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Abstract

In this paper we describe a new technique for general
purpose interactive segmentation of N-dimensional images.
The user marks certain pixels as “object” or “background”
to provide hard constraints for segmentation. Additional
soft constraints incorporate both boundary and region in-
formation. Graph cuts are used to find the globally optimal
segmentation of the N-dimensional image. The obtained so-
lution gives the best balance of boundary and region prop-
erties among all segmentations satisfying the constraints.
The topology of our segmentation is unrestricted and both
“object” and “background” segments may consist of sev-
eral isolated parts. Some experimental results are presented
in the context of photo/video editing and medical image seg-
mentation. We also demonstrate an interesting Gestalt ex-
ample. A fast implementation of our segmentation method
is possible via a new max-flow algorithm in [2].

1. Introduction

Interactive segmentation is becoming more and more
popular to alleviate the problems inherent to fully automatic
segmentation which seems to never be perfect. Our goal is
a general purpose interactive segmentation technique that
divides an image into two segments: “object” and “back-
ground”. A user imposes certain hard constraints for seg-
mentation by indicating certain pixels (seeds) that abso-
lutely have to be part of the object and certain pixels that
have to be part of the background. Intuitively, these hard
constraints provide clues on what the user intends to seg-
ment. The rest of the image is segmented automatically by
computing a global optimum among all segmentations sat-
isfying the hard constraints. The cost function is defined in
terms of boundary and region properties of the segments.
These properties can be viewed as soft constraints for seg-
mentation. A globally optimal segmentation can be very

efficiently recomputed when the user adds or removes any
hard constraints (seeds). This allows the user to get any
desired segmentation results quickly via very intuitive in-
teractions. Our method applies to N-D images (volumes).

One of the main advantages of our interactive segmen-
tation method is that it provides a globally optimal solution
for an N-dimensional segmentation when the cost function
is clearly defined. Some earlier techniques (snakes [14, 4],
deformable templates [21], shortest path [15], ratio regions
[5], and other [13]) can do that only in 2D applications when
a segmentation boundary is a 1D curve. Many techniques
either don’t have a clear cost function at all (region growing,
split and merge, see Chapter 10 in [11]) or compute only an
approximate solution (e.g. a local minimum) that can be
arbitrarily far from the global optimum (region competition
[22], level set methods [16], normalized cuts [18]). Global
properties of such segmentations may be difficult to analyze
or predict. Imperfections in the result might come from de-
ficiencies at the minimization stage. In contrast, imperfec-
tions of a globally optimal solution are directly related to
the definition of the cost function. Thus, the segmentation
can be controlled more reliably.

It is also important that the cost function that we use
as a soft constraint for segmentation is general enough to
include both region and boundary properties of segments.
In fact, our cost function is similar to one in [9] obtained
in a context of MAP-MRF estimation. Consider an arbi-
trary set of data elementsP and some neighborhood sys-
tem represented by a setN of all unordered1 pairs{p, q}
of neighboring elements inP . For example,P can con-
tain pixels (or voxels) in a 2D (or 3D) grid andN can

1For simplicity, we present the case ofunorderedpairs of neighbors
{p, q}. If pairs of neighbors areorderedthen we have two distinct pairs
(p, q) and (q, p). This would allow different (directed) discontinuity
penalties for two cases whenp ∈ “object”, q ∈ “background” and when
p ∈ “background”,q ∈ “object”. To set such directed costs one should
have prior information on properties of the boundary from object to back-
ground. Algorithmically, generalization from unordered to ordered neigh-
bors means switching from undirected (presented here) to directed graphs.
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contain all unordered pairs of neighboring pixels (voxels)
under a standard 8- (or 26-) neighborhood system. Let
A = (A1, . . . , Ap, . . . , A|P|) be a binary vector whose
componentsAp specify assignments to pixelsp in P . Each
Ap can be either “obj” or “bkg” (abbreviations of “object”
and “background”). VectorA defines a segmentation. Then,
the soft constraints that we impose on boundary and region
properties ofA are described by the cost functionE(A):

E(A) = λ · R(A) + B(A) (1)

where

R(A) =
∑

p∈P

Rp(Ap) (2)

B(A) =
∑

{p,q}∈N

B{p,q} · δ(Ap, Aq) (3)

and

δ(Ap, Aq) =

{

1 if Ap 6= Aq

0 otherwise.

The coefficientλ ≥ 0 in (1) specifies a relative impor-
tance of the region properties termR(A) versus the bound-
ary properties termB(A). The regional termR(A) as-
sumes that the the individual penalties for assigning pixelp

to “object” and “background”, correspondinglyRp(“obj” )
andRp(“bkg”), are given. For example,Rp(·) may reflect
on how the intensity of pixelp fits into a known intensity
model (e.g. histogram) of the object and background.

The termB(A) comprises the “boundary” properties of
segmentationA. CoefficientB{p,q} ≥ 0 should be inter-
preted as a penalty for a discontinuity betweenp andq. Nor-
mally, B{p,q} is large when pixelsp andq are similar (e.g.
in their intensity) andB{p,q} is close to zero when the two
are very different. The penaltyB{p,q} can also decrease as a
function of distance betweenp andq. CostsB{p,q} may be
based on local intensity gradient, Laplacian zero-crossing,
gradient direction, and other criteria (e.g. [15]).

The algorithm in [9] computes a globally optimal binary
segmentation minimizing the energy similar to (1) when no
hard constraints are placed. In contrast, our goal is to com-
pute the global minimum of (1) among all segmentations
that satisfy additional hard constraints imposed by a user.

There are different types of hard constraints that were
proposed in the past for interactive segmentation methods.
For example, for intelligent scissors [15] and live wire [6],
the user has to indicate certain pixels where the segmenta-
tion boundary should pass. The segmentation boundary is
then computed as the “shortest path” between the marked
pixels according to some energy function based on image
gradient. One difficulty with such hard constraints is that
the user inputs have to be very accurately positioned at the
desired boundary. Moreover, this approach can not be easily
generalized to 3D data.

We consider hard constraints that indicate segmentation
regions rather than the boundary. We assume that some pix-
els were marked as internal and some as external for the
given object of interest. The subsets of marked pixels will
be referred to as “object” and “background” seeds. The seg-
mentation boundary can be anywhere but it has to separate
the object seeds from the background seeds. Note that the
seeds can be loosely positioned inside the object and back-
ground regions. Our segmentation technique is quite stable
and normally produces the same results regardless of par-
ticular seed positioning within the same image object.

Obviously, the hard constraints by themself are not
enough to obtain a good segmentation. A segmentation
method decides how to segment unmarked pixels. [10] and
[17] use the same type of hard constraints as us but they
do not employ a clear cost function and segment unmarked
pixels based on variations of “region growing”. Since the
properties of segmentation boundary are not optimized, the
results are prone to “leaking” where the boundary between
objects is blurry. In contrast, we combine the hard con-
straints as above with energy (1) that incorporates region
and boundary properties of segments.

In this paper we show how to generalize the algorithm
in [9] to combine soft constraints encoded in (1) with user
defined hard constraints. We also show how the optimal
segmentations can be efficiently recomputed if the hard con-
straints are added or changed. Note that initial segmentation
may not be perfect. After reviewing it, the user can specify
additional object and background seeds depending on the
observed results. To incorporate these new seeds the algo-
rithm can efficiently adjust the current segmentation with-
out recomputing the whole solution from scratch.

Our technique is based on powerful graph cut algorithms
from combinatorial optimization [7, 8]. Our implementa-
tion uses a new version of “max-flow” algorithm reported
in [2]. In the next section we explain the terminology for
graph cuts and provide some background information on
previous computer vision techniques relying on graph cuts.
The details of our segmentation method and its correctness
are shown in Section 3. Section 4 provides a number of
examples where we apply our technique to photo/video-
editing and to segmentation of medical images/volumes.
We demonstrate that with a few simple and intuitive ma-
nipulations a user can always segment an object of interest
as precisely as (s)he wants. Note that some additional ex-
perimental results can be found in our preliminary work [1]
which can be seen as a restricted case where only bound-
ary term is present in energy (1). Information on possible
extensions and future work is given in Section 5.



Proceedings of “Internation Conference on Computer Vision”, Vancouver, Canada, July 2001 vol.I, p.107

(a) Image with seeds. (d) Segmentation results.

⇓ ⇑

⇒

(b) Graph. (c) Cut.

Figure 1. A simple 2D segmentation example
for a 3 × 3 image. The seeds are O = {v} and
B = {p}. The cost of each edge is reflected
by the edge’s thickness. The regional term
(2) and hard constraints (4,5) define the costs
of t-links. The boundary term (3) defines the
costs of n-links. Inexpensive edges are at-
tractive choices for the minimum cost cut.

2. Graph Cuts and Computer Vision

First, we describe the basic terminology that pertains to
graph cuts in the context of our segmentation method. An
undirected graphG = 〈V , E〉 is defined as a set of nodes
(verticesV) and a set of undirected edges (E) that connect
these nodes. An example of a graph that we use in this
paper is shown in Figure 1(b). Each edgee ∈ E in the
graph is assigned a nonnegative weight (cost)we. There are
also two special nodes called terminals. A cut is a subset
of edgesC ⊂ E such that the terminals become separated
on the induced graphG(C) = 〈V , E\C〉. It is normal in
combinatorial optimization to define the cost of a cut as the
sum of the costs of the edges that it severs

|C| =
∑

e∈C

we.

Graph cut formalism is well suited for segmentation
of images. In fact, it is completely appropriate for N-
dimensional volumes. The nodes of the graph can represent
pixels (or voxels) and the edges can represent any neigh-
borhood relationship between the pixels. A cut partitions

the nodes in the graph. As illustrated in Figure 1 (c-d), this
partitioning corresponds to a segmentation of an underlying
image or volume. A minimum cost cut generates a segmen-
tation that is optimal in terms of properties that are built into
the edge weights.

Our technique is based on a well-known combinatorial
optimization fact that a globally minimum cut of a graph
with two terminals can be computed efficiently in low-order
polynomial time [7, 8, 2]. In Section 3 we show how to set
a two terminal graph so that the minimum cut would give
a segmentation that minimizes (1) among all segmentations
satisfying the given hard constraints.

It should be noted that graph cuts were used for image
segmentation before. In [20] the image is optimally divided
intoK parts to minimize the maximum cut between the seg-
ments. In this formulation, however, the segmentation is
strongly biased to very small segments. Shi and Malik [18]
try to solve this problem by normalizing the cost of a cut.
The resulting optimization problem is NP-hard and they use
an approximation technique. In [9, 3, 12, 19] graph cuts are
applied to minimize certain energy functions used in im-
age restoration, stereo, 3D object reconstruction, and other
problems in computer vision.

A fast implementation of theoretically polynomial graph
cut algorithms can be an issue. The most straight-forward
implementations of the standard graph cut algorithms, e.g.
max-flow [7] or push-relabel [8], can be slow. The experi-
ments in [2] compare several well-known “tuned” versions
of these standard algorithms in the context of graph based
methods in vision. The same paper also describes a new ver-
sion of the max-flow algorithm that (on typical in vision ex-
amples) significantly outperformed the standard techniques.
Our implementation of the interactive segmentation method
of this paper uses the new graph cut algorithm from [2].

3. Segmentation Technique

In this section we provide algorithmic details about our
segmentation technique. Assume thatO and B denote
the subsets of pixels marked as “object” and “background”
seeds. Naturally, the subsetsO ⊂ P andB ⊂ P are such
thatO ∩ B = ∅. Remember that our goal is to compute the
global minimum of (1) among all segmentationsA satisfy-
ing hard constraints

∀p ∈ O, Ap = “obj” (4)

∀p ∈ B, Ap = “bkg” . (5)

The general work flow is shown in Figure 1. Given an
image (Figure 1(a)) we create a graph with two terminals
(Figure 1(b)). The edge weights reflect the parameters in
the regional (2) and the boundary (3) terms of the cost func-
tion, as well as the known positions of seeds in the image.
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The next step is to compute the globally optimal minimum
cut (Figure 1(c)) separating two terminals. This cut gives
a segmentation (Figure 1(d)) of the original image. In the
simplistic example of Figure 1 the image is divided into ex-
actly one “object” and one “background” regions. In gen-
eral, our segmentation method generates binary segmenta-
tion with arbitrary topological properties. Examples in Sec-
tion 4 illustrate that object and background segments may
consist of several isolated connected blobs in the image.

Below we describe the details of the graph and prove
that the obtained segmentation is optimal. To segment a
given image we create a graphG = 〈V , E〉 with nodes cor-
responding to pixelsp ∈ P of the image. There are two
additional nodes: an “object” terminal (a sourceS) and a
“background” terminal (a sinkT ). Therefore,

V = P ∪ {S, T }.

The set of edgesE consists of two types of undirected edges:
n-links (neighborhood links) andt-links (terminal links).
Each pixelp has two t-links{p, S} and{p, T } connecting
it to each terminal. Each pair of neighboring pixels{p, q}
in N is connected by an n-link. Without introducing any
ambiguity, an n-link connecting a pair of neighborsp andq

will be denoted by{p, q}. Therefore,

E = N
⋃

p∈P

{{p, S}, {p, T }}.

The following table gives weights of edges inE

edge weight (cost) for

{p, q} B{p,q} {p, q} ∈ N

λ · Rp(“bkg”) p ∈ P , p 6∈ O ∪ B

{p, S} K p ∈ O

0 p ∈ B

λ · Rp(“obj” ) p ∈ P , p 6∈ O ∪ B

{p, T } 0 p ∈ O

K p ∈ B

where
K = 1 + max

p∈P

∑

q: {p,q}∈N

B{p,q}.

The graphG is now completely defined. We draw the
segmentation boundary between the object and the back-
ground by finding the minimum cost cut on the graphG.
The minimum cost cut̂C onG can be computed exactly in
polynomial time via algorithms for two terminal graph cuts

(see Section 2) assuming that the edge weights specified in
the table above are non-negative2.

Below we state exactly how the minimum cutĈ defines
a segmentation̂A and prove this segmentation is optimal.
We need one technical lemma. Assume thatF denotes a set
of all feasiblecutsC on graphG such that

• C severs exactly one t-link at eachp

• {p, q} ∈ C iff p, q are t-linked to different terminals

• if p ∈ O then{p, T } ∈ C

• if p ∈ B then{p, S} ∈ C.

Lemma 1 The minimum cut onG is feasible, i.e.Ĉ ∈ F .

PROOF: Ĉ severs et least one t-link at each pixel since it
is a cut that separates the terminals. On the other hand, it
can not sever both t-links. In such a case it would not be
minimal since one of the t-links could be returned. Simi-
larly, a minimum cut should sever an n-link{p, q} if p and
q are connected to the opposite terminals just because any
cut must separate the terminals. Ifp andq are connected
to the same terminal then̂C should not sever unnecessary
n-link {p, q} due to its minimality. The last two properties
are true forĈ because the constantK is larger than the sum
of all n-links costs for any given pixelp. For example, if
p ∈ O andĈ severs{p, S} (costsK) then we would con-
struct a smaller cost cut by restoring{p, S} and severing all
n-links fromp (costs less thenK) as well as the opposite
t-link {p, T } (zero cost).

For any feasible cutC ∈ F we can define a unique cor-
responding segmentationA(C) such that

Ap(C) =

{

“obj”, if {p, T } ∈ C

“bkg”, if {p, S} ∈ C.
(6)

The definition above is coherent since any feasible cut sev-
ers exactly one of the two t-links at each pixelp. The lemma
showed that a minimum cut̂C is feasible. Thus, we can de-
fine a corresponding segmentation̂A = A(Ĉ). The next
theorem completes the description of our algorithm.

Theorem 1 The segmentation̂A = A(Ĉ) defined by the
minimum cutĈ as in (6) minimizes (1) among all segmen-
tations satisfying constraints (4,5).

2In fact, our technique does require that the penaltiesB{p,q} be non-
negative. The restriction thatRp(·) should be non-negative is easy to
avoid. For any pixelp we can always add a large enough positive con-
stant to bothRp(“obj” ) andRp(“bkg” ) to make sure that they become
non-negative. This operation can not change the minimumA of E(A) in
(1) since it is equivalent to adding a constant to the whole energy function.
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PROOF: Using the table of edge weights, definition of fea-
sible cutsF , and equation (6) one can show that a cost of
anyC ∈ F is

|C| =
∑

p6∈O∪B

λ · Rp(Ap(C)) +

∑

{p,q}∈N

B{p,q} · δ(Ap(C), Aq(C))

= E(A(C)) −
∑

p∈O

λRp(“obj” ) −
∑

p∈B

λRp(“bkg”).

Therefore,|C| = E(A(C)) − const(C). Note that for any
C ∈ F assignmentA(C) satisfies constraints (4,5). In fact,
equation (6) gives a one-to-one correspondence between the
set of all feasible cuts inF and the setH of all assignments
A that satisfy hard constraints (4,5). Then,

E(Â) = |Ĉ| + const = min
C∈F

|C| + const =

= min
C∈F

E(A(C)) = min
A∈H

E(A)

and the theorem is proved.

To conclude this section we would like to show that our
algorithm can efficiently adjust the segmentation to incor-
porate any additional seeds that the user might interactively
add. To be specific, assume that a max-flow algorithm is
used to determine the minimum cut onG. The max-flow
algorithm gradually increases the flow sent from the source
S to the sinkT along the edges inG given their capacities
(weights). Upon termination the maximum flow saturates3

the graph. The saturated edges correspond to the minimum
cost cut onG giving us an optimal segmentation.

Assume now that an optimal segmentation is already
computed for some initial set of seeds. A user adds a new
“object” seed to pixelp that was not previously assigned
any seed. We need to change the costs for two t-links atp

t-link initial cost new cost

{p, S} λRp(“bkg”) K

{p, T } λRp(“obj” ) 0

and then compute the maximum flow (minimum cut) on the
new graph. In fact, we can start from the flow found at
the end of initial computation. The only problem is that re-
assignment of edge weights as above reduces capacities of
some edges. If there is a flow through such an edge then
we may break the flow consistency. Increasing an edge ca-
pacity, on the other hand, is never a problem. Then, we can
solve the problem as follows.

To accommodate the new “object” seed at pixelp we
increase the t-links weights according to the table

3See [7] or [2] for details.

t-link initial cost add new cost

{p, S} λRp(“bkg”) K + λRp(“obj” ) K + cp

{p, T } λRp(“obj” ) λRp(“bkg”) cp

These new costs are consistent with the edge weight table
for pixels inO since the extra constantcp at both t-links of
a pixel does not change the optimal cut4. Then, a maximum
flow (minimum cut) on a new graph can be efficiently ob-
tained starting from the previous flow without recomputing
the whole solution from scratch.

Note that the same trick can be done to adjust the seg-
mentation when a new “background” seed is added or when
a seed is deleted. One has to figure the right amounts that
have to be added to the costs of two t-links at the corre-
sponding pixel. The new costs should be consistent with
the edge weight table plus or minus the same constant.

4. Examples

We demonstrate our general-purpose segmentation
method in several examples including photo/video editing
and medical data processing. We show original data and
segments generated by our technique for a given set of
seeds. Our actual interface allows a user to enter seeds via
mouse operated brush of red (for object) or blue (for back-
ground) color. Due to limitations of this B&W publication
we show seeds as strokes of white (object) or black (back-
ground) brush. In addition, these strokes are marked by the
letters “O” and “B”. For the purpose of clarity, we employ
different methods for the presentation of segmentation re-
sults in our examples below.

Our current implementation actually makes a double use
of the seeds entered by a user. First of all, they provide
the hard constraints for the segmentation process as dis-
cussed in Section 3. In addition, we use intensities of pix-
els (voxels) marked as seeds to get histograms for “ob-
ject” and “background” intensity distributions:Pr(I|O)
and Pr(I|B)5. Then, we use these histograms to set the
regional penaltiesRp(·) as negative log-likelihoods:

Rp(“obj” ) = − ln Pr(Ip|O)

Rp(“bkg”) = − ln Pr(Ip|B).

Such penalties are motivated by the underlying MAP-MRF
formulation [9, 3].

To set the boundary penalties we use anad-hocfunction

B{p,q} ∝ exp

(

−
(Ip − Iq)

2

2σ2

)

·
1

dist(p, q)
.

4Note that the minimum cut severs exactly one of two t-links atpixel p.
5Alternatively, the histograms can be learned from historicdata.
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(a) Original image (b) Result forλ = 7—43

(c) Result forλ = 0 (d) Result forλ = 60

Figure 2. Synthetic Gestalt example. The seg-
mentation results in (b-d) are shown for vari-
ous levels λ of relative importance of “region”
versus “boundary” in (1). Note that the result
in (b) corresponds to a wide range of λ.

This function penalizes a lot for discontinuities between
pixels of similar intensities when|Ip − Iq| < σ. However,
if pixels are very different,|Ip−Iq| > σ, then the penalty is
small. Intuitively, this function corresponds to the distribu-
tion of noise among neighboring pixels of an image. Thus,
σ can be estimated as “camera noise”.

Note that we use an 8-neighborhood system in 2D ex-
amples and 26-neighborhood system in 3D examples. All
running times are given for 333MHz Pentium III. Our im-
plementation uses a new “max-flow” algorithm from [2].

4.1. Gestalt Example

Figure 2 illustrates some interesting properties of our
cost function (1). Isolated dark blocks that stay relatively
close to each other in (a) are segmented as one object in (b).
This may correspond to the psychological perception of the
original image (a). Only an optimal solution that combines
both boundary and region properties can generate such re-
sult. Our segmentation does not leak through the numer-
ous “holes” as a simple region growing would. As shown
in (c), the segmentation based on boundary properties only
“shrinks” the object. The opposite extreme when the region
properties strongly dominate the boundary forces is shown
in (d). In this case the method creates isolated segments for
individual blocks. The bright space between the blocks has
a better fit with the “background” histogram and the super-
strong regional term forces the “object” segment out.

(a) Original B&W photo (b) Segmentation results

(c) Details of segmentation
with regional term

(d) Details of segmentation
without regional term

Figure 3. Segmentation of a photograph.

4.2. Photo and Video Editing

In Figure 3 we segmented a bell with a group of people
from a photograph. The user can start with a few “object”
and “background” seeds loosely positioned inside and, cor-
respondingly, outside the object(s) of interest. By reviewing
the results of initial segmentation the user will see what ar-
eas are segmented incorrectly. Then (s)he can put additional
seeds6 into the troubled places and efficiently recompute the
optimal segmentation as explained at the end of Section 3.
This process of adding seeds gives more clues to the algo-
rithm and may be continued until the user likes the results.

Naturally, the hope is that the method can quickly iden-
tify the right object. The user would not like to keep adding
new seeds until the whole image is covered by these seeds.
This is no better than a manual segmentation. The perfor-
mance of an algorithm can be judged by the efforts required
from the user. Thus, the results of our segmentation are
shown with seeds that we entered to get this segmentation.

Our segmentation algorithm runs in less than a second
for most 2D images (up to512 × 512) with a fixed set of
seeds. When additional seeds are entered the solution is
recomputed in the blink of an eye. Thus, the speed eval-
uation of our method in 2D is mainly concerned with the
user efforts. The detailed segmentation in Figure 3(b) is
obtained in approximately a minute. Note that in this exam-

6Note that adding correcting “object” seeds to pixels that are already
segmented as “object” would not change the optimal segmentation. These
additional hard constraint are already satisfied by the current solution. The
same argument applies to correcting “background” seeds.



Proceedings of “Internation Conference on Computer Vision”, Vancouver, Canada, July 2001 vol.I, p.111

Figure 4. Segmentation of a video sequence.

ple the algorithm created some isolated “background” seg-
ments. In fact, the algorithm automatically decided which
“background” seeds were grouped together and which were
placed into isolated segments. The same is equally true for
the “object” seeds. The segments can have any topology.

In many cases the regional term of energy (1) helps to
get the right results faster. In Figures 3(c,d) we show some
details of segmentation with and without the regional term
(λ = 0) given the same sets of seeds. In (d) the user would
spend more time by placing additional “background” seeds
to correct imperfections.

The globally minimum two-terminal cut can be com-
puted on any graph. Thus, our technique is valid for seg-
mentation of N-D data. In Figure 4 we segmented moving
cars in a video sequence. The sequence of 21 video frames
(255 × 189) was treated as a single 3D volume. The nec-
essary seeds were entered in a simple 3D interface where
we could browse through individual 2D slices (frames) of
the volume. Initial seeds can be entered in just a few repre-
sentative frames. Note that the boundary, region, and seed
information is automatically propagated between the slices
since we compute a globally optimum solution directly on
the 3D data set. Thus, the whole sequence can be segmented
based on seeds placed in just a few frames. For example, en-
tering correcting seeds in one frame can fix imperfections
in many adjacent frames. The results in Figure 4 are ob-

Figure 5. Bone removal in a CT image. Bone
segments are marked by horizontal lines.

tained by placing seeds in 3 out of 21 frames. Each car was
segmented in an independent experiment. We do not show
seeds to avoid confusion.

The computation of the minimum cut is slower in 3D
cases. The initial segmentation might take from 2-3 sec-
onds on smaller volumes (200×200×10) to a few minutes
on bigger ones (512 × 512 × 50). Thus, efficient recom-
puting of an optimal solution when new seeds are added is
crucial. Most of the time the new seeds are incorporated
in a few seconds even for bigger volumes. Therefore, we
can still consider our method as “interactive”. The results
in Figure 4 can be obtained in approximately 30 seconds
including user interactions.

4.3. Medical Images and Volumes

Figure 5 shows a segmentation that we obtained on a ab-
dominal CT image. Our goal was to remove bones from
the image for better volume rendering. The right segmenta-
tion was obtained after one “click” on one of the bones and
a couple of loose “strokes” in the background. The other
bones were correctly segmented out based on regional prop-
erties. The boundary term helped to avoid incorrect “bone”
segments in the bright parts of liver and other tissues. The
results are obtained in a few seconds. Without the regional
term in the energy function (1) whenλ = 0 the user would
have to add “object” seeds in all isolated bones.

In Figure 6 we demonstrate our segmentation method on
3D medical data. We segmented out cortex, medulla, and
collecting system of a kidney from a background. This was
done in three steps. First, the kidney was separated from the
background. Then we separated the cortex from the rest of
the kidney. In the last step the medulla was separated from
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Figure 6. Kidney in a 3D MRI angio data.

the collecting system. The results in Figure 6 are shown
without the seeds since the process involved three different
segmentations. The segmentation can be computed in 3-4
minutes including the efforts of a user.

5. Extensions

The process of putting seeds can be automated for cer-
tain applications. The seeds should be positioned with a low
probability of “false alarm” while the probability of “right
detect” is not required to be high. Even very simple recog-
nition techniques based on filters might be good enough if
the corresponding threshold is set high. Such filters would
have difficulties near the boundaries of objects but they can
confidently place many seeds anywhere else. These seeds
give hard constraints. Based on additional soft constraints
(1) the minimum cut can complete the segmentation where
the recognition method failed.
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