Graph-Based Image Segmentation:
 LOGISMOS

Milan Sonka
\&
The IIBI Team
lowa Institute for Biomedical Imaging
The University of lowa, lowa City, IA, USA

Iill Of lowa
The University of lowa

LOGISMOS - Complex Topology and Multiple Object Interactions

More than Rectangles and Tubes:

Generalization to complex shapes

- Step 1: Pre-segmentation
- Derive topology of objects of interest from image data \rightarrow approximate segmentation
- Step 2: Mesh Generation
- Specify structure of a base graph defining neighboring relations among voxels on the sought surfaces
- Step 3: Image Resampling
- Resample along a ray intersecting every vertex of the mesh forming graph columns.
- Step 4: Graph Construction
- Weighted directed graph G built using from columns, with neighboring relations, smoothness constraints, and inter-surface separation.
- Step 5: Graph Search
- Searching for optimal closed set.

Problems of Step 3 - Colliding Columns

首 The University of lowa
BIOMEDICAL IMAGING

Electric Lines of Force (ELF)

- An electric field theory motivated search direction

$E=\sum_{i} E_{i}$
- Non-intersecting
- Easy to compute
- Expanding to any positions

Electric lines of force (ELF)

- Non-ELF medial-surface approach also possible

Inner surface
Double surfaces
血 The University of lowa

Aortic Thrombus from MDCT

Preliminary aortic/iliac lumen segmentation

Cross-Object Interactions

渞 The University of lowa

Multi-object 3D segmentation

- Regions of object-to-object interactions
- reflected in inter-graph arcs
- Steps:
- Identify regions of pairwise interaction
- Link interacting surfaces = create inter-graph arcs
- Build/solve resulting graph
- Example
- Prostate - Bladder - (Rectum)
- Knee-joint cartilage segmentation
- Femur/Tibia/Patella cartilage thickness

Healthy Knee

9/14/2014
fiili The University of lowa
BIOMEIOWA INSTITUTEFOR
BIOMEDICAL IMAGING

