LOGISMOS - Cost Functions

Graph-Based Image Segmentation:
LOGISMOS
Milan Sonka
\&
The IIBI Team
lowa Institute for Biomedical Imaging The University of lowa, lowa City, IA, USA

Surface set feasibility

A surface set $\left\{f_{1}(x, y), \ldots, f_{n}(x, y)\right\}$ is considered feasible if:

- Each surface in the set
- satisfies surface smoothness constraints
- Each pair of surfaces
- satisfies surface interaction constraints.

Cost Function - Surface Costs

- One-to-one correspondence between each feasible surface set and each closed set in the graph
- Graph arcs reflect surface feasibility constraints
- Node costs defined so that cost of each closed set corresponds to cost of a set of surfaces
- $\boldsymbol{\rightarrow}$ Minimum-cost closed set corresponds to optimal set of surfaces
- Edge-based costs are a logical option
- Strong edge \rightarrow low node cost
- Edge costs not always the best/only option \rightarrow regional costs

Multi-Surface Regional Costs

- Edge based costs:
\square Each voxel \rightarrow corresponding local edge/gradient cost
- n "on-surface" costs - unlikeliness of belonging to each of the n surfaces
- Edge + region costs:
- each voxel assigned $2 n+1$ cost values:
- $n+1$ "in-region" cost values, reflecting the unlikeliness of belonging to each of the $n+1$ regions
- n "on-surface" costs - unlikeliness of belonging to each of the n surfaces

Edge + Region

 CostsSummation of
"on-surface" cost terms "in-region" cost terms

$C_{\left\{f_{1}(x, y), f_{2}(x, y), \ldots, f_{n}(x, y)\right\}}=\sum_{i=1}^{n} C_{f_{i}(x, y)}+\sum_{i=0}^{n} C_{R_{i}}$

In-regions \& on-surface costs

- Background/motivation • 3-D graph search • Extended 3-D graph search • Current applications • Future applications

羔 Extension 1: Including regional terms in the minimization problem

Surface set cost function:
$C_{\left\{f_{1}(x, y), f_{2}(x, y), \ldots, f_{n}(x, y)\right\}}=\sum_{i=1}^{n} C_{f_{i}(x, y)}+\sum_{i=0}^{n} C_{R_{i}}$

On-surface costs: In-region costs:

$$
C_{f_{i}(x, y)}=\sum_{\left\{(x, y, z) \mid z=f_{i}(x, y)\right\}} c_{\text {surf }}(x, y, z) \quad C_{R_{i}}=\sum_{(x, y, z) \in R_{i}} c_{\text {reg }_{i}}(x, y, z)
$$

- Background/motivation • 3-D graph search • Extended 3-D graph search • Current applications • Future applications

羔 Graph representation of in-region costs

NOT quite correct \rightarrow Making it right

- Cost of closed set as defined so far:
- $\mathrm{R}_{0 \text { cost }}{ }^{0}+\mathrm{R}_{1 \text { cost }}{ }^{1}+\mathrm{R}_{1 \text { cost }}{ }^{0}-\mathrm{R}_{1 \text { cost }}{ }^{0}-\mathrm{R}_{2 \text { cost }}{ }^{0}-\mathrm{R}_{2 \text { cost }}{ }^{1}$
- Correct cost to be minimized:
흔
$-\mathbf{R}_{\text {ocost }}{ }^{0}+\mathbf{R}_{\text {1cost }}{ }^{1}+\mathbf{R}_{\text {2cost }}{ }^{2}$

$-R_{0 \text { cost }}{ }^{0}-R_{1 \text { cost }}+R_{1 \text { cost }}{ }^{0}+R_{1 \text { cost }}{ }^{1}-R_{2 \text { cost }}{ }^{0}=R_{2 \text { cost }}{ }^{1}+$ $+\mathrm{R}_{\text {2cost }}+\mathrm{R}_{\text {2cost }}+\mathrm{R}_{2 \text { cost }}{ }^{2}$
- Adding $\mathrm{K}=\mathrm{R}_{2 \text { cost }}{ }^{0}+\mathrm{R}_{2 \text { cost }}{ }^{1}+\mathrm{R}_{2 \text { cost }}{ }^{2}$ solves the problem
- K is a constant $\rightarrow O K$ to add a constant

- Background/motivation • 3-D graph search • Extended 3-D graph search • Current applications • Future applications
 㑑 Graph representation of in-region costs (toy example)

Region 2 Region 1

Region 0

Graph 2

Graph 1

- Background/motivation - 3-D graph search • Extended 3-D graph search • Current applications • Future applications

前 Graph representation of in-region costs (toy example)

Total from $2=440$

Retinal OCT

Surface 1
Surface 2
Surface 3
Surface 4
Surface 5
Surface 6
Surface 7
Surface 7
Surface 8
Surface 8
Surface 9
Surface 9
Surface 10
Surface 11
nerve fiber layer - NFL, ganglion cell layer -GCL, inner plexiform layer IPL, inner nuclear layer - INL, outer plexiform layer - OPL, outer nuclear layer - ONL, outer limiting membrane - OLM, inner segment layer - ISL, connecting cilia - CL, outer segment layer - OSL, Verhoeff's membrane - VM, and retinal pigment epithelium - RPE

