Graph-Based Image Segmentation:

LOGISMOS
Milan Sonka
\&
The IIBI Team
lowa Institute for Biomedical Imaging
The University of lowa, lowa City, IA, USA

THE IOWA INSTITUTE FOR

Example: Min s-t Cut approach to finding min-cost "path"

- Every pixel corresponds to a node in the graph, node costs used
- The path intersects with each column at exactly one node
- Smoothness constraint:
max. vertical distance of neighbor-column nodes $=1$

Min-cost path (cost = 2)
(4)

and Edge Construction:

- Connect each node to its bottom-most neighbor in the adjacent column.
- Build vertical edges along each column, pointing downwards.

- transform the graph in a form that can be solved by finding a minimum-cost closed set
- efficient optimization exists for minimum-cost closed set

- Along each column, subtract the cost of each node by the cost of the node immediately beneath it.
- The bottom-most two nodes are unchanged.

- Can be solved by a Min s-t Cut (Max Flow) algorithm
- 2 auxiliary nodes - a start (s) \& a terminal (t) are added
- An edge-weighted directed graph is built

The upper envelope of the min-cost closed set is the solution.

4
(2)
(1) 1
(3) 8

3D Surface

\square The surface intersects with exactly one voxel of each column of voxels parallel to the z-axis
\square The difference in z-coordinates between neighboring voxels on a valid surface in x and y directions

- smoothness constraint ($\Delta x, \Delta y$)

3-D Case

- Principles presented in 2-D are applicable to 3-D
- Detect a surface instead of a path
- Construct Edges in both x and y-directions
- x - and y-direction may have different smoothness constraints

Terrain-like or Tubular Surfaces

Airway Segmentation

Slice-by-slice Dynamic Programming

3-D Optimal Surface Detection

Multiple Interacting Surfaces

- Relations between surfaces modeled by "inter-surface" arcs

Minimum distance of 2 pixels, maximum of 3 pixels
$\operatorname{Arc}(A, B)$: If A is in the closure, B must also be in the closure (minimum distance)
$\operatorname{Arc}(C, A)$: If C is in the closure, A must also be ... (maximum distance)

Multiple Interacting Surfaces

Minimum distance of 1 pixel, maximum of 3 pixels

1	4	2
4	0	1
5	2	4
1	0	3
4	3	1

Multiple Interacting Surfaces

--1	4	2
4	\bigcirc	-
5	2	4
1	, 0	3
4	3	1

