western Ontario

London, Canada
rhu8@uwo.ca

Stephen M. Watt
Computer Science Department
University of Western Ontario

London, Canada
Stephen.Watt@uwo.ca

Abstract—The MIT Sketch Markup Language (SketchML)
and the Ink Markup Language (InkML) are both used for
sketch data representation. Techniques for exchanging sketch
data between the two formats, however, are currently not
readily available. In this article, we present a data bind-
ing solution for two-way conversion between SketchML and
InkML. We show how to transform SketchML files to InkML
archiving and streaming style. This allows sketch data to be
used in collaborative environments where real-time sharing is
desired. In the reverse conversion, we bind InkML elements to
SketchML elements. This makes sketch data that is represented
by InkML available to existing SketchML applications. We
have tested these ideas in a shared whiteboard application and
found them to perform well.

Keywords-Pen computing, InkML, MIT SketchML

I. INTRODUCTION

While once somewhat exotic and specialized, pen and
touch enabled devices are now ubiquitous. It is therefore
becoming increasingly important to be able to exchange
drawing and writing input between platforms and appli-
cations. Various vendors record pen or touch input either
in their own proprietary formats, or simply as images that
lose important information. Various formats for digital ink
have been proposed earlier, including Unipen [1] and Jot
[2], but these have either been restricted to special uses
or have not received wide acceptance. Presently two data
formats stand out as sufficiently general for wide-spread use:
InkML [3] and MIT SketchML [4], which we refer to as
SketchML for simplicity. Both of these are XML-based data
formats, similar in that they both record trace information,
but otherwise quite different. This paper examines what is
involved in converting between these formats.

InkML is an open and up-to-date standard proposed by the
W3C to represent digital ink. It supports both archival (off-
line) and streaming (on-line) ink data. Of interest to us here,
it supports digital ink streaming between participants based
on the concept of a context containing various informa-
tion, including canvas, canvas transformation, trace format,
ink source properties, brush properties and time stamps.
SketchML is another open XML-based format providing
a collection of elements to represent sketches as well as

other meta information (such as the study and the domain
for which the sketch was created). SketchML is useful
in sketch data representation and annotation [5]. However,
it lacks support for sketch sharing which is important in
collaborative environments, such as distance education and
work-group meetings. These environments involve multiple
participants and are more complex than the single-user case.

By converting from SketchML to InkML, we make
SketchML data acceptable by digital ink applications that
support InkML. We also exploit the InkML streaming fea-
tures so that sketch can be shared in real time between
participants, who may be in the same room or across the
planet. By converting from InkML to SketchML, we make
sketch data that is represented by InkML compatible to
existing SketchML applications.

II. SKETCHML TO INKML

SketchML can be used by applications to store and
manipulate sketch data. The <sketch> element is the
root element of any SketchML file instances. It contains
a set of metadata elements as well as sketch data el-
ements. The metadata elements includes <sketcher>,
<mediaInfo>, <study> and <domain>, which in
turn specifies the person who created the sketch, the ref-
erenced external file (e.g. audio file), and the study and
the domain that the sketch was created for. The sketch
data elements, including <point> and <shape>, are
used to represent a series of strokes. Each stroke consists
of a sequence of contiguous ink points. To support stroke
grouping and annotation, multiple strokes are allowed to
exist within a named <shape> element. The <shape>
element may also contain other metadata such as color, pen
tip, raster and so on. The UUIDs that are assigned to each
point in SkethcML are encoded as additional channels in the
InkML trace format.

To convert from the SketchML format to the InkML
format, the metadata elements can be easily represented
by InkML <annotationXML> elements. An example of
using InkML <annotationXML> element to represent
SketchML metadata element is shown in Listing 1.



<annotationXML>
<sketcher>

<id>86bf5a7b-b71b-4912-a3aa-e686f5abdf1b</id>
<dpi x="96" y="96" />

</sketcher>
</annotationXML>

Listing 1. SketchML <sketcher> as InkML annotation

A. SketchML to Archival InkML

InkML archiving typically handles strokes that have been
collected over some span of time and may re-organize them
so that preferably the strokes be state-free. Therefore, the
associated contextual information can be stored apart from
the strokes. It is usually represented by the <context>
elements. Each of them is assigned an identifier using the
xml:id attribute. References to these contextual elements
are made using the contextRef attributes of each stroke.

To accommodate the InkML archiving style, we represent
each SketchML <shape> element by a pair of an InkML
<traceGroup> element and a <context> element.
The <traceGroup> contains the shape’s coordinates.
The <context> element contains contextual information.
Reference to the <context> element is made by the
contextRef attribute of the <traceGroup> element.

B. SketchML to Streaming InkML

InkML streaming delivers strokes in sequential time order.
Initially, each ink collaboration participant sets up a default
context and listens to context changes. This is similar to
an event-driven model in which context changes are made
when contextual elements are received. Whenever a new
contextual element is received, it simply updates old values.

Converting from the SketchML to the InkML streaming
style adopts the similar approach as to InkML archiving
style. Each SketchML <shape> element is represented
by an InkML <traceGroup> element along with a
<context> element. However, two elements must be
stored together and the <context> element must be sent
prior to the <traceGroup> element. An example of
conversion from SketchML to InkML streaming style is
shown in Listing 2.

III. INKML TO SKETCHML

Converting from InkML to SketchML is the reverse
process. If the InkML was generated from SketchML, then
all the meta data elements can be easily restored from
the corresponding <annotationXML> elements. Strokes
and their associated context will be together converted to
SketchML <shape> elements.

IV. IMPLEMENTATION AND EXPERIMENTS

To test our ideas we have developed a software
implementation, InkChat (http://www.orcca.on.ca/PenMath/

<context traceFormatRef="TF0" xml:id="Ctx2">
<brush xml:id="Brush2">
<brushProperty name="transparency" value="255" />

...
</brush>

</context>
<traceGroup contextRef="#Ctx2" xml:id="TG2">
<annotationXML>
<shape id="5a6b5e88-5274-404e-abb2-19c2e40351c9"
type="SubStroke" width="150"
author="86bf5a7b-b71b-4912-a3aa-e686f5abdf1b"
height="1" name="stroke"/>

</annotationXML>
<trace xml:id="Trace2">
3305.0 9966.0 1180113657038
2758944186448628176 -6377473126013613401 23.0,

3330.0 9952.0 1180113657046
-7998112319767163665 -5372399576976323103 29.0,

...
</trace>

</traceGroup>

Listing 2. Conversion from SketchML to streaming InkML

downloads/InkChat/). InkChat is a cross-platform white-
board application which allows conducting and archiving
collaborative sessions that involve synchronized voice and
sketch on a shared canvas. It accepts both the InkML and
the SketchML formats and incorporates the technique pre-
sented for conversion. In particular, it allows any SketchML
elements to be processed in the InkML streaming style so
that it can be transmitted to other participants in real time.

V. CONCLUSION

We have shown how to convert from SketchML to InkML
archiving style and to InkML streaming style, each supports
certain operations more directly. By converting to InkML
archiving style, we can make SketchML file available to
InkML applications. By converting to InkML streaming
style, we can enable SketchML applications to be used in
collaborative environments where sketch can be seen by
other participants in real time. We have also shown how to
conduct the reverse conversion, from InkML to SketchML. It
makes sketch data that is represented by InkML compatible
to existing SketchML applications. As a proof-of-concept,
we have presented InkChat, a collaborative whiteboard ap-
plication. It incorporates the conversion technique and shows
good performance.

REFERENCES

[1] I. Guyon, Unipen 1.0 Format Definition. http://www.unipen.
org/dataformats.html, 1992.

[2] Slate-Corporation, JOT - A Specification for an Ink Storage and
Interchange Format. http://unipen.nici.kun.nl/jot.html, 1996.

[3] Stephen M. Watt and Tom Underhill (Editors), Ink Markup
Language (InkML). http://www.w3.org/TR/InkML/, 2011.

[4] MIT-Design-Rationale-Group, MIT SketchML Format. http:
//rationale.csail.mit.edu/ETCHASketches/format/index.html.

[5] M. Oltmans, C. Alvarado and R. Davis, ETCHA Sketches:
Lessons Learned from Collecting Sketch Data, 3rd ed. Proc.
Making Pen-Based Interaction Intelligent and Natural, 2004.


